Thiosulphate sulfurtransferase: Biological roles and therapeutic potential
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial...
Saved in:
Published in | Redox biology Vol. 82; p. 103595 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S2O32−), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics.
This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target.
Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations.
Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.
[Display omitted]
•The mitochondrial interaction between oxidative stress and TST.•The extra-mitochondrial impact of TST on NRF2 signaling.•Tissue expression profile of TST in various diseases.•Therapeutic potential of TST activation. |
---|---|
AbstractList | Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S2O32−), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics.This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target.Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations.Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H 2 S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S 2 O 3 2− ), promoting H 2 S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. Image 1 • The mitochondrial interaction between oxidative stress and TST. • The extra-mitochondrial impact of TST on NRF2 signaling. • Tissue expression profile of TST in various diseases. • Therapeutic potential of TST activation. Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics.This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST’s potential as a biomarker and therapeutic target.Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations.Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST’s interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S O ), promoting H S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S2O32−), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. [Display omitted] •The mitochondrial interaction between oxidative stress and TST.•The extra-mitochondrial impact of TST on NRF2 signaling.•Tissue expression profile of TST in various diseases.•Therapeutic potential of TST activation. |
ArticleNumber | 103595 |
Author | Feelisch, Martin Chatre, Laurent Dolga, Amalia M. Melhem, Shaden van Goor, Harry Morton, Nicholas M. Luo, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0009-0004-6769-4147 surname: Luo fullname: Luo, Yang organization: University of Groningen, Dept. of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands – sequence: 2 givenname: Shaden surname: Melhem fullname: Melhem, Shaden organization: Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK – sequence: 3 givenname: Martin surname: Feelisch fullname: Feelisch, Martin organization: Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK – sequence: 4 givenname: Laurent surname: Chatre fullname: Chatre, Laurent organization: Université de Caen Normandie, CNRS, Normandie Univ, ISTCT, UMR6030, GIP Cyceron, Caen, F-14000, France – sequence: 5 givenname: Nicholas M. surname: Morton fullname: Morton, Nicholas M. organization: Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK – sequence: 6 givenname: Amalia M. surname: Dolga fullname: Dolga, Amalia M. organization: University of Groningen, Dept. of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands – sequence: 7 givenname: Harry orcidid: 0000-0002-6670-1577 surname: van Goor fullname: van Goor, Harry email: h.van.goor@umcg.nl organization: University Medical Center Groningen, Dept. of Pathology and Medical Biology, Groningen, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40107018$$D View this record in MEDLINE/PubMed https://normandie-univ.hal.science/hal-04993959$$DView record in HAL |
BookMark | eNp9Uk1v1DAQtVAR_aC_AAnlCIddbMeJYyRUlQpo0Upcytnyx3jjlTde7GQF_77eplQtB3zxaOa95xnPO0VHQxwAoTcELwkm7YfNMoGNv5cU06Zk6kY0L9AJpaRe0JrwoyfxMTrPeYPL6TpGCX6FjhkmmGPSnaDvt72PeQq7Xo1QlcBNaUxqyA6SyvCx-uxjiGtvVKhSDJArNdhq7Et1B9PoTbWLIwyjV-E1eulUyHD-cJ-hn1-_3F5dL1Y_vt1cXa4WpiF0XFhohFVt66jVVAlHGGs11dToThGucKda5gDXuHau5bbRtMPgMGdlVM1dXZ-hm1nXRrWRu-S3Kv2RUXl5n4hpLVUqnQWQVjXOQSuYEY51FBTlhBMLXOsWuk4XrYtZazfpLVhTJkkqPBN9Xhl8L9dxLwkRDedCFIX3s0L_D-_6ciUPOcwKSjRiTwr23cNrKf6aII9y67OBENQAccqyLEtQxjlhBfr2aWOPyn83VwD1DDAp5pzAPUIIlgeLyI28t4g8WETOFimsTzMLyoL2HpLMxsNgwPoEZiw_6P_LvwNIv8Xm |
Cites_doi | 10.1126/sciadv.1500968 10.1111/j.1365-2958.2006.05028.x 10.1016/j.freeradbiomed.2019.01.009 10.1016/j.redox.2019.101296 10.12659/MSM.893234 10.1016/j.bbrc.2020.05.014 10.3389/fphar.2020.01134 10.1074/jbc.X120.015651 10.1038/nrmicro2356 10.1073/pnas.93.16.8175 10.1038/nrneph.2010.143 10.1042/CS20110267 10.1016/j.freeradbiomed.2016.08.024 10.3390/antiox5040046 10.1016/j.biochi.2022.04.013 10.1038/nm.4115 10.1210/er.2009-0027 10.1038/s41580-020-0230-3 10.3390/ijms22126452 10.1038/s12276-019-0355-7 10.1074/jbc.RA117.000826 10.1111/j.1432-1033.1977.tb11219.x 10.1021/bi052475e 10.1155/2015/454659 10.1093/jn/136.6.1636S 10.1021/acs.joc.8b01216 10.1016/S1474-4422(10)70116-2 10.3389/fonc.2022.1004261 10.1155/2016/6043038 10.3389/fimmu.2023.1125594 10.1080/15216540701206859 10.1016/j.molmed.2020.06.006 10.1016/j.bbrc.2023.06.072 10.3390/nu13041180 10.1089/ars.2017.7083 10.1203/PDR.0b013e3181a9eafb 10.1038/s41598-022-16320-1 10.3390/antiox12040868 10.3390/ijms18061315 10.3390/antiox10111738 10.1016/j.ab.2023.115434 10.1080/28347056.2024.2304348 10.3390/molecules28052025 10.1074/jbc.M115.675694 10.3390/biom11121859 10.1186/s40360-022-00569-3 10.1038/nm.2899 10.1093/hmg/ddg187 10.1002/j.1552-4604.1992.tb03849.x 10.1161/CIRCULATIONAHA.123.064747 10.1002/pro.4794 10.1126/science.1127895 10.1124/pr.117.014753 10.1093/embo-reports/kvf150 10.1038/s41556-018-0124-1 10.3390/biom12020148 10.1186/1471-2148-9-4 10.1016/j.ceca.2020.102344 10.1016/S0021-9258(18)81283-2 10.3390/cells10112976 10.1089/ars.2008.2253 10.1016/j.ebiom.2022.103954 10.1056/NEJMoa1801109 10.1074/jbc.M114.602664 10.1016/j.freeradbiomed.2023.04.012 10.1074/jbc.M115.639831 10.1177/039139888901200601 10.3390/antiox12040843 10.2165/11316640-000000000-00000 10.1002/rco2.57 10.1016/S0031-9422(00)94400-5 10.3390/ijms25179529 10.1523/JNEUROSCI.16-03-01066.1996 10.1007/s00253-020-10491-5 10.1089/ars.2020.8238 10.1111/ijd.17131 10.1155/2016/3285074 10.2147/TACG.S94267 10.1016/j.redox.2021.102164 10.1038/ng.2653 10.1089/ars.2019.7901 10.1016/j.kint.2020.02.020 10.1152/ajpregu.00421.2012 10.1016/j.redox.2023.102629 10.1016/j.jdermsci.2023.02.002 10.1016/j.bbabio.2018.04.004 10.1002/ibd.22949 10.1021/acs.biochem.5b00056 10.1016/j.mam.2004.03.001 10.1007/s11756-023-01500-9 10.3390/antiox11091823 10.1002/ccr3.1673 10.1016/j.jbc.2024.107149 10.1021/pr9009386 10.1016/j.redox.2023.102965 10.1016/j.redox.2020.101674 10.1152/ajpgi.00324.2005 10.1111/j.1742-4658.2008.06482.x 10.1136/bmj.292.6530.1229 10.3389/fcvm.2022.965965 10.3390/ijms22126562 10.1016/j.bbamcr.2015.01.002 10.1111/1346-8138.12139 10.1073/pnas.171320998 10.1089/ars.2012.4944 10.1111/j.1469-1809.1988.tb01072.x 10.1038/s42255-024-00974-4 10.1016/j.freeradbiomed.2023.03.088 10.1016/j.freeradbiomed.2023.04.024 10.1016/j.niox.2014.02.006 10.1039/C5SC04818D 10.1111/j.1432-1033.1984.tb08295.x 10.1126/science.3201231 10.1111/febs.16135 10.1016/j.phrs.2018.11.034 10.1016/S1357-2725(99)00035-7 10.1097/ALN.0000000000000456 10.1074/jbc.M209395200 10.1016/j.tox.2009.07.018 10.3390/antiox11112235 10.2174/187152811794776286 10.2337/db16-0020 10.1016/0167-4838(82)90092-9 10.3892/mi.2022.64 10.1007/s00109-014-1227-1 10.1002/hep.31247 10.1161/ATVBAHA.114.302523 10.1002/prot.340050406 10.3390/cells11233843 10.1074/jbc.M117.774943 10.1038/s12276-020-0408-y 10.1016/0005-2744(74)90014-X 10.1269/jrr.08074 10.1007/s00726-007-0471-2 10.1371/journal.pone.0198626 10.1089/ars.2006.8.1865 10.1111/j.1742-4658.2008.06535.x 10.1177/2041731411432365 10.1038/nrdp.2016.80 10.1161/JAHA.115.002125 10.1111/j.1574-6976.1998.tb00375.x 10.1016/j.cell.2012.02.035 10.1016/S0140-6736(81)91171-5 10.1016/j.celrep.2021.109958 10.1016/j.bbadis.2020.165716 10.1161/CIRCRESAHA.109.199919 10.1093/jat/13.2.105 10.1016/j.redox.2018.05.002 10.1016/j.phrs.2024.107180 10.1126/science.1108581 10.3390/ijms23158452 10.1042/bj2440485 10.3389/fphar.2021.693100 10.1042/BSR20150147 10.1089/ars.2011.4322 10.1016/j.fob.2015.10.001 10.1161/STROKEAHA.108.543413 10.1089/ars.2014.5869 10.3390/antiox11010147 10.1128/MCB.00868-15 10.1016/j.ymgme.2012.06.018 10.1016/j.ijbiomac.2003.08.010 10.1089/ars.2012.4645 10.1016/0167-4838(83)90312-6 10.3390/cells10051238 10.1016/j.jinorgbio.2013.11.008 10.1016/j.freeradbiomed.2015.06.006 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. Attribution 2025 The Authors 2025 |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. – notice: Attribution – notice: 2025 The Authors 2025 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.redox.2025.103595 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_da5ffe694c9f482ea27171de7bb6e88b PMC11957799 oai_HAL_hal_04993959v1 40107018 10_1016_j_redox_2025_103595 S2213231725001089 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX ADVLN AENEX AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c512t-de59da66f2db2a9f1446b2b2cb8a17a08a64fe0303ff67d5b280ef074202b7f33 |
IEDL.DBID | M48 |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:24:12 EDT 2025 Thu Aug 21 18:39:59 EDT 2025 Sat May 03 06:11:23 EDT 2025 Fri Jul 11 10:10:29 EDT 2025 Fri Apr 25 03:24:44 EDT 2025 Tue Jul 01 04:58:07 EDT 2025 Sat May 03 15:57:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress Mitochondrial dysfunction Redox signaling Thiosulfate sulfurtransferase (TST) redox signaling mitochondrial dysfunction oxidative stress |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. Attribution: http://creativecommons.org/licenses/by This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-de59da66f2db2a9f1446b2b2cb8a17a08a64fe0303ff67d5b280ef074202b7f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Shared first authorship. |
ORCID | 0000-0002-6670-1577 0009-0004-6769-4147 0000-0001-9066-4342 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2213231725001089 |
PMID | 40107018 |
PQID | 3179247714 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_da5ffe694c9f482ea27171de7bb6e88b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11957799 hal_primary_oai_HAL_hal_04993959v1 proquest_miscellaneous_3179247714 pubmed_primary_40107018 crossref_primary_10_1016_j_redox_2025_103595 elsevier_sciencedirect_doi_10_1016_j_redox_2025_103595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tang, Kim, Lee (bib57) 2022; 5 Al‐Dahmani, Hadian, Ruiz‐Moreno (bib154) 2023 Stummer, Weghuber, Feichtinger (bib149) 2022; 11 Hughes, Jastroch, Stoneking, Klingenspor (bib4) 2009; 9 Gonzales, Sabatini (bib176) 1989; 12 Sakaguchi, Marutani, sook (bib158) 2014; 121 Vitvitsky, Yadav, An, Seravalli, Cho, Banerjee (bib40) 2017; 292 Iciek, Bilska-Wilkosz, Górny, Sokołowska-Jeżewicz, Kowalczyk-Pachel (bib162) 2016; 5 Jurkowska, Wróbel, Jasek-Gajda, Rydz (bib117) 2022; 12 Peoples, Saraf, Ghazal, Pham, Kwong (bib7) 2019; 51 Macabrey, Longchamp, MacArthur (bib170) 2022; 78 Nandi, Horowitz, Westley (bib62) 2000; 32 De Preter, Arijs, Windey (bib148) 2012; 18 Szlęzak, Bronowicka-Adamska, Hutsch, Ufnal, Wróbel (bib126) 2021; 10 Ramasamy, Singh, Taniere, Langman, Eggo (bib152) 2006; 291 Renga (bib35) 2011; 10 Cuadrado, Manda, Hassan (bib109) 2018; 70 Nolfi-Donegan, Braganza, Shiva (bib18) 2020; 37 Drüeke, Massy (bib138) 2010; 6 Nakajima, Taki, Wang (bib124) 2008; 49 Spinelli, Haigis (bib17) 2018; 20 Whitehouse, Pilz, Porta, Hopkinson (bib22) 1988; 52 Shekari, Gortany, Khalilzadeh (bib174) 2022; 23 Duchen (bib1) 2004; 25 Rydz, Wróbel, Jurkowska (bib29) 2021; 10 Pichette, Gagnon (bib132) 2016; 2016 Zainol, Ida, Morita (bib36) 2023; 12 Luo, Chatre, Melhem (bib43) 2023; 68 Imlay (bib76) 2006; 59 Baskin, Horowitz, Nealley (bib160) 1992; 32 Combi, Potor, Nagy (bib115) 2023; 60 Benchoam, Cuevasanta, Roman, Banerjee, Alvarez (bib52) 2024; 300 Nunnari, Suomalainen (bib2) 2012; 148 Cicero, Melino, Orsale (bib15) 2003; 33 Lee, Park, Lange (bib101) 2024; 6 Hopper, Carroll, Aponte (bib5) 2006; 45 Jones (bib48) 2006; 8 Villarejol, Westley (bib44) 1963; 238 Whiteman, Le Trionnaire, Chopra, Fox, Whatmore (bib164) 2011; 121 Wang, Li, Chen (bib169) 2023; 109 Combi, Potor, Nagy (bib145) 2023; 60 Yang, Zhao, Ju (bib111) 2013; 18 Sun, Huang, Zhang (bib182) 2015; 93 Khoramipour, Chamari, Hekmatikar (bib130) 2021; 13 Pavlovskiy, Yashchenko, Zayachkivska (bib125) 2020; 11 Scarpelli, Todeschini, Volonghi, Padovani, Filosto (bib10) 2017; 10 Read, Bentley, Archer, Dunham-Snary (bib70) 2021; 47 Xie, Gu, Wen (bib108) 2016; 65 Lu, Imlay (bib78) 2019; 26 Szlęzak, Hutsch, Ufnal, Wróbel (bib121) 2022; 199 Zheng, Li, Feng, Liu (bib123) 2021; 10 Abdul-Aziz, Macewan, Bowles, Rushworth (bib110) 2015; 2015 Poole, Kind (bib134) 1986; 292 Quast, Bönner, Polzin (bib143) 2024; 150 Bordo, Bork (bib13) 2002; 3 Lee, Kim, Lee (bib56) 2013; 18 Tomati, Giovannozzi-Sermanni, Duprè, Cannella (bib82) 1976; 15 Antonucci, Di Lisa, Kaludercic (bib6) 2021; 94 Kobayashi, Fujikawa, Kozawa (bib75) 2014; 133 Macabrey, Joniová, Gasser (bib156) 2022; 9 Ansar, Thu, Hung (bib151) 2022; 12 Iciek, Kowalczyk-Pachel, Bilska-Wilkosz, Kwiecién, Górny, Wøodek (bib45) 2016; 36 Wedmann, Onderka, Wei (bib68) 2016; 7 Wang, Chu, Lin (bib150) 2021; 22 Iciek, Górny, Kotańska, Bilska-Wilkosz, Kaczor-Kamińska, Zagajewski (bib127) 2023; 28 Libiad, Motl, Akey (bib64) 2018; 293 Baldassarre, Castelnuovo, Frigerio (bib139) 2009; 40 Morton, Beltram, Carter (bib87) 2016; 22 Yutzey, Demer, Body (bib144) 2014; 34 Hourihan, Kenna, Hayes (bib113) 2013; 19 Brock, Maibach, Childs (bib177) 2018; 378 Hunt, Ryder (bib181) 2018; 6 Cortese-Krott, Koning, Kuhnle (bib103) 2017; 27 Zhang, Chen, Li (bib119) 2024; 22 Press, Ungelenk, Medyukhina (bib173) 2023; 204 Libiad, Yadav, Vitvitsky, Martinov, Banerjee (bib53) 2014; 289 McFarland, Taylor, Turnbull (bib9) 2010; 9 Ascenção, Dilek, Zuhra, Módis, Sato, Szabo (bib120) 2022; 11 Sjöstedt, Zhong, Fagerberg (bib129) 2020 Lonsdale, Thomas, Salvatore (bib128) 2013; 45 Bonomi, Pagani, Cerletti, Cannella (bib79) 1977; 72 Gorman, Chinnery, DiMauro (bib8) 2016; 2 Pagani, Bonomi, Cerletti (bib83) 1982; 700 Kang, Lee, Wu (bib97) 2020; 52 Kaczor-Kamińska, Kaminski, Wróbel (bib153) 2021; 11 El-Hattab, Emrick, Craigen, Scaglia (bib11) 2012; 107 Dunning, Bourgonje, Bulthuis (bib98) 2023; 204 Iciek, Górny, Kotańska, Bilska-Wilkosz, Kaczor-Kamińska, Zagajewski (bib95) 2023; 28 Stamati, Mudera, Cheema (bib88) 2011; 2 Chatgilialoglu, Bowry (bib50) 2018; 83 de Paula, dos Santos, Tairum (bib58) 2020; 104 Zhang, Dugbartey, Juriasingani, Sener (bib166) 2021; 22 Nguyen, Klooster, Minnion (bib159) 2020; 98 Libiad, Sriraman, Banerjee (bib46) 2015; 290 Auten, Davis (bib90) 2009; 66 Taniguchi, Matsunami, Kimura (bib147) 2009; 264 Lanz, Booker (bib71) 2015; 1853 Batty, Bennett, Yu (bib140) 2022; 11 Pagani, Bonomi, Cerletti (bib84) 1984; 142 Rydz, Wróbel, Jurkowska (bib26) 2021; 10 Pagani, Galante (bib81) 1983; 742 Abe, Kimura (bib32) 1996; 16 Hentze, Kühn (bib73) 1996; 93 Wolfschmitt, Hogg, Vogt (bib168) 2023; 14 Williams, Kelly, Mottram, Coombs (bib24) 2003; 278 Kusminski, Holland, Sun (bib131) 2012; 18 Lang (bib19) 1933; 259 Rydz, Wróbel, Jurkowska (bib80) 2021; 10 Suzuki, Yamamoto (bib105) 2015; 88 Buonvino, Arciero, Melino (bib12) 2022; 23 Chatre (bib104) 2024; 2 Goodwin, Francom, Dieken (bib33) 1989; 13 Libiad, Motl, Akey (bib51) 2018; 293 Robbins, Stout (bib72) 1989; 5 Wang, Liu, Zong (bib167) 2023; 673 Higgins, Peng, Luebke, Chang, Giedroc (bib59) 2015; 54 Hildebrandt, Grieshaber (bib38) 2008; 275 Nandi, Horowitz, Westley (bib65) 2000; 32 Lainšček, Šuštar, Carter, Morton, Horvat (bib94) 2020; 527 Raghunath, Sundarraj, Nagarajan (bib107) 2018; 17 Frenay, de Borst, Bachtler (bib157) 2016; 99 Nakajima (bib60) 2015; 21 Malard, Valable, Bernaudin, Pérès, Chatre (bib102) 2021; 35 Slade, Deane, Szewczyk, Etheridge, Whiteman (bib155) 2024; 203 Bronowicka-Adamska, Kaczor-Kamińska, Wróbel, Bentke-Imiolek (bib116) 2024; 687 Ning, Dahir, Castellanos, McGirt (bib180) 2013; 40 Sies, Jones (bib93) 2020; 21 Zhao, Song, Gu (bib112) 2021; 73 Sies (bib47) 2020; 295 Dolezal, Likic, Tachezy, Lithgow (bib3) 1979; 313 Tsang, Al-Fayea, Au (bib178) 2009; 32 Sabelli, Iorio, De Martino (bib63) 2008; 275 Blackstone, Morrison, Roth (bib34) 2005; 308 Bilska-Wilkosz, Iciek, Górny, Kowalczyk-Pachel (bib165) 2017; 18 Lopez-Pascual, Trayhurn, Martínez, González-Muniesa (bib89) 2021; 35 Zheng, Li, Feng, Liu (bib96) 2021; 10 Vitvitsky, Yadav, Kurthen, Banerjee (bib41) 2015; 290 Xie, Liu, Bian (bib49) 2016; 2016 Kubota, Zhang, Li (bib141) 2022; 3 Nelson, Dugbartey, McFarlane (bib171) 2024; 25 Alsohaibani, Claudel, Perchat-Varlet (bib14) 2023; 12 Mani, Cao, Wu, Wang (bib133) 2014; 41 Kiley (bib74) 1998; 22 Kimura (bib31) 2015; 22 Ogasawara, Lacourciere, Stadtman (bib99) 2001; 98 Jurkowska, Wróbel (bib118) 2008; 34 Kaleta, Misterka, Rydz, Wróbel, Jurkowska (bib20) 2023; 79 Mao, Huang, Zhang (bib67) 2019; 134 Kruithof, Lunev, Aguilar Lozano (bib16) 2020; 1866 Shibuya, Tanaka, Yoshida (bib37) 2009; 11 Cipollone, Ascenzi, Visca (bib100) 2007; 59 Abeck, Hansen, Rünger, Booken, Schneider (bib179) 2024; 63 Zuhra, Szabo (bib21) 2022; 289 Revenko, Pavlovskiy, Savytska (bib122) 2021; 12 Brosnan, Brosnan (bib30) 2006; 136 Zhang, Dugbartey, Juriasingani, Sener (bib42) 2021; 22 Py, Barras (bib77) 2010; 8 Saito, Suzuki, Hiramoto (bib106) 2016; 36 Tan (bib137) 2003; 12 Henne, König, Triulzi (bib61) 2015; 5 Cagianut, Rhyner, Furrer, Schnebli (bib136) 1981; 318 Al-Dahmani, Li, Wiggenhauser (bib25) 2022; 12 Pagani, Eldridge, Eady (bib85) 1987; 244 Augsburger, Szabo (bib23) 2020; 154 Calvert, Jha, Gundewar (bib114) 2009; 105 Wallace, Singh, Lott (bib135) 1988; 242 Marutani, Yamada, Ida (bib55) 2015; 4 Zhang, Chen, Li (bib142) 2024; 22 Yi, Li, Yi (bib146) 2010; 9 Hsu, Hou, Chang-Chien, Lin, Yang, Tain (bib175) 2022; 11 Macabrey, Longchamp, MacArthur (bib163) 2022; 78 Wang, Liu, Zong (bib172) 2023; 673 Taniguchi, Kimura (bib86) 1974; 364 Luo, Chatre, Al-Dahmani (bib66) 2023; 201 Zhou, Tran, Cowley, Trembath-Reichert, Anantharaman (bib28) 2024 Patti, Corvera (bib91) 2010; 31 Bourgonje, Feelisch, Faber, Pasch, Dijkstra, van Goor (bib92) 2020; 26 Sousa, Pereira, Marreiros, Pereira (bib27) 2018; 1859 Lutchmansingh, Hsu, Bennett (bib54) 2018; 13 Dóka, Pader, Bíró (bib69) 2016; 2 Olson, DeLeon, Gao (bib161) 2013; 305 Carter, Gibbins, Barrios-Llerena (bib39) 2021; 37 McFarland (10.1016/j.redox.2025.103595_bib9) 2010; 9 Iciek (10.1016/j.redox.2025.103595_bib95) 2023; 28 Peoples (10.1016/j.redox.2025.103595_bib7) 2019; 51 Vitvitsky (10.1016/j.redox.2025.103595_bib40) 2017; 292 Yang (10.1016/j.redox.2025.103595_bib111) 2013; 18 Cicero (10.1016/j.redox.2025.103595_bib15) 2003; 33 Shibuya (10.1016/j.redox.2025.103595_bib37) 2009; 11 Luo (10.1016/j.redox.2025.103595_bib66) 2023; 201 Iciek (10.1016/j.redox.2025.103595_bib162) 2016; 5 Wang (10.1016/j.redox.2025.103595_bib169) 2023; 109 Zhang (10.1016/j.redox.2025.103595_bib42) 2021; 22 Wang (10.1016/j.redox.2025.103595_bib150) 2021; 22 Hughes (10.1016/j.redox.2025.103595_bib4) 2009; 9 Nakajima (10.1016/j.redox.2025.103595_bib124) 2008; 49 Bordo (10.1016/j.redox.2025.103595_bib13) 2002; 3 Benchoam (10.1016/j.redox.2025.103595_bib52) 2024; 300 Hunt (10.1016/j.redox.2025.103595_bib181) 2018; 6 Zheng (10.1016/j.redox.2025.103595_bib123) 2021; 10 Pagani (10.1016/j.redox.2025.103595_bib85) 1987; 244 Iciek (10.1016/j.redox.2025.103595_bib127) 2023; 28 Ascenção (10.1016/j.redox.2025.103595_bib120) 2022; 11 Auten (10.1016/j.redox.2025.103595_bib90) 2009; 66 Patti (10.1016/j.redox.2025.103595_bib91) 2010; 31 Zheng (10.1016/j.redox.2025.103595_bib96) 2021; 10 Buonvino (10.1016/j.redox.2025.103595_bib12) 2022; 23 Bronowicka-Adamska (10.1016/j.redox.2025.103595_bib116) 2024; 687 Lee (10.1016/j.redox.2025.103595_bib101) 2024; 6 Brosnan (10.1016/j.redox.2025.103595_bib30) 2006; 136 Cipollone (10.1016/j.redox.2025.103595_bib100) 2007; 59 Zhang (10.1016/j.redox.2025.103595_bib119) 2024; 22 Vitvitsky (10.1016/j.redox.2025.103595_bib41) 2015; 290 Tang (10.1016/j.redox.2025.103595_bib57) 2022; 5 Sun (10.1016/j.redox.2025.103595_bib182) 2015; 93 Kimura (10.1016/j.redox.2025.103595_bib31) 2015; 22 Libiad (10.1016/j.redox.2025.103595_bib46) 2015; 290 Lutchmansingh (10.1016/j.redox.2025.103595_bib54) 2018; 13 Lu (10.1016/j.redox.2025.103595_bib78) 2019; 26 Kaczor-Kamińska (10.1016/j.redox.2025.103595_bib153) 2021; 11 Olson (10.1016/j.redox.2025.103595_bib161) 2013; 305 Bonomi (10.1016/j.redox.2025.103595_bib79) 1977; 72 Macabrey (10.1016/j.redox.2025.103595_bib156) 2022; 9 Macabrey (10.1016/j.redox.2025.103595_bib163) 2022; 78 Scarpelli (10.1016/j.redox.2025.103595_bib10) 2017; 10 Williams (10.1016/j.redox.2025.103595_bib24) 2003; 278 Marutani (10.1016/j.redox.2025.103595_bib55) 2015; 4 Read (10.1016/j.redox.2025.103595_bib70) 2021; 47 Lanz (10.1016/j.redox.2025.103595_bib71) 2015; 1853 Rydz (10.1016/j.redox.2025.103595_bib29) 2021; 10 Iciek (10.1016/j.redox.2025.103595_bib45) 2016; 36 Dóka (10.1016/j.redox.2025.103595_bib69) 2016; 2 Lopez-Pascual (10.1016/j.redox.2025.103595_bib89) 2021; 35 Lonsdale (10.1016/j.redox.2025.103595_bib128) 2013; 45 Pichette (10.1016/j.redox.2025.103595_bib132) 2016; 2016 Abe (10.1016/j.redox.2025.103595_bib32) 1996; 16 Taniguchi (10.1016/j.redox.2025.103595_bib147) 2009; 264 Hopper (10.1016/j.redox.2025.103595_bib5) 2006; 45 Py (10.1016/j.redox.2025.103595_bib77) 2010; 8 Hsu (10.1016/j.redox.2025.103595_bib175) 2022; 11 Khoramipour (10.1016/j.redox.2025.103595_bib130) 2021; 13 Pagani (10.1016/j.redox.2025.103595_bib84) 1984; 142 Chatgilialoglu (10.1016/j.redox.2025.103595_bib50) 2018; 83 Dunning (10.1016/j.redox.2025.103595_bib98) 2023; 204 Zainol (10.1016/j.redox.2025.103595_bib36) 2023; 12 Kang (10.1016/j.redox.2025.103595_bib97) 2020; 52 Gorman (10.1016/j.redox.2025.103595_bib8) 2016; 2 Ogasawara (10.1016/j.redox.2025.103595_bib99) 2001; 98 Wang (10.1016/j.redox.2025.103595_bib172) 2023; 673 Dolezal (10.1016/j.redox.2025.103595_bib3) 1979; 313 Sousa (10.1016/j.redox.2025.103595_bib27) 2018; 1859 Pagani (10.1016/j.redox.2025.103595_bib83) 1982; 700 Nolfi-Donegan (10.1016/j.redox.2025.103595_bib18) 2020; 37 Libiad (10.1016/j.redox.2025.103595_bib53) 2014; 289 Chatre (10.1016/j.redox.2025.103595_bib104) 2024; 2 Jurkowska (10.1016/j.redox.2025.103595_bib117) 2022; 12 Kiley (10.1016/j.redox.2025.103595_bib74) 1998; 22 Carter (10.1016/j.redox.2025.103595_bib39) 2021; 37 Pagani (10.1016/j.redox.2025.103595_bib81) 1983; 742 Nelson (10.1016/j.redox.2025.103595_bib171) 2024; 25 Szlęzak (10.1016/j.redox.2025.103595_bib121) 2022; 199 Wang (10.1016/j.redox.2025.103595_bib167) 2023; 673 Zuhra (10.1016/j.redox.2025.103595_bib21) 2022; 289 Xie (10.1016/j.redox.2025.103595_bib49) 2016; 2016 Abdul-Aziz (10.1016/j.redox.2025.103595_bib110) 2015; 2015 Ning (10.1016/j.redox.2025.103595_bib180) 2013; 40 Baldassarre (10.1016/j.redox.2025.103595_bib139) 2009; 40 Hildebrandt (10.1016/j.redox.2025.103595_bib38) 2008; 275 Ansar (10.1016/j.redox.2025.103595_bib151) 2022; 12 Henne (10.1016/j.redox.2025.103595_bib61) 2015; 5 Nandi (10.1016/j.redox.2025.103595_bib65) 2000; 32 De Preter (10.1016/j.redox.2025.103595_bib148) 2012; 18 Frenay (10.1016/j.redox.2025.103595_bib157) 2016; 99 Malard (10.1016/j.redox.2025.103595_bib102) 2021; 35 Combi (10.1016/j.redox.2025.103595_bib145) 2023; 60 Nunnari (10.1016/j.redox.2025.103595_bib2) 2012; 148 Yutzey (10.1016/j.redox.2025.103595_bib144) 2014; 34 Sies (10.1016/j.redox.2025.103595_bib93) 2020; 21 Lang (10.1016/j.redox.2025.103595_bib19) 1933; 259 Shekari (10.1016/j.redox.2025.103595_bib174) 2022; 23 Villarejol (10.1016/j.redox.2025.103595_bib44) 1963; 238 Mao (10.1016/j.redox.2025.103595_bib67) 2019; 134 Nandi (10.1016/j.redox.2025.103595_bib62) 2000; 32 Quast (10.1016/j.redox.2025.103595_bib143) 2024; 150 Slade (10.1016/j.redox.2025.103595_bib155) 2024; 203 Al-Dahmani (10.1016/j.redox.2025.103595_bib25) 2022; 12 Robbins (10.1016/j.redox.2025.103595_bib72) 1989; 5 Nguyen (10.1016/j.redox.2025.103595_bib159) 2020; 98 Rydz (10.1016/j.redox.2025.103595_bib26) 2021; 10 Baskin (10.1016/j.redox.2025.103595_bib160) 1992; 32 Whitehouse (10.1016/j.redox.2025.103595_bib22) 1988; 52 Luo (10.1016/j.redox.2025.103595_bib43) 2023; 68 Cuadrado (10.1016/j.redox.2025.103595_bib109) 2018; 70 Kruithof (10.1016/j.redox.2025.103595_bib16) 2020; 1866 Batty (10.1016/j.redox.2025.103595_bib140) 2022; 11 Suzuki (10.1016/j.redox.2025.103595_bib105) 2015; 88 Taniguchi (10.1016/j.redox.2025.103595_bib86) 1974; 364 Al‐Dahmani (10.1016/j.redox.2025.103595_bib154) 2023 Renga (10.1016/j.redox.2025.103595_bib35) 2011; 10 Ramasamy (10.1016/j.redox.2025.103595_bib152) 2006; 291 Sies (10.1016/j.redox.2025.103595_bib47) 2020; 295 Nakajima (10.1016/j.redox.2025.103595_bib60) 2015; 21 Zhou (10.1016/j.redox.2025.103595_bib28) 2024 Sjöstedt (10.1016/j.redox.2025.103595_bib129) 2020 Hourihan (10.1016/j.redox.2025.103595_bib113) 2013; 19 Antonucci (10.1016/j.redox.2025.103595_bib6) 2021; 94 Pavlovskiy (10.1016/j.redox.2025.103595_bib125) 2020; 11 Kubota (10.1016/j.redox.2025.103595_bib141) 2022; 3 Wolfschmitt (10.1016/j.redox.2025.103595_bib168) 2023; 14 El-Hattab (10.1016/j.redox.2025.103595_bib11) 2012; 107 Rydz (10.1016/j.redox.2025.103595_bib80) 2021; 10 Gonzales (10.1016/j.redox.2025.103595_bib176) 1989; 12 Blackstone (10.1016/j.redox.2025.103595_bib34) 2005; 308 Spinelli (10.1016/j.redox.2025.103595_bib17) 2018; 20 Press (10.1016/j.redox.2025.103595_bib173) 2023; 204 Jones (10.1016/j.redox.2025.103595_bib48) 2006; 8 Combi (10.1016/j.redox.2025.103595_bib115) 2023; 60 Imlay (10.1016/j.redox.2025.103595_bib76) 2006; 59 de Paula (10.1016/j.redox.2025.103595_bib58) 2020; 104 Bourgonje (10.1016/j.redox.2025.103595_bib92) 2020; 26 Saito (10.1016/j.redox.2025.103595_bib106) 2016; 36 Stummer (10.1016/j.redox.2025.103595_bib149) 2022; 11 Lee (10.1016/j.redox.2025.103595_bib56) 2013; 18 Libiad (10.1016/j.redox.2025.103595_bib64) 2018; 293 Raghunath (10.1016/j.redox.2025.103595_bib107) 2018; 17 Lainšček (10.1016/j.redox.2025.103595_bib94) 2020; 527 Abeck (10.1016/j.redox.2025.103595_bib179) 2024; 63 Stamati (10.1016/j.redox.2025.103595_bib88) 2011; 2 Higgins (10.1016/j.redox.2025.103595_bib59) 2015; 54 Morton (10.1016/j.redox.2025.103595_bib87) 2016; 22 Tomati (10.1016/j.redox.2025.103595_bib82) 1976; 15 Macabrey (10.1016/j.redox.2025.103595_bib170) 2022; 78 Sabelli (10.1016/j.redox.2025.103595_bib63) 2008; 275 Whiteman (10.1016/j.redox.2025.103595_bib164) 2011; 121 Szlęzak (10.1016/j.redox.2025.103595_bib126) 2021; 10 Bilska-Wilkosz (10.1016/j.redox.2025.103595_bib165) 2017; 18 Tsang (10.1016/j.redox.2025.103595_bib178) 2009; 32 Libiad (10.1016/j.redox.2025.103595_bib51) 2018; 293 Drüeke (10.1016/j.redox.2025.103595_bib138) 2010; 6 Cortese-Krott (10.1016/j.redox.2025.103595_bib103) 2017; 27 Poole (10.1016/j.redox.2025.103595_bib134) 1986; 292 Tan (10.1016/j.redox.2025.103595_bib137) 2003; 12 Duchen (10.1016/j.redox.2025.103595_bib1) 2004; 25 Zhang (10.1016/j.redox.2025.103595_bib142) 2024; 22 Kobayashi (10.1016/j.redox.2025.103595_bib75) 2014; 133 Jurkowska (10.1016/j.redox.2025.103595_bib118) 2008; 34 Cagianut (10.1016/j.redox.2025.103595_bib136) 1981; 318 Brock (10.1016/j.redox.2025.103595_bib177) 2018; 378 Hentze (10.1016/j.redox.2025.103595_bib73) 1996; 93 Calvert (10.1016/j.redox.2025.103595_bib114) 2009; 105 Xie (10.1016/j.redox.2025.103595_bib108) 2016; 65 Augsburger (10.1016/j.redox.2025.103595_bib23) 2020; 154 Kusminski (10.1016/j.redox.2025.103595_bib131) 2012; 18 Revenko (10.1016/j.redox.2025.103595_bib122) 2021; 12 Yi (10.1016/j.redox.2025.103595_bib146) 2010; 9 Sakaguchi (10.1016/j.redox.2025.103595_bib158) 2014; 121 Alsohaibani (10.1016/j.redox.2025.103595_bib14) 2023; 12 Wedmann (10.1016/j.redox.2025.103595_bib68) 2016; 7 Wallace (10.1016/j.redox.2025.103595_bib135) 1988; 242 Kaleta (10.1016/j.redox.2025.103595_bib20) 2023; 79 Zhao (10.1016/j.redox.2025.103595_bib112) 2021; 73 Goodwin (10.1016/j.redox.2025.103595_bib33) 1989; 13 Mani (10.1016/j.redox.2025.103595_bib133) 2014; 41 Zhang (10.1016/j.redox.2025.103595_bib166) 2021; 22 |
References_xml | – volume: 13 year: 2018 ident: bib54 article-title: Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia publication-title: PLoS One – volume: 51 start-page: 1 year: 2019 end-page: 13 ident: bib7 article-title: Mitochondrial dysfunction and oxidative stress in heart disease publication-title: Exp. Mol. Med. – volume: 5 start-page: 289 year: 1989 end-page: 312 ident: bib72 article-title: The structure of aconitase publication-title: Proteins: Struct., Funct., Bioinf. – volume: 28 start-page: 2025 year: 2023 ident: bib95 article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats publication-title: Molecules – volume: 36 start-page: 271 year: 2016 end-page: 284 ident: bib106 article-title: Characterizations of three major cysteine sensors of Keap1 in stress response publication-title: Mol. Cell Biol. – volume: 28 start-page: 2025 year: 2023 ident: bib127 article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats publication-title: Molecules – volume: 34 start-page: 231 year: 2008 end-page: 237 ident: bib118 article-title: N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlations with cell proliferation publication-title: Amino Acids – volume: 94 year: 2021 ident: bib6 article-title: Mitochondrial reactive oxygen species in physiology and disease publication-title: Cell Calcium – volume: 293 start-page: 2675 year: 2018 end-page: 2686 ident: bib51 article-title: Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin publication-title: J. Biol. Chem. – volume: 308 start-page: 518 year: 2005 ident: bib34 article-title: H2S induces a suspended animation-like state in mice publication-title: Science – volume: 79 start-page: 101 year: 2023 end-page: 108 ident: bib20 article-title: Correlation between the level of sulfane sulfur and the expression/activity of sulfurtransferases in chicken tissues – a possible ways of cyanide detoxification publication-title: Biologia (Bratisl). – volume: 22 year: 2021 ident: bib42 article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms publication-title: Int. J. Mol. Sci. – volume: 33 start-page: 193 year: 2003 end-page: 201 ident: bib15 article-title: Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, NMR relaxation and deuterium exchange on the uniformly labeled protein publication-title: Int. J. Biol. Macromol. – volume: 2015 year: 2015 ident: bib110 article-title: Oxidative stress responses and NRF2 in human leukaemia publication-title: Oxid. Med. Cell. Longev. – volume: 203 year: 2024 ident: bib155 article-title: Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases publication-title: Pharmacol. Res. – volume: 83 start-page: 9178 year: 2018 end-page: 9189 ident: bib50 article-title: Why not trans? Inhibited radical isomerization cycles and coupling chains of lipids and alkenes with alkane publication-title: J. Org. Chem. – volume: 98 start-page: 366 year: 2020 end-page: 377 ident: bib159 article-title: Sodium thiosulfate improves renal function and oxygenation in L-NNA–induced hypertension in rats publication-title: Kidney Int. – volume: 11 start-page: 1823 year: 2022 ident: bib120 article-title: Sequential accumulation of ‘driver’ pathway mutations induces the upregulation of hydrogen-sulfide-producing enzymes in human colonic epithelial cell organoids publication-title: Antioxidants – volume: 23 start-page: 32 year: 2022 ident: bib174 article-title: Cardioprotective effects of sodium thiosulfate against doxorubicin-induced cardiotoxicity in male rats publication-title: BMC Pharmacol Toxicol – volume: 25 start-page: 365 year: 2004 end-page: 451 ident: bib1 article-title: Mitochondria in health and disease: perspectives on a new mitochondrial biology publication-title: Mol. Aspect. Med. – volume: 52 start-page: 1 year: 1988 end-page: 10 ident: bib22 article-title: Rhodanese isozymes in human tissues publication-title: Ann. Hum. Genet. – volume: 9 start-page: 1416 year: 2010 end-page: 1423 ident: bib146 article-title: Identification of Rack1, EF-tu and rhodanese as aging-related proteins in human colonic epithelium by proteomic analysis publication-title: J. Proteome Res. – volume: 25 start-page: 9529 year: 2024 ident: bib171 article-title: Effect of sodium thiosulfate pre-treatment on renal ischemia-reperfusion injury in kidney transplantation publication-title: Int. J. Mol. Sci. – volume: 244 start-page: 485 year: 1987 end-page: 488 ident: bib85 article-title: Nitrogenase of publication-title: Biochem. J. – volume: 1853 start-page: 1316 year: 2015 end-page: 1334 ident: bib71 article-title: Auxiliary iron–sulfur cofactors in radical SAM enzymes publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 93 start-page: 8175 year: 1996 end-page: 8182 ident: bib73 article-title: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress publication-title: Proc. Natl. Acad. Sci. USA – volume: 289 start-page: 2481 year: 2022 end-page: 2515 ident: bib21 article-title: The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter publication-title: FEBS J. – volume: 72 start-page: 17 year: 1977 end-page: 24 ident: bib79 article-title: Rhodanese‐mediated sulfur transfer to succinate dehydrogenase publication-title: Eur. J. Biochem. – volume: 150 start-page: 952 year: 2024 end-page: 965 ident: bib143 article-title: Aortic valve stenosis causes accumulation of extracellular hemoglobin and systemic endothelial dysfunction publication-title: Circulation – volume: 12 start-page: 868 year: 2023 ident: bib36 article-title: Synthesis of sulfides and persulfides is not impeded by disruption of three canonical enzymes in sulfur metabolism publication-title: Antioxidants – volume: 49 start-page: 661 year: 2008 end-page: 666 ident: bib124 article-title: Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays publication-title: J. Radiat. Res. – volume: 21 start-page: 363 year: 2020 end-page: 383 ident: bib93 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents publication-title: Nat. Rev. Mol. Cell Biol. – volume: 148 start-page: 1145 year: 2012 end-page: 1159 ident: bib2 article-title: Mitochondria: in sickness and in health publication-title: Cell – volume: 3 start-page: 741 year: 2002 end-page: 746 ident: bib13 article-title: The rhodanese/Cdc25 phosphatase superfamily publication-title: EMBO Rep. – volume: 99 start-page: 345 year: 2016 end-page: 351 ident: bib157 article-title: Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients publication-title: Free Radic. Biol. Med. – volume: 54 start-page: 2385 year: 2015 end-page: 2398 ident: bib59 article-title: Conformational analysis and chemical reactivity of the multidomain sulfurtransferase, publication-title: Biochemistry – volume: 70 start-page: 348 year: 2018 end-page: 383 ident: bib109 article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach publication-title: Pharmacol. Rev. – volume: 242 start-page: 1427 year: 1988 end-page: 1430 ident: bib135 article-title: Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy publication-title: Science – volume: 60 year: 2023 ident: bib115 article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease publication-title: Redox Biol. – volume: 60 year: 2023 ident: bib145 article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease publication-title: Redox Biol. – volume: 35 start-page: 1176 year: 2021 end-page: 1206 ident: bib102 article-title: The reactive species interactome in the brain publication-title: Antioxidants Redox Signal. – volume: 12 start-page: 148 year: 2022 ident: bib117 article-title: Sulfurtransferases and cystathionine beta-synthase expression in different human leukemia cell lines publication-title: Biomolecules – volume: 45 start-page: 2524 year: 2006 end-page: 2536 ident: bib5 article-title: Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium publication-title: Biochemistry – volume: 292 start-page: 5584 year: 2017 end-page: 5592 ident: bib40 article-title: Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products publication-title: J. Biol. Chem. – volume: 8 start-page: 1865 year: 2006 end-page: 1879 ident: bib48 article-title: Redefining oxidative stress publication-title: Antioxidants Redox Signal. – volume: 6 start-page: 343 year: 2024 end-page: 358 ident: bib101 article-title: Selenium reduction of ubiquinone via SQOR suppresses ferroptosis publication-title: Nat. Metab. – volume: 5 start-page: 46 year: 2016 ident: bib162 article-title: The effects of different garlic-derived allyl sulfides on anaerobic sulfur metabolism in the mouse kidney publication-title: Antioxidants – volume: 527 start-page: 1008 year: 2020 end-page: 1013 ident: bib94 article-title: Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes publication-title: Biochem. Biophys. Res. Commun. – volume: 12 start-page: 347 year: 1989 end-page: 355 ident: bib176 article-title: Cyanide poisoning: pathophysiology and current approaches to therapy publication-title: Int. J. Artif. Organs – volume: 295 year: 2020 ident: bib47 article-title: Findings in redox biology: from H2O2 to oxidative stress publication-title: J. Biol. Chem. – volume: 15 start-page: 597 year: 1976 end-page: 598 ident: bib82 article-title: NADH: nitrate reductase activity restoration by rhodanese publication-title: Phytochemistry – year: 2023 ident: bib154 article-title: Identification and characterization of a small molecule that activates thiosulfate sulfurtransferase and stimulates mitochondrial respiration publication-title: Protein Sci. – volume: 26 start-page: 1034 year: 2020 end-page: 1046 ident: bib92 article-title: Oxidative stress and redox-modulating therapeutics in Inflammatory bowel disease publication-title: Trends Mol. Med. – volume: 105 start-page: 365 year: 2009 end-page: 374 ident: bib114 article-title: Hydrogen sulfide mediates cardioprotection through Nrf2 signaling publication-title: Circ. Res. – volume: 59 start-page: 51 year: 2007 end-page: 59 ident: bib100 article-title: Common themes and variations in the rhodanese superfamily publication-title: IUBMB Life – volume: 10 start-page: 1238 year: 2021 ident: bib126 article-title: Hypertension and aging affect liver sulfur metabolism in rats publication-title: Cells – volume: 10 start-page: 85 year: 2011 end-page: 91 ident: bib35 article-title: Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) publication-title: Inflamm. Allergy - Drug Targets – volume: 121 start-page: 459 year: 2011 end-page: 488 ident: bib164 article-title: Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools publication-title: Clin. Sci. – year: 2024 ident: bib28 article-title: Diversity and ecology of microbial sulfur metabolism publication-title: Nat. Rev. Microbiol. – volume: 18 start-page: 1539 year: 2012 end-page: 1549 ident: bib131 article-title: MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity publication-title: Nat. Med. – volume: 259 start-page: 243 year: 1933 end-page: 256 ident: bib19 article-title: Die rhodanbildung im tierkorper [thiocyanogen in the bodies of animals] publication-title: Biochem. Z. – volume: 238 start-page: 1185 year: 1963 end-page: 1186 ident: bib44 article-title: Rhodanese-catalyzed reduction of thiosulfate by reduced lipoic acid publication-title: J. Biol. Chem. – volume: 41 start-page: 62 year: 2014 end-page: 71 ident: bib133 article-title: Hydrogen sulfide and the liver publication-title: Nitric Oxide – volume: 313 start-page: 314 year: 1979 end-page: 318 ident: bib3 article-title: Evolution of the molecular machines for protein import into mitochondria publication-title: Science – volume: 378 start-page: 2376 year: 2018 end-page: 2385 ident: bib177 article-title: Sodium thiosulfate for protection from cisplatin-induced hearing loss publication-title: N. Engl. J. Med. – volume: 26 year: 2019 ident: bib78 article-title: A conserved motif liganding the [4Fe–4S] cluster in [4Fe–4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress publication-title: Redox Biol. – volume: 278 start-page: 1480 year: 2003 end-page: 1486 ident: bib24 article-title: 3-Mercaptopyruvate sulfurtransferase of LeishmaniaContains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism publication-title: J. Biol. Chem. – volume: 14 year: 2023 ident: bib168 article-title: The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation publication-title: Front. Immunol. – volume: 66 start-page: 121 year: 2009 end-page: 127 ident: bib90 article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details publication-title: Pediatr. Res. – volume: 121 start-page: 1248 year: 2014 end-page: 1257 ident: bib158 article-title: Sodium thiosulfate attenuates acute lung injury in mice publication-title: Anesthesiology – volume: 22 year: 2024 ident: bib142 article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease publication-title: Cell Death Differ. – volume: 10 start-page: 21 year: 2017 end-page: 26 ident: bib10 article-title: Mitochondrial diseases: advances and issues publication-title: Appl. Clin. Genet. – volume: 2 year: 2016 ident: bib8 article-title: Mitochondrial diseases publication-title: Nat. Rev. Dis. Primers – volume: 16 start-page: 1066 year: 1996 end-page: 1071 ident: bib32 article-title: The possible role of hydrogen sulfide as an endogenous neuromodulator publication-title: J. Neurosci. – volume: 9 year: 2022 ident: bib156 article-title: Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization publication-title: Front. Cardiovasc. Med. – volume: 300 year: 2024 ident: bib52 article-title: Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase publication-title: J. Biol. Chem. – volume: 5 start-page: 130 year: 2022 end-page: 145 ident: bib57 article-title: Overexpression of thioredoxin‐2 attenuates age‐related muscle loss by suppressing mitochondrial oxidative stress and apoptosis publication-title: JCSM Rapid Commun – volume: 201 start-page: 18 year: 2023 ident: bib66 article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress in cerebral prefrontal cortex publication-title: Free Radic. Biol. Med. – volume: 23 year: 2022 ident: bib12 article-title: Thiosulfate-cyanide sulfurtransferase a mitochondrial essential enzyme: from cell metabolism to the biotechnological applications publication-title: Int. J. Mol. Sci. – volume: 37 year: 2021 ident: bib39 article-title: The hepatic compensatory response to elevated systemic sulfide promotes diabetes publication-title: Cell Rep. – volume: 35 start-page: 642 year: 2021 end-page: 687 ident: bib89 article-title: Oxygen in metabolic dysfunction and its therapeutic relevance publication-title: Antioxidants Redox Signal. – volume: 673 start-page: 160 year: 2023 end-page: 168 ident: bib167 article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 3414 year: 2016 end-page: 3426 ident: bib68 article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation publication-title: Chem. Sci. – volume: 11 year: 2020 ident: bib125 article-title: H2S donors reverse age-related gastric malfunction impaired due to fructose-induced injury via CBS, CSE, and TST expression publication-title: Front. Pharmacol. – volume: 12 year: 2022 ident: bib25 article-title: Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes publication-title: Sci. Rep. – volume: 10 start-page: 1738 year: 2021 ident: bib26 article-title: Sulfur administration in Fe–S cluster homeostasis publication-title: Antioxidants – volume: 31 start-page: 364 year: 2010 end-page: 395 ident: bib91 article-title: The role of mitochondria in the pathogenesis of type 2 diabetes publication-title: Endocr. Rev. – volume: 204 start-page: 207 year: 2023 end-page: 214 ident: bib98 article-title: Selenium and coenzyme Q10 improve the systemic redox status while reducing cardiovascular mortality in elderly population-based individuals publication-title: Free Radic. Biol. Med. – volume: 1859 start-page: 742 year: 2018 end-page: 753 ident: bib27 article-title: Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 6 start-page: 723 year: 2010 end-page: 735 ident: bib138 article-title: Atherosclerosis in CKD: differences from the general population publication-title: Nat. Rev. Nephrol. – volume: 290 start-page: 8310 year: 2015 end-page: 8320 ident: bib41 article-title: Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides publication-title: J. Biol. Chem. – volume: 291 start-page: G288 year: 2006 end-page: G296 ident: bib152 article-title: Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 133 start-page: 87 year: 2014 end-page: 91 ident: bib75 article-title: Oxidative stress sensing by the iron–sulfur cluster in the transcription factor, SoxR publication-title: J. Inorg. Biochem. – volume: 134 start-page: 190 year: 2019 end-page: 199 ident: bib67 article-title: Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through regulating the redox state of thioredoxin publication-title: Free Radic. Biol. Med. – volume: 2 year: 2011 ident: bib88 article-title: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering publication-title: J. Tissue Eng. – volume: 742 start-page: 278 year: 1983 end-page: 284 ident: bib81 article-title: Interaction of rhodanese with mitochondrial NADH dehydrogenase publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 20 start-page: 745 year: 2018 end-page: 754 ident: bib17 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat. Cell Biol. – volume: 2016 start-page: 1 year: 2016 end-page: 12 ident: bib49 article-title: Hydrogen sulfide and cellular redox homeostasis publication-title: Oxid. Med. Cell. Longev. – volume: 142 start-page: 361 year: 1984 end-page: 366 ident: bib84 article-title: Enzymic synthesis of the iron‐sulfur cluster of spinach ferredoxin publication-title: Eur. J. Biochem. – volume: 2 year: 2024 ident: bib104 article-title: Mitochondria and the reactive species interactome: shaping the future of mitoredox medicine publication-title: Journal of Mitochondria, Plastids and Endosymbiosis – volume: 65 start-page: 3171 year: 2016 end-page: 3184 ident: bib108 article-title: Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation publication-title: Diabetes – volume: 292 start-page: 1229 year: 1986 end-page: 1230 ident: bib134 article-title: Deficiency of thiosulphate sulphurtransferase (rhodanese) in Leber's hereditary optic neuropathy publication-title: Br. Med. J. – volume: 700 start-page: 154 year: 1982 end-page: 164 ident: bib83 article-title: Sulfide insertion into spinach ferredoxin by rhodanese publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 78 year: 2022 ident: bib170 article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation publication-title: EBioMedicine – volume: 19 start-page: 465 year: 2013 end-page: 481 ident: bib113 article-title: The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613 publication-title: Antioxidants Redox Signal. – volume: 40 start-page: 1991 year: 2009 end-page: 1998 ident: bib139 article-title: Effects of timing and extent of smoking, type of cigarettes, and concomitant risk factors on the association between smoking and subclinical atherosclerosis publication-title: Stroke – volume: 47 year: 2021 ident: bib70 article-title: Mitochondrial iron–sulfur clusters: structure, function, and an emerging role in vascular biology publication-title: Redox Biol. – volume: 52 start-page: 1198 year: 2020 end-page: 1208 ident: bib97 article-title: The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies publication-title: Exp. Mol. Med. – volume: 21 start-page: 1721 year: 2015 end-page: 1725 ident: bib60 article-title: Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure publication-title: Med. Sci. Monit. – volume: 11 start-page: 147 year: 2022 ident: bib175 article-title: Sodium thiosulfate improves hypertension in rats with adenine-induced chronic kidney disease publication-title: Antioxidants – volume: 2016 year: 2016 ident: bib132 article-title: Implications of hydrogen sulfide in glucose regulation: how H2S can alter glucose homeostasis through metabolic hormones publication-title: Oxid. Med. Cell. Longev. – volume: 12 year: 2022 ident: bib151 article-title: Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer publication-title: Front. Oncol. – volume: 275 start-page: 3352 year: 2008 end-page: 3361 ident: bib38 article-title: Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria publication-title: FEBS J. – volume: 136 start-page: 1636S year: 2006 end-page: 1640S ident: bib30 article-title: The sulfur-containing amino acids: an overview publication-title: J. Nutr. – volume: 293 start-page: 2675 year: 2018 end-page: 2686 ident: bib64 article-title: Thiosulfate sulfurtransferase-like domain–containing 1 protein interacts with thioredoxin publication-title: J. Biol. Chem. – volume: 10 start-page: 1738 year: 2021 ident: bib29 article-title: Sulfur administration in Fe–S cluster homeostasis publication-title: Antioxidants – volume: 289 start-page: 30901 year: 2014 end-page: 30910 ident: bib53 article-title: Organization of the human mitochondrial hydrogen sulfide oxidation pathway publication-title: J. Biol. Chem. – volume: 5 start-page: 832 year: 2015 end-page: 843 ident: bib61 article-title: Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests publication-title: FEBS Open Bio – volume: 12 year: 2021 ident: bib122 article-title: Hydrogen sulfide prevents mesenteric adipose tissue damage, endothelial dysfunction, and redox imbalance from high fructose diet-induced injury in aged rats publication-title: Front. Pharmacol. – volume: 93 start-page: 439 year: 2015 end-page: 455 ident: bib182 article-title: Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats publication-title: J. Mol. Med. – volume: 22 year: 2024 ident: bib119 article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease publication-title: Cell Death Differ. – volume: 18 start-page: 1315 year: 2017 ident: bib165 article-title: The role of hemoproteins: hemoglobin, myoglobin and neuroglobin in endogenous thiosulfate production processes publication-title: Int. J. Mol. Sci. – volume: 37 year: 2020 ident: bib18 article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement publication-title: Redox Biol. – volume: 673 start-page: 160 year: 2023 end-page: 168 ident: bib172 article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome publication-title: Biochem. Biophys. Res. Commun. – volume: 264 start-page: 96 year: 2009 end-page: 103 ident: bib147 article-title: Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification? publication-title: Toxicology – volume: 275 start-page: 3884 year: 2008 end-page: 3899 ident: bib63 article-title: Rhodanese–thioredoxin system and allyl sulfur compounds publication-title: FEBS J. – volume: 22 start-page: 6562 year: 2021 ident: bib150 article-title: The hidden role of hydrogen sulfide metabolism in cancer publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 1859 year: 2021 ident: bib153 article-title: The expression and activity of rhodanese, 3-mercaptopyruvate sulfurtransferase, cystathionine γ-lyase in the most frequently chosen cellular research models publication-title: Biomolecules – volume: 9 start-page: 829 year: 2010 end-page: 840 ident: bib9 article-title: A neurological perspective on mitochondrial disease publication-title: Lancet Neurol. – volume: 88 start-page: 93 year: 2015 end-page: 100 ident: bib105 article-title: Molecular basis of the keap1–nrf2 system publication-title: Free Radic. Biol. Med. – volume: 8 start-page: 436 year: 2010 end-page: 446 ident: bib77 article-title: Building Fe–S proteins: bacterial strategies publication-title: Nat. Rev. Microbiol. – volume: 18 start-page: 2371 year: 2012 end-page: 2380 ident: bib148 article-title: Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis publication-title: Inflamm. Bowel Dis. – volume: 10 start-page: 1738 year: 2021 ident: bib80 article-title: Sulfur administration in Fe–S cluster homeostasis publication-title: Antioxidants – volume: 364 start-page: 284 year: 1974 end-page: 295 ident: bib86 article-title: Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin publication-title: Biochim. Biophys. Acta Enzymol. – volume: 11 start-page: 2235 year: 2022 ident: bib149 article-title: Hydrogen sulfide metabolizing enzymes in the intestinal mucosa in pediatric and adult inflammatory bowel disease publication-title: Antioxidants – start-page: 367 year: 2020 ident: bib129 article-title: An atlas of the protein-coding genes in the human, pig, and mouse brain publication-title: Science – volume: 290 start-page: 23579 year: 2015 end-page: 23588 ident: bib46 article-title: Polymorphic variants of human rhodanese exhibit differences in thermal stability and sulfur transfer kinetics publication-title: J. Biol. Chem. – volume: 199 start-page: 130 year: 2022 end-page: 138 ident: bib121 article-title: Heart and kidney H2S production is reduced in hypertensive and older rats publication-title: Biochimie – volume: 9 start-page: 4 year: 2009 ident: bib4 article-title: Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis publication-title: BMC Evol. Biol. – volume: 204 start-page: 151 year: 2023 end-page: 160 ident: bib173 article-title: Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury publication-title: Free Radic. Biol. Med. – volume: 11 start-page: 703 year: 2009 end-page: 714 ident: bib37 article-title: 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain publication-title: Antioxidants Redox Signal. – volume: 40 start-page: 649 year: 2013 end-page: 652 ident: bib180 article-title: Sodium thiosulfate in the treatment of non‐uremic calciphylaxis publication-title: J. Dermatol. – volume: 13 start-page: 1180 year: 2021 ident: bib130 article-title: Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition publication-title: Nutrients – volume: 6 start-page: 1595 year: 2018 end-page: 1599 ident: bib181 article-title: Metabolic acidosis after sodium thiosulfate infusion and the role of hydrogen sulfide publication-title: Clin Case Rep – volume: 13 start-page: 105 year: 1989 end-page: 109 ident: bib33 article-title: Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports publication-title: J. Anal. Toxicol. – volume: 32 start-page: 1109 year: 2009 end-page: 1122 ident: bib178 article-title: Cisplatin overdose publication-title: Drug Saf. – volume: 11 start-page: 3843 year: 2022 ident: bib140 article-title: The role of oxidative stress in atherosclerosis publication-title: Cells – volume: 109 start-page: 89 year: 2023 end-page: 98 ident: bib169 article-title: Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway publication-title: J. Dermatol. Sci. – volume: 32 start-page: 465 year: 2000 end-page: 473 ident: bib62 article-title: Rhodanese as a thioredoxin oxidase publication-title: Int. J. Biochem. Cell Biol. – volume: 22 start-page: 771 year: 2016 end-page: 779 ident: bib87 article-title: Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness publication-title: Nat. Med. – volume: 18 start-page: 1906 year: 2013 end-page: 1919 ident: bib111 article-title: Hydrogen sulfide protects against cellular senescence via s-sulfhydration of keap1 and activation of Nrf2 publication-title: Antioxidants Redox Signal. – volume: 18 start-page: 1165 year: 2013 end-page: 1207 ident: bib56 article-title: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance publication-title: Antioxidants Redox Signal. – volume: 98 start-page: 9494 year: 2001 end-page: 9498 ident: bib99 article-title: Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system publication-title: Proc. Natl. Acad. Sci. USA – volume: 34 start-page: 2387 year: 2014 end-page: 2393 ident: bib144 article-title: Calcific aortic valve disease publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 10 start-page: 2976 year: 2021 ident: bib96 article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice publication-title: Cells – volume: 318 start-page: 981 year: 1981 end-page: 982 ident: bib136 article-title: Thiosulphate-sulphurtransferase (rhodanese) deficiency in Leber's hereditary optic atroph publication-title: Lancet – volume: 22 start-page: 6452 year: 2021 ident: bib166 article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms publication-title: Int. J. Mol. Sci. – volume: 104 start-page: 5477 year: 2020 end-page: 5492 ident: bib58 article-title: Glutaredoxin-like protein (GLP)—a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses publication-title: Appl. Microbiol. Biotechnol. – volume: 4 year: 2015 ident: bib55 article-title: Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia publication-title: J. Am. Heart Assoc. – volume: 17 start-page: 297 year: 2018 end-page: 314 ident: bib107 article-title: Antioxidant response elements: discovery, classes, regulation and potential applications publication-title: Redox Biol. – volume: 73 start-page: 282 year: 2021 end-page: 302 ident: bib112 article-title: Hydrogen sulfide alleviates liver injury through the S-Sulfhydrated-Kelch-Like ECH-associated protein 1/nuclear erythroid 2–related factor 2/low-density lipoprotein receptor–related protein 1 pathway publication-title: Hepatology – volume: 27 start-page: 684 year: 2017 end-page: 712 ident: bib103 article-title: The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine publication-title: Antioxidants Redox Signal. – volume: 36 year: 2016 ident: bib45 article-title: S-sulfhydration as a cellular redox regulation publication-title: Biosci. Rep. – volume: 22 start-page: 341 year: 1998 end-page: 352 ident: bib74 article-title: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster publication-title: FEMS Microbiol. Rev. – volume: 3 start-page: 4 year: 2022 ident: bib141 article-title: Serum anti-TSTD2 antibody as a biomarker for atherosclerosis-induced ischemic stroke and chronic kidney disease publication-title: Med. Int. – volume: 305 start-page: R592 year: 2013 end-page: R603 ident: bib161 article-title: Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 154 year: 2020 ident: bib23 article-title: Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)—hydrogen sulfide (H2S) pathway in cancer cells publication-title: Pharmacol. Res. – volume: 68 year: 2023 ident: bib43 article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain publication-title: Redox Biol. – volume: 12 start-page: 1699 year: 2003 end-page: 1711 ident: bib137 article-title: Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells publication-title: Hum. Mol. Genet. – volume: 107 start-page: 247 year: 2012 end-page: 252 ident: bib11 article-title: Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders publication-title: Mol. Genet. Metabol. – volume: 22 start-page: 362 year: 2015 end-page: 376 ident: bib31 article-title: Signaling molecules: hydrogen sulfide and polysulfide publication-title: Antioxidants Redox Signal. – volume: 32 start-page: 368 year: 1992 end-page: 375 ident: bib160 article-title: The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning publication-title: J. Clin. Pharmacol. – volume: 687 year: 2024 ident: bib116 article-title: Differences in nonoxidative sulfur metabolism between normal human breast MCF-12A and adenocarcinoma MCF-7 cell lines publication-title: Anal. Biochem. – volume: 63 start-page: 962 year: 2024 end-page: 963 ident: bib179 article-title: Successful treatment of non‐uremic calciphylaxis with combination therapy with sodium thiosulfate, iloprost, and heparin publication-title: Int. J. Dermatol. – volume: 59 start-page: 1073 year: 2006 end-page: 1082 ident: bib76 article-title: Iron‐sulphur clusters and the problem with oxygen publication-title: Mol. Microbiol. – volume: 78 year: 2022 ident: bib163 article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation publication-title: EBioMedicine – volume: 1866 year: 2020 ident: bib16 article-title: Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases publication-title: Biochim. Biophys. Acta, Mol. Basis Dis. – volume: 12 start-page: 843 year: 2023 ident: bib14 article-title: Rhodanese-Fold containing proteins in humans: not just key players in sulfur trafficking publication-title: Antioxidants – volume: 32 start-page: 465 year: 2000 end-page: 473 ident: bib65 article-title: Rhodanese as a thioredoxin oxidase publication-title: Int. J. Biochem. Cell Biol. – volume: 2 year: 2016 ident: bib69 article-title: A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems publication-title: Sci. Adv. – volume: 10 start-page: 2976 year: 2021 ident: bib123 article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice publication-title: Cells – volume: 45 start-page: 580 year: 2013 end-page: 585 ident: bib128 article-title: The genotype-tissue expression (GTEx) project publication-title: Nat. Genet. – volume: 2 issue: 1 year: 2016 ident: 10.1016/j.redox.2025.103595_bib69 article-title: A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems publication-title: Sci. Adv. doi: 10.1126/sciadv.1500968 – volume: 59 start-page: 1073 issue: 4 year: 2006 ident: 10.1016/j.redox.2025.103595_bib76 article-title: Iron‐sulphur clusters and the problem with oxygen publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05028.x – volume: 134 start-page: 190 year: 2019 ident: 10.1016/j.redox.2025.103595_bib67 article-title: Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through regulating the redox state of thioredoxin publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.01.009 – volume: 26 year: 2019 ident: 10.1016/j.redox.2025.103595_bib78 article-title: A conserved motif liganding the [4Fe–4S] cluster in [4Fe–4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101296 – volume: 21 start-page: 1721 year: 2015 ident: 10.1016/j.redox.2025.103595_bib60 article-title: Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure publication-title: Med. Sci. Monit. doi: 10.12659/MSM.893234 – volume: 527 start-page: 1008 issue: 4 year: 2020 ident: 10.1016/j.redox.2025.103595_bib94 article-title: Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.05.014 – volume: 11 year: 2020 ident: 10.1016/j.redox.2025.103595_bib125 article-title: H2S donors reverse age-related gastric malfunction impaired due to fructose-induced injury via CBS, CSE, and TST expression publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.01134 – volume: 295 issue: 39 year: 2020 ident: 10.1016/j.redox.2025.103595_bib47 article-title: Findings in redox biology: from H2O2 to oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.X120.015651 – volume: 8 start-page: 436 issue: 6 year: 2010 ident: 10.1016/j.redox.2025.103595_bib77 article-title: Building Fe–S proteins: bacterial strategies publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2356 – volume: 22 year: 2024 ident: 10.1016/j.redox.2025.103595_bib142 article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease publication-title: Cell Death Differ. – volume: 93 start-page: 8175 issue: 16 year: 1996 ident: 10.1016/j.redox.2025.103595_bib73 article-title: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.16.8175 – volume: 6 start-page: 723 issue: 12 year: 2010 ident: 10.1016/j.redox.2025.103595_bib138 article-title: Atherosclerosis in CKD: differences from the general population publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2010.143 – volume: 121 start-page: 459 issue: 11 year: 2011 ident: 10.1016/j.redox.2025.103595_bib164 article-title: Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools publication-title: Clin. Sci. doi: 10.1042/CS20110267 – volume: 99 start-page: 345 year: 2016 ident: 10.1016/j.redox.2025.103595_bib157 article-title: Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.08.024 – volume: 5 start-page: 46 issue: 4 year: 2016 ident: 10.1016/j.redox.2025.103595_bib162 article-title: The effects of different garlic-derived allyl sulfides on anaerobic sulfur metabolism in the mouse kidney publication-title: Antioxidants doi: 10.3390/antiox5040046 – volume: 199 start-page: 130 year: 2022 ident: 10.1016/j.redox.2025.103595_bib121 article-title: Heart and kidney H2S production is reduced in hypertensive and older rats publication-title: Biochimie doi: 10.1016/j.biochi.2022.04.013 – volume: 22 start-page: 771 issue: 7 year: 2016 ident: 10.1016/j.redox.2025.103595_bib87 article-title: Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness publication-title: Nat. Med. doi: 10.1038/nm.4115 – volume: 31 start-page: 364 issue: 3 year: 2010 ident: 10.1016/j.redox.2025.103595_bib91 article-title: The role of mitochondria in the pathogenesis of type 2 diabetes publication-title: Endocr. Rev. doi: 10.1210/er.2009-0027 – volume: 21 start-page: 363 issue: 7 year: 2020 ident: 10.1016/j.redox.2025.103595_bib93 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0230-3 – volume: 22 start-page: 6452 issue: 12 year: 2021 ident: 10.1016/j.redox.2025.103595_bib166 article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22126452 – volume: 51 start-page: 1 issue: 12 year: 2019 ident: 10.1016/j.redox.2025.103595_bib7 article-title: Mitochondrial dysfunction and oxidative stress in heart disease publication-title: Exp. Mol. Med. doi: 10.1038/s12276-019-0355-7 – volume: 293 start-page: 2675 issue: 8 year: 2018 ident: 10.1016/j.redox.2025.103595_bib51 article-title: Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000826 – volume: 72 start-page: 17 issue: 1 year: 1977 ident: 10.1016/j.redox.2025.103595_bib79 article-title: Rhodanese‐mediated sulfur transfer to succinate dehydrogenase publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1977.tb11219.x – volume: 45 start-page: 2524 issue: 8 year: 2006 ident: 10.1016/j.redox.2025.103595_bib5 article-title: Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium publication-title: Biochemistry doi: 10.1021/bi052475e – volume: 2015 year: 2015 ident: 10.1016/j.redox.2025.103595_bib110 article-title: Oxidative stress responses and NRF2 in human leukaemia publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2015/454659 – volume: 136 start-page: 1636S issue: 6 year: 2006 ident: 10.1016/j.redox.2025.103595_bib30 article-title: The sulfur-containing amino acids: an overview publication-title: J. Nutr. doi: 10.1093/jn/136.6.1636S – volume: 83 start-page: 9178 issue: 16 year: 2018 ident: 10.1016/j.redox.2025.103595_bib50 article-title: Why not trans? Inhibited radical isomerization cycles and coupling chains of lipids and alkenes with alkane - thiols publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b01216 – volume: 9 start-page: 829 issue: 8 year: 2010 ident: 10.1016/j.redox.2025.103595_bib9 article-title: A neurological perspective on mitochondrial disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70116-2 – volume: 12 year: 2022 ident: 10.1016/j.redox.2025.103595_bib151 article-title: Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2022.1004261 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.redox.2025.103595_bib49 article-title: Hydrogen sulfide and cellular redox homeostasis publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2016/6043038 – volume: 14 year: 2023 ident: 10.1016/j.redox.2025.103595_bib168 article-title: The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1125594 – volume: 59 start-page: 51 issue: 2 year: 2007 ident: 10.1016/j.redox.2025.103595_bib100 article-title: Common themes and variations in the rhodanese superfamily publication-title: IUBMB Life doi: 10.1080/15216540701206859 – volume: 26 start-page: 1034 issue: 11 year: 2020 ident: 10.1016/j.redox.2025.103595_bib92 article-title: Oxidative stress and redox-modulating therapeutics in Inflammatory bowel disease publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2020.06.006 – volume: 673 start-page: 160 year: 2023 ident: 10.1016/j.redox.2025.103595_bib172 article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2023.06.072 – volume: 13 start-page: 1180 issue: 4 year: 2021 ident: 10.1016/j.redox.2025.103595_bib130 article-title: Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition publication-title: Nutrients doi: 10.3390/nu13041180 – volume: 27 start-page: 684 issue: 10 year: 2017 ident: 10.1016/j.redox.2025.103595_bib103 article-title: The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7083 – volume: 66 start-page: 121 issue: 2 year: 2009 ident: 10.1016/j.redox.2025.103595_bib90 article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e3181a9eafb – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.redox.2025.103595_bib25 article-title: Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes publication-title: Sci. Rep. doi: 10.1038/s41598-022-16320-1 – volume: 12 start-page: 868 issue: 4 year: 2023 ident: 10.1016/j.redox.2025.103595_bib36 article-title: Synthesis of sulfides and persulfides is not impeded by disruption of three canonical enzymes in sulfur metabolism publication-title: Antioxidants doi: 10.3390/antiox12040868 – volume: 18 start-page: 1315 issue: 6 year: 2017 ident: 10.1016/j.redox.2025.103595_bib165 article-title: The role of hemoproteins: hemoglobin, myoglobin and neuroglobin in endogenous thiosulfate production processes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18061315 – volume: 10 start-page: 1738 issue: 11 year: 2021 ident: 10.1016/j.redox.2025.103595_bib29 article-title: Sulfur administration in Fe–S cluster homeostasis publication-title: Antioxidants doi: 10.3390/antiox10111738 – volume: 687 year: 2024 ident: 10.1016/j.redox.2025.103595_bib116 article-title: Differences in nonoxidative sulfur metabolism between normal human breast MCF-12A and adenocarcinoma MCF-7 cell lines publication-title: Anal. Biochem. doi: 10.1016/j.ab.2023.115434 – volume: 2 issue: 1 year: 2024 ident: 10.1016/j.redox.2025.103595_bib104 article-title: Mitochondria and the reactive species interactome: shaping the future of mitoredox medicine publication-title: Journal of Mitochondria, Plastids and Endosymbiosis doi: 10.1080/28347056.2024.2304348 – volume: 28 start-page: 2025 issue: 5 year: 2023 ident: 10.1016/j.redox.2025.103595_bib127 article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats publication-title: Molecules doi: 10.3390/molecules28052025 – volume: 290 start-page: 23579 issue: 39 year: 2015 ident: 10.1016/j.redox.2025.103595_bib46 article-title: Polymorphic variants of human rhodanese exhibit differences in thermal stability and sulfur transfer kinetics publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.675694 – volume: 11 start-page: 1859 issue: 12 year: 2021 ident: 10.1016/j.redox.2025.103595_bib153 article-title: The expression and activity of rhodanese, 3-mercaptopyruvate sulfurtransferase, cystathionine γ-lyase in the most frequently chosen cellular research models publication-title: Biomolecules doi: 10.3390/biom11121859 – volume: 23 start-page: 32 issue: 1 year: 2022 ident: 10.1016/j.redox.2025.103595_bib174 article-title: Cardioprotective effects of sodium thiosulfate against doxorubicin-induced cardiotoxicity in male rats publication-title: BMC Pharmacol Toxicol doi: 10.1186/s40360-022-00569-3 – volume: 18 start-page: 1539 issue: 10 year: 2012 ident: 10.1016/j.redox.2025.103595_bib131 article-title: MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity publication-title: Nat. Med. doi: 10.1038/nm.2899 – volume: 12 start-page: 1699 issue: 14 year: 2003 ident: 10.1016/j.redox.2025.103595_bib137 article-title: Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg187 – volume: 32 start-page: 368 issue: 4 year: 1992 ident: 10.1016/j.redox.2025.103595_bib160 article-title: The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning publication-title: J. Clin. Pharmacol. doi: 10.1002/j.1552-4604.1992.tb03849.x – volume: 150 start-page: 952 issue: 12 year: 2024 ident: 10.1016/j.redox.2025.103595_bib143 article-title: Aortic valve stenosis causes accumulation of extracellular hemoglobin and systemic endothelial dysfunction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.123.064747 – year: 2023 ident: 10.1016/j.redox.2025.103595_bib154 article-title: Identification and characterization of a small molecule that activates thiosulfate sulfurtransferase and stimulates mitochondrial respiration publication-title: Protein Sci. doi: 10.1002/pro.4794 – volume: 313 start-page: 314 issue: 5785 year: 1979 ident: 10.1016/j.redox.2025.103595_bib3 article-title: Evolution of the molecular machines for protein import into mitochondria publication-title: Science doi: 10.1126/science.1127895 – volume: 70 start-page: 348 issue: 2 year: 2018 ident: 10.1016/j.redox.2025.103595_bib109 article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach publication-title: Pharmacol. Rev. doi: 10.1124/pr.117.014753 – volume: 293 start-page: 2675 issue: 8 year: 2018 ident: 10.1016/j.redox.2025.103595_bib64 article-title: Thiosulfate sulfurtransferase-like domain–containing 1 protein interacts with thioredoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000826 – volume: 3 start-page: 741 issue: 8 year: 2002 ident: 10.1016/j.redox.2025.103595_bib13 article-title: The rhodanese/Cdc25 phosphatase superfamily publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf150 – volume: 10 start-page: 1738 issue: 11 year: 2021 ident: 10.1016/j.redox.2025.103595_bib80 article-title: Sulfur administration in Fe–S cluster homeostasis publication-title: Antioxidants doi: 10.3390/antiox10111738 – volume: 20 start-page: 745 issue: 7 year: 2018 ident: 10.1016/j.redox.2025.103595_bib17 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0124-1 – volume: 12 start-page: 148 issue: 2 year: 2022 ident: 10.1016/j.redox.2025.103595_bib117 article-title: Sulfurtransferases and cystathionine beta-synthase expression in different human leukemia cell lines publication-title: Biomolecules doi: 10.3390/biom12020148 – volume: 9 start-page: 4 issue: 1 year: 2009 ident: 10.1016/j.redox.2025.103595_bib4 article-title: Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-9-4 – volume: 94 year: 2021 ident: 10.1016/j.redox.2025.103595_bib6 article-title: Mitochondrial reactive oxygen species in physiology and disease publication-title: Cell Calcium doi: 10.1016/j.ceca.2020.102344 – volume: 238 start-page: 1185 year: 1963 ident: 10.1016/j.redox.2025.103595_bib44 article-title: Rhodanese-catalyzed reduction of thiosulfate by reduced lipoic acid publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81283-2 – volume: 10 start-page: 2976 issue: 11 year: 2021 ident: 10.1016/j.redox.2025.103595_bib123 article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice publication-title: Cells doi: 10.3390/cells10112976 – volume: 11 start-page: 703 issue: 4 year: 2009 ident: 10.1016/j.redox.2025.103595_bib37 article-title: 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2008.2253 – volume: 78 year: 2022 ident: 10.1016/j.redox.2025.103595_bib170 article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.103954 – volume: 378 start-page: 2376 issue: 25 year: 2018 ident: 10.1016/j.redox.2025.103595_bib177 article-title: Sodium thiosulfate for protection from cisplatin-induced hearing loss publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1801109 – year: 2024 ident: 10.1016/j.redox.2025.103595_bib28 article-title: Diversity and ecology of microbial sulfur metabolism publication-title: Nat. Rev. Microbiol. – volume: 289 start-page: 30901 issue: 45 year: 2014 ident: 10.1016/j.redox.2025.103595_bib53 article-title: Organization of the human mitochondrial hydrogen sulfide oxidation pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.602664 – volume: 204 start-page: 151 year: 2023 ident: 10.1016/j.redox.2025.103595_bib173 article-title: Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2023.04.012 – volume: 290 start-page: 8310 issue: 13 year: 2015 ident: 10.1016/j.redox.2025.103595_bib41 article-title: Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.639831 – volume: 12 start-page: 347 issue: 6 year: 1989 ident: 10.1016/j.redox.2025.103595_bib176 article-title: Cyanide poisoning: pathophysiology and current approaches to therapy publication-title: Int. J. Artif. Organs doi: 10.1177/039139888901200601 – volume: 12 start-page: 843 issue: 4 year: 2023 ident: 10.1016/j.redox.2025.103595_bib14 article-title: Rhodanese-Fold containing proteins in humans: not just key players in sulfur trafficking publication-title: Antioxidants doi: 10.3390/antiox12040843 – volume: 32 start-page: 1109 issue: 12 year: 2009 ident: 10.1016/j.redox.2025.103595_bib178 article-title: Cisplatin overdose publication-title: Drug Saf. doi: 10.2165/11316640-000000000-00000 – volume: 5 start-page: 130 issue: 1 year: 2022 ident: 10.1016/j.redox.2025.103595_bib57 article-title: Overexpression of thioredoxin‐2 attenuates age‐related muscle loss by suppressing mitochondrial oxidative stress and apoptosis publication-title: JCSM Rapid Commun doi: 10.1002/rco2.57 – volume: 15 start-page: 597 issue: 5 year: 1976 ident: 10.1016/j.redox.2025.103595_bib82 article-title: NADH: nitrate reductase activity restoration by rhodanese publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)94400-5 – volume: 25 start-page: 9529 issue: 17 year: 2024 ident: 10.1016/j.redox.2025.103595_bib171 article-title: Effect of sodium thiosulfate pre-treatment on renal ischemia-reperfusion injury in kidney transplantation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms25179529 – volume: 16 start-page: 1066 issue: 3 year: 1996 ident: 10.1016/j.redox.2025.103595_bib32 article-title: The possible role of hydrogen sulfide as an endogenous neuromodulator publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-03-01066.1996 – volume: 104 start-page: 5477 issue: 12 year: 2020 ident: 10.1016/j.redox.2025.103595_bib58 article-title: Glutaredoxin-like protein (GLP)—a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10491-5 – volume: 35 start-page: 1176 issue: 14 year: 2021 ident: 10.1016/j.redox.2025.103595_bib102 article-title: The reactive species interactome in the brain publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2020.8238 – volume: 63 start-page: 962 issue: 7 year: 2024 ident: 10.1016/j.redox.2025.103595_bib179 article-title: Successful treatment of non‐uremic calciphylaxis with combination therapy with sodium thiosulfate, iloprost, and heparin publication-title: Int. J. Dermatol. doi: 10.1111/ijd.17131 – volume: 2016 issue: 1 year: 2016 ident: 10.1016/j.redox.2025.103595_bib132 article-title: Implications of hydrogen sulfide in glucose regulation: how H2S can alter glucose homeostasis through metabolic hormones publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2016/3285074 – volume: 10 start-page: 21 year: 2017 ident: 10.1016/j.redox.2025.103595_bib10 article-title: Mitochondrial diseases: advances and issues publication-title: Appl. Clin. Genet. doi: 10.2147/TACG.S94267 – volume: 47 year: 2021 ident: 10.1016/j.redox.2025.103595_bib70 article-title: Mitochondrial iron–sulfur clusters: structure, function, and an emerging role in vascular biology publication-title: Redox Biol. doi: 10.1016/j.redox.2021.102164 – volume: 45 start-page: 580 issue: 6 year: 2013 ident: 10.1016/j.redox.2025.103595_bib128 article-title: The genotype-tissue expression (GTEx) project publication-title: Nat. Genet. doi: 10.1038/ng.2653 – volume: 22 year: 2024 ident: 10.1016/j.redox.2025.103595_bib119 article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease publication-title: Cell Death Differ. – volume: 35 start-page: 642 issue: 8 year: 2021 ident: 10.1016/j.redox.2025.103595_bib89 article-title: Oxygen in metabolic dysfunction and its therapeutic relevance publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2019.7901 – volume: 98 start-page: 366 issue: 2 year: 2020 ident: 10.1016/j.redox.2025.103595_bib159 article-title: Sodium thiosulfate improves renal function and oxygenation in L-NNA–induced hypertension in rats publication-title: Kidney Int. doi: 10.1016/j.kint.2020.02.020 – volume: 305 start-page: R592 issue: 6 year: 2013 ident: 10.1016/j.redox.2025.103595_bib161 article-title: Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00421.2012 – volume: 60 year: 2023 ident: 10.1016/j.redox.2025.103595_bib145 article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102629 – volume: 109 start-page: 89 issue: 2 year: 2023 ident: 10.1016/j.redox.2025.103595_bib169 article-title: Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway publication-title: J. Dermatol. Sci. doi: 10.1016/j.jdermsci.2023.02.002 – volume: 1859 start-page: 742 issue: 9 year: 2018 ident: 10.1016/j.redox.2025.103595_bib27 article-title: Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2018.04.004 – volume: 18 start-page: 2371 issue: 12 year: 2012 ident: 10.1016/j.redox.2025.103595_bib148 article-title: Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis publication-title: Inflamm. Bowel Dis. doi: 10.1002/ibd.22949 – volume: 54 start-page: 2385 issue: 14 year: 2015 ident: 10.1016/j.redox.2025.103595_bib59 article-title: Conformational analysis and chemical reactivity of the multidomain sulfurtransferase, Staphylococcus aureus CstA publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00056 – volume: 25 start-page: 365 issue: 4 year: 2004 ident: 10.1016/j.redox.2025.103595_bib1 article-title: Mitochondria in health and disease: perspectives on a new mitochondrial biology publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2004.03.001 – volume: 79 start-page: 101 issue: 1 year: 2023 ident: 10.1016/j.redox.2025.103595_bib20 article-title: Correlation between the level of sulfane sulfur and the expression/activity of sulfurtransferases in chicken tissues – a possible ways of cyanide detoxification publication-title: Biologia (Bratisl). doi: 10.1007/s11756-023-01500-9 – volume: 11 start-page: 1823 issue: 9 year: 2022 ident: 10.1016/j.redox.2025.103595_bib120 article-title: Sequential accumulation of ‘driver’ pathway mutations induces the upregulation of hydrogen-sulfide-producing enzymes in human colonic epithelial cell organoids publication-title: Antioxidants doi: 10.3390/antiox11091823 – volume: 6 start-page: 1595 issue: 8 year: 2018 ident: 10.1016/j.redox.2025.103595_bib181 article-title: Metabolic acidosis after sodium thiosulfate infusion and the role of hydrogen sulfide publication-title: Clin Case Rep doi: 10.1002/ccr3.1673 – volume: 300 issue: 5 year: 2024 ident: 10.1016/j.redox.2025.103595_bib52 article-title: Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2024.107149 – volume: 9 start-page: 1416 issue: 3 year: 2010 ident: 10.1016/j.redox.2025.103595_bib146 article-title: Identification of Rack1, EF-tu and rhodanese as aging-related proteins in human colonic epithelium by proteomic analysis publication-title: J. Proteome Res. doi: 10.1021/pr9009386 – volume: 68 year: 2023 ident: 10.1016/j.redox.2025.103595_bib43 article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102965 – volume: 37 year: 2020 ident: 10.1016/j.redox.2025.103595_bib18 article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101674 – volume: 291 start-page: G288 issue: 2 year: 2006 ident: 10.1016/j.redox.2025.103595_bib152 article-title: Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00324.2005 – volume: 275 start-page: 3352 issue: 13 year: 2008 ident: 10.1016/j.redox.2025.103595_bib38 article-title: Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06482.x – volume: 292 start-page: 1229 issue: 6530 year: 1986 ident: 10.1016/j.redox.2025.103595_bib134 article-title: Deficiency of thiosulphate sulphurtransferase (rhodanese) in Leber's hereditary optic neuropathy publication-title: Br. Med. J. doi: 10.1136/bmj.292.6530.1229 – volume: 9 year: 2022 ident: 10.1016/j.redox.2025.103595_bib156 article-title: Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.965965 – volume: 22 start-page: 6562 issue: 12 year: 2021 ident: 10.1016/j.redox.2025.103595_bib150 article-title: The hidden role of hydrogen sulfide metabolism in cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22126562 – volume: 1853 start-page: 1316 issue: 6 year: 2015 ident: 10.1016/j.redox.2025.103595_bib71 article-title: Auxiliary iron–sulfur cofactors in radical SAM enzymes publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2015.01.002 – volume: 40 start-page: 649 issue: 8 year: 2013 ident: 10.1016/j.redox.2025.103595_bib180 article-title: Sodium thiosulfate in the treatment of non‐uremic calciphylaxis publication-title: J. Dermatol. doi: 10.1111/1346-8138.12139 – volume: 98 start-page: 9494 issue: 17 year: 2001 ident: 10.1016/j.redox.2025.103595_bib99 article-title: Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.171320998 – volume: 19 start-page: 465 issue: 5 year: 2013 ident: 10.1016/j.redox.2025.103595_bib113 article-title: The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613 publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.4944 – volume: 52 start-page: 1 issue: 1 year: 1988 ident: 10.1016/j.redox.2025.103595_bib22 article-title: Rhodanese isozymes in human tissues publication-title: Ann. Hum. Genet. doi: 10.1111/j.1469-1809.1988.tb01072.x – volume: 10 start-page: 2976 issue: 11 year: 2021 ident: 10.1016/j.redox.2025.103595_bib96 article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice publication-title: Cells doi: 10.3390/cells10112976 – volume: 6 start-page: 343 issue: 2 year: 2024 ident: 10.1016/j.redox.2025.103595_bib101 article-title: Selenium reduction of ubiquinone via SQOR suppresses ferroptosis publication-title: Nat. Metab. doi: 10.1038/s42255-024-00974-4 – volume: 201 start-page: 18 year: 2023 ident: 10.1016/j.redox.2025.103595_bib66 article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress in cerebral prefrontal cortex publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2023.03.088 – volume: 204 start-page: 207 year: 2023 ident: 10.1016/j.redox.2025.103595_bib98 article-title: Selenium and coenzyme Q10 improve the systemic redox status while reducing cardiovascular mortality in elderly population-based individuals publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2023.04.024 – volume: 41 start-page: 62 year: 2014 ident: 10.1016/j.redox.2025.103595_bib133 article-title: Hydrogen sulfide and the liver publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.02.006 – volume: 7 start-page: 3414 issue: 5 year: 2016 ident: 10.1016/j.redox.2025.103595_bib68 article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation publication-title: Chem. Sci. doi: 10.1039/C5SC04818D – volume: 142 start-page: 361 issue: 2 year: 1984 ident: 10.1016/j.redox.2025.103595_bib84 article-title: Enzymic synthesis of the iron‐sulfur cluster of spinach ferredoxin publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1984.tb08295.x – volume: 242 start-page: 1427 issue: 4884 year: 1988 ident: 10.1016/j.redox.2025.103595_bib135 article-title: Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy publication-title: Science doi: 10.1126/science.3201231 – volume: 289 start-page: 2481 issue: 9 year: 2022 ident: 10.1016/j.redox.2025.103595_bib21 article-title: The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter publication-title: FEBS J. doi: 10.1111/febs.16135 – volume: 154 year: 2020 ident: 10.1016/j.redox.2025.103595_bib23 article-title: Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)—hydrogen sulfide (H2S) pathway in cancer cells publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2018.11.034 – volume: 32 start-page: 465 issue: 4 year: 2000 ident: 10.1016/j.redox.2025.103595_bib62 article-title: Rhodanese as a thioredoxin oxidase publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(99)00035-7 – volume: 121 start-page: 1248 issue: 6 year: 2014 ident: 10.1016/j.redox.2025.103595_bib158 article-title: Sodium thiosulfate attenuates acute lung injury in mice publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000456 – volume: 278 start-page: 1480 issue: 3 year: 2003 ident: 10.1016/j.redox.2025.103595_bib24 article-title: 3-Mercaptopyruvate sulfurtransferase of LeishmaniaContains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209395200 – volume: 264 start-page: 96 issue: 1–2 year: 2009 ident: 10.1016/j.redox.2025.103595_bib147 article-title: Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification? publication-title: Toxicology doi: 10.1016/j.tox.2009.07.018 – volume: 60 year: 2023 ident: 10.1016/j.redox.2025.103595_bib115 article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102629 – volume: 11 start-page: 2235 issue: 11 year: 2022 ident: 10.1016/j.redox.2025.103595_bib149 article-title: Hydrogen sulfide metabolizing enzymes in the intestinal mucosa in pediatric and adult inflammatory bowel disease publication-title: Antioxidants doi: 10.3390/antiox11112235 – volume: 10 start-page: 85 issue: 2 year: 2011 ident: 10.1016/j.redox.2025.103595_bib35 article-title: Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) publication-title: Inflamm. Allergy - Drug Targets doi: 10.2174/187152811794776286 – volume: 65 start-page: 3171 issue: 10 year: 2016 ident: 10.1016/j.redox.2025.103595_bib108 article-title: Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation publication-title: Diabetes doi: 10.2337/db16-0020 – volume: 700 start-page: 154 issue: 2 year: 1982 ident: 10.1016/j.redox.2025.103595_bib83 article-title: Sulfide insertion into spinach ferredoxin by rhodanese publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/0167-4838(82)90092-9 – volume: 259 start-page: 243 year: 1933 ident: 10.1016/j.redox.2025.103595_bib19 article-title: Die rhodanbildung im tierkorper [thiocyanogen in the bodies of animals] publication-title: Biochem. Z. – volume: 3 start-page: 4 issue: 1 year: 2022 ident: 10.1016/j.redox.2025.103595_bib141 article-title: Serum anti-TSTD2 antibody as a biomarker for atherosclerosis-induced ischemic stroke and chronic kidney disease publication-title: Med. Int. doi: 10.3892/mi.2022.64 – volume: 93 start-page: 439 issue: 4 year: 2015 ident: 10.1016/j.redox.2025.103595_bib182 article-title: Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats publication-title: J. Mol. Med. doi: 10.1007/s00109-014-1227-1 – volume: 73 start-page: 282 issue: 1 year: 2021 ident: 10.1016/j.redox.2025.103595_bib112 article-title: Hydrogen sulfide alleviates liver injury through the S-Sulfhydrated-Kelch-Like ECH-associated protein 1/nuclear erythroid 2–related factor 2/low-density lipoprotein receptor–related protein 1 pathway publication-title: Hepatology doi: 10.1002/hep.31247 – volume: 34 start-page: 2387 issue: 11 year: 2014 ident: 10.1016/j.redox.2025.103595_bib144 article-title: Calcific aortic valve disease publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.302523 – volume: 5 start-page: 289 issue: 4 year: 1989 ident: 10.1016/j.redox.2025.103595_bib72 article-title: The structure of aconitase publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.340050406 – volume: 11 start-page: 3843 issue: 23 year: 2022 ident: 10.1016/j.redox.2025.103595_bib140 article-title: The role of oxidative stress in atherosclerosis publication-title: Cells doi: 10.3390/cells11233843 – volume: 673 start-page: 160 year: 2023 ident: 10.1016/j.redox.2025.103595_bib167 article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2023.06.072 – volume: 292 start-page: 5584 issue: 13 year: 2017 ident: 10.1016/j.redox.2025.103595_bib40 article-title: Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.774943 – volume: 10 start-page: 1738 issue: 11 year: 2021 ident: 10.1016/j.redox.2025.103595_bib26 article-title: Sulfur administration in Fe–S cluster homeostasis publication-title: Antioxidants doi: 10.3390/antiox10111738 – volume: 52 start-page: 1198 issue: 8 year: 2020 ident: 10.1016/j.redox.2025.103595_bib97 article-title: The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-0408-y – start-page: 367 issue: 6482 year: 2020 ident: 10.1016/j.redox.2025.103595_bib129 article-title: An atlas of the protein-coding genes in the human, pig, and mouse brain publication-title: Science – volume: 364 start-page: 284 issue: 2 year: 1974 ident: 10.1016/j.redox.2025.103595_bib86 article-title: Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin publication-title: Biochim. Biophys. Acta Enzymol. doi: 10.1016/0005-2744(74)90014-X – volume: 49 start-page: 661 issue: 6 year: 2008 ident: 10.1016/j.redox.2025.103595_bib124 article-title: Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays publication-title: J. Radiat. Res. doi: 10.1269/jrr.08074 – volume: 34 start-page: 231 issue: 2 year: 2008 ident: 10.1016/j.redox.2025.103595_bib118 article-title: N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlations with cell proliferation publication-title: Amino Acids doi: 10.1007/s00726-007-0471-2 – volume: 13 issue: 6 year: 2018 ident: 10.1016/j.redox.2025.103595_bib54 article-title: Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia publication-title: PLoS One doi: 10.1371/journal.pone.0198626 – volume: 8 start-page: 1865 issue: 9–10 year: 2006 ident: 10.1016/j.redox.2025.103595_bib48 article-title: Redefining oxidative stress publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2006.8.1865 – volume: 275 start-page: 3884 issue: 15 year: 2008 ident: 10.1016/j.redox.2025.103595_bib63 article-title: Rhodanese–thioredoxin system and allyl sulfur compounds publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06535.x – volume: 2 issue: 1 year: 2011 ident: 10.1016/j.redox.2025.103595_bib88 article-title: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering publication-title: J. Tissue Eng. doi: 10.1177/2041731411432365 – volume: 2 issue: 1 year: 2016 ident: 10.1016/j.redox.2025.103595_bib8 article-title: Mitochondrial diseases publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2016.80 – volume: 4 issue: 11 year: 2015 ident: 10.1016/j.redox.2025.103595_bib55 article-title: Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.002125 – volume: 22 start-page: 341 issue: 5 year: 1998 ident: 10.1016/j.redox.2025.103595_bib74 article-title: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1998.tb00375.x – volume: 148 start-page: 1145 issue: 6 year: 2012 ident: 10.1016/j.redox.2025.103595_bib2 article-title: Mitochondria: in sickness and in health publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 318 start-page: 981 issue: 8253 year: 1981 ident: 10.1016/j.redox.2025.103595_bib136 article-title: Thiosulphate-sulphurtransferase (rhodanese) deficiency in Leber's hereditary optic atroph publication-title: Lancet doi: 10.1016/S0140-6736(81)91171-5 – volume: 37 issue: 6 year: 2021 ident: 10.1016/j.redox.2025.103595_bib39 article-title: The hepatic compensatory response to elevated systemic sulfide promotes diabetes publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109958 – volume: 1866 issue: 6 year: 2020 ident: 10.1016/j.redox.2025.103595_bib16 article-title: Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases publication-title: Biochim. Biophys. Acta, Mol. Basis Dis. doi: 10.1016/j.bbadis.2020.165716 – volume: 32 start-page: 465 issue: 4 year: 2000 ident: 10.1016/j.redox.2025.103595_bib65 article-title: Rhodanese as a thioredoxin oxidase publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(99)00035-7 – volume: 105 start-page: 365 issue: 4 year: 2009 ident: 10.1016/j.redox.2025.103595_bib114 article-title: Hydrogen sulfide mediates cardioprotection through Nrf2 signaling publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.199919 – volume: 13 start-page: 105 issue: 2 year: 1989 ident: 10.1016/j.redox.2025.103595_bib33 article-title: Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports publication-title: J. Anal. Toxicol. doi: 10.1093/jat/13.2.105 – volume: 17 start-page: 297 year: 2018 ident: 10.1016/j.redox.2025.103595_bib107 article-title: Antioxidant response elements: discovery, classes, regulation and potential applications publication-title: Redox Biol. doi: 10.1016/j.redox.2018.05.002 – volume: 203 year: 2024 ident: 10.1016/j.redox.2025.103595_bib155 article-title: Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2024.107180 – volume: 308 start-page: 518 issue: 5721 year: 2005 ident: 10.1016/j.redox.2025.103595_bib34 article-title: H2S induces a suspended animation-like state in mice publication-title: Science doi: 10.1126/science.1108581 – volume: 23 issue: 15 year: 2022 ident: 10.1016/j.redox.2025.103595_bib12 article-title: Thiosulfate-cyanide sulfurtransferase a mitochondrial essential enzyme: from cell metabolism to the biotechnological applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23158452 – volume: 244 start-page: 485 issue: 2 year: 1987 ident: 10.1016/j.redox.2025.103595_bib85 article-title: Nitrogenase of Klebsiella pneumoniae . Rhodanese-catalysed restoration of activity of the inactive 2Fe species of the Fe protein publication-title: Biochem. J. doi: 10.1042/bj2440485 – volume: 78 year: 2022 ident: 10.1016/j.redox.2025.103595_bib163 article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.103954 – volume: 12 year: 2021 ident: 10.1016/j.redox.2025.103595_bib122 article-title: Hydrogen sulfide prevents mesenteric adipose tissue damage, endothelial dysfunction, and redox imbalance from high fructose diet-induced injury in aged rats publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.693100 – volume: 36 issue: 2 year: 2016 ident: 10.1016/j.redox.2025.103595_bib45 article-title: S-sulfhydration as a cellular redox regulation publication-title: Biosci. Rep. doi: 10.1042/BSR20150147 – volume: 18 start-page: 1165 issue: 10 year: 2013 ident: 10.1016/j.redox.2025.103595_bib56 article-title: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2011.4322 – volume: 22 issue: 12 year: 2021 ident: 10.1016/j.redox.2025.103595_bib42 article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22126452 – volume: 5 start-page: 832 issue: 1 year: 2015 ident: 10.1016/j.redox.2025.103595_bib61 article-title: Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests publication-title: FEBS Open Bio doi: 10.1016/j.fob.2015.10.001 – volume: 40 start-page: 1991 issue: 6 year: 2009 ident: 10.1016/j.redox.2025.103595_bib139 article-title: Effects of timing and extent of smoking, type of cigarettes, and concomitant risk factors on the association between smoking and subclinical atherosclerosis publication-title: Stroke doi: 10.1161/STROKEAHA.108.543413 – volume: 22 start-page: 362 issue: 5 year: 2015 ident: 10.1016/j.redox.2025.103595_bib31 article-title: Signaling molecules: hydrogen sulfide and polysulfide publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2014.5869 – volume: 28 start-page: 2025 issue: 5 year: 2023 ident: 10.1016/j.redox.2025.103595_bib95 article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats publication-title: Molecules doi: 10.3390/molecules28052025 – volume: 11 start-page: 147 issue: 1 year: 2022 ident: 10.1016/j.redox.2025.103595_bib175 article-title: Sodium thiosulfate improves hypertension in rats with adenine-induced chronic kidney disease publication-title: Antioxidants doi: 10.3390/antiox11010147 – volume: 36 start-page: 271 issue: 2 year: 2016 ident: 10.1016/j.redox.2025.103595_bib106 article-title: Characterizations of three major cysteine sensors of Keap1 in stress response publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00868-15 – volume: 107 start-page: 247 issue: 3 year: 2012 ident: 10.1016/j.redox.2025.103595_bib11 article-title: Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders publication-title: Mol. Genet. Metabol. doi: 10.1016/j.ymgme.2012.06.018 – volume: 33 start-page: 193 issue: 4–5 year: 2003 ident: 10.1016/j.redox.2025.103595_bib15 article-title: Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, NMR relaxation and deuterium exchange on the uniformly labeled protein publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2003.08.010 – volume: 18 start-page: 1906 issue: 15 year: 2013 ident: 10.1016/j.redox.2025.103595_bib111 article-title: Hydrogen sulfide protects against cellular senescence via s-sulfhydration of keap1 and activation of Nrf2 publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.4645 – volume: 742 start-page: 278 issue: 2 year: 1983 ident: 10.1016/j.redox.2025.103595_bib81 article-title: Interaction of rhodanese with mitochondrial NADH dehydrogenase publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/0167-4838(83)90312-6 – volume: 10 start-page: 1238 issue: 5 year: 2021 ident: 10.1016/j.redox.2025.103595_bib126 article-title: Hypertension and aging affect liver sulfur metabolism in rats publication-title: Cells doi: 10.3390/cells10051238 – volume: 133 start-page: 87 year: 2014 ident: 10.1016/j.redox.2025.103595_bib75 article-title: Oxidative stress sensing by the iron–sulfur cluster in the transcription factor, SoxR publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2013.11.008 – volume: 88 start-page: 93 year: 2015 ident: 10.1016/j.redox.2025.103595_bib105 article-title: Molecular basis of the keap1–nrf2 system publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.06.006 |
SSID | ssj0000884210 |
Score | 2.380089 |
SecondaryResourceType | review_article |
Snippet | Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103595 |
SubjectTerms | Animals Antioxidants - metabolism Humans Hydrogen Sulfide - metabolism Life Sciences Mitochondria - metabolism Mitochondrial dysfunction Oxidation-Reduction Oxidative stress Oxidative Stress - drug effects Redox signaling Review Thiosulfate sulfurtransferase (TST) Thiosulfate Sulfurtransferase - genetics Thiosulfate Sulfurtransferase - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA56IPgi_raeShUfLW7TJE18O8VjOdSnO7i3kDQTdkW6x1730P_-ZpLt0Sroi28lDQmdSTLz0S_fMPYWpBAOQFVKK1kJjKGVa5pYASA4iF6rRdLS-_pNLc_Eybk8n5T6Ik5YlgfOhnsfnIwRlBGdiUJzcBwBSB2g9V6B1p5OX4x5EzCVzmCtBYKZUWYoEbpIgPMnIkIu6aa5pIoSk1CUFPtnEen2iqiRf-adv9MnJ_Ho-D67t08ky6P8AQ_YLegfsju5tOSvR-zkdLXeJOo5JpMlPsTddkhJKmwxcH0oc09yUUkMw8vS9aGc3MYqLzYDMYncj8fs7Pjz6adlta-bUHUYvocqgDTBKRV58NyZSJDPc887r13duoV2SkTA3d3EqNogPdcLiASSF9y3sWmesIN-08MzVvJgdOfqgLaXAow3JsgYQGAa4BEZdgV7N5rQXmR5DDvyxr7bZHFLFrfZ4gX7SGa-6Ura1qkBPW73Hrf_8njB1Ogku08TcvjHodZ_n_0NunQ2-fLoi6U2An6NkeaqLtjr0eMWdxr9PnE9bHaXFjMtBKttW4uCPc0r4GYsRKl4dta6YHq2NmaTzd_061VS8ybNvbY15vn_sM0hu0sfnBmZL9jBsN3BS8yaBv8qbZBri8sYFA priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGJCQuiN8EGAqII1Ebx3bs3bZpUzUBFzapN8uObRqEkqpLp_Hf7z0nqRqQOHBLXSdW3rP93td-7zMhnzxnzHgvMiEFzxjE0MwURci8B3AQrBTzqKX39ZtYXLPLJV8ekLOxFgZplcPe3-_pcbceWmaDNWfrup59pxSQFIQ_COIAKiQW8RVMxiK-5enudxZYRYxGUQLsn-ENo_hQpHmhLOcd4ETKsf6c4zkTewEq6vhP4tSDFRIm_85G_yRV7kWpiyfk8ZBepif9GzwlB755Rh72B07-fk4ur1Z1GwnpkGKmcBG2my6mrn4D4ew47Xui41LkHd6kpnHpXo1Wum475BeZXy_I9cX51dkiG05TyCoI6l3mPFfOCBGos9SogEDQUksrK01emrk0ggUPa74IQZSOWyrnPiB0nlNbhqJ4SQ6btvGvSUqdkpXJnQqMM6-sUo4H5xkkBxbwYpWQz6MJ9boXzdAjm-ynjhbXaHHdWzwhp2jmXVdUvI4N7eaHHlyuneEheKFYBaNK6g0FIJo7X1orvJQ2IWJ0kp5MIHhU_e_RP4JLJ4MvTr5obEM4WCiubvOEfBg9rmH94Z8qpvHt9kbDfAIIW5Y5S8irfgbsngXYFXbUXCZETubGZLDpN029ihrfqMRXlkq9-d_Xekse4aeem_mOHHabrT-C_Kmz7-MCuQdtBxkz priority: 102 providerName: Elsevier |
Title | Thiosulphate sulfurtransferase: Biological roles and therapeutic potential |
URI | https://dx.doi.org/10.1016/j.redox.2025.103595 https://www.ncbi.nlm.nih.gov/pubmed/40107018 https://www.proquest.com/docview/3179247714 https://normandie-univ.hal.science/hal-04993959 https://pubmed.ncbi.nlm.nih.gov/PMC11957799 https://doaj.org/article/da5ffe694c9f482ea27171de7bb6e88b |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2ERIviDsZUAXEI0GN4ysSQh1iKhvjAa2ib5Zd27RoSrY0Rdu_59hJxgITEi9R4li2dOzj833J8WeEXjlKiHaOZUwwmhGIoZkuCp85B-TAG8HGUUvv-AubzsjhnM63UH8qamfA9Y3ULpwnNatP31ycX74Hh3_3O1craGteANnDNGwip5Juo10ITTx46nGH9-PSLATBUaEA47zIANvwXono5nYG0SqK-g-C1vYyZE_-DU3_zLC8FrIO7qI7HdZMJ-3kuIe2XHkf3WpPn7x8gA5PlqsqZqcD3kzhxm_qJuJYV0Nse5u2NcMopiEJcZ3q0qbXNmylZ1UTko306UM0O_h48mGadUcrZAuI8E1mHZVWM-axNVhLH1ihwQYvjNA512OhGfEOFoDCe8YtNViMnQ88eowN90XxCO2UVemeoBRbKRY6t9ITSpw0UlrqrSOAFAyQx0WCXvcmVGetgobqU8t-qGhxFSyuWosnaD-Y-apqkL-OBVX9XXXepKym3jsmyQJ6FdhpDKw0t44bw5wQJkGsHyTVIYkWIUBTq3_3_hKGdND5dPJZhbLADQtJ5c88QS_6EVfgjOEPiy5dtVkrmE_AZznPSYIetzPgqi0gsrC85iJBYjA3Bp0N35SrZRT8DrJ8nEu593-mfIpuh6c2PfMZ2mnqjXsOEKoxI7Q7Ofr67WgUP0HA9dN8fxRd5Rc5Xh0h |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2IQQXxG_Cz4A4ErVxbMfmtk1M3eh2oZN6s-zYpkUoqboWwX_Pe05SNSBx4BY5sa28Z_u9L_n8mZD3njNmvBeZkIJnDGJoZooiZN4DOAhWinHU0ru8EpNrdjHn8wNy2u-FQVplt_a3a3pcrbuSUWfN0Wq5HH2hFJAUhD8I4gAqpDoktyAbKPH8hvP5ye5DC0wjRqMqAVbIsEavPhR5XqjL-ROAIuW4AZ3jQRN7ESoK-Q8C1eECGZN_p6N_sir3wtTZfXKvyy_T4_YVHpADXz8kt9sTJ389IhezxbKJjHTIMVO4CNv1Juaufg3x7GPaPomeS5F4eJOa2qV7m7TSVbNBgpH5_phcn32anU6y7jiFrIKovsmc58oZIQJ1lhoVEAlaamllpclLM5ZGsOBh0hchiNJxS-XYB8TOY2rLUBRPyFHd1P4ZSalTsjK5U4Fx5pVVyvHgPIPswAJgrBLyoTehXrWqGbqnk33T0eIaLa5biyfkBM28exQlr2NBs_6qO59rZ3gIXihWQa-SekMBiebOl9YKL6VNiOidpAcjCJpa_rv3d-DSQeeT46nGMsSDheLqR56Qt73HNUxA_Ktiat9sbzSMJ8CwZZmzhDxtR8CuLQCvsKTmMiFyMDYGnQ3v1MtFFPlGKb6yVOr5_77WG3JnMruc6un51ecX5C7eaYmaL8nRZr31ryCZ2tjXcbL8BomBHFI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thiosulphate+sulfurtransferase%3A+Biological+roles+and+therapeutic+potential&rft.jtitle=Redox+biology&rft.au=Luo%2C+Yang&rft.au=Melhem%2C+Shaden&rft.au=Feelisch%2C+Martin&rft.au=Chatre%2C+Laurent&rft.date=2025-05-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=82&rft.spage=103595&rft_id=info:doi/10.1016%2Fj.redox.2025.103595&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_redox_2025_103595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |