Thiosulphate sulfurtransferase: Biological roles and therapeutic potential

Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 82; p. 103595
Main Authors Luo, Yang, Melhem, Shaden, Feelisch, Martin, Chatre, Laurent, Morton, Nicholas M., Dolga, Amalia M., van Goor, Harry
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S2O32−), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. [Display omitted] •The mitochondrial interaction between oxidative stress and TST.•The extra-mitochondrial impact of TST on NRF2 signaling.•Tissue expression profile of TST in various diseases.•Therapeutic potential of TST activation.
AbstractList Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S2O32−), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics.This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target.Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations.Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H 2 S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S 2 O 3 2− ), promoting H 2 S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. Image 1 • The mitochondrial interaction between oxidative stress and TST. • The extra-mitochondrial impact of TST on NRF2 signaling. • Tissue expression profile of TST in various diseases. • Therapeutic potential of TST activation.
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics.This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST’s potential as a biomarker and therapeutic target.Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations.Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST’s interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S O ), promoting H S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe–S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R–SSH) to thiosulfate (S2O32−), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction. [Display omitted] •The mitochondrial interaction between oxidative stress and TST.•The extra-mitochondrial impact of TST on NRF2 signaling.•Tissue expression profile of TST in various diseases.•Therapeutic potential of TST activation.
ArticleNumber 103595
Author Feelisch, Martin
Chatre, Laurent
Dolga, Amalia M.
Melhem, Shaden
van Goor, Harry
Morton, Nicholas M.
Luo, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0009-0004-6769-4147
  surname: Luo
  fullname: Luo, Yang
  organization: University of Groningen, Dept. of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
– sequence: 2
  givenname: Shaden
  surname: Melhem
  fullname: Melhem, Shaden
  organization: Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
– sequence: 3
  givenname: Martin
  surname: Feelisch
  fullname: Feelisch, Martin
  organization: Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
– sequence: 4
  givenname: Laurent
  surname: Chatre
  fullname: Chatre, Laurent
  organization: Université de Caen Normandie, CNRS, Normandie Univ, ISTCT, UMR6030, GIP Cyceron, Caen, F-14000, France
– sequence: 5
  givenname: Nicholas M.
  surname: Morton
  fullname: Morton, Nicholas M.
  organization: Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
– sequence: 6
  givenname: Amalia M.
  surname: Dolga
  fullname: Dolga, Amalia M.
  organization: University of Groningen, Dept. of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
– sequence: 7
  givenname: Harry
  orcidid: 0000-0002-6670-1577
  surname: van Goor
  fullname: van Goor, Harry
  email: h.van.goor@umcg.nl
  organization: University Medical Center Groningen, Dept. of Pathology and Medical Biology, Groningen, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40107018$$D View this record in MEDLINE/PubMed
https://normandie-univ.hal.science/hal-04993959$$DView record in HAL
BookMark eNp9Uk1v1DAQtVAR_aC_AAnlCIddbMeJYyRUlQpo0Upcytnyx3jjlTde7GQF_77eplQtB3zxaOa95xnPO0VHQxwAoTcELwkm7YfNMoGNv5cU06Zk6kY0L9AJpaRe0JrwoyfxMTrPeYPL6TpGCX6FjhkmmGPSnaDvt72PeQq7Xo1QlcBNaUxqyA6SyvCx-uxjiGtvVKhSDJArNdhq7Et1B9PoTbWLIwyjV-E1eulUyHD-cJ-hn1-_3F5dL1Y_vt1cXa4WpiF0XFhohFVt66jVVAlHGGs11dToThGucKda5gDXuHau5bbRtMPgMGdlVM1dXZ-hm1nXRrWRu-S3Kv2RUXl5n4hpLVUqnQWQVjXOQSuYEY51FBTlhBMLXOsWuk4XrYtZazfpLVhTJkkqPBN9Xhl8L9dxLwkRDedCFIX3s0L_D-_6ciUPOcwKSjRiTwr23cNrKf6aII9y67OBENQAccqyLEtQxjlhBfr2aWOPyn83VwD1DDAp5pzAPUIIlgeLyI28t4g8WETOFimsTzMLyoL2HpLMxsNgwPoEZiw_6P_LvwNIv8Xm
Cites_doi 10.1126/sciadv.1500968
10.1111/j.1365-2958.2006.05028.x
10.1016/j.freeradbiomed.2019.01.009
10.1016/j.redox.2019.101296
10.12659/MSM.893234
10.1016/j.bbrc.2020.05.014
10.3389/fphar.2020.01134
10.1074/jbc.X120.015651
10.1038/nrmicro2356
10.1073/pnas.93.16.8175
10.1038/nrneph.2010.143
10.1042/CS20110267
10.1016/j.freeradbiomed.2016.08.024
10.3390/antiox5040046
10.1016/j.biochi.2022.04.013
10.1038/nm.4115
10.1210/er.2009-0027
10.1038/s41580-020-0230-3
10.3390/ijms22126452
10.1038/s12276-019-0355-7
10.1074/jbc.RA117.000826
10.1111/j.1432-1033.1977.tb11219.x
10.1021/bi052475e
10.1155/2015/454659
10.1093/jn/136.6.1636S
10.1021/acs.joc.8b01216
10.1016/S1474-4422(10)70116-2
10.3389/fonc.2022.1004261
10.1155/2016/6043038
10.3389/fimmu.2023.1125594
10.1080/15216540701206859
10.1016/j.molmed.2020.06.006
10.1016/j.bbrc.2023.06.072
10.3390/nu13041180
10.1089/ars.2017.7083
10.1203/PDR.0b013e3181a9eafb
10.1038/s41598-022-16320-1
10.3390/antiox12040868
10.3390/ijms18061315
10.3390/antiox10111738
10.1016/j.ab.2023.115434
10.1080/28347056.2024.2304348
10.3390/molecules28052025
10.1074/jbc.M115.675694
10.3390/biom11121859
10.1186/s40360-022-00569-3
10.1038/nm.2899
10.1093/hmg/ddg187
10.1002/j.1552-4604.1992.tb03849.x
10.1161/CIRCULATIONAHA.123.064747
10.1002/pro.4794
10.1126/science.1127895
10.1124/pr.117.014753
10.1093/embo-reports/kvf150
10.1038/s41556-018-0124-1
10.3390/biom12020148
10.1186/1471-2148-9-4
10.1016/j.ceca.2020.102344
10.1016/S0021-9258(18)81283-2
10.3390/cells10112976
10.1089/ars.2008.2253
10.1016/j.ebiom.2022.103954
10.1056/NEJMoa1801109
10.1074/jbc.M114.602664
10.1016/j.freeradbiomed.2023.04.012
10.1074/jbc.M115.639831
10.1177/039139888901200601
10.3390/antiox12040843
10.2165/11316640-000000000-00000
10.1002/rco2.57
10.1016/S0031-9422(00)94400-5
10.3390/ijms25179529
10.1523/JNEUROSCI.16-03-01066.1996
10.1007/s00253-020-10491-5
10.1089/ars.2020.8238
10.1111/ijd.17131
10.1155/2016/3285074
10.2147/TACG.S94267
10.1016/j.redox.2021.102164
10.1038/ng.2653
10.1089/ars.2019.7901
10.1016/j.kint.2020.02.020
10.1152/ajpregu.00421.2012
10.1016/j.redox.2023.102629
10.1016/j.jdermsci.2023.02.002
10.1016/j.bbabio.2018.04.004
10.1002/ibd.22949
10.1021/acs.biochem.5b00056
10.1016/j.mam.2004.03.001
10.1007/s11756-023-01500-9
10.3390/antiox11091823
10.1002/ccr3.1673
10.1016/j.jbc.2024.107149
10.1021/pr9009386
10.1016/j.redox.2023.102965
10.1016/j.redox.2020.101674
10.1152/ajpgi.00324.2005
10.1111/j.1742-4658.2008.06482.x
10.1136/bmj.292.6530.1229
10.3389/fcvm.2022.965965
10.3390/ijms22126562
10.1016/j.bbamcr.2015.01.002
10.1111/1346-8138.12139
10.1073/pnas.171320998
10.1089/ars.2012.4944
10.1111/j.1469-1809.1988.tb01072.x
10.1038/s42255-024-00974-4
10.1016/j.freeradbiomed.2023.03.088
10.1016/j.freeradbiomed.2023.04.024
10.1016/j.niox.2014.02.006
10.1039/C5SC04818D
10.1111/j.1432-1033.1984.tb08295.x
10.1126/science.3201231
10.1111/febs.16135
10.1016/j.phrs.2018.11.034
10.1016/S1357-2725(99)00035-7
10.1097/ALN.0000000000000456
10.1074/jbc.M209395200
10.1016/j.tox.2009.07.018
10.3390/antiox11112235
10.2174/187152811794776286
10.2337/db16-0020
10.1016/0167-4838(82)90092-9
10.3892/mi.2022.64
10.1007/s00109-014-1227-1
10.1002/hep.31247
10.1161/ATVBAHA.114.302523
10.1002/prot.340050406
10.3390/cells11233843
10.1074/jbc.M117.774943
10.1038/s12276-020-0408-y
10.1016/0005-2744(74)90014-X
10.1269/jrr.08074
10.1007/s00726-007-0471-2
10.1371/journal.pone.0198626
10.1089/ars.2006.8.1865
10.1111/j.1742-4658.2008.06535.x
10.1177/2041731411432365
10.1038/nrdp.2016.80
10.1161/JAHA.115.002125
10.1111/j.1574-6976.1998.tb00375.x
10.1016/j.cell.2012.02.035
10.1016/S0140-6736(81)91171-5
10.1016/j.celrep.2021.109958
10.1016/j.bbadis.2020.165716
10.1161/CIRCRESAHA.109.199919
10.1093/jat/13.2.105
10.1016/j.redox.2018.05.002
10.1016/j.phrs.2024.107180
10.1126/science.1108581
10.3390/ijms23158452
10.1042/bj2440485
10.3389/fphar.2021.693100
10.1042/BSR20150147
10.1089/ars.2011.4322
10.1016/j.fob.2015.10.001
10.1161/STROKEAHA.108.543413
10.1089/ars.2014.5869
10.3390/antiox11010147
10.1128/MCB.00868-15
10.1016/j.ymgme.2012.06.018
10.1016/j.ijbiomac.2003.08.010
10.1089/ars.2012.4645
10.1016/0167-4838(83)90312-6
10.3390/cells10051238
10.1016/j.jinorgbio.2013.11.008
10.1016/j.freeradbiomed.2015.06.006
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Attribution
2025 The Authors 2025
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: Attribution
– notice: 2025 The Authors 2025
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.redox.2025.103595
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
ExternalDocumentID oai_doaj_org_article_da5ffe694c9f482ea27171de7bb6e88b
PMC11957799
oai_HAL_hal_04993959v1
40107018
10_1016_j_redox_2025_103595
S2213231725001089
Genre Journal Article
Review
GroupedDBID 0R~
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADUVX
ADVLN
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c512t-de59da66f2db2a9f1446b2b2cb8a17a08a64fe0303ff67d5b280ef074202b7f33
IEDL.DBID M48
ISSN 2213-2317
IngestDate Wed Aug 27 01:24:12 EDT 2025
Thu Aug 21 18:39:59 EDT 2025
Sat May 03 06:11:23 EDT 2025
Fri Jul 11 10:10:29 EDT 2025
Fri Apr 25 03:24:44 EDT 2025
Tue Jul 01 04:58:07 EDT 2025
Sat May 03 15:57:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oxidative stress
Mitochondrial dysfunction
Redox signaling
Thiosulfate sulfurtransferase (TST)
redox signaling
mitochondrial dysfunction
oxidative stress
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-de59da66f2db2a9f1446b2b2cb8a17a08a64fe0303ff67d5b280ef074202b7f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Shared first authorship.
ORCID 0000-0002-6670-1577
0009-0004-6769-4147
0000-0001-9066-4342
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2213231725001089
PMID 40107018
PQID 3179247714
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_da5ffe694c9f482ea27171de7bb6e88b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11957799
hal_primary_oai_HAL_hal_04993959v1
proquest_miscellaneous_3179247714
pubmed_primary_40107018
crossref_primary_10_1016_j_redox_2025_103595
elsevier_sciencedirect_doi_10_1016_j_redox_2025_103595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tang, Kim, Lee (bib57) 2022; 5
Al‐Dahmani, Hadian, Ruiz‐Moreno (bib154) 2023
Stummer, Weghuber, Feichtinger (bib149) 2022; 11
Hughes, Jastroch, Stoneking, Klingenspor (bib4) 2009; 9
Gonzales, Sabatini (bib176) 1989; 12
Sakaguchi, Marutani, sook (bib158) 2014; 121
Vitvitsky, Yadav, An, Seravalli, Cho, Banerjee (bib40) 2017; 292
Iciek, Bilska-Wilkosz, Górny, Sokołowska-Jeżewicz, Kowalczyk-Pachel (bib162) 2016; 5
Jurkowska, Wróbel, Jasek-Gajda, Rydz (bib117) 2022; 12
Peoples, Saraf, Ghazal, Pham, Kwong (bib7) 2019; 51
Macabrey, Longchamp, MacArthur (bib170) 2022; 78
Nandi, Horowitz, Westley (bib62) 2000; 32
De Preter, Arijs, Windey (bib148) 2012; 18
Szlęzak, Bronowicka-Adamska, Hutsch, Ufnal, Wróbel (bib126) 2021; 10
Ramasamy, Singh, Taniere, Langman, Eggo (bib152) 2006; 291
Renga (bib35) 2011; 10
Cuadrado, Manda, Hassan (bib109) 2018; 70
Nolfi-Donegan, Braganza, Shiva (bib18) 2020; 37
Drüeke, Massy (bib138) 2010; 6
Nakajima, Taki, Wang (bib124) 2008; 49
Spinelli, Haigis (bib17) 2018; 20
Whitehouse, Pilz, Porta, Hopkinson (bib22) 1988; 52
Shekari, Gortany, Khalilzadeh (bib174) 2022; 23
Duchen (bib1) 2004; 25
Rydz, Wróbel, Jurkowska (bib29) 2021; 10
Pichette, Gagnon (bib132) 2016; 2016
Zainol, Ida, Morita (bib36) 2023; 12
Luo, Chatre, Melhem (bib43) 2023; 68
Imlay (bib76) 2006; 59
Baskin, Horowitz, Nealley (bib160) 1992; 32
Combi, Potor, Nagy (bib115) 2023; 60
Benchoam, Cuevasanta, Roman, Banerjee, Alvarez (bib52) 2024; 300
Nunnari, Suomalainen (bib2) 2012; 148
Cicero, Melino, Orsale (bib15) 2003; 33
Lee, Park, Lange (bib101) 2024; 6
Hopper, Carroll, Aponte (bib5) 2006; 45
Jones (bib48) 2006; 8
Villarejol, Westley (bib44) 1963; 238
Whiteman, Le Trionnaire, Chopra, Fox, Whatmore (bib164) 2011; 121
Wang, Li, Chen (bib169) 2023; 109
Combi, Potor, Nagy (bib145) 2023; 60
Yang, Zhao, Ju (bib111) 2013; 18
Sun, Huang, Zhang (bib182) 2015; 93
Khoramipour, Chamari, Hekmatikar (bib130) 2021; 13
Pavlovskiy, Yashchenko, Zayachkivska (bib125) 2020; 11
Scarpelli, Todeschini, Volonghi, Padovani, Filosto (bib10) 2017; 10
Read, Bentley, Archer, Dunham-Snary (bib70) 2021; 47
Xie, Gu, Wen (bib108) 2016; 65
Lu, Imlay (bib78) 2019; 26
Szlęzak, Hutsch, Ufnal, Wróbel (bib121) 2022; 199
Zheng, Li, Feng, Liu (bib123) 2021; 10
Abdul-Aziz, Macewan, Bowles, Rushworth (bib110) 2015; 2015
Poole, Kind (bib134) 1986; 292
Quast, Bönner, Polzin (bib143) 2024; 150
Bordo, Bork (bib13) 2002; 3
Lee, Kim, Lee (bib56) 2013; 18
Tomati, Giovannozzi-Sermanni, Duprè, Cannella (bib82) 1976; 15
Antonucci, Di Lisa, Kaludercic (bib6) 2021; 94
Kobayashi, Fujikawa, Kozawa (bib75) 2014; 133
Macabrey, Joniová, Gasser (bib156) 2022; 9
Ansar, Thu, Hung (bib151) 2022; 12
Iciek, Kowalczyk-Pachel, Bilska-Wilkosz, Kwiecién, Górny, Wøodek (bib45) 2016; 36
Wedmann, Onderka, Wei (bib68) 2016; 7
Wang, Chu, Lin (bib150) 2021; 22
Iciek, Górny, Kotańska, Bilska-Wilkosz, Kaczor-Kamińska, Zagajewski (bib127) 2023; 28
Libiad, Motl, Akey (bib64) 2018; 293
Baldassarre, Castelnuovo, Frigerio (bib139) 2009; 40
Morton, Beltram, Carter (bib87) 2016; 22
Yutzey, Demer, Body (bib144) 2014; 34
Hourihan, Kenna, Hayes (bib113) 2013; 19
Brock, Maibach, Childs (bib177) 2018; 378
Hunt, Ryder (bib181) 2018; 6
Cortese-Krott, Koning, Kuhnle (bib103) 2017; 27
Zhang, Chen, Li (bib119) 2024; 22
Press, Ungelenk, Medyukhina (bib173) 2023; 204
Libiad, Yadav, Vitvitsky, Martinov, Banerjee (bib53) 2014; 289
McFarland, Taylor, Turnbull (bib9) 2010; 9
Ascenção, Dilek, Zuhra, Módis, Sato, Szabo (bib120) 2022; 11
Sjöstedt, Zhong, Fagerberg (bib129) 2020
Lonsdale, Thomas, Salvatore (bib128) 2013; 45
Bonomi, Pagani, Cerletti, Cannella (bib79) 1977; 72
Gorman, Chinnery, DiMauro (bib8) 2016; 2
Pagani, Bonomi, Cerletti (bib83) 1982; 700
Kang, Lee, Wu (bib97) 2020; 52
Kaczor-Kamińska, Kaminski, Wróbel (bib153) 2021; 11
El-Hattab, Emrick, Craigen, Scaglia (bib11) 2012; 107
Dunning, Bourgonje, Bulthuis (bib98) 2023; 204
Iciek, Górny, Kotańska, Bilska-Wilkosz, Kaczor-Kamińska, Zagajewski (bib95) 2023; 28
Stamati, Mudera, Cheema (bib88) 2011; 2
Chatgilialoglu, Bowry (bib50) 2018; 83
de Paula, dos Santos, Tairum (bib58) 2020; 104
Zhang, Dugbartey, Juriasingani, Sener (bib166) 2021; 22
Nguyen, Klooster, Minnion (bib159) 2020; 98
Libiad, Sriraman, Banerjee (bib46) 2015; 290
Auten, Davis (bib90) 2009; 66
Taniguchi, Matsunami, Kimura (bib147) 2009; 264
Lanz, Booker (bib71) 2015; 1853
Batty, Bennett, Yu (bib140) 2022; 11
Pagani, Bonomi, Cerletti (bib84) 1984; 142
Rydz, Wróbel, Jurkowska (bib26) 2021; 10
Pagani, Galante (bib81) 1983; 742
Abe, Kimura (bib32) 1996; 16
Hentze, Kühn (bib73) 1996; 93
Wolfschmitt, Hogg, Vogt (bib168) 2023; 14
Williams, Kelly, Mottram, Coombs (bib24) 2003; 278
Kusminski, Holland, Sun (bib131) 2012; 18
Lang (bib19) 1933; 259
Rydz, Wróbel, Jurkowska (bib80) 2021; 10
Suzuki, Yamamoto (bib105) 2015; 88
Buonvino, Arciero, Melino (bib12) 2022; 23
Chatre (bib104) 2024; 2
Goodwin, Francom, Dieken (bib33) 1989; 13
Libiad, Motl, Akey (bib51) 2018; 293
Robbins, Stout (bib72) 1989; 5
Wang, Liu, Zong (bib167) 2023; 673
Higgins, Peng, Luebke, Chang, Giedroc (bib59) 2015; 54
Hildebrandt, Grieshaber (bib38) 2008; 275
Nandi, Horowitz, Westley (bib65) 2000; 32
Lainšček, Šuštar, Carter, Morton, Horvat (bib94) 2020; 527
Raghunath, Sundarraj, Nagarajan (bib107) 2018; 17
Frenay, de Borst, Bachtler (bib157) 2016; 99
Nakajima (bib60) 2015; 21
Malard, Valable, Bernaudin, Pérès, Chatre (bib102) 2021; 35
Slade, Deane, Szewczyk, Etheridge, Whiteman (bib155) 2024; 203
Bronowicka-Adamska, Kaczor-Kamińska, Wróbel, Bentke-Imiolek (bib116) 2024; 687
Ning, Dahir, Castellanos, McGirt (bib180) 2013; 40
Sies, Jones (bib93) 2020; 21
Zhao, Song, Gu (bib112) 2021; 73
Sies (bib47) 2020; 295
Dolezal, Likic, Tachezy, Lithgow (bib3) 1979; 313
Tsang, Al-Fayea, Au (bib178) 2009; 32
Sabelli, Iorio, De Martino (bib63) 2008; 275
Blackstone, Morrison, Roth (bib34) 2005; 308
Bilska-Wilkosz, Iciek, Górny, Kowalczyk-Pachel (bib165) 2017; 18
Lopez-Pascual, Trayhurn, Martínez, González-Muniesa (bib89) 2021; 35
Zheng, Li, Feng, Liu (bib96) 2021; 10
Vitvitsky, Yadav, Kurthen, Banerjee (bib41) 2015; 290
Xie, Liu, Bian (bib49) 2016; 2016
Kubota, Zhang, Li (bib141) 2022; 3
Nelson, Dugbartey, McFarlane (bib171) 2024; 25
Alsohaibani, Claudel, Perchat-Varlet (bib14) 2023; 12
Mani, Cao, Wu, Wang (bib133) 2014; 41
Kiley (bib74) 1998; 22
Kimura (bib31) 2015; 22
Ogasawara, Lacourciere, Stadtman (bib99) 2001; 98
Jurkowska, Wróbel (bib118) 2008; 34
Kaleta, Misterka, Rydz, Wróbel, Jurkowska (bib20) 2023; 79
Mao, Huang, Zhang (bib67) 2019; 134
Kruithof, Lunev, Aguilar Lozano (bib16) 2020; 1866
Shibuya, Tanaka, Yoshida (bib37) 2009; 11
Cipollone, Ascenzi, Visca (bib100) 2007; 59
Abeck, Hansen, Rünger, Booken, Schneider (bib179) 2024; 63
Zuhra, Szabo (bib21) 2022; 289
Revenko, Pavlovskiy, Savytska (bib122) 2021; 12
Brosnan, Brosnan (bib30) 2006; 136
Zhang, Dugbartey, Juriasingani, Sener (bib42) 2021; 22
Py, Barras (bib77) 2010; 8
Saito, Suzuki, Hiramoto (bib106) 2016; 36
Tan (bib137) 2003; 12
Henne, König, Triulzi (bib61) 2015; 5
Cagianut, Rhyner, Furrer, Schnebli (bib136) 1981; 318
Al-Dahmani, Li, Wiggenhauser (bib25) 2022; 12
Pagani, Eldridge, Eady (bib85) 1987; 244
Augsburger, Szabo (bib23) 2020; 154
Calvert, Jha, Gundewar (bib114) 2009; 105
Wallace, Singh, Lott (bib135) 1988; 242
Marutani, Yamada, Ida (bib55) 2015; 4
Zhang, Chen, Li (bib142) 2024; 22
Yi, Li, Yi (bib146) 2010; 9
Hsu, Hou, Chang-Chien, Lin, Yang, Tain (bib175) 2022; 11
Macabrey, Longchamp, MacArthur (bib163) 2022; 78
Wang, Liu, Zong (bib172) 2023; 673
Taniguchi, Kimura (bib86) 1974; 364
Luo, Chatre, Al-Dahmani (bib66) 2023; 201
Zhou, Tran, Cowley, Trembath-Reichert, Anantharaman (bib28) 2024
Patti, Corvera (bib91) 2010; 31
Bourgonje, Feelisch, Faber, Pasch, Dijkstra, van Goor (bib92) 2020; 26
Sousa, Pereira, Marreiros, Pereira (bib27) 2018; 1859
Lutchmansingh, Hsu, Bennett (bib54) 2018; 13
Dóka, Pader, Bíró (bib69) 2016; 2
Olson, DeLeon, Gao (bib161) 2013; 305
Carter, Gibbins, Barrios-Llerena (bib39) 2021; 37
McFarland (10.1016/j.redox.2025.103595_bib9) 2010; 9
Iciek (10.1016/j.redox.2025.103595_bib95) 2023; 28
Peoples (10.1016/j.redox.2025.103595_bib7) 2019; 51
Vitvitsky (10.1016/j.redox.2025.103595_bib40) 2017; 292
Yang (10.1016/j.redox.2025.103595_bib111) 2013; 18
Cicero (10.1016/j.redox.2025.103595_bib15) 2003; 33
Shibuya (10.1016/j.redox.2025.103595_bib37) 2009; 11
Luo (10.1016/j.redox.2025.103595_bib66) 2023; 201
Iciek (10.1016/j.redox.2025.103595_bib162) 2016; 5
Wang (10.1016/j.redox.2025.103595_bib169) 2023; 109
Zhang (10.1016/j.redox.2025.103595_bib42) 2021; 22
Wang (10.1016/j.redox.2025.103595_bib150) 2021; 22
Hughes (10.1016/j.redox.2025.103595_bib4) 2009; 9
Nakajima (10.1016/j.redox.2025.103595_bib124) 2008; 49
Bordo (10.1016/j.redox.2025.103595_bib13) 2002; 3
Benchoam (10.1016/j.redox.2025.103595_bib52) 2024; 300
Hunt (10.1016/j.redox.2025.103595_bib181) 2018; 6
Zheng (10.1016/j.redox.2025.103595_bib123) 2021; 10
Pagani (10.1016/j.redox.2025.103595_bib85) 1987; 244
Iciek (10.1016/j.redox.2025.103595_bib127) 2023; 28
Ascenção (10.1016/j.redox.2025.103595_bib120) 2022; 11
Auten (10.1016/j.redox.2025.103595_bib90) 2009; 66
Patti (10.1016/j.redox.2025.103595_bib91) 2010; 31
Zheng (10.1016/j.redox.2025.103595_bib96) 2021; 10
Buonvino (10.1016/j.redox.2025.103595_bib12) 2022; 23
Bronowicka-Adamska (10.1016/j.redox.2025.103595_bib116) 2024; 687
Lee (10.1016/j.redox.2025.103595_bib101) 2024; 6
Brosnan (10.1016/j.redox.2025.103595_bib30) 2006; 136
Cipollone (10.1016/j.redox.2025.103595_bib100) 2007; 59
Zhang (10.1016/j.redox.2025.103595_bib119) 2024; 22
Vitvitsky (10.1016/j.redox.2025.103595_bib41) 2015; 290
Tang (10.1016/j.redox.2025.103595_bib57) 2022; 5
Sun (10.1016/j.redox.2025.103595_bib182) 2015; 93
Kimura (10.1016/j.redox.2025.103595_bib31) 2015; 22
Libiad (10.1016/j.redox.2025.103595_bib46) 2015; 290
Lutchmansingh (10.1016/j.redox.2025.103595_bib54) 2018; 13
Lu (10.1016/j.redox.2025.103595_bib78) 2019; 26
Kaczor-Kamińska (10.1016/j.redox.2025.103595_bib153) 2021; 11
Olson (10.1016/j.redox.2025.103595_bib161) 2013; 305
Bonomi (10.1016/j.redox.2025.103595_bib79) 1977; 72
Macabrey (10.1016/j.redox.2025.103595_bib156) 2022; 9
Macabrey (10.1016/j.redox.2025.103595_bib163) 2022; 78
Scarpelli (10.1016/j.redox.2025.103595_bib10) 2017; 10
Williams (10.1016/j.redox.2025.103595_bib24) 2003; 278
Marutani (10.1016/j.redox.2025.103595_bib55) 2015; 4
Read (10.1016/j.redox.2025.103595_bib70) 2021; 47
Lanz (10.1016/j.redox.2025.103595_bib71) 2015; 1853
Rydz (10.1016/j.redox.2025.103595_bib29) 2021; 10
Iciek (10.1016/j.redox.2025.103595_bib45) 2016; 36
Dóka (10.1016/j.redox.2025.103595_bib69) 2016; 2
Lopez-Pascual (10.1016/j.redox.2025.103595_bib89) 2021; 35
Lonsdale (10.1016/j.redox.2025.103595_bib128) 2013; 45
Pichette (10.1016/j.redox.2025.103595_bib132) 2016; 2016
Abe (10.1016/j.redox.2025.103595_bib32) 1996; 16
Taniguchi (10.1016/j.redox.2025.103595_bib147) 2009; 264
Hopper (10.1016/j.redox.2025.103595_bib5) 2006; 45
Py (10.1016/j.redox.2025.103595_bib77) 2010; 8
Hsu (10.1016/j.redox.2025.103595_bib175) 2022; 11
Khoramipour (10.1016/j.redox.2025.103595_bib130) 2021; 13
Pagani (10.1016/j.redox.2025.103595_bib84) 1984; 142
Chatgilialoglu (10.1016/j.redox.2025.103595_bib50) 2018; 83
Dunning (10.1016/j.redox.2025.103595_bib98) 2023; 204
Zainol (10.1016/j.redox.2025.103595_bib36) 2023; 12
Kang (10.1016/j.redox.2025.103595_bib97) 2020; 52
Gorman (10.1016/j.redox.2025.103595_bib8) 2016; 2
Ogasawara (10.1016/j.redox.2025.103595_bib99) 2001; 98
Wang (10.1016/j.redox.2025.103595_bib172) 2023; 673
Dolezal (10.1016/j.redox.2025.103595_bib3) 1979; 313
Sousa (10.1016/j.redox.2025.103595_bib27) 2018; 1859
Pagani (10.1016/j.redox.2025.103595_bib83) 1982; 700
Nolfi-Donegan (10.1016/j.redox.2025.103595_bib18) 2020; 37
Libiad (10.1016/j.redox.2025.103595_bib53) 2014; 289
Chatre (10.1016/j.redox.2025.103595_bib104) 2024; 2
Jurkowska (10.1016/j.redox.2025.103595_bib117) 2022; 12
Kiley (10.1016/j.redox.2025.103595_bib74) 1998; 22
Carter (10.1016/j.redox.2025.103595_bib39) 2021; 37
Pagani (10.1016/j.redox.2025.103595_bib81) 1983; 742
Nelson (10.1016/j.redox.2025.103595_bib171) 2024; 25
Szlęzak (10.1016/j.redox.2025.103595_bib121) 2022; 199
Wang (10.1016/j.redox.2025.103595_bib167) 2023; 673
Zuhra (10.1016/j.redox.2025.103595_bib21) 2022; 289
Xie (10.1016/j.redox.2025.103595_bib49) 2016; 2016
Abdul-Aziz (10.1016/j.redox.2025.103595_bib110) 2015; 2015
Ning (10.1016/j.redox.2025.103595_bib180) 2013; 40
Baldassarre (10.1016/j.redox.2025.103595_bib139) 2009; 40
Hildebrandt (10.1016/j.redox.2025.103595_bib38) 2008; 275
Ansar (10.1016/j.redox.2025.103595_bib151) 2022; 12
Henne (10.1016/j.redox.2025.103595_bib61) 2015; 5
Nandi (10.1016/j.redox.2025.103595_bib65) 2000; 32
De Preter (10.1016/j.redox.2025.103595_bib148) 2012; 18
Frenay (10.1016/j.redox.2025.103595_bib157) 2016; 99
Malard (10.1016/j.redox.2025.103595_bib102) 2021; 35
Combi (10.1016/j.redox.2025.103595_bib145) 2023; 60
Nunnari (10.1016/j.redox.2025.103595_bib2) 2012; 148
Yutzey (10.1016/j.redox.2025.103595_bib144) 2014; 34
Sies (10.1016/j.redox.2025.103595_bib93) 2020; 21
Lang (10.1016/j.redox.2025.103595_bib19) 1933; 259
Shekari (10.1016/j.redox.2025.103595_bib174) 2022; 23
Villarejol (10.1016/j.redox.2025.103595_bib44) 1963; 238
Mao (10.1016/j.redox.2025.103595_bib67) 2019; 134
Nandi (10.1016/j.redox.2025.103595_bib62) 2000; 32
Quast (10.1016/j.redox.2025.103595_bib143) 2024; 150
Slade (10.1016/j.redox.2025.103595_bib155) 2024; 203
Al-Dahmani (10.1016/j.redox.2025.103595_bib25) 2022; 12
Robbins (10.1016/j.redox.2025.103595_bib72) 1989; 5
Nguyen (10.1016/j.redox.2025.103595_bib159) 2020; 98
Rydz (10.1016/j.redox.2025.103595_bib26) 2021; 10
Baskin (10.1016/j.redox.2025.103595_bib160) 1992; 32
Whitehouse (10.1016/j.redox.2025.103595_bib22) 1988; 52
Luo (10.1016/j.redox.2025.103595_bib43) 2023; 68
Cuadrado (10.1016/j.redox.2025.103595_bib109) 2018; 70
Kruithof (10.1016/j.redox.2025.103595_bib16) 2020; 1866
Batty (10.1016/j.redox.2025.103595_bib140) 2022; 11
Suzuki (10.1016/j.redox.2025.103595_bib105) 2015; 88
Taniguchi (10.1016/j.redox.2025.103595_bib86) 1974; 364
Al‐Dahmani (10.1016/j.redox.2025.103595_bib154) 2023
Renga (10.1016/j.redox.2025.103595_bib35) 2011; 10
Ramasamy (10.1016/j.redox.2025.103595_bib152) 2006; 291
Sies (10.1016/j.redox.2025.103595_bib47) 2020; 295
Nakajima (10.1016/j.redox.2025.103595_bib60) 2015; 21
Zhou (10.1016/j.redox.2025.103595_bib28) 2024
Sjöstedt (10.1016/j.redox.2025.103595_bib129) 2020
Hourihan (10.1016/j.redox.2025.103595_bib113) 2013; 19
Antonucci (10.1016/j.redox.2025.103595_bib6) 2021; 94
Pavlovskiy (10.1016/j.redox.2025.103595_bib125) 2020; 11
Kubota (10.1016/j.redox.2025.103595_bib141) 2022; 3
Wolfschmitt (10.1016/j.redox.2025.103595_bib168) 2023; 14
El-Hattab (10.1016/j.redox.2025.103595_bib11) 2012; 107
Rydz (10.1016/j.redox.2025.103595_bib80) 2021; 10
Gonzales (10.1016/j.redox.2025.103595_bib176) 1989; 12
Blackstone (10.1016/j.redox.2025.103595_bib34) 2005; 308
Spinelli (10.1016/j.redox.2025.103595_bib17) 2018; 20
Press (10.1016/j.redox.2025.103595_bib173) 2023; 204
Jones (10.1016/j.redox.2025.103595_bib48) 2006; 8
Combi (10.1016/j.redox.2025.103595_bib115) 2023; 60
Imlay (10.1016/j.redox.2025.103595_bib76) 2006; 59
de Paula (10.1016/j.redox.2025.103595_bib58) 2020; 104
Bourgonje (10.1016/j.redox.2025.103595_bib92) 2020; 26
Saito (10.1016/j.redox.2025.103595_bib106) 2016; 36
Stummer (10.1016/j.redox.2025.103595_bib149) 2022; 11
Lee (10.1016/j.redox.2025.103595_bib56) 2013; 18
Libiad (10.1016/j.redox.2025.103595_bib64) 2018; 293
Raghunath (10.1016/j.redox.2025.103595_bib107) 2018; 17
Lainšček (10.1016/j.redox.2025.103595_bib94) 2020; 527
Abeck (10.1016/j.redox.2025.103595_bib179) 2024; 63
Stamati (10.1016/j.redox.2025.103595_bib88) 2011; 2
Higgins (10.1016/j.redox.2025.103595_bib59) 2015; 54
Morton (10.1016/j.redox.2025.103595_bib87) 2016; 22
Tomati (10.1016/j.redox.2025.103595_bib82) 1976; 15
Macabrey (10.1016/j.redox.2025.103595_bib170) 2022; 78
Sabelli (10.1016/j.redox.2025.103595_bib63) 2008; 275
Whiteman (10.1016/j.redox.2025.103595_bib164) 2011; 121
Szlęzak (10.1016/j.redox.2025.103595_bib126) 2021; 10
Bilska-Wilkosz (10.1016/j.redox.2025.103595_bib165) 2017; 18
Tsang (10.1016/j.redox.2025.103595_bib178) 2009; 32
Libiad (10.1016/j.redox.2025.103595_bib51) 2018; 293
Drüeke (10.1016/j.redox.2025.103595_bib138) 2010; 6
Cortese-Krott (10.1016/j.redox.2025.103595_bib103) 2017; 27
Poole (10.1016/j.redox.2025.103595_bib134) 1986; 292
Tan (10.1016/j.redox.2025.103595_bib137) 2003; 12
Duchen (10.1016/j.redox.2025.103595_bib1) 2004; 25
Zhang (10.1016/j.redox.2025.103595_bib142) 2024; 22
Kobayashi (10.1016/j.redox.2025.103595_bib75) 2014; 133
Jurkowska (10.1016/j.redox.2025.103595_bib118) 2008; 34
Cagianut (10.1016/j.redox.2025.103595_bib136) 1981; 318
Brock (10.1016/j.redox.2025.103595_bib177) 2018; 378
Hentze (10.1016/j.redox.2025.103595_bib73) 1996; 93
Calvert (10.1016/j.redox.2025.103595_bib114) 2009; 105
Xie (10.1016/j.redox.2025.103595_bib108) 2016; 65
Augsburger (10.1016/j.redox.2025.103595_bib23) 2020; 154
Kusminski (10.1016/j.redox.2025.103595_bib131) 2012; 18
Revenko (10.1016/j.redox.2025.103595_bib122) 2021; 12
Yi (10.1016/j.redox.2025.103595_bib146) 2010; 9
Sakaguchi (10.1016/j.redox.2025.103595_bib158) 2014; 121
Alsohaibani (10.1016/j.redox.2025.103595_bib14) 2023; 12
Wedmann (10.1016/j.redox.2025.103595_bib68) 2016; 7
Wallace (10.1016/j.redox.2025.103595_bib135) 1988; 242
Kaleta (10.1016/j.redox.2025.103595_bib20) 2023; 79
Zhao (10.1016/j.redox.2025.103595_bib112) 2021; 73
Goodwin (10.1016/j.redox.2025.103595_bib33) 1989; 13
Mani (10.1016/j.redox.2025.103595_bib133) 2014; 41
Zhang (10.1016/j.redox.2025.103595_bib166) 2021; 22
References_xml – volume: 13
  year: 2018
  ident: bib54
  article-title: Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia
  publication-title: PLoS One
– volume: 51
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib7
  article-title: Mitochondrial dysfunction and oxidative stress in heart disease
  publication-title: Exp. Mol. Med.
– volume: 5
  start-page: 289
  year: 1989
  end-page: 312
  ident: bib72
  article-title: The structure of aconitase
  publication-title: Proteins: Struct., Funct., Bioinf.
– volume: 28
  start-page: 2025
  year: 2023
  ident: bib95
  article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats
  publication-title: Molecules
– volume: 36
  start-page: 271
  year: 2016
  end-page: 284
  ident: bib106
  article-title: Characterizations of three major cysteine sensors of Keap1 in stress response
  publication-title: Mol. Cell Biol.
– volume: 28
  start-page: 2025
  year: 2023
  ident: bib127
  article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats
  publication-title: Molecules
– volume: 34
  start-page: 231
  year: 2008
  end-page: 237
  ident: bib118
  article-title: N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlations with cell proliferation
  publication-title: Amino Acids
– volume: 94
  year: 2021
  ident: bib6
  article-title: Mitochondrial reactive oxygen species in physiology and disease
  publication-title: Cell Calcium
– volume: 293
  start-page: 2675
  year: 2018
  end-page: 2686
  ident: bib51
  article-title: Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin
  publication-title: J. Biol. Chem.
– volume: 308
  start-page: 518
  year: 2005
  ident: bib34
  article-title: H2S induces a suspended animation-like state in mice
  publication-title: Science
– volume: 79
  start-page: 101
  year: 2023
  end-page: 108
  ident: bib20
  article-title: Correlation between the level of sulfane sulfur and the expression/activity of sulfurtransferases in chicken tissues – a possible ways of cyanide detoxification
  publication-title: Biologia (Bratisl).
– volume: 22
  year: 2021
  ident: bib42
  article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms
  publication-title: Int. J. Mol. Sci.
– volume: 33
  start-page: 193
  year: 2003
  end-page: 201
  ident: bib15
  article-title: Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, NMR relaxation and deuterium exchange on the uniformly labeled protein
  publication-title: Int. J. Biol. Macromol.
– volume: 2015
  year: 2015
  ident: bib110
  article-title: Oxidative stress responses and NRF2 in human leukaemia
  publication-title: Oxid. Med. Cell. Longev.
– volume: 203
  year: 2024
  ident: bib155
  article-title: Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases
  publication-title: Pharmacol. Res.
– volume: 83
  start-page: 9178
  year: 2018
  end-page: 9189
  ident: bib50
  article-title: Why not trans? Inhibited radical isomerization cycles and coupling chains of lipids and alkenes with alkane
  publication-title: J. Org. Chem.
– volume: 98
  start-page: 366
  year: 2020
  end-page: 377
  ident: bib159
  article-title: Sodium thiosulfate improves renal function and oxygenation in L-NNA–induced hypertension in rats
  publication-title: Kidney Int.
– volume: 11
  start-page: 1823
  year: 2022
  ident: bib120
  article-title: Sequential accumulation of ‘driver’ pathway mutations induces the upregulation of hydrogen-sulfide-producing enzymes in human colonic epithelial cell organoids
  publication-title: Antioxidants
– volume: 23
  start-page: 32
  year: 2022
  ident: bib174
  article-title: Cardioprotective effects of sodium thiosulfate against doxorubicin-induced cardiotoxicity in male rats
  publication-title: BMC Pharmacol Toxicol
– volume: 25
  start-page: 365
  year: 2004
  end-page: 451
  ident: bib1
  article-title: Mitochondria in health and disease: perspectives on a new mitochondrial biology
  publication-title: Mol. Aspect. Med.
– volume: 52
  start-page: 1
  year: 1988
  end-page: 10
  ident: bib22
  article-title: Rhodanese isozymes in human tissues
  publication-title: Ann. Hum. Genet.
– volume: 9
  start-page: 1416
  year: 2010
  end-page: 1423
  ident: bib146
  article-title: Identification of Rack1, EF-tu and rhodanese as aging-related proteins in human colonic epithelium by proteomic analysis
  publication-title: J. Proteome Res.
– volume: 25
  start-page: 9529
  year: 2024
  ident: bib171
  article-title: Effect of sodium thiosulfate pre-treatment on renal ischemia-reperfusion injury in kidney transplantation
  publication-title: Int. J. Mol. Sci.
– volume: 244
  start-page: 485
  year: 1987
  end-page: 488
  ident: bib85
  article-title: Nitrogenase of
  publication-title: Biochem. J.
– volume: 1853
  start-page: 1316
  year: 2015
  end-page: 1334
  ident: bib71
  article-title: Auxiliary iron–sulfur cofactors in radical SAM enzymes
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 93
  start-page: 8175
  year: 1996
  end-page: 8182
  ident: bib73
  article-title: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 289
  start-page: 2481
  year: 2022
  end-page: 2515
  ident: bib21
  article-title: The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter
  publication-title: FEBS J.
– volume: 72
  start-page: 17
  year: 1977
  end-page: 24
  ident: bib79
  article-title: Rhodanese‐mediated sulfur transfer to succinate dehydrogenase
  publication-title: Eur. J. Biochem.
– volume: 150
  start-page: 952
  year: 2024
  end-page: 965
  ident: bib143
  article-title: Aortic valve stenosis causes accumulation of extracellular hemoglobin and systemic endothelial dysfunction
  publication-title: Circulation
– volume: 12
  start-page: 868
  year: 2023
  ident: bib36
  article-title: Synthesis of sulfides and persulfides is not impeded by disruption of three canonical enzymes in sulfur metabolism
  publication-title: Antioxidants
– volume: 49
  start-page: 661
  year: 2008
  end-page: 666
  ident: bib124
  article-title: Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays
  publication-title: J. Radiat. Res.
– volume: 21
  start-page: 363
  year: 2020
  end-page: 383
  ident: bib93
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 148
  start-page: 1145
  year: 2012
  end-page: 1159
  ident: bib2
  article-title: Mitochondria: in sickness and in health
  publication-title: Cell
– volume: 3
  start-page: 741
  year: 2002
  end-page: 746
  ident: bib13
  article-title: The rhodanese/Cdc25 phosphatase superfamily
  publication-title: EMBO Rep.
– volume: 99
  start-page: 345
  year: 2016
  end-page: 351
  ident: bib157
  article-title: Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients
  publication-title: Free Radic. Biol. Med.
– volume: 54
  start-page: 2385
  year: 2015
  end-page: 2398
  ident: bib59
  article-title: Conformational analysis and chemical reactivity of the multidomain sulfurtransferase,
  publication-title: Biochemistry
– volume: 70
  start-page: 348
  year: 2018
  end-page: 383
  ident: bib109
  article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
  publication-title: Pharmacol. Rev.
– volume: 242
  start-page: 1427
  year: 1988
  end-page: 1430
  ident: bib135
  article-title: Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy
  publication-title: Science
– volume: 60
  year: 2023
  ident: bib115
  article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease
  publication-title: Redox Biol.
– volume: 60
  year: 2023
  ident: bib145
  article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease
  publication-title: Redox Biol.
– volume: 35
  start-page: 1176
  year: 2021
  end-page: 1206
  ident: bib102
  article-title: The reactive species interactome in the brain
  publication-title: Antioxidants Redox Signal.
– volume: 12
  start-page: 148
  year: 2022
  ident: bib117
  article-title: Sulfurtransferases and cystathionine beta-synthase expression in different human leukemia cell lines
  publication-title: Biomolecules
– volume: 45
  start-page: 2524
  year: 2006
  end-page: 2536
  ident: bib5
  article-title: Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium
  publication-title: Biochemistry
– volume: 292
  start-page: 5584
  year: 2017
  end-page: 5592
  ident: bib40
  article-title: Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 1865
  year: 2006
  end-page: 1879
  ident: bib48
  article-title: Redefining oxidative stress
  publication-title: Antioxidants Redox Signal.
– volume: 6
  start-page: 343
  year: 2024
  end-page: 358
  ident: bib101
  article-title: Selenium reduction of ubiquinone via SQOR suppresses ferroptosis
  publication-title: Nat. Metab.
– volume: 5
  start-page: 46
  year: 2016
  ident: bib162
  article-title: The effects of different garlic-derived allyl sulfides on anaerobic sulfur metabolism in the mouse kidney
  publication-title: Antioxidants
– volume: 527
  start-page: 1008
  year: 2020
  end-page: 1013
  ident: bib94
  article-title: Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 12
  start-page: 347
  year: 1989
  end-page: 355
  ident: bib176
  article-title: Cyanide poisoning: pathophysiology and current approaches to therapy
  publication-title: Int. J. Artif. Organs
– volume: 295
  year: 2020
  ident: bib47
  article-title: Findings in redox biology: from H2O2 to oxidative stress
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 597
  year: 1976
  end-page: 598
  ident: bib82
  article-title: NADH: nitrate reductase activity restoration by rhodanese
  publication-title: Phytochemistry
– year: 2023
  ident: bib154
  article-title: Identification and characterization of a small molecule that activates thiosulfate sulfurtransferase and stimulates mitochondrial respiration
  publication-title: Protein Sci.
– volume: 26
  start-page: 1034
  year: 2020
  end-page: 1046
  ident: bib92
  article-title: Oxidative stress and redox-modulating therapeutics in Inflammatory bowel disease
  publication-title: Trends Mol. Med.
– volume: 105
  start-page: 365
  year: 2009
  end-page: 374
  ident: bib114
  article-title: Hydrogen sulfide mediates cardioprotection through Nrf2 signaling
  publication-title: Circ. Res.
– volume: 59
  start-page: 51
  year: 2007
  end-page: 59
  ident: bib100
  article-title: Common themes and variations in the rhodanese superfamily
  publication-title: IUBMB Life
– volume: 10
  start-page: 1238
  year: 2021
  ident: bib126
  article-title: Hypertension and aging affect liver sulfur metabolism in rats
  publication-title: Cells
– volume: 10
  start-page: 85
  year: 2011
  end-page: 91
  ident: bib35
  article-title: Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE)
  publication-title: Inflamm. Allergy - Drug Targets
– volume: 121
  start-page: 459
  year: 2011
  end-page: 488
  ident: bib164
  article-title: Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools
  publication-title: Clin. Sci.
– year: 2024
  ident: bib28
  article-title: Diversity and ecology of microbial sulfur metabolism
  publication-title: Nat. Rev. Microbiol.
– volume: 18
  start-page: 1539
  year: 2012
  end-page: 1549
  ident: bib131
  article-title: MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity
  publication-title: Nat. Med.
– volume: 259
  start-page: 243
  year: 1933
  end-page: 256
  ident: bib19
  article-title: Die rhodanbildung im tierkorper [thiocyanogen in the bodies of animals]
  publication-title: Biochem. Z.
– volume: 238
  start-page: 1185
  year: 1963
  end-page: 1186
  ident: bib44
  article-title: Rhodanese-catalyzed reduction of thiosulfate by reduced lipoic acid
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 62
  year: 2014
  end-page: 71
  ident: bib133
  article-title: Hydrogen sulfide and the liver
  publication-title: Nitric Oxide
– volume: 313
  start-page: 314
  year: 1979
  end-page: 318
  ident: bib3
  article-title: Evolution of the molecular machines for protein import into mitochondria
  publication-title: Science
– volume: 378
  start-page: 2376
  year: 2018
  end-page: 2385
  ident: bib177
  article-title: Sodium thiosulfate for protection from cisplatin-induced hearing loss
  publication-title: N. Engl. J. Med.
– volume: 26
  year: 2019
  ident: bib78
  article-title: A conserved motif liganding the [4Fe–4S] cluster in [4Fe–4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress
  publication-title: Redox Biol.
– volume: 278
  start-page: 1480
  year: 2003
  end-page: 1486
  ident: bib24
  article-title: 3-Mercaptopyruvate sulfurtransferase of LeishmaniaContains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism
  publication-title: J. Biol. Chem.
– volume: 14
  year: 2023
  ident: bib168
  article-title: The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation
  publication-title: Front. Immunol.
– volume: 66
  start-page: 121
  year: 2009
  end-page: 127
  ident: bib90
  article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details
  publication-title: Pediatr. Res.
– volume: 121
  start-page: 1248
  year: 2014
  end-page: 1257
  ident: bib158
  article-title: Sodium thiosulfate attenuates acute lung injury in mice
  publication-title: Anesthesiology
– volume: 22
  year: 2024
  ident: bib142
  article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease
  publication-title: Cell Death Differ.
– volume: 10
  start-page: 21
  year: 2017
  end-page: 26
  ident: bib10
  article-title: Mitochondrial diseases: advances and issues
  publication-title: Appl. Clin. Genet.
– volume: 2
  year: 2016
  ident: bib8
  article-title: Mitochondrial diseases
  publication-title: Nat. Rev. Dis. Primers
– volume: 16
  start-page: 1066
  year: 1996
  end-page: 1071
  ident: bib32
  article-title: The possible role of hydrogen sulfide as an endogenous neuromodulator
  publication-title: J. Neurosci.
– volume: 9
  year: 2022
  ident: bib156
  article-title: Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization
  publication-title: Front. Cardiovasc. Med.
– volume: 300
  year: 2024
  ident: bib52
  article-title: Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 130
  year: 2022
  end-page: 145
  ident: bib57
  article-title: Overexpression of thioredoxin‐2 attenuates age‐related muscle loss by suppressing mitochondrial oxidative stress and apoptosis
  publication-title: JCSM Rapid Commun
– volume: 201
  start-page: 18
  year: 2023
  ident: bib66
  article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress in cerebral prefrontal cortex
  publication-title: Free Radic. Biol. Med.
– volume: 23
  year: 2022
  ident: bib12
  article-title: Thiosulfate-cyanide sulfurtransferase a mitochondrial essential enzyme: from cell metabolism to the biotechnological applications
  publication-title: Int. J. Mol. Sci.
– volume: 37
  year: 2021
  ident: bib39
  article-title: The hepatic compensatory response to elevated systemic sulfide promotes diabetes
  publication-title: Cell Rep.
– volume: 35
  start-page: 642
  year: 2021
  end-page: 687
  ident: bib89
  article-title: Oxygen in metabolic dysfunction and its therapeutic relevance
  publication-title: Antioxidants Redox Signal.
– volume: 673
  start-page: 160
  year: 2023
  end-page: 168
  ident: bib167
  article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: 3414
  year: 2016
  end-page: 3426
  ident: bib68
  article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation
  publication-title: Chem. Sci.
– volume: 11
  year: 2020
  ident: bib125
  article-title: H2S donors reverse age-related gastric malfunction impaired due to fructose-induced injury via CBS, CSE, and TST expression
  publication-title: Front. Pharmacol.
– volume: 12
  year: 2022
  ident: bib25
  article-title: Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1738
  year: 2021
  ident: bib26
  article-title: Sulfur administration in Fe–S cluster homeostasis
  publication-title: Antioxidants
– volume: 31
  start-page: 364
  year: 2010
  end-page: 395
  ident: bib91
  article-title: The role of mitochondria in the pathogenesis of type 2 diabetes
  publication-title: Endocr. Rev.
– volume: 204
  start-page: 207
  year: 2023
  end-page: 214
  ident: bib98
  article-title: Selenium and coenzyme Q10 improve the systemic redox status while reducing cardiovascular mortality in elderly population-based individuals
  publication-title: Free Radic. Biol. Med.
– volume: 1859
  start-page: 742
  year: 2018
  end-page: 753
  ident: bib27
  article-title: Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 6
  start-page: 723
  year: 2010
  end-page: 735
  ident: bib138
  article-title: Atherosclerosis in CKD: differences from the general population
  publication-title: Nat. Rev. Nephrol.
– volume: 290
  start-page: 8310
  year: 2015
  end-page: 8320
  ident: bib41
  article-title: Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides
  publication-title: J. Biol. Chem.
– volume: 291
  start-page: G288
  year: 2006
  end-page: G296
  ident: bib152
  article-title: Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 133
  start-page: 87
  year: 2014
  end-page: 91
  ident: bib75
  article-title: Oxidative stress sensing by the iron–sulfur cluster in the transcription factor, SoxR
  publication-title: J. Inorg. Biochem.
– volume: 134
  start-page: 190
  year: 2019
  end-page: 199
  ident: bib67
  article-title: Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through regulating the redox state of thioredoxin
  publication-title: Free Radic. Biol. Med.
– volume: 2
  year: 2011
  ident: bib88
  article-title: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering
  publication-title: J. Tissue Eng.
– volume: 742
  start-page: 278
  year: 1983
  end-page: 284
  ident: bib81
  article-title: Interaction of rhodanese with mitochondrial NADH dehydrogenase
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 20
  start-page: 745
  year: 2018
  end-page: 754
  ident: bib17
  article-title: The multifaceted contributions of mitochondria to cellular metabolism
  publication-title: Nat. Cell Biol.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib49
  article-title: Hydrogen sulfide and cellular redox homeostasis
  publication-title: Oxid. Med. Cell. Longev.
– volume: 142
  start-page: 361
  year: 1984
  end-page: 366
  ident: bib84
  article-title: Enzymic synthesis of the iron‐sulfur cluster of spinach ferredoxin
  publication-title: Eur. J. Biochem.
– volume: 2
  year: 2024
  ident: bib104
  article-title: Mitochondria and the reactive species interactome: shaping the future of mitoredox medicine
  publication-title: Journal of Mitochondria, Plastids and Endosymbiosis
– volume: 65
  start-page: 3171
  year: 2016
  end-page: 3184
  ident: bib108
  article-title: Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation
  publication-title: Diabetes
– volume: 292
  start-page: 1229
  year: 1986
  end-page: 1230
  ident: bib134
  article-title: Deficiency of thiosulphate sulphurtransferase (rhodanese) in Leber's hereditary optic neuropathy
  publication-title: Br. Med. J.
– volume: 700
  start-page: 154
  year: 1982
  end-page: 164
  ident: bib83
  article-title: Sulfide insertion into spinach ferredoxin by rhodanese
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 78
  year: 2022
  ident: bib170
  article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation
  publication-title: EBioMedicine
– volume: 19
  start-page: 465
  year: 2013
  end-page: 481
  ident: bib113
  article-title: The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613
  publication-title: Antioxidants Redox Signal.
– volume: 40
  start-page: 1991
  year: 2009
  end-page: 1998
  ident: bib139
  article-title: Effects of timing and extent of smoking, type of cigarettes, and concomitant risk factors on the association between smoking and subclinical atherosclerosis
  publication-title: Stroke
– volume: 47
  year: 2021
  ident: bib70
  article-title: Mitochondrial iron–sulfur clusters: structure, function, and an emerging role in vascular biology
  publication-title: Redox Biol.
– volume: 52
  start-page: 1198
  year: 2020
  end-page: 1208
  ident: bib97
  article-title: The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies
  publication-title: Exp. Mol. Med.
– volume: 21
  start-page: 1721
  year: 2015
  end-page: 1725
  ident: bib60
  article-title: Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure
  publication-title: Med. Sci. Monit.
– volume: 11
  start-page: 147
  year: 2022
  ident: bib175
  article-title: Sodium thiosulfate improves hypertension in rats with adenine-induced chronic kidney disease
  publication-title: Antioxidants
– volume: 2016
  year: 2016
  ident: bib132
  article-title: Implications of hydrogen sulfide in glucose regulation: how H2S can alter glucose homeostasis through metabolic hormones
  publication-title: Oxid. Med. Cell. Longev.
– volume: 12
  year: 2022
  ident: bib151
  article-title: Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer
  publication-title: Front. Oncol.
– volume: 275
  start-page: 3352
  year: 2008
  end-page: 3361
  ident: bib38
  article-title: Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria
  publication-title: FEBS J.
– volume: 136
  start-page: 1636S
  year: 2006
  end-page: 1640S
  ident: bib30
  article-title: The sulfur-containing amino acids: an overview
  publication-title: J. Nutr.
– volume: 293
  start-page: 2675
  year: 2018
  end-page: 2686
  ident: bib64
  article-title: Thiosulfate sulfurtransferase-like domain–containing 1 protein interacts with thioredoxin
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 1738
  year: 2021
  ident: bib29
  article-title: Sulfur administration in Fe–S cluster homeostasis
  publication-title: Antioxidants
– volume: 289
  start-page: 30901
  year: 2014
  end-page: 30910
  ident: bib53
  article-title: Organization of the human mitochondrial hydrogen sulfide oxidation pathway
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 832
  year: 2015
  end-page: 843
  ident: bib61
  article-title: Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests
  publication-title: FEBS Open Bio
– volume: 12
  year: 2021
  ident: bib122
  article-title: Hydrogen sulfide prevents mesenteric adipose tissue damage, endothelial dysfunction, and redox imbalance from high fructose diet-induced injury in aged rats
  publication-title: Front. Pharmacol.
– volume: 93
  start-page: 439
  year: 2015
  end-page: 455
  ident: bib182
  article-title: Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats
  publication-title: J. Mol. Med.
– volume: 22
  year: 2024
  ident: bib119
  article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease
  publication-title: Cell Death Differ.
– volume: 18
  start-page: 1315
  year: 2017
  ident: bib165
  article-title: The role of hemoproteins: hemoglobin, myoglobin and neuroglobin in endogenous thiosulfate production processes
  publication-title: Int. J. Mol. Sci.
– volume: 37
  year: 2020
  ident: bib18
  article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement
  publication-title: Redox Biol.
– volume: 673
  start-page: 160
  year: 2023
  end-page: 168
  ident: bib172
  article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 264
  start-page: 96
  year: 2009
  end-page: 103
  ident: bib147
  article-title: Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification?
  publication-title: Toxicology
– volume: 275
  start-page: 3884
  year: 2008
  end-page: 3899
  ident: bib63
  article-title: Rhodanese–thioredoxin system and allyl sulfur compounds
  publication-title: FEBS J.
– volume: 22
  start-page: 6562
  year: 2021
  ident: bib150
  article-title: The hidden role of hydrogen sulfide metabolism in cancer
  publication-title: Int. J. Mol. Sci.
– volume: 11
  start-page: 1859
  year: 2021
  ident: bib153
  article-title: The expression and activity of rhodanese, 3-mercaptopyruvate sulfurtransferase, cystathionine γ-lyase in the most frequently chosen cellular research models
  publication-title: Biomolecules
– volume: 9
  start-page: 829
  year: 2010
  end-page: 840
  ident: bib9
  article-title: A neurological perspective on mitochondrial disease
  publication-title: Lancet Neurol.
– volume: 88
  start-page: 93
  year: 2015
  end-page: 100
  ident: bib105
  article-title: Molecular basis of the keap1–nrf2 system
  publication-title: Free Radic. Biol. Med.
– volume: 8
  start-page: 436
  year: 2010
  end-page: 446
  ident: bib77
  article-title: Building Fe–S proteins: bacterial strategies
  publication-title: Nat. Rev. Microbiol.
– volume: 18
  start-page: 2371
  year: 2012
  end-page: 2380
  ident: bib148
  article-title: Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis
  publication-title: Inflamm. Bowel Dis.
– volume: 10
  start-page: 1738
  year: 2021
  ident: bib80
  article-title: Sulfur administration in Fe–S cluster homeostasis
  publication-title: Antioxidants
– volume: 364
  start-page: 284
  year: 1974
  end-page: 295
  ident: bib86
  article-title: Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin
  publication-title: Biochim. Biophys. Acta Enzymol.
– volume: 11
  start-page: 2235
  year: 2022
  ident: bib149
  article-title: Hydrogen sulfide metabolizing enzymes in the intestinal mucosa in pediatric and adult inflammatory bowel disease
  publication-title: Antioxidants
– start-page: 367
  year: 2020
  ident: bib129
  article-title: An atlas of the protein-coding genes in the human, pig, and mouse brain
  publication-title: Science
– volume: 290
  start-page: 23579
  year: 2015
  end-page: 23588
  ident: bib46
  article-title: Polymorphic variants of human rhodanese exhibit differences in thermal stability and sulfur transfer kinetics
  publication-title: J. Biol. Chem.
– volume: 199
  start-page: 130
  year: 2022
  end-page: 138
  ident: bib121
  article-title: Heart and kidney H2S production is reduced in hypertensive and older rats
  publication-title: Biochimie
– volume: 9
  start-page: 4
  year: 2009
  ident: bib4
  article-title: Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis
  publication-title: BMC Evol. Biol.
– volume: 204
  start-page: 151
  year: 2023
  end-page: 160
  ident: bib173
  article-title: Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury
  publication-title: Free Radic. Biol. Med.
– volume: 11
  start-page: 703
  year: 2009
  end-page: 714
  ident: bib37
  article-title: 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain
  publication-title: Antioxidants Redox Signal.
– volume: 40
  start-page: 649
  year: 2013
  end-page: 652
  ident: bib180
  article-title: Sodium thiosulfate in the treatment of non‐uremic calciphylaxis
  publication-title: J. Dermatol.
– volume: 13
  start-page: 1180
  year: 2021
  ident: bib130
  article-title: Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition
  publication-title: Nutrients
– volume: 6
  start-page: 1595
  year: 2018
  end-page: 1599
  ident: bib181
  article-title: Metabolic acidosis after sodium thiosulfate infusion and the role of hydrogen sulfide
  publication-title: Clin Case Rep
– volume: 13
  start-page: 105
  year: 1989
  end-page: 109
  ident: bib33
  article-title: Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports
  publication-title: J. Anal. Toxicol.
– volume: 32
  start-page: 1109
  year: 2009
  end-page: 1122
  ident: bib178
  article-title: Cisplatin overdose
  publication-title: Drug Saf.
– volume: 11
  start-page: 3843
  year: 2022
  ident: bib140
  article-title: The role of oxidative stress in atherosclerosis
  publication-title: Cells
– volume: 109
  start-page: 89
  year: 2023
  end-page: 98
  ident: bib169
  article-title: Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway
  publication-title: J. Dermatol. Sci.
– volume: 32
  start-page: 465
  year: 2000
  end-page: 473
  ident: bib62
  article-title: Rhodanese as a thioredoxin oxidase
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 22
  start-page: 771
  year: 2016
  end-page: 779
  ident: bib87
  article-title: Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness
  publication-title: Nat. Med.
– volume: 18
  start-page: 1906
  year: 2013
  end-page: 1919
  ident: bib111
  article-title: Hydrogen sulfide protects against cellular senescence via s-sulfhydration of keap1 and activation of Nrf2
  publication-title: Antioxidants Redox Signal.
– volume: 18
  start-page: 1165
  year: 2013
  end-page: 1207
  ident: bib56
  article-title: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance
  publication-title: Antioxidants Redox Signal.
– volume: 98
  start-page: 9494
  year: 2001
  end-page: 9498
  ident: bib99
  article-title: Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 2387
  year: 2014
  end-page: 2393
  ident: bib144
  article-title: Calcific aortic valve disease
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 10
  start-page: 2976
  year: 2021
  ident: bib96
  article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice
  publication-title: Cells
– volume: 318
  start-page: 981
  year: 1981
  end-page: 982
  ident: bib136
  article-title: Thiosulphate-sulphurtransferase (rhodanese) deficiency in Leber's hereditary optic atroph
  publication-title: Lancet
– volume: 22
  start-page: 6452
  year: 2021
  ident: bib166
  article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms
  publication-title: Int. J. Mol. Sci.
– volume: 104
  start-page: 5477
  year: 2020
  end-page: 5492
  ident: bib58
  article-title: Glutaredoxin-like protein (GLP)—a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 4
  year: 2015
  ident: bib55
  article-title: Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia
  publication-title: J. Am. Heart Assoc.
– volume: 17
  start-page: 297
  year: 2018
  end-page: 314
  ident: bib107
  article-title: Antioxidant response elements: discovery, classes, regulation and potential applications
  publication-title: Redox Biol.
– volume: 73
  start-page: 282
  year: 2021
  end-page: 302
  ident: bib112
  article-title: Hydrogen sulfide alleviates liver injury through the S-Sulfhydrated-Kelch-Like ECH-associated protein 1/nuclear erythroid 2–related factor 2/low-density lipoprotein receptor–related protein 1 pathway
  publication-title: Hepatology
– volume: 27
  start-page: 684
  year: 2017
  end-page: 712
  ident: bib103
  article-title: The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine
  publication-title: Antioxidants Redox Signal.
– volume: 36
  year: 2016
  ident: bib45
  article-title: S-sulfhydration as a cellular redox regulation
  publication-title: Biosci. Rep.
– volume: 22
  start-page: 341
  year: 1998
  end-page: 352
  ident: bib74
  article-title: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster
  publication-title: FEMS Microbiol. Rev.
– volume: 3
  start-page: 4
  year: 2022
  ident: bib141
  article-title: Serum anti-TSTD2 antibody as a biomarker for atherosclerosis-induced ischemic stroke and chronic kidney disease
  publication-title: Med. Int.
– volume: 305
  start-page: R592
  year: 2013
  end-page: R603
  ident: bib161
  article-title: Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 154
  year: 2020
  ident: bib23
  article-title: Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)—hydrogen sulfide (H2S) pathway in cancer cells
  publication-title: Pharmacol. Res.
– volume: 68
  year: 2023
  ident: bib43
  article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain
  publication-title: Redox Biol.
– volume: 12
  start-page: 1699
  year: 2003
  end-page: 1711
  ident: bib137
  article-title: Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells
  publication-title: Hum. Mol. Genet.
– volume: 107
  start-page: 247
  year: 2012
  end-page: 252
  ident: bib11
  article-title: Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders
  publication-title: Mol. Genet. Metabol.
– volume: 22
  start-page: 362
  year: 2015
  end-page: 376
  ident: bib31
  article-title: Signaling molecules: hydrogen sulfide and polysulfide
  publication-title: Antioxidants Redox Signal.
– volume: 32
  start-page: 368
  year: 1992
  end-page: 375
  ident: bib160
  article-title: The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning
  publication-title: J. Clin. Pharmacol.
– volume: 687
  year: 2024
  ident: bib116
  article-title: Differences in nonoxidative sulfur metabolism between normal human breast MCF-12A and adenocarcinoma MCF-7 cell lines
  publication-title: Anal. Biochem.
– volume: 63
  start-page: 962
  year: 2024
  end-page: 963
  ident: bib179
  article-title: Successful treatment of non‐uremic calciphylaxis with combination therapy with sodium thiosulfate, iloprost, and heparin
  publication-title: Int. J. Dermatol.
– volume: 59
  start-page: 1073
  year: 2006
  end-page: 1082
  ident: bib76
  article-title: Iron‐sulphur clusters and the problem with oxygen
  publication-title: Mol. Microbiol.
– volume: 78
  year: 2022
  ident: bib163
  article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation
  publication-title: EBioMedicine
– volume: 1866
  year: 2020
  ident: bib16
  article-title: Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases
  publication-title: Biochim. Biophys. Acta, Mol. Basis Dis.
– volume: 12
  start-page: 843
  year: 2023
  ident: bib14
  article-title: Rhodanese-Fold containing proteins in humans: not just key players in sulfur trafficking
  publication-title: Antioxidants
– volume: 32
  start-page: 465
  year: 2000
  end-page: 473
  ident: bib65
  article-title: Rhodanese as a thioredoxin oxidase
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 2
  year: 2016
  ident: bib69
  article-title: A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems
  publication-title: Sci. Adv.
– volume: 10
  start-page: 2976
  year: 2021
  ident: bib123
  article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice
  publication-title: Cells
– volume: 45
  start-page: 580
  year: 2013
  end-page: 585
  ident: bib128
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nat. Genet.
– volume: 2
  issue: 1
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib69
  article-title: A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500968
– volume: 59
  start-page: 1073
  issue: 4
  year: 2006
  ident: 10.1016/j.redox.2025.103595_bib76
  article-title: Iron‐sulphur clusters and the problem with oxygen
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05028.x
– volume: 134
  start-page: 190
  year: 2019
  ident: 10.1016/j.redox.2025.103595_bib67
  article-title: Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through regulating the redox state of thioredoxin
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.01.009
– volume: 26
  year: 2019
  ident: 10.1016/j.redox.2025.103595_bib78
  article-title: A conserved motif liganding the [4Fe–4S] cluster in [4Fe–4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101296
– volume: 21
  start-page: 1721
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib60
  article-title: Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.893234
– volume: 527
  start-page: 1008
  issue: 4
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib94
  article-title: Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.05.014
– volume: 11
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib125
  article-title: H2S donors reverse age-related gastric malfunction impaired due to fructose-induced injury via CBS, CSE, and TST expression
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.01134
– volume: 295
  issue: 39
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib47
  article-title: Findings in redox biology: from H2O2 to oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.X120.015651
– volume: 8
  start-page: 436
  issue: 6
  year: 2010
  ident: 10.1016/j.redox.2025.103595_bib77
  article-title: Building Fe–S proteins: bacterial strategies
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2356
– volume: 22
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib142
  article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease
  publication-title: Cell Death Differ.
– volume: 93
  start-page: 8175
  issue: 16
  year: 1996
  ident: 10.1016/j.redox.2025.103595_bib73
  article-title: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.16.8175
– volume: 6
  start-page: 723
  issue: 12
  year: 2010
  ident: 10.1016/j.redox.2025.103595_bib138
  article-title: Atherosclerosis in CKD: differences from the general population
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2010.143
– volume: 121
  start-page: 459
  issue: 11
  year: 2011
  ident: 10.1016/j.redox.2025.103595_bib164
  article-title: Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools
  publication-title: Clin. Sci.
  doi: 10.1042/CS20110267
– volume: 99
  start-page: 345
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib157
  article-title: Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.08.024
– volume: 5
  start-page: 46
  issue: 4
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib162
  article-title: The effects of different garlic-derived allyl sulfides on anaerobic sulfur metabolism in the mouse kidney
  publication-title: Antioxidants
  doi: 10.3390/antiox5040046
– volume: 199
  start-page: 130
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib121
  article-title: Heart and kidney H2S production is reduced in hypertensive and older rats
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2022.04.013
– volume: 22
  start-page: 771
  issue: 7
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib87
  article-title: Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness
  publication-title: Nat. Med.
  doi: 10.1038/nm.4115
– volume: 31
  start-page: 364
  issue: 3
  year: 2010
  ident: 10.1016/j.redox.2025.103595_bib91
  article-title: The role of mitochondria in the pathogenesis of type 2 diabetes
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2009-0027
– volume: 21
  start-page: 363
  issue: 7
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib93
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0230-3
– volume: 22
  start-page: 6452
  issue: 12
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib166
  article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22126452
– volume: 51
  start-page: 1
  issue: 12
  year: 2019
  ident: 10.1016/j.redox.2025.103595_bib7
  article-title: Mitochondrial dysfunction and oxidative stress in heart disease
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-019-0355-7
– volume: 293
  start-page: 2675
  issue: 8
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib51
  article-title: Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.000826
– volume: 72
  start-page: 17
  issue: 1
  year: 1977
  ident: 10.1016/j.redox.2025.103595_bib79
  article-title: Rhodanese‐mediated sulfur transfer to succinate dehydrogenase
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1977.tb11219.x
– volume: 45
  start-page: 2524
  issue: 8
  year: 2006
  ident: 10.1016/j.redox.2025.103595_bib5
  article-title: Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium
  publication-title: Biochemistry
  doi: 10.1021/bi052475e
– volume: 2015
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib110
  article-title: Oxidative stress responses and NRF2 in human leukaemia
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2015/454659
– volume: 136
  start-page: 1636S
  issue: 6
  year: 2006
  ident: 10.1016/j.redox.2025.103595_bib30
  article-title: The sulfur-containing amino acids: an overview
  publication-title: J. Nutr.
  doi: 10.1093/jn/136.6.1636S
– volume: 83
  start-page: 9178
  issue: 16
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib50
  article-title: Why not trans? Inhibited radical isomerization cycles and coupling chains of lipids and alkenes with alkane - thiols
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b01216
– volume: 9
  start-page: 829
  issue: 8
  year: 2010
  ident: 10.1016/j.redox.2025.103595_bib9
  article-title: A neurological perspective on mitochondrial disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70116-2
– volume: 12
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib151
  article-title: Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.1004261
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib49
  article-title: Hydrogen sulfide and cellular redox homeostasis
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2016/6043038
– volume: 14
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib168
  article-title: The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1125594
– volume: 59
  start-page: 51
  issue: 2
  year: 2007
  ident: 10.1016/j.redox.2025.103595_bib100
  article-title: Common themes and variations in the rhodanese superfamily
  publication-title: IUBMB Life
  doi: 10.1080/15216540701206859
– volume: 26
  start-page: 1034
  issue: 11
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib92
  article-title: Oxidative stress and redox-modulating therapeutics in Inflammatory bowel disease
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2020.06.006
– volume: 673
  start-page: 160
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib172
  article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2023.06.072
– volume: 13
  start-page: 1180
  issue: 4
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib130
  article-title: Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition
  publication-title: Nutrients
  doi: 10.3390/nu13041180
– volume: 27
  start-page: 684
  issue: 10
  year: 2017
  ident: 10.1016/j.redox.2025.103595_bib103
  article-title: The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7083
– volume: 66
  start-page: 121
  issue: 2
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib90
  article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details
  publication-title: Pediatr. Res.
  doi: 10.1203/PDR.0b013e3181a9eafb
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib25
  article-title: Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-16320-1
– volume: 12
  start-page: 868
  issue: 4
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib36
  article-title: Synthesis of sulfides and persulfides is not impeded by disruption of three canonical enzymes in sulfur metabolism
  publication-title: Antioxidants
  doi: 10.3390/antiox12040868
– volume: 18
  start-page: 1315
  issue: 6
  year: 2017
  ident: 10.1016/j.redox.2025.103595_bib165
  article-title: The role of hemoproteins: hemoglobin, myoglobin and neuroglobin in endogenous thiosulfate production processes
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18061315
– volume: 10
  start-page: 1738
  issue: 11
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib29
  article-title: Sulfur administration in Fe–S cluster homeostasis
  publication-title: Antioxidants
  doi: 10.3390/antiox10111738
– volume: 687
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib116
  article-title: Differences in nonoxidative sulfur metabolism between normal human breast MCF-12A and adenocarcinoma MCF-7 cell lines
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2023.115434
– volume: 2
  issue: 1
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib104
  article-title: Mitochondria and the reactive species interactome: shaping the future of mitoredox medicine
  publication-title: Journal of Mitochondria, Plastids and Endosymbiosis
  doi: 10.1080/28347056.2024.2304348
– volume: 28
  start-page: 2025
  issue: 5
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib127
  article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats
  publication-title: Molecules
  doi: 10.3390/molecules28052025
– volume: 290
  start-page: 23579
  issue: 39
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib46
  article-title: Polymorphic variants of human rhodanese exhibit differences in thermal stability and sulfur transfer kinetics
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.675694
– volume: 11
  start-page: 1859
  issue: 12
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib153
  article-title: The expression and activity of rhodanese, 3-mercaptopyruvate sulfurtransferase, cystathionine γ-lyase in the most frequently chosen cellular research models
  publication-title: Biomolecules
  doi: 10.3390/biom11121859
– volume: 23
  start-page: 32
  issue: 1
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib174
  article-title: Cardioprotective effects of sodium thiosulfate against doxorubicin-induced cardiotoxicity in male rats
  publication-title: BMC Pharmacol Toxicol
  doi: 10.1186/s40360-022-00569-3
– volume: 18
  start-page: 1539
  issue: 10
  year: 2012
  ident: 10.1016/j.redox.2025.103595_bib131
  article-title: MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity
  publication-title: Nat. Med.
  doi: 10.1038/nm.2899
– volume: 12
  start-page: 1699
  issue: 14
  year: 2003
  ident: 10.1016/j.redox.2025.103595_bib137
  article-title: Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg187
– volume: 32
  start-page: 368
  issue: 4
  year: 1992
  ident: 10.1016/j.redox.2025.103595_bib160
  article-title: The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning
  publication-title: J. Clin. Pharmacol.
  doi: 10.1002/j.1552-4604.1992.tb03849.x
– volume: 150
  start-page: 952
  issue: 12
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib143
  article-title: Aortic valve stenosis causes accumulation of extracellular hemoglobin and systemic endothelial dysfunction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.123.064747
– year: 2023
  ident: 10.1016/j.redox.2025.103595_bib154
  article-title: Identification and characterization of a small molecule that activates thiosulfate sulfurtransferase and stimulates mitochondrial respiration
  publication-title: Protein Sci.
  doi: 10.1002/pro.4794
– volume: 313
  start-page: 314
  issue: 5785
  year: 1979
  ident: 10.1016/j.redox.2025.103595_bib3
  article-title: Evolution of the molecular machines for protein import into mitochondria
  publication-title: Science
  doi: 10.1126/science.1127895
– volume: 70
  start-page: 348
  issue: 2
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib109
  article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.117.014753
– volume: 293
  start-page: 2675
  issue: 8
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib64
  article-title: Thiosulfate sulfurtransferase-like domain–containing 1 protein interacts with thioredoxin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.000826
– volume: 3
  start-page: 741
  issue: 8
  year: 2002
  ident: 10.1016/j.redox.2025.103595_bib13
  article-title: The rhodanese/Cdc25 phosphatase superfamily
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kvf150
– volume: 10
  start-page: 1738
  issue: 11
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib80
  article-title: Sulfur administration in Fe–S cluster homeostasis
  publication-title: Antioxidants
  doi: 10.3390/antiox10111738
– volume: 20
  start-page: 745
  issue: 7
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib17
  article-title: The multifaceted contributions of mitochondria to cellular metabolism
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0124-1
– volume: 12
  start-page: 148
  issue: 2
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib117
  article-title: Sulfurtransferases and cystathionine beta-synthase expression in different human leukemia cell lines
  publication-title: Biomolecules
  doi: 10.3390/biom12020148
– volume: 9
  start-page: 4
  issue: 1
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib4
  article-title: Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-9-4
– volume: 94
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib6
  article-title: Mitochondrial reactive oxygen species in physiology and disease
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2020.102344
– volume: 238
  start-page: 1185
  year: 1963
  ident: 10.1016/j.redox.2025.103595_bib44
  article-title: Rhodanese-catalyzed reduction of thiosulfate by reduced lipoic acid
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)81283-2
– volume: 10
  start-page: 2976
  issue: 11
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib123
  article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice
  publication-title: Cells
  doi: 10.3390/cells10112976
– volume: 11
  start-page: 703
  issue: 4
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib37
  article-title: 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2008.2253
– volume: 78
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib170
  article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.103954
– volume: 378
  start-page: 2376
  issue: 25
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib177
  article-title: Sodium thiosulfate for protection from cisplatin-induced hearing loss
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1801109
– year: 2024
  ident: 10.1016/j.redox.2025.103595_bib28
  article-title: Diversity and ecology of microbial sulfur metabolism
  publication-title: Nat. Rev. Microbiol.
– volume: 289
  start-page: 30901
  issue: 45
  year: 2014
  ident: 10.1016/j.redox.2025.103595_bib53
  article-title: Organization of the human mitochondrial hydrogen sulfide oxidation pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.602664
– volume: 204
  start-page: 151
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib173
  article-title: Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2023.04.012
– volume: 290
  start-page: 8310
  issue: 13
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib41
  article-title: Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.639831
– volume: 12
  start-page: 347
  issue: 6
  year: 1989
  ident: 10.1016/j.redox.2025.103595_bib176
  article-title: Cyanide poisoning: pathophysiology and current approaches to therapy
  publication-title: Int. J. Artif. Organs
  doi: 10.1177/039139888901200601
– volume: 12
  start-page: 843
  issue: 4
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib14
  article-title: Rhodanese-Fold containing proteins in humans: not just key players in sulfur trafficking
  publication-title: Antioxidants
  doi: 10.3390/antiox12040843
– volume: 32
  start-page: 1109
  issue: 12
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib178
  article-title: Cisplatin overdose
  publication-title: Drug Saf.
  doi: 10.2165/11316640-000000000-00000
– volume: 5
  start-page: 130
  issue: 1
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib57
  article-title: Overexpression of thioredoxin‐2 attenuates age‐related muscle loss by suppressing mitochondrial oxidative stress and apoptosis
  publication-title: JCSM Rapid Commun
  doi: 10.1002/rco2.57
– volume: 15
  start-page: 597
  issue: 5
  year: 1976
  ident: 10.1016/j.redox.2025.103595_bib82
  article-title: NADH: nitrate reductase activity restoration by rhodanese
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)94400-5
– volume: 25
  start-page: 9529
  issue: 17
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib171
  article-title: Effect of sodium thiosulfate pre-treatment on renal ischemia-reperfusion injury in kidney transplantation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms25179529
– volume: 16
  start-page: 1066
  issue: 3
  year: 1996
  ident: 10.1016/j.redox.2025.103595_bib32
  article-title: The possible role of hydrogen sulfide as an endogenous neuromodulator
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-03-01066.1996
– volume: 104
  start-page: 5477
  issue: 12
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib58
  article-title: Glutaredoxin-like protein (GLP)—a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-020-10491-5
– volume: 35
  start-page: 1176
  issue: 14
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib102
  article-title: The reactive species interactome in the brain
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2020.8238
– volume: 63
  start-page: 962
  issue: 7
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib179
  article-title: Successful treatment of non‐uremic calciphylaxis with combination therapy with sodium thiosulfate, iloprost, and heparin
  publication-title: Int. J. Dermatol.
  doi: 10.1111/ijd.17131
– volume: 2016
  issue: 1
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib132
  article-title: Implications of hydrogen sulfide in glucose regulation: how H2S can alter glucose homeostasis through metabolic hormones
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2016/3285074
– volume: 10
  start-page: 21
  year: 2017
  ident: 10.1016/j.redox.2025.103595_bib10
  article-title: Mitochondrial diseases: advances and issues
  publication-title: Appl. Clin. Genet.
  doi: 10.2147/TACG.S94267
– volume: 47
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib70
  article-title: Mitochondrial iron–sulfur clusters: structure, function, and an emerging role in vascular biology
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.102164
– volume: 45
  start-page: 580
  issue: 6
  year: 2013
  ident: 10.1016/j.redox.2025.103595_bib128
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2653
– volume: 22
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib119
  article-title: Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease
  publication-title: Cell Death Differ.
– volume: 35
  start-page: 642
  issue: 8
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib89
  article-title: Oxygen in metabolic dysfunction and its therapeutic relevance
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2019.7901
– volume: 98
  start-page: 366
  issue: 2
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib159
  article-title: Sodium thiosulfate improves renal function and oxygenation in L-NNA–induced hypertension in rats
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2020.02.020
– volume: 305
  start-page: R592
  issue: 6
  year: 2013
  ident: 10.1016/j.redox.2025.103595_bib161
  article-title: Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00421.2012
– volume: 60
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib145
  article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2023.102629
– volume: 109
  start-page: 89
  issue: 2
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib169
  article-title: Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway
  publication-title: J. Dermatol. Sci.
  doi: 10.1016/j.jdermsci.2023.02.002
– volume: 1859
  start-page: 742
  issue: 9
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib27
  article-title: Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2018.04.004
– volume: 18
  start-page: 2371
  issue: 12
  year: 2012
  ident: 10.1016/j.redox.2025.103595_bib148
  article-title: Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1002/ibd.22949
– volume: 54
  start-page: 2385
  issue: 14
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib59
  article-title: Conformational analysis and chemical reactivity of the multidomain sulfurtransferase, Staphylococcus aureus CstA
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00056
– volume: 25
  start-page: 365
  issue: 4
  year: 2004
  ident: 10.1016/j.redox.2025.103595_bib1
  article-title: Mitochondria in health and disease: perspectives on a new mitochondrial biology
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2004.03.001
– volume: 79
  start-page: 101
  issue: 1
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib20
  article-title: Correlation between the level of sulfane sulfur and the expression/activity of sulfurtransferases in chicken tissues – a possible ways of cyanide detoxification
  publication-title: Biologia (Bratisl).
  doi: 10.1007/s11756-023-01500-9
– volume: 11
  start-page: 1823
  issue: 9
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib120
  article-title: Sequential accumulation of ‘driver’ pathway mutations induces the upregulation of hydrogen-sulfide-producing enzymes in human colonic epithelial cell organoids
  publication-title: Antioxidants
  doi: 10.3390/antiox11091823
– volume: 6
  start-page: 1595
  issue: 8
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib181
  article-title: Metabolic acidosis after sodium thiosulfate infusion and the role of hydrogen sulfide
  publication-title: Clin Case Rep
  doi: 10.1002/ccr3.1673
– volume: 300
  issue: 5
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib52
  article-title: Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2024.107149
– volume: 9
  start-page: 1416
  issue: 3
  year: 2010
  ident: 10.1016/j.redox.2025.103595_bib146
  article-title: Identification of Rack1, EF-tu and rhodanese as aging-related proteins in human colonic epithelium by proteomic analysis
  publication-title: J. Proteome Res.
  doi: 10.1021/pr9009386
– volume: 68
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib43
  article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2023.102965
– volume: 37
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib18
  article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101674
– volume: 291
  start-page: G288
  issue: 2
  year: 2006
  ident: 10.1016/j.redox.2025.103595_bib152
  article-title: Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00324.2005
– volume: 275
  start-page: 3352
  issue: 13
  year: 2008
  ident: 10.1016/j.redox.2025.103595_bib38
  article-title: Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06482.x
– volume: 292
  start-page: 1229
  issue: 6530
  year: 1986
  ident: 10.1016/j.redox.2025.103595_bib134
  article-title: Deficiency of thiosulphate sulphurtransferase (rhodanese) in Leber's hereditary optic neuropathy
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.292.6530.1229
– volume: 9
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib156
  article-title: Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.965965
– volume: 22
  start-page: 6562
  issue: 12
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib150
  article-title: The hidden role of hydrogen sulfide metabolism in cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22126562
– volume: 1853
  start-page: 1316
  issue: 6
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib71
  article-title: Auxiliary iron–sulfur cofactors in radical SAM enzymes
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2015.01.002
– volume: 40
  start-page: 649
  issue: 8
  year: 2013
  ident: 10.1016/j.redox.2025.103595_bib180
  article-title: Sodium thiosulfate in the treatment of non‐uremic calciphylaxis
  publication-title: J. Dermatol.
  doi: 10.1111/1346-8138.12139
– volume: 98
  start-page: 9494
  issue: 17
  year: 2001
  ident: 10.1016/j.redox.2025.103595_bib99
  article-title: Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.171320998
– volume: 19
  start-page: 465
  issue: 5
  year: 2013
  ident: 10.1016/j.redox.2025.103595_bib113
  article-title: The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.4944
– volume: 52
  start-page: 1
  issue: 1
  year: 1988
  ident: 10.1016/j.redox.2025.103595_bib22
  article-title: Rhodanese isozymes in human tissues
  publication-title: Ann. Hum. Genet.
  doi: 10.1111/j.1469-1809.1988.tb01072.x
– volume: 10
  start-page: 2976
  issue: 11
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib96
  article-title: Integrative analyses reveal Tstd1 as a potential modulator of HDL cholesterol and mitochondrial function in mice
  publication-title: Cells
  doi: 10.3390/cells10112976
– volume: 6
  start-page: 343
  issue: 2
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib101
  article-title: Selenium reduction of ubiquinone via SQOR suppresses ferroptosis
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-024-00974-4
– volume: 201
  start-page: 18
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib66
  article-title: Thiosulfate sulfurtransferase deficiency promotes oxidative distress in cerebral prefrontal cortex
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2023.03.088
– volume: 204
  start-page: 207
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib98
  article-title: Selenium and coenzyme Q10 improve the systemic redox status while reducing cardiovascular mortality in elderly population-based individuals
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2023.04.024
– volume: 41
  start-page: 62
  year: 2014
  ident: 10.1016/j.redox.2025.103595_bib133
  article-title: Hydrogen sulfide and the liver
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.02.006
– volume: 7
  start-page: 3414
  issue: 5
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib68
  article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04818D
– volume: 142
  start-page: 361
  issue: 2
  year: 1984
  ident: 10.1016/j.redox.2025.103595_bib84
  article-title: Enzymic synthesis of the iron‐sulfur cluster of spinach ferredoxin
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1984.tb08295.x
– volume: 242
  start-page: 1427
  issue: 4884
  year: 1988
  ident: 10.1016/j.redox.2025.103595_bib135
  article-title: Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy
  publication-title: Science
  doi: 10.1126/science.3201231
– volume: 289
  start-page: 2481
  issue: 9
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib21
  article-title: The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter
  publication-title: FEBS J.
  doi: 10.1111/febs.16135
– volume: 154
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib23
  article-title: Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)—hydrogen sulfide (H2S) pathway in cancer cells
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2018.11.034
– volume: 32
  start-page: 465
  issue: 4
  year: 2000
  ident: 10.1016/j.redox.2025.103595_bib62
  article-title: Rhodanese as a thioredoxin oxidase
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(99)00035-7
– volume: 121
  start-page: 1248
  issue: 6
  year: 2014
  ident: 10.1016/j.redox.2025.103595_bib158
  article-title: Sodium thiosulfate attenuates acute lung injury in mice
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000456
– volume: 278
  start-page: 1480
  issue: 3
  year: 2003
  ident: 10.1016/j.redox.2025.103595_bib24
  article-title: 3-Mercaptopyruvate sulfurtransferase of LeishmaniaContains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209395200
– volume: 264
  start-page: 96
  issue: 1–2
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib147
  article-title: Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification?
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.07.018
– volume: 60
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib115
  article-title: Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2023.102629
– volume: 11
  start-page: 2235
  issue: 11
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib149
  article-title: Hydrogen sulfide metabolizing enzymes in the intestinal mucosa in pediatric and adult inflammatory bowel disease
  publication-title: Antioxidants
  doi: 10.3390/antiox11112235
– volume: 10
  start-page: 85
  issue: 2
  year: 2011
  ident: 10.1016/j.redox.2025.103595_bib35
  article-title: Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE)
  publication-title: Inflamm. Allergy - Drug Targets
  doi: 10.2174/187152811794776286
– volume: 65
  start-page: 3171
  issue: 10
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib108
  article-title: Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation
  publication-title: Diabetes
  doi: 10.2337/db16-0020
– volume: 700
  start-page: 154
  issue: 2
  year: 1982
  ident: 10.1016/j.redox.2025.103595_bib83
  article-title: Sulfide insertion into spinach ferredoxin by rhodanese
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/0167-4838(82)90092-9
– volume: 259
  start-page: 243
  year: 1933
  ident: 10.1016/j.redox.2025.103595_bib19
  article-title: Die rhodanbildung im tierkorper [thiocyanogen in the bodies of animals]
  publication-title: Biochem. Z.
– volume: 3
  start-page: 4
  issue: 1
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib141
  article-title: Serum anti-TSTD2 antibody as a biomarker for atherosclerosis-induced ischemic stroke and chronic kidney disease
  publication-title: Med. Int.
  doi: 10.3892/mi.2022.64
– volume: 93
  start-page: 439
  issue: 4
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib182
  article-title: Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-014-1227-1
– volume: 73
  start-page: 282
  issue: 1
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib112
  article-title: Hydrogen sulfide alleviates liver injury through the S-Sulfhydrated-Kelch-Like ECH-associated protein 1/nuclear erythroid 2–related factor 2/low-density lipoprotein receptor–related protein 1 pathway
  publication-title: Hepatology
  doi: 10.1002/hep.31247
– volume: 34
  start-page: 2387
  issue: 11
  year: 2014
  ident: 10.1016/j.redox.2025.103595_bib144
  article-title: Calcific aortic valve disease
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.302523
– volume: 5
  start-page: 289
  issue: 4
  year: 1989
  ident: 10.1016/j.redox.2025.103595_bib72
  article-title: The structure of aconitase
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.340050406
– volume: 11
  start-page: 3843
  issue: 23
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib140
  article-title: The role of oxidative stress in atherosclerosis
  publication-title: Cells
  doi: 10.3390/cells11233843
– volume: 673
  start-page: 160
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib167
  article-title: Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2023.06.072
– volume: 292
  start-page: 5584
  issue: 13
  year: 2017
  ident: 10.1016/j.redox.2025.103595_bib40
  article-title: Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.774943
– volume: 10
  start-page: 1738
  issue: 11
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib26
  article-title: Sulfur administration in Fe–S cluster homeostasis
  publication-title: Antioxidants
  doi: 10.3390/antiox10111738
– volume: 52
  start-page: 1198
  issue: 8
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib97
  article-title: The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-020-0408-y
– start-page: 367
  issue: 6482
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib129
  article-title: An atlas of the protein-coding genes in the human, pig, and mouse brain
  publication-title: Science
– volume: 364
  start-page: 284
  issue: 2
  year: 1974
  ident: 10.1016/j.redox.2025.103595_bib86
  article-title: Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin
  publication-title: Biochim. Biophys. Acta Enzymol.
  doi: 10.1016/0005-2744(74)90014-X
– volume: 49
  start-page: 661
  issue: 6
  year: 2008
  ident: 10.1016/j.redox.2025.103595_bib124
  article-title: Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays
  publication-title: J. Radiat. Res.
  doi: 10.1269/jrr.08074
– volume: 34
  start-page: 231
  issue: 2
  year: 2008
  ident: 10.1016/j.redox.2025.103595_bib118
  article-title: N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlations with cell proliferation
  publication-title: Amino Acids
  doi: 10.1007/s00726-007-0471-2
– volume: 13
  issue: 6
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib54
  article-title: Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198626
– volume: 8
  start-page: 1865
  issue: 9–10
  year: 2006
  ident: 10.1016/j.redox.2025.103595_bib48
  article-title: Redefining oxidative stress
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2006.8.1865
– volume: 275
  start-page: 3884
  issue: 15
  year: 2008
  ident: 10.1016/j.redox.2025.103595_bib63
  article-title: Rhodanese–thioredoxin system and allyl sulfur compounds
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06535.x
– volume: 2
  issue: 1
  year: 2011
  ident: 10.1016/j.redox.2025.103595_bib88
  article-title: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering
  publication-title: J. Tissue Eng.
  doi: 10.1177/2041731411432365
– volume: 2
  issue: 1
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib8
  article-title: Mitochondrial diseases
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2016.80
– volume: 4
  issue: 11
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib55
  article-title: Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.002125
– volume: 22
  start-page: 341
  issue: 5
  year: 1998
  ident: 10.1016/j.redox.2025.103595_bib74
  article-title: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1998.tb00375.x
– volume: 148
  start-page: 1145
  issue: 6
  year: 2012
  ident: 10.1016/j.redox.2025.103595_bib2
  article-title: Mitochondria: in sickness and in health
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.035
– volume: 318
  start-page: 981
  issue: 8253
  year: 1981
  ident: 10.1016/j.redox.2025.103595_bib136
  article-title: Thiosulphate-sulphurtransferase (rhodanese) deficiency in Leber's hereditary optic atroph
  publication-title: Lancet
  doi: 10.1016/S0140-6736(81)91171-5
– volume: 37
  issue: 6
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib39
  article-title: The hepatic compensatory response to elevated systemic sulfide promotes diabetes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109958
– volume: 1866
  issue: 6
  year: 2020
  ident: 10.1016/j.redox.2025.103595_bib16
  article-title: Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases
  publication-title: Biochim. Biophys. Acta, Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2020.165716
– volume: 32
  start-page: 465
  issue: 4
  year: 2000
  ident: 10.1016/j.redox.2025.103595_bib65
  article-title: Rhodanese as a thioredoxin oxidase
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(99)00035-7
– volume: 105
  start-page: 365
  issue: 4
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib114
  article-title: Hydrogen sulfide mediates cardioprotection through Nrf2 signaling
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.199919
– volume: 13
  start-page: 105
  issue: 2
  year: 1989
  ident: 10.1016/j.redox.2025.103595_bib33
  article-title: Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports
  publication-title: J. Anal. Toxicol.
  doi: 10.1093/jat/13.2.105
– volume: 17
  start-page: 297
  year: 2018
  ident: 10.1016/j.redox.2025.103595_bib107
  article-title: Antioxidant response elements: discovery, classes, regulation and potential applications
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.05.002
– volume: 203
  year: 2024
  ident: 10.1016/j.redox.2025.103595_bib155
  article-title: Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2024.107180
– volume: 308
  start-page: 518
  issue: 5721
  year: 2005
  ident: 10.1016/j.redox.2025.103595_bib34
  article-title: H2S induces a suspended animation-like state in mice
  publication-title: Science
  doi: 10.1126/science.1108581
– volume: 23
  issue: 15
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib12
  article-title: Thiosulfate-cyanide sulfurtransferase a mitochondrial essential enzyme: from cell metabolism to the biotechnological applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23158452
– volume: 244
  start-page: 485
  issue: 2
  year: 1987
  ident: 10.1016/j.redox.2025.103595_bib85
  article-title: Nitrogenase of Klebsiella pneumoniae . Rhodanese-catalysed restoration of activity of the inactive 2Fe species of the Fe protein
  publication-title: Biochem. J.
  doi: 10.1042/bj2440485
– volume: 78
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib163
  article-title: Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.103954
– volume: 12
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib122
  article-title: Hydrogen sulfide prevents mesenteric adipose tissue damage, endothelial dysfunction, and redox imbalance from high fructose diet-induced injury in aged rats
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.693100
– volume: 36
  issue: 2
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib45
  article-title: S-sulfhydration as a cellular redox regulation
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20150147
– volume: 18
  start-page: 1165
  issue: 10
  year: 2013
  ident: 10.1016/j.redox.2025.103595_bib56
  article-title: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2011.4322
– volume: 22
  issue: 12
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib42
  article-title: Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22126452
– volume: 5
  start-page: 832
  issue: 1
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib61
  article-title: Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests
  publication-title: FEBS Open Bio
  doi: 10.1016/j.fob.2015.10.001
– volume: 40
  start-page: 1991
  issue: 6
  year: 2009
  ident: 10.1016/j.redox.2025.103595_bib139
  article-title: Effects of timing and extent of smoking, type of cigarettes, and concomitant risk factors on the association between smoking and subclinical atherosclerosis
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.543413
– volume: 22
  start-page: 362
  issue: 5
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib31
  article-title: Signaling molecules: hydrogen sulfide and polysulfide
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2014.5869
– volume: 28
  start-page: 2025
  issue: 5
  year: 2023
  ident: 10.1016/j.redox.2025.103595_bib95
  article-title: Yohimbine alleviates oxidative stress and suppresses aerobic cysteine metabolism elevated in the rat liver of high-fat diet-fed rats
  publication-title: Molecules
  doi: 10.3390/molecules28052025
– volume: 11
  start-page: 147
  issue: 1
  year: 2022
  ident: 10.1016/j.redox.2025.103595_bib175
  article-title: Sodium thiosulfate improves hypertension in rats with adenine-induced chronic kidney disease
  publication-title: Antioxidants
  doi: 10.3390/antiox11010147
– volume: 36
  start-page: 271
  issue: 2
  year: 2016
  ident: 10.1016/j.redox.2025.103595_bib106
  article-title: Characterizations of three major cysteine sensors of Keap1 in stress response
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00868-15
– volume: 107
  start-page: 247
  issue: 3
  year: 2012
  ident: 10.1016/j.redox.2025.103595_bib11
  article-title: Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders
  publication-title: Mol. Genet. Metabol.
  doi: 10.1016/j.ymgme.2012.06.018
– volume: 33
  start-page: 193
  issue: 4–5
  year: 2003
  ident: 10.1016/j.redox.2025.103595_bib15
  article-title: Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, NMR relaxation and deuterium exchange on the uniformly labeled protein
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2003.08.010
– volume: 18
  start-page: 1906
  issue: 15
  year: 2013
  ident: 10.1016/j.redox.2025.103595_bib111
  article-title: Hydrogen sulfide protects against cellular senescence via s-sulfhydration of keap1 and activation of Nrf2
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.4645
– volume: 742
  start-page: 278
  issue: 2
  year: 1983
  ident: 10.1016/j.redox.2025.103595_bib81
  article-title: Interaction of rhodanese with mitochondrial NADH dehydrogenase
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/0167-4838(83)90312-6
– volume: 10
  start-page: 1238
  issue: 5
  year: 2021
  ident: 10.1016/j.redox.2025.103595_bib126
  article-title: Hypertension and aging affect liver sulfur metabolism in rats
  publication-title: Cells
  doi: 10.3390/cells10051238
– volume: 133
  start-page: 87
  year: 2014
  ident: 10.1016/j.redox.2025.103595_bib75
  article-title: Oxidative stress sensing by the iron–sulfur cluster in the transcription factor, SoxR
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2013.11.008
– volume: 88
  start-page: 93
  year: 2015
  ident: 10.1016/j.redox.2025.103595_bib105
  article-title: Molecular basis of the keap1–nrf2 system
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.06.006
SSID ssj0000884210
Score 2.380089
SecondaryResourceType review_article
Snippet Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103595
SubjectTerms Animals
Antioxidants - metabolism
Humans
Hydrogen Sulfide - metabolism
Life Sciences
Mitochondria - metabolism
Mitochondrial dysfunction
Oxidation-Reduction
Oxidative stress
Oxidative Stress - drug effects
Redox signaling
Review
Thiosulfate sulfurtransferase (TST)
Thiosulfate Sulfurtransferase - genetics
Thiosulfate Sulfurtransferase - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA56IPgi_raeShUfLW7TJE18O8VjOdSnO7i3kDQTdkW6x1730P_-ZpLt0Sroi28lDQmdSTLz0S_fMPYWpBAOQFVKK1kJjKGVa5pYASA4iF6rRdLS-_pNLc_Eybk8n5T6Ik5YlgfOhnsfnIwRlBGdiUJzcBwBSB2g9V6B1p5OX4x5EzCVzmCtBYKZUWYoEbpIgPMnIkIu6aa5pIoSk1CUFPtnEen2iqiRf-adv9MnJ_Ho-D67t08ky6P8AQ_YLegfsju5tOSvR-zkdLXeJOo5JpMlPsTddkhJKmwxcH0oc09yUUkMw8vS9aGc3MYqLzYDMYncj8fs7Pjz6adlta-bUHUYvocqgDTBKRV58NyZSJDPc887r13duoV2SkTA3d3EqNogPdcLiASSF9y3sWmesIN-08MzVvJgdOfqgLaXAow3JsgYQGAa4BEZdgV7N5rQXmR5DDvyxr7bZHFLFrfZ4gX7SGa-6Ura1qkBPW73Hrf_8njB1Ogku08TcvjHodZ_n_0NunQ2-fLoi6U2An6NkeaqLtjr0eMWdxr9PnE9bHaXFjMtBKttW4uCPc0r4GYsRKl4dta6YHq2NmaTzd_061VS8ybNvbY15vn_sM0hu0sfnBmZL9jBsN3BS8yaBv8qbZBri8sYFA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGJCQuiN8EGAqII1Ebx3bs3bZpUzUBFzapN8uObRqEkqpLp_Hf7z0nqRqQOHBLXSdW3rP93td-7zMhnzxnzHgvMiEFzxjE0MwURci8B3AQrBTzqKX39ZtYXLPLJV8ekLOxFgZplcPe3-_pcbceWmaDNWfrup59pxSQFIQ_COIAKiQW8RVMxiK-5enudxZYRYxGUQLsn-ENo_hQpHmhLOcd4ETKsf6c4zkTewEq6vhP4tSDFRIm_85G_yRV7kWpiyfk8ZBepif9GzwlB755Rh72B07-fk4ur1Z1GwnpkGKmcBG2my6mrn4D4ew47Xui41LkHd6kpnHpXo1Wum475BeZXy_I9cX51dkiG05TyCoI6l3mPFfOCBGos9SogEDQUksrK01emrk0ggUPa74IQZSOWyrnPiB0nlNbhqJ4SQ6btvGvSUqdkpXJnQqMM6-sUo4H5xkkBxbwYpWQz6MJ9boXzdAjm-ynjhbXaHHdWzwhp2jmXVdUvI4N7eaHHlyuneEheKFYBaNK6g0FIJo7X1orvJQ2IWJ0kp5MIHhU_e_RP4JLJ4MvTr5obEM4WCiubvOEfBg9rmH94Z8qpvHt9kbDfAIIW5Y5S8irfgbsngXYFXbUXCZETubGZLDpN029ihrfqMRXlkq9-d_Xekse4aeem_mOHHabrT-C_Kmz7-MCuQdtBxkz
  priority: 102
  providerName: Elsevier
Title Thiosulphate sulfurtransferase: Biological roles and therapeutic potential
URI https://dx.doi.org/10.1016/j.redox.2025.103595
https://www.ncbi.nlm.nih.gov/pubmed/40107018
https://www.proquest.com/docview/3179247714
https://normandie-univ.hal.science/hal-04993959
https://pubmed.ncbi.nlm.nih.gov/PMC11957799
https://doaj.org/article/da5ffe694c9f482ea27171de7bb6e88b
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2ERIviDsZUAXEI0GN4ysSQh1iKhvjAa2ib5Zd27RoSrY0Rdu_59hJxgITEi9R4li2dOzj833J8WeEXjlKiHaOZUwwmhGIoZkuCp85B-TAG8HGUUvv-AubzsjhnM63UH8qamfA9Y3ULpwnNatP31ycX74Hh3_3O1craGteANnDNGwip5Juo10ITTx46nGH9-PSLATBUaEA47zIANvwXono5nYG0SqK-g-C1vYyZE_-DU3_zLC8FrIO7qI7HdZMJ-3kuIe2XHkf3WpPn7x8gA5PlqsqZqcD3kzhxm_qJuJYV0Nse5u2NcMopiEJcZ3q0qbXNmylZ1UTko306UM0O_h48mGadUcrZAuI8E1mHZVWM-axNVhLH1ihwQYvjNA512OhGfEOFoDCe8YtNViMnQ88eowN90XxCO2UVemeoBRbKRY6t9ITSpw0UlrqrSOAFAyQx0WCXvcmVGetgobqU8t-qGhxFSyuWosnaD-Y-apqkL-OBVX9XXXepKym3jsmyQJ6FdhpDKw0t44bw5wQJkGsHyTVIYkWIUBTq3_3_hKGdND5dPJZhbLADQtJ5c88QS_6EVfgjOEPiy5dtVkrmE_AZznPSYIetzPgqi0gsrC85iJBYjA3Bp0N35SrZRT8DrJ8nEu593-mfIpuh6c2PfMZ2mnqjXsOEKoxI7Q7Ofr67WgUP0HA9dN8fxRd5Rc5Xh0h
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2IQQXxG_Cz4A4ErVxbMfmtk1M3eh2oZN6s-zYpkUoqboWwX_Pe05SNSBx4BY5sa28Z_u9L_n8mZD3njNmvBeZkIJnDGJoZooiZN4DOAhWinHU0ru8EpNrdjHn8wNy2u-FQVplt_a3a3pcrbuSUWfN0Wq5HH2hFJAUhD8I4gAqpDoktyAbKPH8hvP5ye5DC0wjRqMqAVbIsEavPhR5XqjL-ROAIuW4AZ3jQRN7ESoK-Q8C1eECGZN_p6N_sir3wtTZfXKvyy_T4_YVHpADXz8kt9sTJ389IhezxbKJjHTIMVO4CNv1Juaufg3x7GPaPomeS5F4eJOa2qV7m7TSVbNBgpH5_phcn32anU6y7jiFrIKovsmc58oZIQJ1lhoVEAlaamllpclLM5ZGsOBh0hchiNJxS-XYB8TOY2rLUBRPyFHd1P4ZSalTsjK5U4Fx5pVVyvHgPIPswAJgrBLyoTehXrWqGbqnk33T0eIaLa5biyfkBM28exQlr2NBs_6qO59rZ3gIXihWQa-SekMBiebOl9YKL6VNiOidpAcjCJpa_rv3d-DSQeeT46nGMsSDheLqR56Qt73HNUxA_Ktiat9sbzSMJ8CwZZmzhDxtR8CuLQCvsKTmMiFyMDYGnQ3v1MtFFPlGKb6yVOr5_77WG3JnMruc6un51ecX5C7eaYmaL8nRZr31ryCZ2tjXcbL8BomBHFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thiosulphate+sulfurtransferase%3A+Biological+roles+and+therapeutic+potential&rft.jtitle=Redox+biology&rft.au=Luo%2C+Yang&rft.au=Melhem%2C+Shaden&rft.au=Feelisch%2C+Martin&rft.au=Chatre%2C+Laurent&rft.date=2025-05-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=82&rft.spage=103595&rft_id=info:doi/10.1016%2Fj.redox.2025.103595&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_redox_2025_103595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon