3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety...
Saved in:
Published in | AAPS PharmSciTech Vol. 23; no. 4; p. 92 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
17.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena. |
---|---|
AbstractList | The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena. The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena. |
ArticleNumber | 92 |
Author | Kumar, Lalit Pavan Kalyan, BG |
Author_xml | – sequence: 1 givenname: BG surname: Pavan Kalyan fullname: Pavan Kalyan, BG organization: Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education – sequence: 2 givenname: Lalit surname: Kumar fullname: Kumar, Lalit email: lalit.kumar@manipal.edu organization: Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35301602$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctKxDAUDaL4_gEXkqULq8lNmzYuBHF8gaKgrkPN3NZIJ61JO-Dfm3ko6sJFSMh5wTlbZNW1DgnZ4-yIAyuOAwdIVcIAZieFpFghmzwTLFFKwOqP9wbZCuGNMRBciXWyISLAJYNN8ihG9MFb11tXn9CzrmusKXvbukCto082hAHphautQ4y0-pDe4ThSGjrCqTUYDmnpxnTkhzr-NHaK_mOHrFVlE3B3eW-T58uLp_Pr5Pb-6ub87DYxGYc-GUteqRQ4sioTCmQBeclQZDyXKpNMqlQIzoWSRlQFFFVmFJfqJTVSgWAR3CanC99ueJng2KDrfdnozttJ6T90W1r9G3H2VdftVBcKVM5nBgdLA9--Dxh6PbHBYNOUDtshaJApUyrPcojU_Z9Z3yFfTUZCsSAY34bgsdLG9vMmY7RtNGd6NppejKbjYHo-mi6iFP5Iv9z_FYmFKHSzXdDrt3bwLvb9n-oTu36m8Q |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2024_101789 crossref_primary_10_1016_j_scib_2024_11_006 crossref_primary_10_1177_00219983241304148 crossref_primary_10_3390_s24061797 crossref_primary_10_1016_j_amf_2024_200184 crossref_primary_10_3389_fphy_2024_1390321 crossref_primary_10_1039_D5BM00049A crossref_primary_10_3390_gels9120960 crossref_primary_10_1016_j_cpcardiol_2024_102568 crossref_primary_10_3389_fbioe_2024_1476510 crossref_primary_10_1016_j_mfglet_2024_09_045 crossref_primary_10_4155_ppa_2023_0018 crossref_primary_10_1021_acsami_3c01650 crossref_primary_10_1016_j_heliyon_2024_e24593 crossref_primary_10_1088_1748_605X_ada840 crossref_primary_10_2478_aoj_2023_0026 crossref_primary_10_1093_milmed_usaf078 crossref_primary_10_1002_adfm_202400608 crossref_primary_10_1038_s41598_024_71241_5 crossref_primary_10_1016_j_jddst_2025_106818 crossref_primary_10_1016_j_mtchem_2023_101818 crossref_primary_10_1016_j_heliyon_2024_e32664 crossref_primary_10_2147_IJN_S469302 crossref_primary_10_1007_s11095_023_03592_z crossref_primary_10_1016_j_ijbiomac_2023_128959 crossref_primary_10_1007_s10439_024_03479_z crossref_primary_10_1016_j_ijlmm_2024_05_012 crossref_primary_10_1021_acs_analchem_3c04478 crossref_primary_10_3390_jfb15010007 crossref_primary_10_2174_2666145416666221019105748 crossref_primary_10_3390_ijms232416190 crossref_primary_10_1016_j_bprint_2023_e00298 crossref_primary_10_3390_polym16192686 crossref_primary_10_33483_jfpau_1353676 crossref_primary_10_1208_s12249_023_02682_w crossref_primary_10_1155_2022_6833959 crossref_primary_10_3389_fbioe_2023_1256361 crossref_primary_10_1007_s10570_023_05267_9 crossref_primary_10_1038_s41598_024_57454_8 crossref_primary_10_3390_molecules28186442 crossref_primary_10_1177_07316844241247901 crossref_primary_10_1016_j_jmbbm_2023_106224 crossref_primary_10_1016_j_atech_2024_100553 crossref_primary_10_1021_acsapm_4c02501 crossref_primary_10_1038_s41598_024_85077_6 crossref_primary_10_3390_bioengineering11030232 crossref_primary_10_1186_s12909_023_04508_6 crossref_primary_10_3390_biomimetics9070409 crossref_primary_10_1002_adem_202301074 crossref_primary_10_1186_s12951_024_02362_2 crossref_primary_10_1007_s00170_022_10540_5 crossref_primary_10_1016_j_cirp_2023_05_005 crossref_primary_10_1016_j_icheatmasstransfer_2024_107859 crossref_primary_10_1089_ten_teb_2023_0129 crossref_primary_10_3390_s23177524 crossref_primary_10_1002_adfm_202420369 crossref_primary_10_3390_bios14060301 crossref_primary_10_1016_j_mtcomm_2023_105875 crossref_primary_10_1051_bioconf_20248601013 crossref_primary_10_3389_fbioe_2023_1117555 crossref_primary_10_1016_j_jddst_2024_105839 crossref_primary_10_1016_j_ajps_2023_100812 crossref_primary_10_3390_biomimetics7040151 crossref_primary_10_3390_ijms24054312 crossref_primary_10_37349_eff_2024_00045 crossref_primary_10_3390_bioengineering10080910 crossref_primary_10_2174_0118750362335415240909061539 crossref_primary_10_1016_j_ijbiomac_2023_126287 crossref_primary_10_3390_cancers15215269 |
Cites_doi | 10.1016/B978-0-12-813477-1.00012-8 10.1016/J.MSEC.2017.02.094 10.3390/PHARMACEUTICS11060274 10.1016/J.DRUDIS.2020.07.007 10.1016/J.IJPHARM.2018.05.044 10.3348/KJR.2019.0625 10.1016/J.IJBIOMAC.2020.11.010 10.1016/J.IJPHARM.2020.119594 10.1021/ACS.MOLPHARMACEUT.1C00557 10.1111/JOCS.12812 10.1007/S10570-020-03526-7 10.1038/s41598-017-00690-y 10.1088/1758-5082/3/3/034113 10.1093/RB/RBAB047 10.1155/2021/1301028 10.3390/PHARMACEUTICS11120645 10.3390/PHARMACEUTICS12020166 10.1126/SCIADV.AAT2544 10.1016/J.IJPHARM.2017.09.003 10.3390/PHARMACEUTICS13091373 10.1002/MP.13058 10.1016/J.CELL.2016.05.082 10.1016/J.IJBIOMAC.2020.06.086 10.1002/ADFM.202105080 10.1002/ASE.1538 10.1016/J.MSEC.2020.111606 10.1016/J.BIOACTMAT.2018.05.006 10.1016/J.MSEC.2020.110625 10.1016/J.BIOTECHADV.2016.12.006 10.1007/s00170-020-06181-1/Published 10.1016/J.IJMECSCI.2019.06.007 10.3390/PHARMACEUTICS12010077 10.1016/J.BIOACTMAT.2020.10.021 10.1002/CNCY.21543 10.3390/PHARMACEUTICS10030122 10.1016/J.BIOMATERIALS.2015.09.044 10.1016/J.MATDES.2020.108757 10.1063/5.0001732 10.1111/JERD.12702 10.1039/C5CS00278H 10.3390/APP8091651 10.1038/s41598-020-68578-y 10.1038/s41598-020-61405-4 10.1063/5.0047183 10.1134/S1990519X21050059 10.1038/s41598-019-38565-z 10.3390/POLYM11020347 10.1016/J.COLSURFB.2021.111919 10.21203/rs.3.rs-861389/v1 10.1016/J.ACTBIO.2021.01.012 10.1016/J.JCOT.2018.04.008 10.1016/J.IJPHARM.2017.05.052 10.1002/ADHM.201801181 10.1016/J.IJPHARM.2020.119155 10.1088/1758-5090/7/3/035003 10.1016/J.JMBBM.2020.103649 10.1002/ADHM.201801631 10.1016/J.EJPB.2021.07.005 10.3390/PHARMACEUTICS11040148 10.3390/APP11209693 10.1002/MP.12644 10.3390/MI11090796 10.1016/J.DRUDIS.2016.04.006 10.1016/J.IJPHARM.2018.03.031 10.1056/NEJMP2006141/SUPPL_FILE/NEJMP2006141_DISCLOSURES.PDF 10.1088/0960-1317/25/8/085013 10.1016/J.IJPHARM.2018.09.013 10.1016/B978-0-323-66164-5.00001-5 10.1016/J.ADDR.2018.06.011 10.3390/PHARMACEUTICS12080738 10.1007/978-1-4939-2113-3_1 10.1126/SCIENCE.AAV9051 10.1088/1748-605X/AB7417 10.3390/PHARMACEUTICS12020105 10.1002/JCP.28558 10.1038/s41578-018-0034-7 10.1016/J.XPHS.2020.05.022/ATTACHMENT/C43C2951-100F-49D7-9553-B2180D3C524D/MMC1.DOCX 10.1371/JOURNAL.PONE.0083401 10.1002/ADHM.201801048 10.3390/JPM10010016 10.1159/000491860 10.4018/978-1-7998-4054-1.CH010 10.1021/CC010075E 10.1016/J.CARBPOL.2018.11.077 10.1208/S12249-020-01905-8 10.1016/J.ADDMA.2020.101071 10.1016/J.IJPHARM.2018.11.048 10.1039/C8RA04815K 10.1089/3DP.2015.0039 10.1186/S13036-015-0001-4 10.1080/10837450.2019.1684520 10.3390/MI9080374 10.1007/S10856-021-06509-7 10.1007/S11095-018-2454-X 10.1021/ACS.CHEMREV.7B00074 10.1002/ADMA.201501234 10.1016/J.BIOACTMAT.2017.11.008 10.1136/GUTJNL-2019-319960 10.1002/ADHM.202100523 10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF 10.1155/2019/6062381 10.1016/B978-0-12-800972-7.00013-X 10.1016/J.CIRP.2016.05.004 10.1016/J.DENTAL.2015.09.018 10.1016/J.BIOMATERIALS.2016.09.003 10.3390/APP11188584 10.3390/CELLS9030742 10.1016/J.CARBPOL.2020.116519 10.1038/NM0115-2 10.1080/03639045.2020.1734018 10.1007/S12015-021-10120-2 10.3390/POLYM12091872 10.1098/RSTB.2008.0289 10.1096/FJ.201901063RR 10.21873/INVIVO.11205 10.1016/J.AJPS.2018.11.008 10.3390/PHARMACEUTICS12010052 10.1007/978-3-319-56309-1 10.1097/JPO.0000000000000097 10.1186/S12951-021-01012-1 10.3390/BIOENGINEERING4040079 10.1016/J.IJPHARM.2021.120501 10.1016/J.JMRT.2020.08.039 10.1016/J.COMPOSITESB.2020.108057 10.1208/S12249-020-01790-1 10.1080/09506608.2015.1116649 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1208/s12249-022-02242-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1530-9932 |
ExternalDocumentID | PMC8929713 35301602 10_1208_s12249_022_02242_8 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Manipal Academy of Higher Education, Manipal – fundername: ; |
GroupedDBID | --- -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAWUL BGNMA C6C CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EMOBN ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HG6 HH5 HMJXF HRMNR IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9I O9J OK1 P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z87 ZMTXR ZOVNA ~A9 -Y2 2VQ 4.4 AANXM AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABULA ACBXY ACMFV ACSTC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW AOIJS ATHPR AYFIA BDATZ BSONS C1A CAG CITATION COF EJD EN4 FINBP FSGXE GX1 H13 HYE HZ~ LGEZI LOTEE NADUK NXXTH O9- OVD S1Z TEORI CGR CUY CVF ECM EIF NPM 7X8 5PM ABRTQ |
ID | FETCH-LOGICAL-c512t-d61f9421e0f53926827a0e3517695606943311396c3f828f5c9169b4c69230433 |
IEDL.DBID | C6C |
ISSN | 1530-9932 |
IngestDate | Thu Aug 21 18:17:28 EDT 2025 Fri Jul 11 16:19:59 EDT 2025 Wed Feb 19 02:23:58 EST 2025 Tue Jul 01 01:55:52 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Fri Feb 21 02:46:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | tissue engineering 3-dimensional printing medical devices drug designing disease modelling techniques of 3D printing |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-d61f9421e0f53926827a0e3517695606943311396c3f828f5c9169b4c69230433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doi.org/10.1208/s12249-022-02242-8 |
PMID | 35301602 |
PQID | 2640997572 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8929713 proquest_miscellaneous_2640997572 pubmed_primary_35301602 crossref_citationtrail_10_1208_s12249_022_02242_8 crossref_primary_10_1208_s12249_022_02242_8 springer_journals_10_1208_s12249_022_02242_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-17 |
PublicationDateYYYYMMDD | 2022-03-17 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | AAPS PharmSciTech |
PublicationTitleAbbrev | AAPS PharmSciTech |
PublicationTitleAlternate | AAPS PharmSciTech |
PublicationYear | 2022 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | VaidyaMStartups tout commercially 3D-printed tissue for drug screeningNat Med20152121:CAS:528:DC%2BC2MXkslygsQ%3D%3D10.1038/NM0115-225569539 BegSAlmalkiWHMalikAFarhanMAatifMRahmanZAlruwailiNKAlrobaianMTariqueMRahmanM3D printing for drug delivery and biomedical applicationsDrug Discov Today202025166816811:CAS:528:DC%2BB3cXhsVeqsrjJ10.1016/J.DRUDIS.2020.07.00732687871 GaoCWangCJinHWangZLiZShiCLengYYangFLiuHWangJAdditive manufacturing technique-designed metallic porous implants for clinical application in orthopedicsRSC Adv2018825210252271:CAS:528:DC%2BC1cXhtlajtr7M10.1039/C8RA04815K DaikuaraLYChenXYueZSkropetaDWoodFMFearMWWallaceGG3D Bioprinting constructs to facilitate skin regenerationAdv Funct Mater20212105080210508010.1002/ADFM.202105080 HonigmannPSharmaNSchumacherRRueeggJHaefeliMThieringerFIn-hospital 3D printed scaphoid prosthesis using medical-grade polyetheretherketone (PEEK) BiomaterialBiomed Res Int20212021171:CAS:528:DC%2BB3MXhtlWgu7zJ10.1155/2021/1301028 AshammakhiNHasanAKaarelaOByambaaBSheikhiAGaharwarAKKhademhosseiniAAdvancing frontiers in bone bioprintingAdv Healthc Mater20198180104810.1002/ADHM.201801048 MartinezPRGoyanesABasitAWGaisfordSFabrication of drug-loaded hydrogels with stereolithographic 3D printingInt J Pharm20175323133171:CAS:528:DC%2BC2sXhsFSlsrjM10.1016/J.IJPHARM.2017.09.00328888978 ChuHYangWSunLCaiSYangRLiangW4D printing: a review on recent progressesMicromachines20201179610.3390/MI110907967570144 JabbariO aSalehWKAPatelAPIgoSRReardonMJUse of three-dimensional models to assist in the resection of malignant cardiac tumorsJ Card Surg20163158158310.1111/JOCS.1281227455392 JayanathSAchuthanAA computationally efficient hybrid model for simulating the additive manufacturing process of metalsInt J Mech Sci201916025526910.1016/J.IJMECSCI.2019.06.007 GaoGAhnMChoWWKimBSChoDW3D printing of pharmaceutical application: drug screening and drug deliveryPharmaceutics20211313731:CAS:528:DC%2BB3MXis1Smt7%2FI10.3390/PHARMACEUTICS13091373345754488465948 BaiXGaoMSyedSZhaungJXuXZhangXQBioactive hydrogels for bone regenerationBioactive Materials2018340141710.1016/J.BIOACTMAT.2018.05.006300031796038268 Zhou H, Bhaduri SB. 3D printing in the research and development of medical devices. Biomaterials in Translational Medicine: A Biomaterials Approach 2019:269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8. SubramaniamSFangYHSivasubramanianSLinFHLinC pHydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regenerationBiomaterials201674991081:CAS:528:DC%2BC2MXhsFyqtr7M10.1016/J.BIOMATERIALS.2015.09.04426454048 TebyanianHKaramiANouraniMRMotavallianEBarkhordariAYazdanianMSeifalianALung tissue engineering: an updateJ Cell Physiol201923419256192701:CAS:528:DC%2BC1MXntFKrsbg%3D10.1002/JCP.2855830972749 VazVMKumarL3D printing as a promising tool in personalized medicineAAPS PharmSciTech202122491:CAS:528:DC%2BB3MXjsVGmu7o%3D10.1208/S12249-020-01905-833458797 AwadAFinaFTrenfieldSJPatelPGoyanesAGaisfordS3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technologyPharmaceutics2019111481:CAS:528:DC%2BC1MXisVSrtb7O10.3390/PHARMACEUTICS110401486523578 AsmariaTSajutiDAinK3D printed PLA of gallbladder for virtual surgery planningAIP Conf Proc202022321:CAS:528:DC%2BB3cXhsVGntb%2FN10.1063/5.0001732 HospodiukMDeyMSosnoskiDOzbolatITThe bioink: a comprehensive review on bioprintable materialsBiotechnol Adv2017352172391:CAS:528:DC%2BC2sXnvVaisg%3D%3D10.1016/J.BIOTECHADV.2016.12.00628057483 FengLLiangSZhouYLuoYChenRHuangYChenYXuMYaoRThree-dimensional printing of hydrogel scaffolds with hierarchical structure for scalable stem cell cultureACS Biomater Sci Eng20206299530041:CAS:528:DC%2BB3cXnsVCgt7s%3D10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF33463285 GrauerDQuality in orthodontics: the role of customized appliancesJ Esthet Restor Dent20213325325810.1111/JERD.1270233410248 KarayelEBozkurtYAdditive manufacturing method and different welding applicationsJ Mater Res Technol2020911424114381:CAS:528:DC%2BB3cXhs1GrtL3E10.1016/J.JMRT.2020.08.039 DickmanCTDRussoVThainKPanSBeyerSTWalusKGetsiosSMohamedTWadsworthSJFunctional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technologyFASEB J202034165216641:CAS:528:DC%2BB3cXhvFeisLc%3D10.1096/FJ.201901063RR31914670 JamrózWSzafraniecJKurekMJachowiczR3D printing in pharmaceutical and medical applications – recent achievements and challengesPharm Res201835917610.1007/S11095-018-2454-X299984056061505 Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9. https://doi.org/10.1186/S13036-015-0001-4. Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12. https://doi.org/10.3390/PHARMACEUTICS12010077. ZhangYSArneriABersiniSShinSRZhuKGoli-MalekebadiZKhademhosseiniABioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chipBiomaterials201611045591:CAS:528:DC%2BC28XhsVyjsLzO10.1016/J.BIOMATERIALS.2016.09.003277108325198581 HuangLYuanWHongYFanSYaoXRenT3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cellsCellulose20202824125710.1007/S10570-020-03526-733132545 HighleyCBRodellCBBurdickJADirect 3D printing of shear-thinning hydrogels into self-healing hydrogelsAdv Mater201527507550791:CAS:528:DC%2BC2MXhtFOrtb%2FE10.1002/ADMA.20150123426177925 MaoQWangYLiYJuengpanichSLiWChenMYinJFuJCaiXFabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprintingMater Sci Eng C20201091106251:CAS:528:DC%2BB3cXhtFert7g%3D10.1016/J.MSEC.2020.110625 ZhangWZhaoWLiQZhaoDQuJYuanZ3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structuresJ Nanobiotechnology20211912010.1186/S12951-021-01012-1 Khorram Niaki M, Nonino F. The management of additive manufacturing. Springer, Cham. 2018;1860–5168. https://doi.org/10.1007/978-3-319-56309-1. WalczakRAdamskiKInkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chipsJ Micromech Microeng2015251:CAS:528:DC%2BC28XitFKqurrF10.1088/0960-1317/25/8/085013 ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFDesign for additive manufacturing: trends, opportunities, considerations, and constraintsCIRP Ann20166573776010.1016/J.CIRP.2016.05.004 Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK. Polymers for Bioprinting. Essentials of 3D Biofabrication and. Translation. 2015:229–48. https://doi.org/10.1016/B978-0-12-800972-7.00013-X. ChenYBianLZhouHWuDXuJGuCUsefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgerySci Rep2020101:CAS:528:DC%2BB3cXhsVWhsb7L10.1038/s41598-020-68578-y326696417363793 LamichhaneSBashyalSKeumTNohGSeoJEBastolaRChoiJSohnDHLeeSComplex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry?Asian J Pharm Sci20191446547910.1016/J.AJPS.2018.11.008321044757032174 KimIGParkSALeeS-HChoiJSChoHLeeSJTransplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytesSci Rep20201043261:CAS:528:DC%2BB3cXlvVOjtbc%3D10.1038/s41598-020-61405-4321524757062776 Gibson I, Rosen D, Stucker B. Introduction and basic principles. Additive Manufacturing Technologies 2015:1–18. https://doi.org/10.1007/978-1-4939-2113-3_1. AwadAFinaFGoyanesAGaisfordSBasitAW3D printing: principles and pharmaceutical applications of selective laser sinteringInt J Pharm20205861195941:CAS:528:DC%2BB3cXhtlCktL7M10.1016/J.IJPHARM.2020.11959432622811 XingJ-FZhengM-LDuanX-MTwo-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug deliveryChem Soc Rev201544503150391:CAS:528:DC%2BC2MXoslCgs7o%3D10.1039/C5CS00278H25992492 IsaevaEVBeketovEEYuzhakovVVArguchinskayaNVKiselAAMalakhovEPThe use of collagen with high concentration in cartilage tissue engineering by means of 3D-bioprintingCell Tissue Biol202115549350210.1134/S1990519X21050059 BachtiarEOErolOMillrodMTaoRGraciasDHRomerLHKangSH3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applicationsJ Mech Behav Biomed Mater20201041036491:CAS:528:DC%2BB3cXjtFeqt7Y%3D10.1016/J.JMBBM.2020.103649321744077078069 ArshadMSShahzadAAbbasNAlAsiriAHussainAKucukIPreparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approachPharm Dev Technol2019251972051:CAS:528:DC%2BC1MXitFSjtrfN10.1080/10837450.2019.168452031638453 LiuJSunLXuWWangQYuSSunJCurrent advances and future perspectives of 3D printing natural-derived biopolymersCarbohydr Polym20192072973161:CAS:528:DC%2BC1cXisVemt7vF10.1016/J.CARBPOL.2018.11.07730600012 OzbolatITPengWOzbolatVApplication areas of 3D bioprintingDrug Discov Today201621125712711:CAS:528:DC%2BC28Xmtlegs7k%3D10.1016/J.DRUDIS.2016.04.00627086009 GardinCFerroniLLatremouilleCChachquesJCMitrečićDZavanBRecent applications of three dimensional printing in cardiovascular medicineCells202097421:CAS:528:DC%2BB3cXhsVShurrI10.3390/CELLS90307427140676 CleversHModeling development and disease with organoidsCell2016165158615971:CAS:528:DC%2BC28XhtVWlurvN10.1016/J.CELL.2016.05.08227315476 DumpaNButreddyAWangHKomanduriNBandariSRepkaMA3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modelingInt J Pharm20216001205011:CAS:528:DC%2BB3MXnvFGjtLo%3D10.1016/J.IJPHARM.2021.12050133746011 ZunigaJM3D printed antibacterial prosthesesAppl Sci20188165110.3390/APP8091651 EleftheriadisGKMonouPKBouropoulosNBoetkerJRantanenJJacobsenJViziriana I Serris (2242_CR40) 2020; 21 IT Ozbolat (2242_CR99) 2016; 21 CTD Dickman (2242_CR50) 2020; 34 J Lee (2242_CR86) 2020; 12 NR Dumpa (2242_CR93) 2020; 12 W Zhang (2242_CR38) 2021; 19 2242_CR22 MH Nadhif (2242_CR102) 2021; 2344 N Liu (2242_CR59) 2021; 6 G Gao (2242_CR95) 2021; 13 2242_CR26 2242_CR29 HW Goo (2242_CR60) 2020; 21 F Fina (2242_CR20) 2018; 547 X Ma (2242_CR98) 2018; 132 E Karayel (2242_CR9) 2020; 9 K Liang (2242_CR92) 2018; 4 2242_CR31 A Awad (2242_CR117) 2019; 11 J-H Park (2242_CR69) 2019; 9 JM Zuniga (2242_CR78) 2018; 8 M Vivero-Lopez (2242_CR123) 2021; 119 E Ilhan (2242_CR103) 2020; 161 G Bianchi (2242_CR83) 2021; 11 R Thakkar (2242_CR21) 2021; 18 2242_CR3 J-F Xing (2242_CR16) 2015; 44 2242_CR34 J Ma (2242_CR54) 2021; 10 V Filippou (2242_CR68) 2018; 45 2242_CR2 2242_CR1 X Bai (2242_CR45) 2018; 3 2242_CR7 2242_CR5 M Singh (2242_CR41) 2021; 32 2242_CR4 C Gao (2242_CR8) 2018; 8 2242_CR81 2242_CR87 D Duin (2242_CR35) 2019; 8 SS Banerjee (2242_CR105) 2019; 11 J Choi (2242_CR125) 2015; 2 A Awad (2242_CR19) 2020; 586 H Chu (2242_CR124) 2020; 11 M Javaid (2242_CR110) 2018; 9 VM Vaz (2242_CR126) 2021; 22 C Gardin (2242_CR62) 2020; 9 Y Chen (2242_CR82) 2020; 10 2242_CR88 P Shende (2242_CR129) 2021; 17 GK Eleftheriadis (2242_CR114) 2020; 109 N Dumpa (2242_CR130) 2021; 600 EV Isaeva (2242_CR48) 2021; 15 YS Zhang (2242_CR64) 2016; 110 SY Hann (2242_CR52) 2021; 123 AA Konta (2242_CR12) 2017; 4 EO Bachtiar (2242_CR106) 2020; 104 I Yu (2242_CR90) 2020; 10 UM Musazzi (2242_CR91) 2018; 551 JM Seok (2242_CR46) 2021; 205 TT Yan (2242_CR94) 2020; 46 MK O’Reilly (2242_CR111) 2016; 9 T Asmaria (2242_CR39) 2020; 2232 X-Y Liu (2242_CR58) 2021; 8 2242_CR13 PR Martinez (2242_CR118) 2017; 532 2242_CR15 CPP Pere (2242_CR119) 2018; 544 MK Thompson (2242_CR10) 2016; 65 X Xu (2242_CR18) 2020; 33 A Almeida (2242_CR37) 2021; 167 F Afghah (2242_CR55) 2020; 15 A Melocchi (2242_CR84) 2020; 579 S Derakhshanfar (2242_CR42) 2018; 3 Q Mao (2242_CR66) 2020; 109 IG Kim (2242_CR70) 2020; 10 K Arai (2242_CR30) 2011; 3 S Infanger (2242_CR115) 2019; 555 W Ye (2242_CR57) 2020; 192 SE Kim (2242_CR112) 2018; 32 L Feng (2242_CR109) 2020; 6 N Ashammakhi (2242_CR44) 2019; 8 H Yang (2242_CR65) 2021; 70 SC Ligon (2242_CR24) 2017; 117 R Walczak (2242_CR28) 2015; 25 JH Song (2242_CR32) 2009; 364 P Honigmann (2242_CR79) 2021; 2021 J Liu (2242_CR33) 2019; 207 C Hazelaar (2242_CR122) 2018; 45 2242_CR73 CB Highley (2242_CR25) 2015; 27 M Vaidya (2242_CR96) 2015; 21 B Zhang (2242_CR101) 2018; 3 MS Arshad (2242_CR113) 2019; 25 S Beg (2242_CR127) 2020; 25 S Jayanath (2242_CR11) 2019; 160 R Thakkar (2242_CR89) 2020; 12 S Liu (2242_CR56) 2021; 166 S Subramaniam (2242_CR36) 2016; 74 ML Ranney (2242_CR104) 2020; 382 DC Ioan (2242_CR120) 2019; 2019 D Grauer (2242_CR74) 2021; 33 LY Daikuara (2242_CR53) 2021; 2105080 MM Mohebi (2242_CR27) 2002; 4 AV Healy (2242_CR17) 2019; 11 AQ Vo (2242_CR85) 2020; 246 A Thurzo (2242_CR76) 2021; 11 W Jamróz (2242_CR116) 2017; 533 JM Zuniga (2242_CR77) 2016; 28 2242_CR49 F Brugè (2242_CR107) 2014; 9 N Neve (2242_CR108) 2021; 5 JW Stansbury (2242_CR23) 2016; 32 M Hospodiuk (2242_CR43) 2017; 35 2242_CR51 A Lee (2242_CR63) 2019; 365 XP Tan (2242_CR121) 2017; 76 R Xiao (2242_CR80) 2020; 193 B Nelson (2242_CR97) 2015; 123 X Liu (2242_CR67) 2019; 8 O a Jabbari (2242_CR61) 2016; 31 H Clevers (2242_CR100) 2016; 165 S Lamichhane (2242_CR128) 2019; 14 DF Redaelli (2242_CR75) 2020; 111 D Nguyen (2242_CR47) 2017; 7 H Tebyanian (2242_CR71) 2019; 234 SA Stewart (2242_CR14) 2020; 12 L Huang (2242_CR72) 2020; 28 W Jamróz (2242_CR6) 2018; 35 |
References_xml | – reference: IlhanECesurSGulerETopalFAlbayrakDGuncuMMCamMETaskinTSasmazelHTAksuBOktarFNGunduzODevelopment of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing materialInt J Biol Macromol2020161104010541:CAS:528:DC%2BB3cXht1CqtLfP10.1016/J.IJBIOMAC.2020.06.08632544577 – reference: SubramaniamSFangYHSivasubramanianSLinFHLinC pHydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regenerationBiomaterials201674991081:CAS:528:DC%2BC2MXhsFyqtr7M10.1016/J.BIOMATERIALS.2015.09.04426454048 – reference: ZunigaJMPeckJSrivastavaRKatsavelisDCarsonAAn open source 3D-printed transitional hand prosthesis for childrenJ Prosthet Orthot20162810310810.1097/JPO.0000000000000097 – reference: YanTTLvZFTianPLinMMLinWHuangSYSemi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacyDrug Dev Ind Pharm2020465315381:CAS:528:DC%2BB3cXkslaqtr4%3D10.1080/03639045.2020.173401832141352 – reference: BrugèFTianoLAstolfiPEmanuelliMDamianiEPrevention of UVA-induced oxidative damage in human dermal fibroblasts by new UV filters, assessed using a novel in vitro experimental systemPLoS ONE2014910.1371/JOURNAL.PONE.0083401244092823883645 – reference: PereCPPEconomidouSNLallGZiraudCBoatengJSAlexanderBDLamprouDADouroumisD3D printed microneedles for insulin skin deliveryInt J Pharm20185444254321:CAS:528:DC%2BC1cXmsVentr8%3D10.1016/J.IJPHARM.2018.03.03129555437 – reference: NadhifMHAssyarifyHIrsyadMPramestiARSuhaeriMRecent advances in 3D printed wound dressingsAIP Conf Proc202123441:CAS:528:DC%2BB3MXhvVWjurjJ10.1063/5.0047183 – reference: IoanDCRăuITihanGTZgârianRGGhicaMVAlbu KayaMGDinu-PîrvuECPiroxicam-collagen-based sponges for medical applicationsInt J Polym Sci20192019171:CAS:528:DC%2BC1MXit1WjtbzP10.1155/2019/6062381 – reference: GooHWParkSJYooS-JAdvanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed reality, virtual reality, and three-dimensional printingKorean J Radiol20202113314510.3348/KJR.2019.0625319975896992436 – reference: YangHSunLPangYHuDXuHMaoSPengWWangYXuYZhengYCduSZhaoHChiTLuXSangXZhongSWangXZhangHHuangPSunWMaoYThree-dimensional bioprinted hepatorganoids prolong survival of mice with liver failureGut2021705675741:CAS:528:DC%2BB3MXnsFOns7w%3D10.1136/GUTJNL-2019-31996032434830 – reference: LeeJSongCNohISongSRheeYSHot-melt 3D extrusion for the fabrication of customizable modified-release solid dosage formsPharmaceutics2020127381:CAS:528:DC%2BB3cXisFGnsrrI10.3390/PHARMACEUTICS120807387464107 – reference: AsmariaTSajutiDAinK3D printed PLA of gallbladder for virtual surgery planningAIP Conf Proc202022321:CAS:528:DC%2BB3cXhsVGntb%2FN10.1063/5.0001732 – reference: VaidyaMStartups tout commercially 3D-printed tissue for drug screeningNat Med20152121:CAS:528:DC%2BC2MXkslygsQ%3D%3D10.1038/NM0115-225569539 – reference: CleversHModeling development and disease with organoidsCell2016165158615971:CAS:528:DC%2BC28XhtVWlurvN10.1016/J.CELL.2016.05.08227315476 – reference: MaJQinCWuJZhangHZhuangHZhangMZhangZMaLWangXMaBChangJWuC3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regenerationAdv Healthc Mater20211021005231:CAS:528:DC%2BB3MXhtFektLjK10.1002/ADHM.202100523 – reference: Could 3D printing change the world? Technology & Innovation. Atlantic Council. 2011. https://www.atlanticcouncil.org/in-depth-research-reports/issuebrief/could-3d-printing-change-the-world/. Accessed 22 Oct 2021. – reference: AlmeidaALinaresVMora-CastañoGCasasMCaraballoISarmentoB3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micellesEur J Pharm Biopharm202116748561:CAS:528:DC%2BB38XnsFKmug%3D%3D10.1016/J.EJPB.2021.07.00534280496 – reference: StewartSADomínguez-RoblesJMcIlorumVJMancusoELamprouDADonnellyRFDevelopment of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printingPharmaceutics2020121051:CAS:528:DC%2BB3cXhtlSjtr7K10.3390/PHARMACEUTICS120201057076405 – reference: VazVMKumarL3D printing as a promising tool in personalized medicineAAPS PharmSciTech202122491:CAS:528:DC%2BB3MXjsVGmu7o%3D10.1208/S12249-020-01905-833458797 – reference: FinaFGoyanesAMadlaCMAwadATrenfieldSJKuekJMPatelPGaisfordSBasitAW3D printing of drug-loaded gyroid lattices using selective laser sinteringInt J Pharm201854744521:CAS:528:DC%2BC1cXhtVWmsLnE10.1016/J.IJPHARM.2018.05.04429787894 – reference: GaoGAhnMChoWWKimBSChoDW3D printing of pharmaceutical application: drug screening and drug deliveryPharmaceutics20211313731:CAS:528:DC%2BB3MXis1Smt7%2FI10.3390/PHARMACEUTICS13091373345754488465948 – reference: Sahini DK, Ghose J, Jha SK, Behera A, Mandal A. Optimization and simulation of additive manufacturing processes. Additive Manufacturing Applications for Metals and Composites. 2020:187–209. https://doi.org/10.4018/978-1-7998-4054-1.CH010. – reference: AfghahFUllahMSyed Monfared ZanjaniJAkkus SutPSenOEmanetM3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineeringBiomedical Materials (Bristol, England)2020151:CAS:528:DC%2BB3cXhvFWktrnL10.1088/1748-605X/AB7417 – reference: Khorram Niaki M, Nonino F. The management of additive manufacturing. Springer, Cham. 2018;1860–5168. https://doi.org/10.1007/978-3-319-56309-1. – reference: GaoCWangCJinHWangZLiZShiCLengYYangFLiuHWangJAdditive manufacturing technique-designed metallic porous implants for clinical application in orthopedicsRSC Adv2018825210252271:CAS:528:DC%2BC1cXhtlajtr7M10.1039/C8RA04815K – reference: ZhangWZhaoWLiQZhaoDQuJYuanZ3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structuresJ Nanobiotechnology20211912010.1186/S12951-021-01012-1 – reference: ChuHYangWSunLCaiSYangRLiangW4D printing: a review on recent progressesMicromachines20201179610.3390/MI110907967570144 – reference: IsaevaEVBeketovEEYuzhakovVVArguchinskayaNVKiselAAMalakhovEPThe use of collagen with high concentration in cartilage tissue engineering by means of 3D-bioprintingCell Tissue Biol202115549350210.1134/S1990519X21050059 – reference: YuIChenRKA feasibility study of an extrusion-based fabrication process for personalized drugsJ Pers Med2020101610.3390/JPM100100167151602 – reference: O’ReillyMKReeseSHerlihyTGeogheganTCantwellCPFeeneyRNMFabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicineAnat Sci Educ20169717910.1002/ASE.153826109268 – reference: HealyAVFeunmayorEDoranPGeeverLMHigginbonthamCLLyonsJGAdditive manufacturing of personalized pharmaceutical dosage forms via stereolithographyPharmaceutics2019116451:CAS:528:DC%2BB3cXpt12quro%3D10.3390/PHARMACEUTICS111206456955879 – reference: Ferracini R, Martinez Herreros I, Russo A, Casalini T, Rossi F, Perale G. Scaffolds as structural tools for bone-targeted drug delivery. Pharmaceutics. 2018;10. https://doi.org/10.3390/PHARMACEUTICS10030122. – reference: DumpaNRBandariSRepkaMANovel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printingPharmaceutics202012521:CAS:528:DC%2BB3cXhtVGksrvI10.3390/PHARMACEUTICS12010052 – reference: XuXRobles-MartinezPMadlaCMJoubertFGoyanesABasitAWGaisfordSStereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reactionAdditive Manufacturing2020331010711:CAS:528:DC%2BB3cXhtVOjtbnJ10.1016/J.ADDMA.2020.101071 – reference: LiuJSunLXuWWangQYuSSunJCurrent advances and future perspectives of 3D printing natural-derived biopolymersCarbohydr Polym20192072973161:CAS:528:DC%2BC1cXisVemt7vF10.1016/J.CARBPOL.2018.11.07730600012 – reference: Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. 2016;61:315–60. https://doi.org/10.1080/09506608.2015.1116649. – reference: WalczakRAdamskiKInkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chipsJ Micromech Microeng2015251:CAS:528:DC%2BC28XitFKqurrF10.1088/0960-1317/25/8/085013 – reference: XiaoRFengXFanRChenSSongJGaoLLuY3D printing of titanium-coated gradient composite lattices for lightweight mandibular prosthesisCompos Part B20201931080571:CAS:528:DC%2BB3cXhsVGntrnI10.1016/J.COMPOSITESB.2020.108057 – reference: ThurzoAKočišFNovákBCzakoLVargaIThree-dimensional modeling and 3D printing of biocompatible orthodontic power-arm design with clinical applicationAppl Sci202111969310.3390/APP11209693 – reference: SeokJMJeongJELeeSJImSHLeeJHKimWDLeeKParkSABio-plotted hydrogel scaffold with core and sheath strand-enhancing mechanical and biological properties for tissue regenerationColloids Surf B: Biointerfaces20212051119191:CAS:528:DC%2BB3MXhtlaisr3N10.1016/J.COLSURFB.2021.11191934126550 – reference: HospodiukMDeyMSosnoskiDOzbolatITThe bioink: a comprehensive review on bioprintable materialsBiotechnol Adv2017352172391:CAS:528:DC%2BC2sXnvVaisg%3D%3D10.1016/J.BIOTECHADV.2016.12.00628057483 – reference: Zhou H, Bhaduri SB. 3D printing in the research and development of medical devices. Biomaterials in Translational Medicine: A Biomaterials Approach 2019:269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8. – reference: DumpaNButreddyAWangHKomanduriNBandariSRepkaMA3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modelingInt J Pharm20216001205011:CAS:528:DC%2BB3MXnvFGjtLo%3D10.1016/J.IJPHARM.2021.12050133746011 – reference: JayanathSAchuthanAA computationally efficient hybrid model for simulating the additive manufacturing process of metalsInt J Mech Sci201916025526910.1016/J.IJMECSCI.2019.06.007 – reference: JavaidMHaleemAAdditive manufacturing applications in orthopaedics: a reviewJ Clin Orthop Trauma2018920220610.1016/J.JCOT.2018.04.008302021496128303 – reference: JabbariO aSalehWKAPatelAPIgoSRReardonMJUse of three-dimensional models to assist in the resection of malignant cardiac tumorsJ Card Surg20163158158310.1111/JOCS.1281227455392 – reference: Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12. https://doi.org/10.3390/PHARMACEUTICS12010077. – reference: KarayelEBozkurtYAdditive manufacturing method and different welding applicationsJ Mater Res Technol2020911424114381:CAS:528:DC%2BB3cXhs1GrtL3E10.1016/J.JMRT.2020.08.039 – reference: TebyanianHKaramiANouraniMRMotavallianEBarkhordariAYazdanianMSeifalianALung tissue engineering: an updateJ Cell Physiol201923419256192701:CAS:528:DC%2BC1MXntFKrsbg%3D10.1002/JCP.2855830972749 – reference: MelocchiAUboldiMMaroniAFoppoliAPaluganLZemaLGazzanigaA3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – a reviewInt J Pharm20205791191551:CAS:528:DC%2BB3cXksVOjuro%3D10.1016/J.IJPHARM.2020.11915532081794 – reference: HuangLYuanWHongYFanSYaoXRenT3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cellsCellulose20202824125710.1007/S10570-020-03526-733132545 – reference: LeeAHudsonARShiwarskiDJTashmanJWHintonTJYerneniSBlileyJMCampbellPGFeinbergAW3D bioprinting of collagen to rebuild components of the human heartScience20193654824871:CAS:528:DC%2BC1MXhsV2jsbzF10.1126/SCIENCE.AAV905131371612 – reference: Jin Q, Fu Y, Zhang G, Xu L, Jin G, Tang L, et al. Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle. Compos B Eng. 2022;234:109691. https://doi.org/10.21203/rs.3.rs-861389/v1. – reference: HannSYCuiHEsworthyTZhouXLeeS jPlesniakMWDual 3D printing for vascularized bone tissue regenerationActa Biomater20211232632741:CAS:528:DC%2BB3MXks1Cmsb0%3D10.1016/J.ACTBIO.2021.01.01233454383 – reference: HighleyCBRodellCBBurdickJADirect 3D printing of shear-thinning hydrogels into self-healing hydrogelsAdv Mater201527507550791:CAS:528:DC%2BC2MXhtFOrtb%2FE10.1002/ADMA.20150123426177925 – reference: Kondiah PJ, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics. 2020;12. https://doi.org/10.3390/PHARMACEUTICS12020166. – reference: NeveNThe future of cosmeceuticalsCOSSMA2021515716210.1159/000491860 – reference: SinghMJonnalagaddaSDesign and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applicationsJ Mater Sci Mater Med20213241:CAS:528:DC%2BB3MXotlGrtbo%3D10.1007/S10856-021-06509-7338303388032582 – reference: ZhangBKoroljALaiBFLRadisicMAdvances in organ-on-a-chip engineeringNat Rev Mater2018325727810.1038/s41578-018-0034-7 – reference: LigonSCLiskaRStampflJGurrMMulhauptRPolymers for 3D printing and customized additive manufacturingChem Rev201711710212102901:CAS:528:DC%2BC2sXht1eku7bP10.1021/ACS.CHEMREV.7B00074287566585553103 – reference: Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9. https://doi.org/10.1186/S13036-015-0001-4. – reference: RanneyMLGriffethVJhaAKCritical supply shortages — the need for ventilators and personal protective equipment during the COVID-19 pandemicN Engl J Med20203821:CAS:528:DC%2BB3cXovVSjsbY%3D10.1056/NEJMP2006141/SUPPL_FILE/NEJMP2006141_DISCLOSURES.PDF32212516 – reference: ParkJ-HYoonJ-KLeeJBShinYMLeeK-WBaeS-WExperimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytesSci Rep201991:CAS:528:DC%2BC1MXnslentLw%3D10.1038/s41598-019-38565-z307657606375946 – reference: NelsonB3-dimensional bioprinting makes its mark: new tissue and organ printing methods are yielding critical new tools for the laboratory and clinicCancer Cytopathology20151232310.1002/CNCY.21543 – reference: MaXLiuJZhuWTangMLawrenceNYuCGouMChenS3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modelingAdv Drug Deliv Rev20181322352511:CAS:528:DC%2BC1cXht12isL%2FI10.1016/J.ADDR.2018.06.011299359886226327 – reference: HonigmannPSharmaNSchumacherRRueeggJHaefeliMThieringerFIn-hospital 3D printed scaphoid prosthesis using medical-grade polyetheretherketone (PEEK) BiomaterialBiomed Res Int20212021171:CAS:528:DC%2BB3MXhtlWgu7zJ10.1155/2021/1301028 – reference: MohebiMMEvansJRGA drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramicsJ Comb Chem200242672741:CAS:528:DC%2BD38Xkt1aitrk%3D10.1021/CC010075E12099843 – reference: SerrisISerrisPFreyKMChoHDevelopment of 3D-printed layered PLGA films for drug delivery and evaluation of drug release behaviorsAAPS PharmSciTech2020212561:CAS:528:DC%2BB3cXhvVWjs7jF10.1208/S12249-020-01790-132888114 – reference: Vivero-LopezMXuXMurasAOteroAConcheiroAGaisfordSBasitAWAlvarez-LorenzoCGoyanesAAnti-biofilm multi drug-loaded 3D printed hearing aidsMater Sci Eng C20211191116061:CAS:528:DC%2BB3cXitlWntbnJ10.1016/J.MSEC.2020.111606 – reference: DerakhshanfarSMbeleckRXuKZhangXZhongWXingM3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advancesBioactive Materials2018314415610.1016/J.BIOACTMAT.2017.11.008297444525935777 – reference: HazelaarCvan EijnattenMDaheleMWolffJForouzanfarTSlotmanBVerbakelWFARUsing 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposesMed Phys2018459210010.1002/MP.1264429091278 – reference: RedaelliDFAbbateVStormFARoncaASorrentinoAde CapitaniCBiffiEAmbrosioLColomboGFraschiniP3D printing orthopedic scoliosis braces: a test comparing FDM with thermoformingInt J Adv Manuf Technol20201111707172010.1007/s00170-020-06181-1/Published – reference: MusazziUMSelminFOrtenziMAMohammedGKFranzéSMinghettiPCilurzoFPersonalized orodispersible films by hot melt ram extrusion 3D printingInt J Pharm201855152591:CAS:528:DC%2BC1cXhslWit7bP10.1016/J.IJPHARM.2018.09.01330205128 – reference: ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFDesign for additive manufacturing: trends, opportunities, considerations, and constraintsCIRP Ann20166573776010.1016/J.CIRP.2016.05.004 – reference: AwadAFinaFTrenfieldSJPatelPGoyanesAGaisfordS3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technologyPharmaceutics2019111481:CAS:528:DC%2BC1MXisVSrtb7O10.3390/PHARMACEUTICS110401486523578 – reference: KimSEShimKMJangKShimJHKangSSThree-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removalIn Vivo (Athens, Greece)201832637010.21873/INVIVO.11205 – reference: Merceron TK, Burt M, Seol Y-J, Kang H-W, Lee SJ, Yoo JJ, Atala A. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication. 2015;7. https://doi.org/10.1088/1758-5090/7/3/035003. – reference: JamrózWKurekMŁyszczarzESzafraniecJKnapik-KowalczukJSyrekKPaluchMJachowiczR3D printed orodispersible films with AripiprazoleInt J Pharm201753341342010.1016/J.IJPHARM.2017.05.05228552800 – reference: KimIGParkSALeeS-HChoiJSChoHLeeSJTransplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytesSci Rep20201043261:CAS:528:DC%2BB3cXlvVOjtbc%3D10.1038/s41598-020-61405-4321524757062776 – reference: ArshadMSShahzadAAbbasNAlAsiriAHussainAKucukIPreparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approachPharm Dev Technol2019251972051:CAS:528:DC%2BC1MXitFSjtrfN10.1080/10837450.2019.168452031638453 – reference: BachtiarEOErolOMillrodMTaoRGraciasDHRomerLHKangSH3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applicationsJ Mech Behav Biomed Mater20201041036491:CAS:528:DC%2BB3cXjtFeqt7Y%3D10.1016/J.JMBBM.2020.103649321744077078069 – reference: Robles-Martinez P, Xu X, Trenfield SJ, Awad A, Goyanes A, Telford R, Basit AW, Gaisford S. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11. https://doi.org/10.3390/PHARMACEUTICS11060274. – reference: LiuNYeXYaoBZhaoMWuPLiuGZhuangDJiangHChenXHeYHuangSZhuPAdvances in 3D bioprinting technology for cardiac tissue engineering and regenerationBioactive Materials20216138814011:CAS:528:DC%2BB3MXhtFKjsbnJ10.1016/J.BIOACTMAT.2020.10.02133210031 – reference: FilippouVTsoumpasCRecent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasoundMed Phys201845e740e76010.1002/MP.13058 – reference: ThakkarRPillaiARZhangJZhangYKulkarniVManiruzzamanMNovel on-demand 3-dimensional (3-D) printed tablets using fill density as an effective release-controlling toolPolymers20201218721:CAS:528:DC%2BB3cXhslGkurzF10.3390/POLYM120918727564432 – reference: NguyenDHäggDAForsmanAEkholmJNimkingratanaPBrantsingCCartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioinkSci Rep2017716581:CAS:528:DC%2BC2sXhs1ylurjI10.1038/s41598-017-00690-y283860585428803 – reference: GardinCFerroniLLatremouilleCChachquesJCMitrečićDZavanBRecent applications of three dimensional printing in cardiovascular medicineCells202097421:CAS:528:DC%2BB3cXhsVShurrI10.3390/CELLS90307427140676 – reference: LiangKCarmoneSBrambillaDLerouxJC3D printing of a wearable personalized oral delivery device: a first-in-human studySci Adv20184eaat254410.1126/SCIADV.AAT2544297502015942915 – reference: AshammakhiNHasanAKaarelaOByambaaBSheikhiAGaharwarAKKhademhosseiniAAdvancing frontiers in bone bioprintingAdv Healthc Mater20198180104810.1002/ADHM.201801048 – reference: ChenYBianLZhouHWuDXuJGuCUsefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgerySci Rep2020101:CAS:528:DC%2BB3cXhsVWhsb7L10.1038/s41598-020-68578-y326696417363793 – reference: InfangerSHaemmerliAIlievSBaierAStoyanovEQuodbachJPowder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binderInt J Pharm20195551982061:CAS:528:DC%2BC1cXitlSqt7nE10.1016/J.IJPHARM.2018.11.04830458260 – reference: EleftheriadisGKMonouPKBouropoulosNBoetkerJRantanenJJacobsenJVizirianakisISFatourosDGFabrication of mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printingJ Pharm Sci2020109275727661:CAS:528:DC%2BB3cXhtFKjur3E10.1016/J.XPHS.2020.05.022/ATTACHMENT/C43C2951-100F-49D7-9553-B2180D3C524D/MMC1.DOCX32497597 – reference: LiuX-YChenCXuH-HZhangYZhongLHuNJiaXLWangYWZhongKHLiuCZhuXMingDLiXHIntegrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injuryRegen Biomater2021812010.1093/RB/RBAB047 – reference: ZhangYSArneriABersiniSShinSRZhuKGoli-MalekebadiZKhademhosseiniABioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chipBiomaterials201611045591:CAS:528:DC%2BC28XhsVyjsLzO10.1016/J.BIOMATERIALS.2016.09.003277108325198581 – reference: ThakkarRDanielADavis Jr, Robert O. Williams I, Maniruzzaman M. Selective laser sintering of a photosensitive drug: impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage formsMol Pharm202118389439081:CAS:528:DC%2BB3MXitVakur7J10.1021/ACS.MOLPHARMACEUT.1C0055734529431 – reference: LiuXCarterS-SDRenesMJKimJRojas-CanalesDMPenkoDAngusCBeirneSDrogemullerCJYueZCoatesPTWallaceGGDevelopment of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructsAdv Healthc Mater20198180118110.1002/ADHM.201801181 – reference: OzbolatITPengWOzbolatVApplication areas of 3D bioprintingDrug Discov Today201621125712711:CAS:528:DC%2BC28Xmtlegs7k%3D10.1016/J.DRUDIS.2016.04.00627086009 – reference: DickmanCTDRussoVThainKPanSBeyerSTWalusKGetsiosSMohamedTWadsworthSJFunctional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technologyFASEB J202034165216641:CAS:528:DC%2BB3cXhvFeisLc%3D10.1096/FJ.201901063RR31914670 – reference: TanXPTanYJChowCSLTorSBYeongWYMetallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibilityMater Sci Eng C201776132813431:CAS:528:DC%2BC2sXktVCgu7g%3D10.1016/J.MSEC.2017.02.094 – reference: SongJHMurphyRJNarayanRDaviesGBHBiodegradable and compostable alternatives to conventional plasticsPhilos Trans R Soc B Biol Sci2009364212721391:CAS:528:DC%2BD1MXpt1SktL4%3D10.1098/RSTB.2008.0289 – reference: VoAQZhangJNyavanandiDBandariSRepkaMAHot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizineCarbohydr Polym20202461165191:CAS:528:DC%2BB3cXht1Ogsb7F10.1016/J.CARBPOL.2020.116519327472297403534 – reference: GrauerDQuality in orthodontics: the role of customized appliancesJ Esthet Restor Dent20213325325810.1111/JERD.1270233410248 – reference: MartinezPRGoyanesABasitAWGaisfordSFabrication of drug-loaded hydrogels with stereolithographic 3D printingInt J Pharm20175323133171:CAS:528:DC%2BC2sXhsFSlsrjM10.1016/J.IJPHARM.2017.09.00328888978 – reference: BaiXGaoMSyedSZhaungJXuXZhangXQBioactive hydrogels for bone regenerationBioactive Materials2018340141710.1016/J.BIOACTMAT.2018.05.006300031796038268 – reference: ChoiJKwonOCJoWLeeHJMoonMW4D Printing technology: a review3D Print Addit Manuf2015215916710.1089/3DP.2015.0039 – reference: MaoQWangYLiYJuengpanichSLiWChenMYinJFuJCaiXFabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprintingMater Sci Eng C20201091106251:CAS:528:DC%2BB3cXhtFert7g%3D10.1016/J.MSEC.2020.110625 – reference: LiuSSunLZhangHHuQWangYRamalingamMHigh-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineeringInt J Biol Macromol2021166128012911:CAS:528:DC%2BB3cXitlelsLjM10.1016/J.IJBIOMAC.2020.11.01033159941 – reference: BanerjeeSSBurbineSShivaprakashNKMeadJ3D-printable PP/SEBS thermoplastic elastomeric blends: preparation and propertiesPolymers20191134710.3390/POLYM110203476419175 – reference: ShendePTrivediR3D printed bioconstructs: regenerative modulation for genetic expressionStem Cell Rev Rep2021171239125010.1007/S12015-021-10120-2334548527811392 – reference: JamrózWSzafraniecJKurekMJachowiczR3D printing in pharmaceutical and medical applications – recent achievements and challengesPharm Res201835917610.1007/S11095-018-2454-X299984056061505 – reference: AwadAFinaFGoyanesAGaisfordSBasitAW3D printing: principles and pharmaceutical applications of selective laser sinteringInt J Pharm20205861195941:CAS:528:DC%2BB3cXhtlCktL7M10.1016/J.IJPHARM.2020.11959432622811 – reference: BianchiGFrisoniTSpazzoliBLuccheseADonatiDComputer assisted surgery and 3D printing in orthopaedic oncology: a lesson learned by cranio-maxillo-facial surgeryAppl Sci20211185841:CAS:528:DC%2BB3MXit1GqtL3O10.3390/APP11188584 – reference: AraiKIwangaSTodaHGenciCNishiyamiYNakamuraMThree-dimensional inkjet biofabrication based on designed imagesBiofabrication201130341131:CAS:528:DC%2BC3MXhtlarurfP10.1088/1758-5082/3/3/03411321900730 – reference: YeWLiHYuKXieCWangPZhengYZhangPXiuJYangYZhangFHeYGaoQ3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channelsMater Des20201921087571:CAS:528:DC%2BB3cXosVajsrk%3D10.1016/J.MATDES.2020.108757 – reference: FengLLiangSZhouYLuoYChenRHuangYChenYXuMYaoRThree-dimensional printing of hydrogel scaffolds with hierarchical structure for scalable stem cell cultureACS Biomater Sci Eng20206299530041:CAS:528:DC%2BB3cXnsVCgt7s%3D10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF33463285 – reference: BegSAlmalkiWHMalikAFarhanMAatifMRahmanZAlruwailiNKAlrobaianMTariqueMRahmanM3D printing for drug delivery and biomedical applicationsDrug Discov Today202025166816811:CAS:528:DC%2BB3cXhsVeqsrjJ10.1016/J.DRUDIS.2020.07.00732687871 – reference: LamichhaneSBashyalSKeumTNohGSeoJEBastolaRChoiJSohnDHLeeSComplex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry?Asian J Pharm Sci20191446547910.1016/J.AJPS.2018.11.008321044757032174 – reference: XingJ-FZhengM-LDuanX-MTwo-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug deliveryChem Soc Rev201544503150391:CAS:528:DC%2BC2MXoslCgs7o%3D10.1039/C5CS00278H25992492 – reference: Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, Basit A. 3D printed pellets (Miniprintlets): a novel, multi-drug, controlled release platform technology. Pharmaceutics. 2019;11. https://doi.org/10.3390/PHARMACEUTICS11040148. – reference: 3D-Printed Buses? 35 Industries The Tech Could Transform. Research Report. CBInsights. 2019. https://www.cbinsights.com/research/report/3d-printingtechnology-disrupting-industries/. Accessed 22 Oct 2021. – reference: Tsoulfas G, Bangeas PI, Suri JS, Papadopoulos VN. Introduction: the role of 3D printing in surgery. 3D printing: applications in medicine and surgery 2020:1–6. https://doi.org/10.1016/B978-0-323-66164-5.00001-5. – reference: StansburyJWIdacavageMJ3D printing with polymers: challenges among expanding options and opportunitiesDental Mater: Official Publication of the Academy of Dental Materials20163254641:CAS:528:DC%2BC2MXhs1aktbfO10.1016/J.DENTAL.2015.09.018 – reference: Gibson I, Rosen D, Stucker B. Introduction and basic principles. Additive Manufacturing Technologies 2015:1–18. https://doi.org/10.1007/978-1-4939-2113-3_1. – reference: KontaAAGarcia-PinaMSerranoDRPersonalised 3D printed medicines: which techniques and polymers are more successful?Bioengineering (Basel, Switzerland)2017410.3390/BIOENGINEERING4040079 – reference: Sridhar A, Blaudeck T, Baumann R. Inkjet printing as a key enabling technology for printed electronics. Material Matters. 2011;6:1. – reference: DuinDSchutzKAhlfeldALehmannSLodeALudwigB3D bioprinting of functional islets of langerhans in an alginate/methylcellulose hydrogel blendAdv Healthc Mater20198180163110.1002/ADHM.201801631 – reference: Pranzo D, Larizza P, Filippini D, Percoco G. Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: a topical review. Micromachines. 2018;9. https://doi.org/10.3390/MI9080374. – reference: ZunigaJM3D printed antibacterial prosthesesAppl Sci20188165110.3390/APP8091651 – reference: Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK. Polymers for Bioprinting. Essentials of 3D Biofabrication and. Translation. 2015:229–48. https://doi.org/10.1016/B978-0-12-800972-7.00013-X. – reference: DaikuaraLYChenXYueZSkropetaDWoodFMFearMWWallaceGG3D Bioprinting constructs to facilitate skin regenerationAdv Funct Mater20212105080210508010.1002/ADFM.202105080 – ident: 2242_CR73 doi: 10.1016/B978-0-12-813477-1.00012-8 – volume: 76 start-page: 1328 year: 2017 ident: 2242_CR121 publication-title: Mater Sci Eng C doi: 10.1016/J.MSEC.2017.02.094 – ident: 2242_CR88 doi: 10.3390/PHARMACEUTICS11060274 – volume: 25 start-page: 1668 year: 2020 ident: 2242_CR127 publication-title: Drug Discov Today doi: 10.1016/J.DRUDIS.2020.07.007 – volume: 547 start-page: 44 year: 2018 ident: 2242_CR20 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2018.05.044 – volume: 21 start-page: 133 year: 2020 ident: 2242_CR60 publication-title: Korean J Radiol doi: 10.3348/KJR.2019.0625 – ident: 2242_CR4 – volume: 166 start-page: 1280 year: 2021 ident: 2242_CR56 publication-title: Int J Biol Macromol doi: 10.1016/J.IJBIOMAC.2020.11.010 – volume: 586 start-page: 119594 year: 2020 ident: 2242_CR19 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2020.119594 – volume: 18 start-page: 3894 year: 2021 ident: 2242_CR21 publication-title: Mol Pharm doi: 10.1021/ACS.MOLPHARMACEUT.1C00557 – volume: 31 start-page: 581 year: 2016 ident: 2242_CR61 publication-title: J Card Surg doi: 10.1111/JOCS.12812 – volume: 28 start-page: 241 year: 2020 ident: 2242_CR72 publication-title: Cellulose doi: 10.1007/S10570-020-03526-7 – volume: 7 start-page: 658 issue: 1 year: 2017 ident: 2242_CR47 publication-title: Sci Rep doi: 10.1038/s41598-017-00690-y – volume: 3 start-page: 034113 year: 2011 ident: 2242_CR30 publication-title: Biofabrication doi: 10.1088/1758-5082/3/3/034113 – volume: 8 start-page: 1 year: 2021 ident: 2242_CR58 publication-title: Regen Biomater doi: 10.1093/RB/RBAB047 – volume: 2021 start-page: 1 year: 2021 ident: 2242_CR79 publication-title: Biomed Res Int doi: 10.1155/2021/1301028 – volume: 11 start-page: 645 year: 2019 ident: 2242_CR17 publication-title: Pharmaceutics doi: 10.3390/PHARMACEUTICS11120645 – ident: 2242_CR31 doi: 10.3390/PHARMACEUTICS12020166 – volume: 4 start-page: eaat2544 year: 2018 ident: 2242_CR92 publication-title: Sci Adv doi: 10.1126/SCIADV.AAT2544 – volume: 532 start-page: 313 year: 2017 ident: 2242_CR118 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2017.09.003 – volume: 13 start-page: 1373 year: 2021 ident: 2242_CR95 publication-title: Pharmaceutics doi: 10.3390/PHARMACEUTICS13091373 – volume: 45 start-page: e740 year: 2018 ident: 2242_CR68 publication-title: Med Phys doi: 10.1002/MP.13058 – volume: 165 start-page: 1586 year: 2016 ident: 2242_CR100 publication-title: Cell doi: 10.1016/J.CELL.2016.05.082 – volume: 161 start-page: 1040 year: 2020 ident: 2242_CR103 publication-title: Int J Biol Macromol doi: 10.1016/J.IJBIOMAC.2020.06.086 – volume: 2105080 start-page: 2105080 year: 2021 ident: 2242_CR53 publication-title: Adv Funct Mater doi: 10.1002/ADFM.202105080 – volume: 9 start-page: 71 year: 2016 ident: 2242_CR111 publication-title: Anat Sci Educ doi: 10.1002/ASE.1538 – volume: 119 start-page: 111606 year: 2021 ident: 2242_CR123 publication-title: Mater Sci Eng C doi: 10.1016/J.MSEC.2020.111606 – volume: 3 start-page: 401 year: 2018 ident: 2242_CR45 publication-title: Bioactive Materials doi: 10.1016/J.BIOACTMAT.2018.05.006 – volume: 109 start-page: 110625 year: 2020 ident: 2242_CR66 publication-title: Mater Sci Eng C doi: 10.1016/J.MSEC.2020.110625 – volume: 35 start-page: 217 year: 2017 ident: 2242_CR43 publication-title: Biotechnol Adv doi: 10.1016/J.BIOTECHADV.2016.12.006 – volume: 111 start-page: 1707 year: 2020 ident: 2242_CR75 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06181-1/Published – volume: 160 start-page: 255 year: 2019 ident: 2242_CR11 publication-title: Int J Mech Sci doi: 10.1016/J.IJMECSCI.2019.06.007 – ident: 2242_CR15 doi: 10.3390/PHARMACEUTICS12010077 – volume: 6 start-page: 1388 year: 2021 ident: 2242_CR59 publication-title: Bioactive Materials doi: 10.1016/J.BIOACTMAT.2020.10.021 – ident: 2242_CR2 – volume: 123 start-page: 2 year: 2015 ident: 2242_CR97 publication-title: Cancer Cytopathology doi: 10.1002/CNCY.21543 – ident: 2242_CR29 doi: 10.3390/PHARMACEUTICS10030122 – volume: 74 start-page: 99 year: 2016 ident: 2242_CR36 publication-title: Biomaterials doi: 10.1016/J.BIOMATERIALS.2015.09.044 – volume: 192 start-page: 108757 year: 2020 ident: 2242_CR57 publication-title: Mater Des doi: 10.1016/J.MATDES.2020.108757 – volume: 2232 year: 2020 ident: 2242_CR39 publication-title: AIP Conf Proc doi: 10.1063/5.0001732 – volume: 33 start-page: 253 year: 2021 ident: 2242_CR74 publication-title: J Esthet Restor Dent doi: 10.1111/JERD.12702 – volume: 44 start-page: 5031 year: 2015 ident: 2242_CR16 publication-title: Chem Soc Rev doi: 10.1039/C5CS00278H – volume: 8 start-page: 1651 year: 2018 ident: 2242_CR78 publication-title: Appl Sci doi: 10.3390/APP8091651 – volume: 10 year: 2020 ident: 2242_CR82 publication-title: Sci Rep doi: 10.1038/s41598-020-68578-y – volume: 10 start-page: 4326 year: 2020 ident: 2242_CR70 publication-title: Sci Rep doi: 10.1038/s41598-020-61405-4 – volume: 2344 year: 2021 ident: 2242_CR102 publication-title: AIP Conf Proc doi: 10.1063/5.0047183 – volume: 15 start-page: 493 issue: 5 year: 2021 ident: 2242_CR48 publication-title: Cell Tissue Biol doi: 10.1134/S1990519X21050059 – volume: 9 year: 2019 ident: 2242_CR69 publication-title: Sci Rep doi: 10.1038/s41598-019-38565-z – volume: 11 start-page: 347 year: 2019 ident: 2242_CR105 publication-title: Polymers doi: 10.3390/POLYM11020347 – volume: 205 start-page: 111919 year: 2021 ident: 2242_CR46 publication-title: Colloids Surf B: Biointerfaces doi: 10.1016/J.COLSURFB.2021.111919 – ident: 2242_CR51 doi: 10.21203/rs.3.rs-861389/v1 – volume: 123 start-page: 263 year: 2021 ident: 2242_CR52 publication-title: Acta Biomater doi: 10.1016/J.ACTBIO.2021.01.012 – volume: 9 start-page: 202 year: 2018 ident: 2242_CR110 publication-title: J Clin Orthop Trauma doi: 10.1016/J.JCOT.2018.04.008 – volume: 533 start-page: 413 year: 2017 ident: 2242_CR116 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2017.05.052 – volume: 8 start-page: 1801181 year: 2019 ident: 2242_CR67 publication-title: Adv Healthc Mater doi: 10.1002/ADHM.201801181 – volume: 579 start-page: 119155 year: 2020 ident: 2242_CR84 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2020.119155 – ident: 2242_CR49 doi: 10.1088/1758-5090/7/3/035003 – volume: 104 start-page: 103649 year: 2020 ident: 2242_CR106 publication-title: J Mech Behav Biomed Mater doi: 10.1016/J.JMBBM.2020.103649 – volume: 8 start-page: 1801631 year: 2019 ident: 2242_CR35 publication-title: Adv Healthc Mater doi: 10.1002/ADHM.201801631 – volume: 167 start-page: 48 year: 2021 ident: 2242_CR37 publication-title: Eur J Pharm Biopharm doi: 10.1016/J.EJPB.2021.07.005 – ident: 2242_CR87 doi: 10.3390/PHARMACEUTICS11040148 – volume: 11 start-page: 148 year: 2019 ident: 2242_CR117 publication-title: Pharmaceutics doi: 10.3390/PHARMACEUTICS11040148 – volume: 11 start-page: 9693 year: 2021 ident: 2242_CR76 publication-title: Appl Sci doi: 10.3390/APP11209693 – volume: 45 start-page: 92 year: 2018 ident: 2242_CR122 publication-title: Med Phys doi: 10.1002/MP.12644 – volume: 11 start-page: 796 year: 2020 ident: 2242_CR124 publication-title: Micromachines doi: 10.3390/MI11090796 – volume: 21 start-page: 1257 year: 2016 ident: 2242_CR99 publication-title: Drug Discov Today doi: 10.1016/J.DRUDIS.2016.04.006 – volume: 544 start-page: 425 year: 2018 ident: 2242_CR119 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2018.03.031 – volume: 382 year: 2020 ident: 2242_CR104 publication-title: N Engl J Med doi: 10.1056/NEJMP2006141/SUPPL_FILE/NEJMP2006141_DISCLOSURES.PDF – volume: 25 year: 2015 ident: 2242_CR28 publication-title: J Micromech Microeng doi: 10.1088/0960-1317/25/8/085013 – volume: 551 start-page: 52 year: 2018 ident: 2242_CR91 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2018.09.013 – ident: 2242_CR81 doi: 10.1016/B978-0-323-66164-5.00001-5 – volume: 132 start-page: 235 year: 2018 ident: 2242_CR98 publication-title: Adv Drug Deliv Rev doi: 10.1016/J.ADDR.2018.06.011 – volume: 12 start-page: 738 year: 2020 ident: 2242_CR86 publication-title: Pharmaceutics doi: 10.3390/PHARMACEUTICS12080738 – ident: 2242_CR1 doi: 10.1007/978-1-4939-2113-3_1 – volume: 365 start-page: 482 year: 2019 ident: 2242_CR63 publication-title: Science doi: 10.1126/SCIENCE.AAV9051 – volume: 15 year: 2020 ident: 2242_CR55 publication-title: Biomedical Materials (Bristol, England) doi: 10.1088/1748-605X/AB7417 – volume: 12 start-page: 105 year: 2020 ident: 2242_CR14 publication-title: Pharmaceutics doi: 10.3390/PHARMACEUTICS12020105 – volume: 234 start-page: 19256 year: 2019 ident: 2242_CR71 publication-title: J Cell Physiol doi: 10.1002/JCP.28558 – volume: 3 start-page: 257 year: 2018 ident: 2242_CR101 publication-title: Nat Rev Mater doi: 10.1038/s41578-018-0034-7 – volume: 109 start-page: 2757 year: 2020 ident: 2242_CR114 publication-title: J Pharm Sci doi: 10.1016/J.XPHS.2020.05.022/ATTACHMENT/C43C2951-100F-49D7-9553-B2180D3C524D/MMC1.DOCX – volume: 9 year: 2014 ident: 2242_CR107 publication-title: PLoS ONE doi: 10.1371/JOURNAL.PONE.0083401 – volume: 8 start-page: 1801048 year: 2019 ident: 2242_CR44 publication-title: Adv Healthc Mater doi: 10.1002/ADHM.201801048 – volume: 10 start-page: 16 year: 2020 ident: 2242_CR90 publication-title: J Pers Med doi: 10.3390/JPM10010016 – volume: 5 start-page: 157 year: 2021 ident: 2242_CR108 publication-title: COSSMA doi: 10.1159/000491860 – ident: 2242_CR22 doi: 10.4018/978-1-7998-4054-1.CH010 – volume: 4 start-page: 267 year: 2002 ident: 2242_CR27 publication-title: J Comb Chem doi: 10.1021/CC010075E – volume: 207 start-page: 297 year: 2019 ident: 2242_CR33 publication-title: Carbohydr Polym doi: 10.1016/J.CARBPOL.2018.11.077 – volume: 22 start-page: 49 year: 2021 ident: 2242_CR126 publication-title: AAPS PharmSciTech doi: 10.1208/S12249-020-01905-8 – volume: 33 start-page: 101071 year: 2020 ident: 2242_CR18 publication-title: Additive Manufacturing doi: 10.1016/J.ADDMA.2020.101071 – volume: 555 start-page: 198 year: 2019 ident: 2242_CR115 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2018.11.048 – volume: 8 start-page: 25210 year: 2018 ident: 2242_CR8 publication-title: RSC Adv doi: 10.1039/C8RA04815K – volume: 2 start-page: 159 year: 2015 ident: 2242_CR125 publication-title: 3D Print Addit Manuf doi: 10.1089/3DP.2015.0039 – ident: 2242_CR5 doi: 10.1186/S13036-015-0001-4 – volume: 25 start-page: 197 year: 2019 ident: 2242_CR113 publication-title: Pharm Dev Technol doi: 10.1080/10837450.2019.1684520 – ident: 2242_CR13 doi: 10.3390/MI9080374 – volume: 32 issue: 4 year: 2021 ident: 2242_CR41 publication-title: J Mater Sci Mater Med doi: 10.1007/S10856-021-06509-7 – volume: 35 start-page: 176 issue: 9 year: 2018 ident: 2242_CR6 publication-title: Pharm Res doi: 10.1007/S11095-018-2454-X – volume: 117 start-page: 10212 year: 2017 ident: 2242_CR24 publication-title: Chem Rev doi: 10.1021/ACS.CHEMREV.7B00074 – volume: 27 start-page: 5075 year: 2015 ident: 2242_CR25 publication-title: Adv Mater doi: 10.1002/ADMA.201501234 – volume: 3 start-page: 144 year: 2018 ident: 2242_CR42 publication-title: Bioactive Materials doi: 10.1016/J.BIOACTMAT.2017.11.008 – volume: 70 start-page: 567 year: 2021 ident: 2242_CR65 publication-title: Gut doi: 10.1136/GUTJNL-2019-319960 – volume: 10 start-page: 2100523 year: 2021 ident: 2242_CR54 publication-title: Adv Healthc Mater doi: 10.1002/ADHM.202100523 – volume: 6 start-page: 2995 year: 2020 ident: 2242_CR109 publication-title: ACS Biomater Sci Eng doi: 10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF – volume: 2019 start-page: 1 year: 2019 ident: 2242_CR120 publication-title: Int J Polym Sci doi: 10.1155/2019/6062381 – ident: 2242_CR34 doi: 10.1016/B978-0-12-800972-7.00013-X – volume: 65 start-page: 737 year: 2016 ident: 2242_CR10 publication-title: CIRP Ann doi: 10.1016/J.CIRP.2016.05.004 – volume: 32 start-page: 54 year: 2016 ident: 2242_CR23 publication-title: Dental Mater: Official Publication of the Academy of Dental Materials doi: 10.1016/J.DENTAL.2015.09.018 – volume: 110 start-page: 45 year: 2016 ident: 2242_CR64 publication-title: Biomaterials doi: 10.1016/J.BIOMATERIALS.2016.09.003 – volume: 11 start-page: 8584 year: 2021 ident: 2242_CR83 publication-title: Appl Sci doi: 10.3390/APP11188584 – volume: 9 start-page: 742 year: 2020 ident: 2242_CR62 publication-title: Cells doi: 10.3390/CELLS9030742 – volume: 246 start-page: 116519 year: 2020 ident: 2242_CR85 publication-title: Carbohydr Polym doi: 10.1016/J.CARBPOL.2020.116519 – volume: 21 start-page: 2 year: 2015 ident: 2242_CR96 publication-title: Nat Med doi: 10.1038/NM0115-2 – ident: 2242_CR26 – volume: 46 start-page: 531 year: 2020 ident: 2242_CR94 publication-title: Drug Dev Ind Pharm doi: 10.1080/03639045.2020.1734018 – volume: 17 start-page: 1239 year: 2021 ident: 2242_CR129 publication-title: Stem Cell Rev Rep doi: 10.1007/S12015-021-10120-2 – volume: 12 start-page: 1872 year: 2020 ident: 2242_CR89 publication-title: Polymers doi: 10.3390/POLYM12091872 – volume: 364 start-page: 2127 year: 2009 ident: 2242_CR32 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/RSTB.2008.0289 – volume: 34 start-page: 1652 year: 2020 ident: 2242_CR50 publication-title: FASEB J doi: 10.1096/FJ.201901063RR – volume: 32 start-page: 63 year: 2018 ident: 2242_CR112 publication-title: In Vivo (Athens, Greece) doi: 10.21873/INVIVO.11205 – volume: 14 start-page: 465 year: 2019 ident: 2242_CR128 publication-title: Asian J Pharm Sci doi: 10.1016/J.AJPS.2018.11.008 – volume: 12 start-page: 52 year: 2020 ident: 2242_CR93 publication-title: Pharmaceutics doi: 10.3390/PHARMACEUTICS12010052 – ident: 2242_CR7 doi: 10.1007/978-3-319-56309-1 – volume: 28 start-page: 103 year: 2016 ident: 2242_CR77 publication-title: J Prosthet Orthot doi: 10.1097/JPO.0000000000000097 – volume: 19 start-page: 1 year: 2021 ident: 2242_CR38 publication-title: J Nanobiotechnology doi: 10.1186/S12951-021-01012-1 – volume: 4 year: 2017 ident: 2242_CR12 publication-title: Bioengineering (Basel, Switzerland) doi: 10.3390/BIOENGINEERING4040079 – volume: 600 start-page: 120501 year: 2021 ident: 2242_CR130 publication-title: Int J Pharm doi: 10.1016/J.IJPHARM.2021.120501 – volume: 9 start-page: 11424 year: 2020 ident: 2242_CR9 publication-title: J Mater Res Technol doi: 10.1016/J.JMRT.2020.08.039 – volume: 193 start-page: 108057 year: 2020 ident: 2242_CR80 publication-title: Compos Part B doi: 10.1016/J.COMPOSITESB.2020.108057 – volume: 21 start-page: 256 year: 2020 ident: 2242_CR40 publication-title: AAPS PharmSciTech doi: 10.1208/S12249-020-01790-1 – ident: 2242_CR3 doi: 10.1080/09506608.2015.1116649 |
SSID | ssj0023193 |
Score | 2.5706837 |
SecondaryResourceType | review_article |
Snippet | The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 92 |
SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Drug Delivery Systems - methods Pharmacology/Toxicology Pharmacy Printing, Three-Dimensional Review Review Article Stereolithography Theme: Novel Advances in 3-D Printing Technology in Drug Delivery Tissue Engineering - methods Tissue Scaffolds |
Title | 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery |
URI | https://link.springer.com/article/10.1208/s12249-022-02242-8 https://www.ncbi.nlm.nih.gov/pubmed/35301602 https://www.proquest.com/docview/2640997572 https://pubmed.ncbi.nlm.nih.gov/PMC8929713 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuHBBuzy7LMgrIS4kooljO-ZWtbBoV6BKtBKcrNRxAAkFRNtD_z0zTlpaQEhcfIgfijyezDeZmc8Ah030GrJc6jAqrA0T5fJQF1EaKpclkVNykPlkzMsredFP_t2Im5omh2ph5uP3cTM9GVLkR4eUc07WBrV3GVZFxBVd09CW7ZlzhUeJ10Uxn89bNDwf0OTHpMh3kVFvcM5_wHqNFFmrEu1PWHLlBhx1K6rpScB6b5VTw4Adse4bCfVkE655h3VxYcpqPmWtuTA1eyhZz283myMjDFgdsmEd5z8eAcvKnHVexnf45JGyNyZb0D8_67UvwvoChdCiHR-FuYwKncSRaxYCcZBMY5U1HReRkuQWSU3lUggBpeUFel6FsAgW9SCxUtO_Ys63YaV8Kt0uMC14ggqV-7hl7pS2XFiObcaFGkjVgGi6u8bW7OJ0ycWjIS8DJWIqiRiUhvESMWkDjmdznitujS9H_5kKzaAKUFwjK93TeGgQ01H9r1BxA3YqIc7W44IThx72qAXxzgYQvfZiT_lw72m2U0SO6MI3IJgeBFPr9_CL1_z1veF7sBb7Q0pEsb9hZfQydvsIc0aDA1ht_b39f3bgzzm2_bj1CmPY8_Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa69rBdij72yNaHBhS5zMZiy5Ks3oKmRdolRYAlQG-CI8trgcAZ6uSQfz9KtvNohwC9-GA9YIik9NEkPwFctNBrSFIu_SDT2o-ESX2ZBbEvTBIFRvBx4pIx-_e8O4ruHthDVRRW1NnudUjS7dSOAaEV_yxsDEj6Nvvcnjtox-9gD8FAbHV5FLaXbhYqFa3KY_4_bvMIeoUrX6dHvoiRuqPn5gD2K8xI2qWQD2HH5EfQHJSk0wuPDFc1VIVHmmSwoqNeHMNv2iEDnNjmN1-S9lrAmjzlZOgWnqzREnqkCt6QjnHbiEeSPCWd5_kffDOxeRyLjzC6uR5edf3qKgVf44k-81MeZDIKA9PKGCIiHociaRnKAsGtg8SlLZxCMMg1zdAHy5hG2CjHkebS_jWm9BPs5tPcfAEiGY3QtFIXwUyNkJoyTfGZUCbGXDQgqFdX6Ypn3F53MVHW30CJqFIiCqWhnERU3IAfyzF_S5aNrb2_10JTaAw2wpHkZjovFKI7WwnMRNiAz6UQl_NRRi2bHraIDfEuO1ii7c2W_OnREW7HiCHRmW-AVyuCqiy92PKZX9_W_Rzed4f9nurd3v_6Bh9Cp7CWPvYEdmfPc3OK4Gc2PnO6_g8Wf_iQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61VEK9IFpoCa8uEuKCLeKsd9fLDSVEtAUUiUTitnLWa0CKHESSQ_49M2vnVRBSLz54H7L8zXhmPDPfAhzXMWpIM6nDKLc2jJXLQp1HSahcGkdOyX7qizFvbuVVL_5zL-6Xuvh9tfssJVn2NBBLUzE-e87ykg2hnpyNKB-kQ6pEJxuEOv0ZvmCkElH41ZTNeciFAsarVpn3162aozc-5ttSyX_ypd4MtTdho_If2UUJ-Df45IrvcNIpCainAesu-qlGATthnQU19XQL7niLdXBjqnU-ZxdLyWv2VLCuB4EtURQGrErksJbzn5SApUXGWi-TB7wzoJqO6Tb02pfd5lVYHasQWrTu4zCTUa7jRuTquUDvSCYNldYdF5GSFCxJTU1U6BhKy3OMx3Jh0YXU_dhKTX-QOf8Ba8WwcDvAtOAxqlnms5mZU9pyYTleUy5UX6oaRLO3a2zFOU5HXwwMxR6IiCkRMYiG8YiYpAan8zXPJePGh7OPZqAZVAzKdqSFG05GBj096goWqlGDnyWI8_244MSshyNqBd75BCLdXh0pnh49-XaC_iQG9jUIZoJgKq0fffCYu_83_Resd1ptc_379u8efG14eSUm2X1YG79M3AH6QeP-oRf1V0we_LY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printing%3A+Applications+in+Tissue+Engineering%2C+Medical+Devices%2C+and+Drug+Delivery&rft.jtitle=AAPS+PharmSciTech&rft.au=Pavan+Kalyan%2C+B+G&rft.au=Kumar%2C+Lalit&rft.date=2022-03-17&rft.issn=1530-9932&rft.eissn=1530-9932&rft.volume=23&rft.issue=4&rft.spage=92&rft_id=info:doi/10.1208%2Fs12249-022-02242-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |