3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery

The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 23; no. 4; p. 92
Main Authors Pavan Kalyan, BG, Kumar, Lalit
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 17.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
AbstractList The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
ArticleNumber 92
Author Kumar, Lalit
Pavan Kalyan, BG
Author_xml – sequence: 1
  givenname: BG
  surname: Pavan Kalyan
  fullname: Pavan Kalyan, BG
  organization: Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education
– sequence: 2
  givenname: Lalit
  surname: Kumar
  fullname: Kumar, Lalit
  email: lalit.kumar@manipal.edu
  organization: Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35301602$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKxDAUDaL4_gEXkqULq8lNmzYuBHF8gaKgrkPN3NZIJ61JO-Dfm3ko6sJFSMh5wTlbZNW1DgnZ4-yIAyuOAwdIVcIAZieFpFghmzwTLFFKwOqP9wbZCuGNMRBciXWyISLAJYNN8ihG9MFb11tXn9CzrmusKXvbukCto082hAHphautQ4y0-pDe4ThSGjrCqTUYDmnpxnTkhzr-NHaK_mOHrFVlE3B3eW-T58uLp_Pr5Pb-6ub87DYxGYc-GUteqRQ4sioTCmQBeclQZDyXKpNMqlQIzoWSRlQFFFVmFJfqJTVSgWAR3CanC99ueJng2KDrfdnozttJ6T90W1r9G3H2VdftVBcKVM5nBgdLA9--Dxh6PbHBYNOUDtshaJApUyrPcojU_Z9Z3yFfTUZCsSAY34bgsdLG9vMmY7RtNGd6NppejKbjYHo-mi6iFP5Iv9z_FYmFKHSzXdDrt3bwLvb9n-oTu36m8Q
CitedBy_id crossref_primary_10_1016_j_xcrp_2024_101789
crossref_primary_10_1016_j_scib_2024_11_006
crossref_primary_10_1177_00219983241304148
crossref_primary_10_3390_s24061797
crossref_primary_10_1016_j_amf_2024_200184
crossref_primary_10_3389_fphy_2024_1390321
crossref_primary_10_1039_D5BM00049A
crossref_primary_10_3390_gels9120960
crossref_primary_10_1016_j_cpcardiol_2024_102568
crossref_primary_10_3389_fbioe_2024_1476510
crossref_primary_10_1016_j_mfglet_2024_09_045
crossref_primary_10_4155_ppa_2023_0018
crossref_primary_10_1021_acsami_3c01650
crossref_primary_10_1016_j_heliyon_2024_e24593
crossref_primary_10_1088_1748_605X_ada840
crossref_primary_10_2478_aoj_2023_0026
crossref_primary_10_1093_milmed_usaf078
crossref_primary_10_1002_adfm_202400608
crossref_primary_10_1038_s41598_024_71241_5
crossref_primary_10_1016_j_jddst_2025_106818
crossref_primary_10_1016_j_mtchem_2023_101818
crossref_primary_10_1016_j_heliyon_2024_e32664
crossref_primary_10_2147_IJN_S469302
crossref_primary_10_1007_s11095_023_03592_z
crossref_primary_10_1016_j_ijbiomac_2023_128959
crossref_primary_10_1007_s10439_024_03479_z
crossref_primary_10_1016_j_ijlmm_2024_05_012
crossref_primary_10_1021_acs_analchem_3c04478
crossref_primary_10_3390_jfb15010007
crossref_primary_10_2174_2666145416666221019105748
crossref_primary_10_3390_ijms232416190
crossref_primary_10_1016_j_bprint_2023_e00298
crossref_primary_10_3390_polym16192686
crossref_primary_10_33483_jfpau_1353676
crossref_primary_10_1208_s12249_023_02682_w
crossref_primary_10_1155_2022_6833959
crossref_primary_10_3389_fbioe_2023_1256361
crossref_primary_10_1007_s10570_023_05267_9
crossref_primary_10_1038_s41598_024_57454_8
crossref_primary_10_3390_molecules28186442
crossref_primary_10_1177_07316844241247901
crossref_primary_10_1016_j_jmbbm_2023_106224
crossref_primary_10_1016_j_atech_2024_100553
crossref_primary_10_1021_acsapm_4c02501
crossref_primary_10_1038_s41598_024_85077_6
crossref_primary_10_3390_bioengineering11030232
crossref_primary_10_1186_s12909_023_04508_6
crossref_primary_10_3390_biomimetics9070409
crossref_primary_10_1002_adem_202301074
crossref_primary_10_1186_s12951_024_02362_2
crossref_primary_10_1007_s00170_022_10540_5
crossref_primary_10_1016_j_cirp_2023_05_005
crossref_primary_10_1016_j_icheatmasstransfer_2024_107859
crossref_primary_10_1089_ten_teb_2023_0129
crossref_primary_10_3390_s23177524
crossref_primary_10_1002_adfm_202420369
crossref_primary_10_3390_bios14060301
crossref_primary_10_1016_j_mtcomm_2023_105875
crossref_primary_10_1051_bioconf_20248601013
crossref_primary_10_3389_fbioe_2023_1117555
crossref_primary_10_1016_j_jddst_2024_105839
crossref_primary_10_1016_j_ajps_2023_100812
crossref_primary_10_3390_biomimetics7040151
crossref_primary_10_3390_ijms24054312
crossref_primary_10_37349_eff_2024_00045
crossref_primary_10_3390_bioengineering10080910
crossref_primary_10_2174_0118750362335415240909061539
crossref_primary_10_1016_j_ijbiomac_2023_126287
crossref_primary_10_3390_cancers15215269
Cites_doi 10.1016/B978-0-12-813477-1.00012-8
10.1016/J.MSEC.2017.02.094
10.3390/PHARMACEUTICS11060274
10.1016/J.DRUDIS.2020.07.007
10.1016/J.IJPHARM.2018.05.044
10.3348/KJR.2019.0625
10.1016/J.IJBIOMAC.2020.11.010
10.1016/J.IJPHARM.2020.119594
10.1021/ACS.MOLPHARMACEUT.1C00557
10.1111/JOCS.12812
10.1007/S10570-020-03526-7
10.1038/s41598-017-00690-y
10.1088/1758-5082/3/3/034113
10.1093/RB/RBAB047
10.1155/2021/1301028
10.3390/PHARMACEUTICS11120645
10.3390/PHARMACEUTICS12020166
10.1126/SCIADV.AAT2544
10.1016/J.IJPHARM.2017.09.003
10.3390/PHARMACEUTICS13091373
10.1002/MP.13058
10.1016/J.CELL.2016.05.082
10.1016/J.IJBIOMAC.2020.06.086
10.1002/ADFM.202105080
10.1002/ASE.1538
10.1016/J.MSEC.2020.111606
10.1016/J.BIOACTMAT.2018.05.006
10.1016/J.MSEC.2020.110625
10.1016/J.BIOTECHADV.2016.12.006
10.1007/s00170-020-06181-1/Published
10.1016/J.IJMECSCI.2019.06.007
10.3390/PHARMACEUTICS12010077
10.1016/J.BIOACTMAT.2020.10.021
10.1002/CNCY.21543
10.3390/PHARMACEUTICS10030122
10.1016/J.BIOMATERIALS.2015.09.044
10.1016/J.MATDES.2020.108757
10.1063/5.0001732
10.1111/JERD.12702
10.1039/C5CS00278H
10.3390/APP8091651
10.1038/s41598-020-68578-y
10.1038/s41598-020-61405-4
10.1063/5.0047183
10.1134/S1990519X21050059
10.1038/s41598-019-38565-z
10.3390/POLYM11020347
10.1016/J.COLSURFB.2021.111919
10.21203/rs.3.rs-861389/v1
10.1016/J.ACTBIO.2021.01.012
10.1016/J.JCOT.2018.04.008
10.1016/J.IJPHARM.2017.05.052
10.1002/ADHM.201801181
10.1016/J.IJPHARM.2020.119155
10.1088/1758-5090/7/3/035003
10.1016/J.JMBBM.2020.103649
10.1002/ADHM.201801631
10.1016/J.EJPB.2021.07.005
10.3390/PHARMACEUTICS11040148
10.3390/APP11209693
10.1002/MP.12644
10.3390/MI11090796
10.1016/J.DRUDIS.2016.04.006
10.1016/J.IJPHARM.2018.03.031
10.1056/NEJMP2006141/SUPPL_FILE/NEJMP2006141_DISCLOSURES.PDF
10.1088/0960-1317/25/8/085013
10.1016/J.IJPHARM.2018.09.013
10.1016/B978-0-323-66164-5.00001-5
10.1016/J.ADDR.2018.06.011
10.3390/PHARMACEUTICS12080738
10.1007/978-1-4939-2113-3_1
10.1126/SCIENCE.AAV9051
10.1088/1748-605X/AB7417
10.3390/PHARMACEUTICS12020105
10.1002/JCP.28558
10.1038/s41578-018-0034-7
10.1016/J.XPHS.2020.05.022/ATTACHMENT/C43C2951-100F-49D7-9553-B2180D3C524D/MMC1.DOCX
10.1371/JOURNAL.PONE.0083401
10.1002/ADHM.201801048
10.3390/JPM10010016
10.1159/000491860
10.4018/978-1-7998-4054-1.CH010
10.1021/CC010075E
10.1016/J.CARBPOL.2018.11.077
10.1208/S12249-020-01905-8
10.1016/J.ADDMA.2020.101071
10.1016/J.IJPHARM.2018.11.048
10.1039/C8RA04815K
10.1089/3DP.2015.0039
10.1186/S13036-015-0001-4
10.1080/10837450.2019.1684520
10.3390/MI9080374
10.1007/S10856-021-06509-7
10.1007/S11095-018-2454-X
10.1021/ACS.CHEMREV.7B00074
10.1002/ADMA.201501234
10.1016/J.BIOACTMAT.2017.11.008
10.1136/GUTJNL-2019-319960
10.1002/ADHM.202100523
10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF
10.1155/2019/6062381
10.1016/B978-0-12-800972-7.00013-X
10.1016/J.CIRP.2016.05.004
10.1016/J.DENTAL.2015.09.018
10.1016/J.BIOMATERIALS.2016.09.003
10.3390/APP11188584
10.3390/CELLS9030742
10.1016/J.CARBPOL.2020.116519
10.1038/NM0115-2
10.1080/03639045.2020.1734018
10.1007/S12015-021-10120-2
10.3390/POLYM12091872
10.1098/RSTB.2008.0289
10.1096/FJ.201901063RR
10.21873/INVIVO.11205
10.1016/J.AJPS.2018.11.008
10.3390/PHARMACEUTICS12010052
10.1007/978-3-319-56309-1
10.1097/JPO.0000000000000097
10.1186/S12951-021-01012-1
10.3390/BIOENGINEERING4040079
10.1016/J.IJPHARM.2021.120501
10.1016/J.JMRT.2020.08.039
10.1016/J.COMPOSITESB.2020.108057
10.1208/S12249-020-01790-1
10.1080/09506608.2015.1116649
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1208/s12249-022-02242-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
ExternalDocumentID PMC8929713
35301602
10_1208_s12249_022_02242_8
Genre Journal Article
Review
GrantInformation_xml – fundername: Manipal Academy of Higher Education, Manipal
– fundername: ;
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAWUL
BGNMA
C6C
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HH5
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OK1
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z87
ZMTXR
ZOVNA
~A9
-Y2
2VQ
4.4
AANXM
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABULA
ACBXY
ACMFV
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AOIJS
ATHPR
AYFIA
BDATZ
BSONS
C1A
CAG
CITATION
COF
EJD
EN4
FINBP
FSGXE
GX1
H13
HYE
HZ~
LGEZI
LOTEE
NADUK
NXXTH
O9-
OVD
S1Z
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABRTQ
ID FETCH-LOGICAL-c512t-d61f9421e0f53926827a0e3517695606943311396c3f828f5c9169b4c69230433
IEDL.DBID C6C
ISSN 1530-9932
IngestDate Thu Aug 21 18:17:28 EDT 2025
Fri Jul 11 16:19:59 EDT 2025
Wed Feb 19 02:23:58 EST 2025
Tue Jul 01 01:55:52 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Fri Feb 21 02:46:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords tissue engineering
3-dimensional printing
medical devices
drug designing
disease modelling
techniques of 3D printing
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-d61f9421e0f53926827a0e3517695606943311396c3f828f5c9169b4c69230433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doi.org/10.1208/s12249-022-02242-8
PMID 35301602
PQID 2640997572
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8929713
proquest_miscellaneous_2640997572
pubmed_primary_35301602
crossref_citationtrail_10_1208_s12249_022_02242_8
crossref_primary_10_1208_s12249_022_02242_8
springer_journals_10_1208_s12249_022_02242_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-17
PublicationDateYYYYMMDD 2022-03-17
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-17
  day: 17
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References VaidyaMStartups tout commercially 3D-printed tissue for drug screeningNat Med20152121:CAS:528:DC%2BC2MXkslygsQ%3D%3D10.1038/NM0115-225569539
BegSAlmalkiWHMalikAFarhanMAatifMRahmanZAlruwailiNKAlrobaianMTariqueMRahmanM3D printing for drug delivery and biomedical applicationsDrug Discov Today202025166816811:CAS:528:DC%2BB3cXhsVeqsrjJ10.1016/J.DRUDIS.2020.07.00732687871
GaoCWangCJinHWangZLiZShiCLengYYangFLiuHWangJAdditive manufacturing technique-designed metallic porous implants for clinical application in orthopedicsRSC Adv2018825210252271:CAS:528:DC%2BC1cXhtlajtr7M10.1039/C8RA04815K
DaikuaraLYChenXYueZSkropetaDWoodFMFearMWWallaceGG3D Bioprinting constructs to facilitate skin regenerationAdv Funct Mater20212105080210508010.1002/ADFM.202105080
HonigmannPSharmaNSchumacherRRueeggJHaefeliMThieringerFIn-hospital 3D printed scaphoid prosthesis using medical-grade polyetheretherketone (PEEK) BiomaterialBiomed Res Int20212021171:CAS:528:DC%2BB3MXhtlWgu7zJ10.1155/2021/1301028
AshammakhiNHasanAKaarelaOByambaaBSheikhiAGaharwarAKKhademhosseiniAAdvancing frontiers in bone bioprintingAdv Healthc Mater20198180104810.1002/ADHM.201801048
MartinezPRGoyanesABasitAWGaisfordSFabrication of drug-loaded hydrogels with stereolithographic 3D printingInt J Pharm20175323133171:CAS:528:DC%2BC2sXhsFSlsrjM10.1016/J.IJPHARM.2017.09.00328888978
ChuHYangWSunLCaiSYangRLiangW4D printing: a review on recent progressesMicromachines20201179610.3390/MI110907967570144
JabbariO aSalehWKAPatelAPIgoSRReardonMJUse of three-dimensional models to assist in the resection of malignant cardiac tumorsJ Card Surg20163158158310.1111/JOCS.1281227455392
JayanathSAchuthanAA computationally efficient hybrid model for simulating the additive manufacturing process of metalsInt J Mech Sci201916025526910.1016/J.IJMECSCI.2019.06.007
GaoGAhnMChoWWKimBSChoDW3D printing of pharmaceutical application: drug screening and drug deliveryPharmaceutics20211313731:CAS:528:DC%2BB3MXis1Smt7%2FI10.3390/PHARMACEUTICS13091373345754488465948
BaiXGaoMSyedSZhaungJXuXZhangXQBioactive hydrogels for bone regenerationBioactive Materials2018340141710.1016/J.BIOACTMAT.2018.05.006300031796038268
Zhou H, Bhaduri SB. 3D printing in the research and development of medical devices. Biomaterials in Translational Medicine: A Biomaterials Approach 2019:269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8.
SubramaniamSFangYHSivasubramanianSLinFHLinC pHydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regenerationBiomaterials201674991081:CAS:528:DC%2BC2MXhsFyqtr7M10.1016/J.BIOMATERIALS.2015.09.04426454048
TebyanianHKaramiANouraniMRMotavallianEBarkhordariAYazdanianMSeifalianALung tissue engineering: an updateJ Cell Physiol201923419256192701:CAS:528:DC%2BC1MXntFKrsbg%3D10.1002/JCP.2855830972749
VazVMKumarL3D printing as a promising tool in personalized medicineAAPS PharmSciTech202122491:CAS:528:DC%2BB3MXjsVGmu7o%3D10.1208/S12249-020-01905-833458797
AwadAFinaFTrenfieldSJPatelPGoyanesAGaisfordS3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technologyPharmaceutics2019111481:CAS:528:DC%2BC1MXisVSrtb7O10.3390/PHARMACEUTICS110401486523578
AsmariaTSajutiDAinK3D printed PLA of gallbladder for virtual surgery planningAIP Conf Proc202022321:CAS:528:DC%2BB3cXhsVGntb%2FN10.1063/5.0001732
HospodiukMDeyMSosnoskiDOzbolatITThe bioink: a comprehensive review on bioprintable materialsBiotechnol Adv2017352172391:CAS:528:DC%2BC2sXnvVaisg%3D%3D10.1016/J.BIOTECHADV.2016.12.00628057483
FengLLiangSZhouYLuoYChenRHuangYChenYXuMYaoRThree-dimensional printing of hydrogel scaffolds with hierarchical structure for scalable stem cell cultureACS Biomater Sci Eng20206299530041:CAS:528:DC%2BB3cXnsVCgt7s%3D10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF33463285
GrauerDQuality in orthodontics: the role of customized appliancesJ Esthet Restor Dent20213325325810.1111/JERD.1270233410248
KarayelEBozkurtYAdditive manufacturing method and different welding applicationsJ Mater Res Technol2020911424114381:CAS:528:DC%2BB3cXhs1GrtL3E10.1016/J.JMRT.2020.08.039
DickmanCTDRussoVThainKPanSBeyerSTWalusKGetsiosSMohamedTWadsworthSJFunctional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technologyFASEB J202034165216641:CAS:528:DC%2BB3cXhvFeisLc%3D10.1096/FJ.201901063RR31914670
JamrózWSzafraniecJKurekMJachowiczR3D printing in pharmaceutical and medical applications – recent achievements and challengesPharm Res201835917610.1007/S11095-018-2454-X299984056061505
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9. https://doi.org/10.1186/S13036-015-0001-4.
Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12. https://doi.org/10.3390/PHARMACEUTICS12010077.
ZhangYSArneriABersiniSShinSRZhuKGoli-MalekebadiZKhademhosseiniABioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chipBiomaterials201611045591:CAS:528:DC%2BC28XhsVyjsLzO10.1016/J.BIOMATERIALS.2016.09.003277108325198581
HuangLYuanWHongYFanSYaoXRenT3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cellsCellulose20202824125710.1007/S10570-020-03526-733132545
HighleyCBRodellCBBurdickJADirect 3D printing of shear-thinning hydrogels into self-healing hydrogelsAdv Mater201527507550791:CAS:528:DC%2BC2MXhtFOrtb%2FE10.1002/ADMA.20150123426177925
MaoQWangYLiYJuengpanichSLiWChenMYinJFuJCaiXFabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprintingMater Sci Eng C20201091106251:CAS:528:DC%2BB3cXhtFert7g%3D10.1016/J.MSEC.2020.110625
ZhangWZhaoWLiQZhaoDQuJYuanZ3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structuresJ Nanobiotechnology20211912010.1186/S12951-021-01012-1
Khorram Niaki M, Nonino F. The management of additive manufacturing. Springer, Cham. 2018;1860–5168. https://doi.org/10.1007/978-3-319-56309-1.
WalczakRAdamskiKInkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chipsJ Micromech Microeng2015251:CAS:528:DC%2BC28XitFKqurrF10.1088/0960-1317/25/8/085013
ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFDesign for additive manufacturing: trends, opportunities, considerations, and constraintsCIRP Ann20166573776010.1016/J.CIRP.2016.05.004
Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK. Polymers for Bioprinting. Essentials of 3D Biofabrication and. Translation. 2015:229–48. https://doi.org/10.1016/B978-0-12-800972-7.00013-X.
ChenYBianLZhouHWuDXuJGuCUsefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgerySci Rep2020101:CAS:528:DC%2BB3cXhsVWhsb7L10.1038/s41598-020-68578-y326696417363793
LamichhaneSBashyalSKeumTNohGSeoJEBastolaRChoiJSohnDHLeeSComplex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry?Asian J Pharm Sci20191446547910.1016/J.AJPS.2018.11.008321044757032174
KimIGParkSALeeS-HChoiJSChoHLeeSJTransplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytesSci Rep20201043261:CAS:528:DC%2BB3cXlvVOjtbc%3D10.1038/s41598-020-61405-4321524757062776
Gibson I, Rosen D, Stucker B. Introduction and basic principles. Additive Manufacturing Technologies 2015:1–18. https://doi.org/10.1007/978-1-4939-2113-3_1.
AwadAFinaFGoyanesAGaisfordSBasitAW3D printing: principles and pharmaceutical applications of selective laser sinteringInt J Pharm20205861195941:CAS:528:DC%2BB3cXhtlCktL7M10.1016/J.IJPHARM.2020.11959432622811
XingJ-FZhengM-LDuanX-MTwo-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug deliveryChem Soc Rev201544503150391:CAS:528:DC%2BC2MXoslCgs7o%3D10.1039/C5CS00278H25992492
IsaevaEVBeketovEEYuzhakovVVArguchinskayaNVKiselAAMalakhovEPThe use of collagen with high concentration in cartilage tissue engineering by means of 3D-bioprintingCell Tissue Biol202115549350210.1134/S1990519X21050059
BachtiarEOErolOMillrodMTaoRGraciasDHRomerLHKangSH3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applicationsJ Mech Behav Biomed Mater20201041036491:CAS:528:DC%2BB3cXjtFeqt7Y%3D10.1016/J.JMBBM.2020.103649321744077078069
ArshadMSShahzadAAbbasNAlAsiriAHussainAKucukIPreparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approachPharm Dev Technol2019251972051:CAS:528:DC%2BC1MXitFSjtrfN10.1080/10837450.2019.168452031638453
LiuJSunLXuWWangQYuSSunJCurrent advances and future perspectives of 3D printing natural-derived biopolymersCarbohydr Polym20192072973161:CAS:528:DC%2BC1cXisVemt7vF10.1016/J.CARBPOL.2018.11.07730600012
OzbolatITPengWOzbolatVApplication areas of 3D bioprintingDrug Discov Today201621125712711:CAS:528:DC%2BC28Xmtlegs7k%3D10.1016/J.DRUDIS.2016.04.00627086009
GardinCFerroniLLatremouilleCChachquesJCMitrečićDZavanBRecent applications of three dimensional printing in cardiovascular medicineCells202097421:CAS:528:DC%2BB3cXhsVShurrI10.3390/CELLS90307427140676
CleversHModeling development and disease with organoidsCell2016165158615971:CAS:528:DC%2BC28XhtVWlurvN10.1016/J.CELL.2016.05.08227315476
DumpaNButreddyAWangHKomanduriNBandariSRepkaMA3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modelingInt J Pharm20216001205011:CAS:528:DC%2BB3MXnvFGjtLo%3D10.1016/J.IJPHARM.2021.12050133746011
ZunigaJM3D printed antibacterial prosthesesAppl Sci20188165110.3390/APP8091651
EleftheriadisGKMonouPKBouropoulosNBoetkerJRantanenJJacobsenJViziriana
I Serris (2242_CR40) 2020; 21
IT Ozbolat (2242_CR99) 2016; 21
CTD Dickman (2242_CR50) 2020; 34
J Lee (2242_CR86) 2020; 12
NR Dumpa (2242_CR93) 2020; 12
W Zhang (2242_CR38) 2021; 19
2242_CR22
MH Nadhif (2242_CR102) 2021; 2344
N Liu (2242_CR59) 2021; 6
G Gao (2242_CR95) 2021; 13
2242_CR26
2242_CR29
HW Goo (2242_CR60) 2020; 21
F Fina (2242_CR20) 2018; 547
X Ma (2242_CR98) 2018; 132
E Karayel (2242_CR9) 2020; 9
K Liang (2242_CR92) 2018; 4
2242_CR31
A Awad (2242_CR117) 2019; 11
J-H Park (2242_CR69) 2019; 9
JM Zuniga (2242_CR78) 2018; 8
M Vivero-Lopez (2242_CR123) 2021; 119
E Ilhan (2242_CR103) 2020; 161
G Bianchi (2242_CR83) 2021; 11
R Thakkar (2242_CR21) 2021; 18
2242_CR3
J-F Xing (2242_CR16) 2015; 44
2242_CR34
J Ma (2242_CR54) 2021; 10
V Filippou (2242_CR68) 2018; 45
2242_CR2
2242_CR1
X Bai (2242_CR45) 2018; 3
2242_CR7
2242_CR5
M Singh (2242_CR41) 2021; 32
2242_CR4
C Gao (2242_CR8) 2018; 8
2242_CR81
2242_CR87
D Duin (2242_CR35) 2019; 8
SS Banerjee (2242_CR105) 2019; 11
J Choi (2242_CR125) 2015; 2
A Awad (2242_CR19) 2020; 586
H Chu (2242_CR124) 2020; 11
M Javaid (2242_CR110) 2018; 9
VM Vaz (2242_CR126) 2021; 22
C Gardin (2242_CR62) 2020; 9
Y Chen (2242_CR82) 2020; 10
2242_CR88
P Shende (2242_CR129) 2021; 17
GK Eleftheriadis (2242_CR114) 2020; 109
N Dumpa (2242_CR130) 2021; 600
EV Isaeva (2242_CR48) 2021; 15
YS Zhang (2242_CR64) 2016; 110
SY Hann (2242_CR52) 2021; 123
AA Konta (2242_CR12) 2017; 4
EO Bachtiar (2242_CR106) 2020; 104
I Yu (2242_CR90) 2020; 10
UM Musazzi (2242_CR91) 2018; 551
JM Seok (2242_CR46) 2021; 205
TT Yan (2242_CR94) 2020; 46
MK O’Reilly (2242_CR111) 2016; 9
T Asmaria (2242_CR39) 2020; 2232
X-Y Liu (2242_CR58) 2021; 8
2242_CR13
PR Martinez (2242_CR118) 2017; 532
2242_CR15
CPP Pere (2242_CR119) 2018; 544
MK Thompson (2242_CR10) 2016; 65
X Xu (2242_CR18) 2020; 33
A Almeida (2242_CR37) 2021; 167
F Afghah (2242_CR55) 2020; 15
A Melocchi (2242_CR84) 2020; 579
S Derakhshanfar (2242_CR42) 2018; 3
Q Mao (2242_CR66) 2020; 109
IG Kim (2242_CR70) 2020; 10
K Arai (2242_CR30) 2011; 3
S Infanger (2242_CR115) 2019; 555
W Ye (2242_CR57) 2020; 192
SE Kim (2242_CR112) 2018; 32
L Feng (2242_CR109) 2020; 6
N Ashammakhi (2242_CR44) 2019; 8
H Yang (2242_CR65) 2021; 70
SC Ligon (2242_CR24) 2017; 117
R Walczak (2242_CR28) 2015; 25
JH Song (2242_CR32) 2009; 364
P Honigmann (2242_CR79) 2021; 2021
J Liu (2242_CR33) 2019; 207
C Hazelaar (2242_CR122) 2018; 45
2242_CR73
CB Highley (2242_CR25) 2015; 27
M Vaidya (2242_CR96) 2015; 21
B Zhang (2242_CR101) 2018; 3
MS Arshad (2242_CR113) 2019; 25
S Beg (2242_CR127) 2020; 25
S Jayanath (2242_CR11) 2019; 160
R Thakkar (2242_CR89) 2020; 12
S Liu (2242_CR56) 2021; 166
S Subramaniam (2242_CR36) 2016; 74
ML Ranney (2242_CR104) 2020; 382
DC Ioan (2242_CR120) 2019; 2019
D Grauer (2242_CR74) 2021; 33
LY Daikuara (2242_CR53) 2021; 2105080
MM Mohebi (2242_CR27) 2002; 4
AV Healy (2242_CR17) 2019; 11
AQ Vo (2242_CR85) 2020; 246
A Thurzo (2242_CR76) 2021; 11
W Jamróz (2242_CR116) 2017; 533
JM Zuniga (2242_CR77) 2016; 28
2242_CR49
F Brugè (2242_CR107) 2014; 9
N Neve (2242_CR108) 2021; 5
JW Stansbury (2242_CR23) 2016; 32
M Hospodiuk (2242_CR43) 2017; 35
2242_CR51
A Lee (2242_CR63) 2019; 365
XP Tan (2242_CR121) 2017; 76
R Xiao (2242_CR80) 2020; 193
B Nelson (2242_CR97) 2015; 123
X Liu (2242_CR67) 2019; 8
O a Jabbari (2242_CR61) 2016; 31
H Clevers (2242_CR100) 2016; 165
S Lamichhane (2242_CR128) 2019; 14
DF Redaelli (2242_CR75) 2020; 111
D Nguyen (2242_CR47) 2017; 7
H Tebyanian (2242_CR71) 2019; 234
SA Stewart (2242_CR14) 2020; 12
L Huang (2242_CR72) 2020; 28
W Jamróz (2242_CR6) 2018; 35
References_xml – reference: IlhanECesurSGulerETopalFAlbayrakDGuncuMMCamMETaskinTSasmazelHTAksuBOktarFNGunduzODevelopment of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing materialInt J Biol Macromol2020161104010541:CAS:528:DC%2BB3cXht1CqtLfP10.1016/J.IJBIOMAC.2020.06.08632544577
– reference: SubramaniamSFangYHSivasubramanianSLinFHLinC pHydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regenerationBiomaterials201674991081:CAS:528:DC%2BC2MXhsFyqtr7M10.1016/J.BIOMATERIALS.2015.09.04426454048
– reference: ZunigaJMPeckJSrivastavaRKatsavelisDCarsonAAn open source 3D-printed transitional hand prosthesis for childrenJ Prosthet Orthot20162810310810.1097/JPO.0000000000000097
– reference: YanTTLvZFTianPLinMMLinWHuangSYSemi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacyDrug Dev Ind Pharm2020465315381:CAS:528:DC%2BB3cXkslaqtr4%3D10.1080/03639045.2020.173401832141352
– reference: BrugèFTianoLAstolfiPEmanuelliMDamianiEPrevention of UVA-induced oxidative damage in human dermal fibroblasts by new UV filters, assessed using a novel in vitro experimental systemPLoS ONE2014910.1371/JOURNAL.PONE.0083401244092823883645
– reference: PereCPPEconomidouSNLallGZiraudCBoatengJSAlexanderBDLamprouDADouroumisD3D printed microneedles for insulin skin deliveryInt J Pharm20185444254321:CAS:528:DC%2BC1cXmsVentr8%3D10.1016/J.IJPHARM.2018.03.03129555437
– reference: NadhifMHAssyarifyHIrsyadMPramestiARSuhaeriMRecent advances in 3D printed wound dressingsAIP Conf Proc202123441:CAS:528:DC%2BB3MXhvVWjurjJ10.1063/5.0047183
– reference: IoanDCRăuITihanGTZgârianRGGhicaMVAlbu KayaMGDinu-PîrvuECPiroxicam-collagen-based sponges for medical applicationsInt J Polym Sci20192019171:CAS:528:DC%2BC1MXit1WjtbzP10.1155/2019/6062381
– reference: GooHWParkSJYooS-JAdvanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed reality, virtual reality, and three-dimensional printingKorean J Radiol20202113314510.3348/KJR.2019.0625319975896992436
– reference: YangHSunLPangYHuDXuHMaoSPengWWangYXuYZhengYCduSZhaoHChiTLuXSangXZhongSWangXZhangHHuangPSunWMaoYThree-dimensional bioprinted hepatorganoids prolong survival of mice with liver failureGut2021705675741:CAS:528:DC%2BB3MXnsFOns7w%3D10.1136/GUTJNL-2019-31996032434830
– reference: LeeJSongCNohISongSRheeYSHot-melt 3D extrusion for the fabrication of customizable modified-release solid dosage formsPharmaceutics2020127381:CAS:528:DC%2BB3cXisFGnsrrI10.3390/PHARMACEUTICS120807387464107
– reference: AsmariaTSajutiDAinK3D printed PLA of gallbladder for virtual surgery planningAIP Conf Proc202022321:CAS:528:DC%2BB3cXhsVGntb%2FN10.1063/5.0001732
– reference: VaidyaMStartups tout commercially 3D-printed tissue for drug screeningNat Med20152121:CAS:528:DC%2BC2MXkslygsQ%3D%3D10.1038/NM0115-225569539
– reference: CleversHModeling development and disease with organoidsCell2016165158615971:CAS:528:DC%2BC28XhtVWlurvN10.1016/J.CELL.2016.05.08227315476
– reference: MaJQinCWuJZhangHZhuangHZhangMZhangZMaLWangXMaBChangJWuC3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regenerationAdv Healthc Mater20211021005231:CAS:528:DC%2BB3MXhtFektLjK10.1002/ADHM.202100523
– reference: Could 3D printing change the world? Technology & Innovation. Atlantic Council. 2011. https://www.atlanticcouncil.org/in-depth-research-reports/issuebrief/could-3d-printing-change-the-world/. Accessed 22 Oct 2021.
– reference: AlmeidaALinaresVMora-CastañoGCasasMCaraballoISarmentoB3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micellesEur J Pharm Biopharm202116748561:CAS:528:DC%2BB38XnsFKmug%3D%3D10.1016/J.EJPB.2021.07.00534280496
– reference: StewartSADomínguez-RoblesJMcIlorumVJMancusoELamprouDADonnellyRFDevelopment of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printingPharmaceutics2020121051:CAS:528:DC%2BB3cXhtlSjtr7K10.3390/PHARMACEUTICS120201057076405
– reference: VazVMKumarL3D printing as a promising tool in personalized medicineAAPS PharmSciTech202122491:CAS:528:DC%2BB3MXjsVGmu7o%3D10.1208/S12249-020-01905-833458797
– reference: FinaFGoyanesAMadlaCMAwadATrenfieldSJKuekJMPatelPGaisfordSBasitAW3D printing of drug-loaded gyroid lattices using selective laser sinteringInt J Pharm201854744521:CAS:528:DC%2BC1cXhtVWmsLnE10.1016/J.IJPHARM.2018.05.04429787894
– reference: GaoGAhnMChoWWKimBSChoDW3D printing of pharmaceutical application: drug screening and drug deliveryPharmaceutics20211313731:CAS:528:DC%2BB3MXis1Smt7%2FI10.3390/PHARMACEUTICS13091373345754488465948
– reference: Sahini DK, Ghose J, Jha SK, Behera A, Mandal A. Optimization and simulation of additive manufacturing processes. Additive Manufacturing Applications for Metals and Composites. 2020:187–209. https://doi.org/10.4018/978-1-7998-4054-1.CH010.
– reference: AfghahFUllahMSyed Monfared ZanjaniJAkkus SutPSenOEmanetM3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineeringBiomedical Materials (Bristol, England)2020151:CAS:528:DC%2BB3cXhvFWktrnL10.1088/1748-605X/AB7417
– reference: Khorram Niaki M, Nonino F. The management of additive manufacturing. Springer, Cham. 2018;1860–5168. https://doi.org/10.1007/978-3-319-56309-1.
– reference: GaoCWangCJinHWangZLiZShiCLengYYangFLiuHWangJAdditive manufacturing technique-designed metallic porous implants for clinical application in orthopedicsRSC Adv2018825210252271:CAS:528:DC%2BC1cXhtlajtr7M10.1039/C8RA04815K
– reference: ZhangWZhaoWLiQZhaoDQuJYuanZ3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structuresJ Nanobiotechnology20211912010.1186/S12951-021-01012-1
– reference: ChuHYangWSunLCaiSYangRLiangW4D printing: a review on recent progressesMicromachines20201179610.3390/MI110907967570144
– reference: IsaevaEVBeketovEEYuzhakovVVArguchinskayaNVKiselAAMalakhovEPThe use of collagen with high concentration in cartilage tissue engineering by means of 3D-bioprintingCell Tissue Biol202115549350210.1134/S1990519X21050059
– reference: YuIChenRKA feasibility study of an extrusion-based fabrication process for personalized drugsJ Pers Med2020101610.3390/JPM100100167151602
– reference: O’ReillyMKReeseSHerlihyTGeogheganTCantwellCPFeeneyRNMFabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicineAnat Sci Educ20169717910.1002/ASE.153826109268
– reference: HealyAVFeunmayorEDoranPGeeverLMHigginbonthamCLLyonsJGAdditive manufacturing of personalized pharmaceutical dosage forms via stereolithographyPharmaceutics2019116451:CAS:528:DC%2BB3cXpt12quro%3D10.3390/PHARMACEUTICS111206456955879
– reference: Ferracini R, Martinez Herreros I, Russo A, Casalini T, Rossi F, Perale G. Scaffolds as structural tools for bone-targeted drug delivery. Pharmaceutics. 2018;10. https://doi.org/10.3390/PHARMACEUTICS10030122.
– reference: DumpaNRBandariSRepkaMANovel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printingPharmaceutics202012521:CAS:528:DC%2BB3cXhtVGksrvI10.3390/PHARMACEUTICS12010052
– reference: XuXRobles-MartinezPMadlaCMJoubertFGoyanesABasitAWGaisfordSStereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reactionAdditive Manufacturing2020331010711:CAS:528:DC%2BB3cXhtVOjtbnJ10.1016/J.ADDMA.2020.101071
– reference: LiuJSunLXuWWangQYuSSunJCurrent advances and future perspectives of 3D printing natural-derived biopolymersCarbohydr Polym20192072973161:CAS:528:DC%2BC1cXisVemt7vF10.1016/J.CARBPOL.2018.11.07730600012
– reference: Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. 2016;61:315–60. https://doi.org/10.1080/09506608.2015.1116649.
– reference: WalczakRAdamskiKInkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chipsJ Micromech Microeng2015251:CAS:528:DC%2BC28XitFKqurrF10.1088/0960-1317/25/8/085013
– reference: XiaoRFengXFanRChenSSongJGaoLLuY3D printing of titanium-coated gradient composite lattices for lightweight mandibular prosthesisCompos Part B20201931080571:CAS:528:DC%2BB3cXhsVGntrnI10.1016/J.COMPOSITESB.2020.108057
– reference: ThurzoAKočišFNovákBCzakoLVargaIThree-dimensional modeling and 3D printing of biocompatible orthodontic power-arm design with clinical applicationAppl Sci202111969310.3390/APP11209693
– reference: SeokJMJeongJELeeSJImSHLeeJHKimWDLeeKParkSABio-plotted hydrogel scaffold with core and sheath strand-enhancing mechanical and biological properties for tissue regenerationColloids Surf B: Biointerfaces20212051119191:CAS:528:DC%2BB3MXhtlaisr3N10.1016/J.COLSURFB.2021.11191934126550
– reference: HospodiukMDeyMSosnoskiDOzbolatITThe bioink: a comprehensive review on bioprintable materialsBiotechnol Adv2017352172391:CAS:528:DC%2BC2sXnvVaisg%3D%3D10.1016/J.BIOTECHADV.2016.12.00628057483
– reference: Zhou H, Bhaduri SB. 3D printing in the research and development of medical devices. Biomaterials in Translational Medicine: A Biomaterials Approach 2019:269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8.
– reference: DumpaNButreddyAWangHKomanduriNBandariSRepkaMA3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modelingInt J Pharm20216001205011:CAS:528:DC%2BB3MXnvFGjtLo%3D10.1016/J.IJPHARM.2021.12050133746011
– reference: JayanathSAchuthanAA computationally efficient hybrid model for simulating the additive manufacturing process of metalsInt J Mech Sci201916025526910.1016/J.IJMECSCI.2019.06.007
– reference: JavaidMHaleemAAdditive manufacturing applications in orthopaedics: a reviewJ Clin Orthop Trauma2018920220610.1016/J.JCOT.2018.04.008302021496128303
– reference: JabbariO aSalehWKAPatelAPIgoSRReardonMJUse of three-dimensional models to assist in the resection of malignant cardiac tumorsJ Card Surg20163158158310.1111/JOCS.1281227455392
– reference: Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12. https://doi.org/10.3390/PHARMACEUTICS12010077.
– reference: KarayelEBozkurtYAdditive manufacturing method and different welding applicationsJ Mater Res Technol2020911424114381:CAS:528:DC%2BB3cXhs1GrtL3E10.1016/J.JMRT.2020.08.039
– reference: TebyanianHKaramiANouraniMRMotavallianEBarkhordariAYazdanianMSeifalianALung tissue engineering: an updateJ Cell Physiol201923419256192701:CAS:528:DC%2BC1MXntFKrsbg%3D10.1002/JCP.2855830972749
– reference: MelocchiAUboldiMMaroniAFoppoliAPaluganLZemaLGazzanigaA3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – a reviewInt J Pharm20205791191551:CAS:528:DC%2BB3cXksVOjuro%3D10.1016/J.IJPHARM.2020.11915532081794
– reference: HuangLYuanWHongYFanSYaoXRenT3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cellsCellulose20202824125710.1007/S10570-020-03526-733132545
– reference: LeeAHudsonARShiwarskiDJTashmanJWHintonTJYerneniSBlileyJMCampbellPGFeinbergAW3D bioprinting of collagen to rebuild components of the human heartScience20193654824871:CAS:528:DC%2BC1MXhsV2jsbzF10.1126/SCIENCE.AAV905131371612
– reference: Jin Q, Fu Y, Zhang G, Xu L, Jin G, Tang L, et al. Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle. Compos B Eng. 2022;234:109691. https://doi.org/10.21203/rs.3.rs-861389/v1.
– reference: HannSYCuiHEsworthyTZhouXLeeS jPlesniakMWDual 3D printing for vascularized bone tissue regenerationActa Biomater20211232632741:CAS:528:DC%2BB3MXks1Cmsb0%3D10.1016/J.ACTBIO.2021.01.01233454383
– reference: HighleyCBRodellCBBurdickJADirect 3D printing of shear-thinning hydrogels into self-healing hydrogelsAdv Mater201527507550791:CAS:528:DC%2BC2MXhtFOrtb%2FE10.1002/ADMA.20150123426177925
– reference: Kondiah PJ, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics. 2020;12. https://doi.org/10.3390/PHARMACEUTICS12020166.
– reference: NeveNThe future of cosmeceuticalsCOSSMA2021515716210.1159/000491860
– reference: SinghMJonnalagaddaSDesign and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applicationsJ Mater Sci Mater Med20213241:CAS:528:DC%2BB3MXotlGrtbo%3D10.1007/S10856-021-06509-7338303388032582
– reference: ZhangBKoroljALaiBFLRadisicMAdvances in organ-on-a-chip engineeringNat Rev Mater2018325727810.1038/s41578-018-0034-7
– reference: LigonSCLiskaRStampflJGurrMMulhauptRPolymers for 3D printing and customized additive manufacturingChem Rev201711710212102901:CAS:528:DC%2BC2sXht1eku7bP10.1021/ACS.CHEMREV.7B00074287566585553103
– reference: Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9. https://doi.org/10.1186/S13036-015-0001-4.
– reference: RanneyMLGriffethVJhaAKCritical supply shortages — the need for ventilators and personal protective equipment during the COVID-19 pandemicN Engl J Med20203821:CAS:528:DC%2BB3cXovVSjsbY%3D10.1056/NEJMP2006141/SUPPL_FILE/NEJMP2006141_DISCLOSURES.PDF32212516
– reference: ParkJ-HYoonJ-KLeeJBShinYMLeeK-WBaeS-WExperimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytesSci Rep201991:CAS:528:DC%2BC1MXnslentLw%3D10.1038/s41598-019-38565-z307657606375946
– reference: NelsonB3-dimensional bioprinting makes its mark: new tissue and organ printing methods are yielding critical new tools for the laboratory and clinicCancer Cytopathology20151232310.1002/CNCY.21543
– reference: MaXLiuJZhuWTangMLawrenceNYuCGouMChenS3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modelingAdv Drug Deliv Rev20181322352511:CAS:528:DC%2BC1cXht12isL%2FI10.1016/J.ADDR.2018.06.011299359886226327
– reference: HonigmannPSharmaNSchumacherRRueeggJHaefeliMThieringerFIn-hospital 3D printed scaphoid prosthesis using medical-grade polyetheretherketone (PEEK) BiomaterialBiomed Res Int20212021171:CAS:528:DC%2BB3MXhtlWgu7zJ10.1155/2021/1301028
– reference: MohebiMMEvansJRGA drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramicsJ Comb Chem200242672741:CAS:528:DC%2BD38Xkt1aitrk%3D10.1021/CC010075E12099843
– reference: SerrisISerrisPFreyKMChoHDevelopment of 3D-printed layered PLGA films for drug delivery and evaluation of drug release behaviorsAAPS PharmSciTech2020212561:CAS:528:DC%2BB3cXhvVWjs7jF10.1208/S12249-020-01790-132888114
– reference: Vivero-LopezMXuXMurasAOteroAConcheiroAGaisfordSBasitAWAlvarez-LorenzoCGoyanesAAnti-biofilm multi drug-loaded 3D printed hearing aidsMater Sci Eng C20211191116061:CAS:528:DC%2BB3cXitlWntbnJ10.1016/J.MSEC.2020.111606
– reference: DerakhshanfarSMbeleckRXuKZhangXZhongWXingM3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advancesBioactive Materials2018314415610.1016/J.BIOACTMAT.2017.11.008297444525935777
– reference: HazelaarCvan EijnattenMDaheleMWolffJForouzanfarTSlotmanBVerbakelWFARUsing 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposesMed Phys2018459210010.1002/MP.1264429091278
– reference: RedaelliDFAbbateVStormFARoncaASorrentinoAde CapitaniCBiffiEAmbrosioLColomboGFraschiniP3D printing orthopedic scoliosis braces: a test comparing FDM with thermoformingInt J Adv Manuf Technol20201111707172010.1007/s00170-020-06181-1/Published
– reference: MusazziUMSelminFOrtenziMAMohammedGKFranzéSMinghettiPCilurzoFPersonalized orodispersible films by hot melt ram extrusion 3D printingInt J Pharm201855152591:CAS:528:DC%2BC1cXhslWit7bP10.1016/J.IJPHARM.2018.09.01330205128
– reference: ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFDesign for additive manufacturing: trends, opportunities, considerations, and constraintsCIRP Ann20166573776010.1016/J.CIRP.2016.05.004
– reference: AwadAFinaFTrenfieldSJPatelPGoyanesAGaisfordS3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technologyPharmaceutics2019111481:CAS:528:DC%2BC1MXisVSrtb7O10.3390/PHARMACEUTICS110401486523578
– reference: KimSEShimKMJangKShimJHKangSSThree-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removalIn Vivo (Athens, Greece)201832637010.21873/INVIVO.11205
– reference: Merceron TK, Burt M, Seol Y-J, Kang H-W, Lee SJ, Yoo JJ, Atala A. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication. 2015;7. https://doi.org/10.1088/1758-5090/7/3/035003.
– reference: JamrózWKurekMŁyszczarzESzafraniecJKnapik-KowalczukJSyrekKPaluchMJachowiczR3D printed orodispersible films with AripiprazoleInt J Pharm201753341342010.1016/J.IJPHARM.2017.05.05228552800
– reference: KimIGParkSALeeS-HChoiJSChoHLeeSJTransplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytesSci Rep20201043261:CAS:528:DC%2BB3cXlvVOjtbc%3D10.1038/s41598-020-61405-4321524757062776
– reference: ArshadMSShahzadAAbbasNAlAsiriAHussainAKucukIPreparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approachPharm Dev Technol2019251972051:CAS:528:DC%2BC1MXitFSjtrfN10.1080/10837450.2019.168452031638453
– reference: BachtiarEOErolOMillrodMTaoRGraciasDHRomerLHKangSH3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applicationsJ Mech Behav Biomed Mater20201041036491:CAS:528:DC%2BB3cXjtFeqt7Y%3D10.1016/J.JMBBM.2020.103649321744077078069
– reference: Robles-Martinez P, Xu X, Trenfield SJ, Awad A, Goyanes A, Telford R, Basit AW, Gaisford S. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11. https://doi.org/10.3390/PHARMACEUTICS11060274.
– reference: LiuNYeXYaoBZhaoMWuPLiuGZhuangDJiangHChenXHeYHuangSZhuPAdvances in 3D bioprinting technology for cardiac tissue engineering and regenerationBioactive Materials20216138814011:CAS:528:DC%2BB3MXhtFKjsbnJ10.1016/J.BIOACTMAT.2020.10.02133210031
– reference: FilippouVTsoumpasCRecent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasoundMed Phys201845e740e76010.1002/MP.13058
– reference: ThakkarRPillaiARZhangJZhangYKulkarniVManiruzzamanMNovel on-demand 3-dimensional (3-D) printed tablets using fill density as an effective release-controlling toolPolymers20201218721:CAS:528:DC%2BB3cXhslGkurzF10.3390/POLYM120918727564432
– reference: NguyenDHäggDAForsmanAEkholmJNimkingratanaPBrantsingCCartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioinkSci Rep2017716581:CAS:528:DC%2BC2sXhs1ylurjI10.1038/s41598-017-00690-y283860585428803
– reference: GardinCFerroniLLatremouilleCChachquesJCMitrečićDZavanBRecent applications of three dimensional printing in cardiovascular medicineCells202097421:CAS:528:DC%2BB3cXhsVShurrI10.3390/CELLS90307427140676
– reference: LiangKCarmoneSBrambillaDLerouxJC3D printing of a wearable personalized oral delivery device: a first-in-human studySci Adv20184eaat254410.1126/SCIADV.AAT2544297502015942915
– reference: AshammakhiNHasanAKaarelaOByambaaBSheikhiAGaharwarAKKhademhosseiniAAdvancing frontiers in bone bioprintingAdv Healthc Mater20198180104810.1002/ADHM.201801048
– reference: ChenYBianLZhouHWuDXuJGuCUsefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgerySci Rep2020101:CAS:528:DC%2BB3cXhsVWhsb7L10.1038/s41598-020-68578-y326696417363793
– reference: InfangerSHaemmerliAIlievSBaierAStoyanovEQuodbachJPowder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binderInt J Pharm20195551982061:CAS:528:DC%2BC1cXitlSqt7nE10.1016/J.IJPHARM.2018.11.04830458260
– reference: EleftheriadisGKMonouPKBouropoulosNBoetkerJRantanenJJacobsenJVizirianakisISFatourosDGFabrication of mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printingJ Pharm Sci2020109275727661:CAS:528:DC%2BB3cXhtFKjur3E10.1016/J.XPHS.2020.05.022/ATTACHMENT/C43C2951-100F-49D7-9553-B2180D3C524D/MMC1.DOCX32497597
– reference: LiuX-YChenCXuH-HZhangYZhongLHuNJiaXLWangYWZhongKHLiuCZhuXMingDLiXHIntegrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injuryRegen Biomater2021812010.1093/RB/RBAB047
– reference: ZhangYSArneriABersiniSShinSRZhuKGoli-MalekebadiZKhademhosseiniABioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chipBiomaterials201611045591:CAS:528:DC%2BC28XhsVyjsLzO10.1016/J.BIOMATERIALS.2016.09.003277108325198581
– reference: ThakkarRDanielADavis Jr, Robert O. Williams I, Maniruzzaman M. Selective laser sintering of a photosensitive drug: impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage formsMol Pharm202118389439081:CAS:528:DC%2BB3MXitVakur7J10.1021/ACS.MOLPHARMACEUT.1C0055734529431
– reference: LiuXCarterS-SDRenesMJKimJRojas-CanalesDMPenkoDAngusCBeirneSDrogemullerCJYueZCoatesPTWallaceGGDevelopment of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructsAdv Healthc Mater20198180118110.1002/ADHM.201801181
– reference: OzbolatITPengWOzbolatVApplication areas of 3D bioprintingDrug Discov Today201621125712711:CAS:528:DC%2BC28Xmtlegs7k%3D10.1016/J.DRUDIS.2016.04.00627086009
– reference: DickmanCTDRussoVThainKPanSBeyerSTWalusKGetsiosSMohamedTWadsworthSJFunctional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technologyFASEB J202034165216641:CAS:528:DC%2BB3cXhvFeisLc%3D10.1096/FJ.201901063RR31914670
– reference: TanXPTanYJChowCSLTorSBYeongWYMetallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibilityMater Sci Eng C201776132813431:CAS:528:DC%2BC2sXktVCgu7g%3D10.1016/J.MSEC.2017.02.094
– reference: SongJHMurphyRJNarayanRDaviesGBHBiodegradable and compostable alternatives to conventional plasticsPhilos Trans R Soc B Biol Sci2009364212721391:CAS:528:DC%2BD1MXpt1SktL4%3D10.1098/RSTB.2008.0289
– reference: VoAQZhangJNyavanandiDBandariSRepkaMAHot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizineCarbohydr Polym20202461165191:CAS:528:DC%2BB3cXht1Ogsb7F10.1016/J.CARBPOL.2020.116519327472297403534
– reference: GrauerDQuality in orthodontics: the role of customized appliancesJ Esthet Restor Dent20213325325810.1111/JERD.1270233410248
– reference: MartinezPRGoyanesABasitAWGaisfordSFabrication of drug-loaded hydrogels with stereolithographic 3D printingInt J Pharm20175323133171:CAS:528:DC%2BC2sXhsFSlsrjM10.1016/J.IJPHARM.2017.09.00328888978
– reference: BaiXGaoMSyedSZhaungJXuXZhangXQBioactive hydrogels for bone regenerationBioactive Materials2018340141710.1016/J.BIOACTMAT.2018.05.006300031796038268
– reference: ChoiJKwonOCJoWLeeHJMoonMW4D Printing technology: a review3D Print Addit Manuf2015215916710.1089/3DP.2015.0039
– reference: MaoQWangYLiYJuengpanichSLiWChenMYinJFuJCaiXFabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprintingMater Sci Eng C20201091106251:CAS:528:DC%2BB3cXhtFert7g%3D10.1016/J.MSEC.2020.110625
– reference: LiuSSunLZhangHHuQWangYRamalingamMHigh-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineeringInt J Biol Macromol2021166128012911:CAS:528:DC%2BB3cXitlelsLjM10.1016/J.IJBIOMAC.2020.11.01033159941
– reference: BanerjeeSSBurbineSShivaprakashNKMeadJ3D-printable PP/SEBS thermoplastic elastomeric blends: preparation and propertiesPolymers20191134710.3390/POLYM110203476419175
– reference: ShendePTrivediR3D printed bioconstructs: regenerative modulation for genetic expressionStem Cell Rev Rep2021171239125010.1007/S12015-021-10120-2334548527811392
– reference: JamrózWSzafraniecJKurekMJachowiczR3D printing in pharmaceutical and medical applications – recent achievements and challengesPharm Res201835917610.1007/S11095-018-2454-X299984056061505
– reference: AwadAFinaFGoyanesAGaisfordSBasitAW3D printing: principles and pharmaceutical applications of selective laser sinteringInt J Pharm20205861195941:CAS:528:DC%2BB3cXhtlCktL7M10.1016/J.IJPHARM.2020.11959432622811
– reference: BianchiGFrisoniTSpazzoliBLuccheseADonatiDComputer assisted surgery and 3D printing in orthopaedic oncology: a lesson learned by cranio-maxillo-facial surgeryAppl Sci20211185841:CAS:528:DC%2BB3MXit1GqtL3O10.3390/APP11188584
– reference: AraiKIwangaSTodaHGenciCNishiyamiYNakamuraMThree-dimensional inkjet biofabrication based on designed imagesBiofabrication201130341131:CAS:528:DC%2BC3MXhtlarurfP10.1088/1758-5082/3/3/03411321900730
– reference: YeWLiHYuKXieCWangPZhengYZhangPXiuJYangYZhangFHeYGaoQ3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channelsMater Des20201921087571:CAS:528:DC%2BB3cXosVajsrk%3D10.1016/J.MATDES.2020.108757
– reference: FengLLiangSZhouYLuoYChenRHuangYChenYXuMYaoRThree-dimensional printing of hydrogel scaffolds with hierarchical structure for scalable stem cell cultureACS Biomater Sci Eng20206299530041:CAS:528:DC%2BB3cXnsVCgt7s%3D10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF33463285
– reference: BegSAlmalkiWHMalikAFarhanMAatifMRahmanZAlruwailiNKAlrobaianMTariqueMRahmanM3D printing for drug delivery and biomedical applicationsDrug Discov Today202025166816811:CAS:528:DC%2BB3cXhsVeqsrjJ10.1016/J.DRUDIS.2020.07.00732687871
– reference: LamichhaneSBashyalSKeumTNohGSeoJEBastolaRChoiJSohnDHLeeSComplex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry?Asian J Pharm Sci20191446547910.1016/J.AJPS.2018.11.008321044757032174
– reference: XingJ-FZhengM-LDuanX-MTwo-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug deliveryChem Soc Rev201544503150391:CAS:528:DC%2BC2MXoslCgs7o%3D10.1039/C5CS00278H25992492
– reference: Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, Basit A. 3D printed pellets (Miniprintlets): a novel, multi-drug, controlled release platform technology. Pharmaceutics. 2019;11. https://doi.org/10.3390/PHARMACEUTICS11040148.
– reference: 3D-Printed Buses? 35 Industries The Tech Could Transform. Research Report. CBInsights. 2019. https://www.cbinsights.com/research/report/3d-printingtechnology-disrupting-industries/. Accessed 22 Oct 2021.
– reference: Tsoulfas G, Bangeas PI, Suri JS, Papadopoulos VN. Introduction: the role of 3D printing in surgery. 3D printing: applications in medicine and surgery 2020:1–6. https://doi.org/10.1016/B978-0-323-66164-5.00001-5.
– reference: StansburyJWIdacavageMJ3D printing with polymers: challenges among expanding options and opportunitiesDental Mater: Official Publication of the Academy of Dental Materials20163254641:CAS:528:DC%2BC2MXhs1aktbfO10.1016/J.DENTAL.2015.09.018
– reference: Gibson I, Rosen D, Stucker B. Introduction and basic principles. Additive Manufacturing Technologies 2015:1–18. https://doi.org/10.1007/978-1-4939-2113-3_1.
– reference: KontaAAGarcia-PinaMSerranoDRPersonalised 3D printed medicines: which techniques and polymers are more successful?Bioengineering (Basel, Switzerland)2017410.3390/BIOENGINEERING4040079
– reference: Sridhar A, Blaudeck T, Baumann R. Inkjet printing as a key enabling technology for printed electronics. Material Matters. 2011;6:1.
– reference: DuinDSchutzKAhlfeldALehmannSLodeALudwigB3D bioprinting of functional islets of langerhans in an alginate/methylcellulose hydrogel blendAdv Healthc Mater20198180163110.1002/ADHM.201801631
– reference: Pranzo D, Larizza P, Filippini D, Percoco G. Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: a topical review. Micromachines. 2018;9. https://doi.org/10.3390/MI9080374.
– reference: ZunigaJM3D printed antibacterial prosthesesAppl Sci20188165110.3390/APP8091651
– reference: Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK. Polymers for Bioprinting. Essentials of 3D Biofabrication and. Translation. 2015:229–48. https://doi.org/10.1016/B978-0-12-800972-7.00013-X.
– reference: DaikuaraLYChenXYueZSkropetaDWoodFMFearMWWallaceGG3D Bioprinting constructs to facilitate skin regenerationAdv Funct Mater20212105080210508010.1002/ADFM.202105080
– ident: 2242_CR73
  doi: 10.1016/B978-0-12-813477-1.00012-8
– volume: 76
  start-page: 1328
  year: 2017
  ident: 2242_CR121
  publication-title: Mater Sci Eng C
  doi: 10.1016/J.MSEC.2017.02.094
– ident: 2242_CR88
  doi: 10.3390/PHARMACEUTICS11060274
– volume: 25
  start-page: 1668
  year: 2020
  ident: 2242_CR127
  publication-title: Drug Discov Today
  doi: 10.1016/J.DRUDIS.2020.07.007
– volume: 547
  start-page: 44
  year: 2018
  ident: 2242_CR20
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2018.05.044
– volume: 21
  start-page: 133
  year: 2020
  ident: 2242_CR60
  publication-title: Korean J Radiol
  doi: 10.3348/KJR.2019.0625
– ident: 2242_CR4
– volume: 166
  start-page: 1280
  year: 2021
  ident: 2242_CR56
  publication-title: Int J Biol Macromol
  doi: 10.1016/J.IJBIOMAC.2020.11.010
– volume: 586
  start-page: 119594
  year: 2020
  ident: 2242_CR19
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2020.119594
– volume: 18
  start-page: 3894
  year: 2021
  ident: 2242_CR21
  publication-title: Mol Pharm
  doi: 10.1021/ACS.MOLPHARMACEUT.1C00557
– volume: 31
  start-page: 581
  year: 2016
  ident: 2242_CR61
  publication-title: J Card Surg
  doi: 10.1111/JOCS.12812
– volume: 28
  start-page: 241
  year: 2020
  ident: 2242_CR72
  publication-title: Cellulose
  doi: 10.1007/S10570-020-03526-7
– volume: 7
  start-page: 658
  issue: 1
  year: 2017
  ident: 2242_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-00690-y
– volume: 3
  start-page: 034113
  year: 2011
  ident: 2242_CR30
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/3/034113
– volume: 8
  start-page: 1
  year: 2021
  ident: 2242_CR58
  publication-title: Regen Biomater
  doi: 10.1093/RB/RBAB047
– volume: 2021
  start-page: 1
  year: 2021
  ident: 2242_CR79
  publication-title: Biomed Res Int
  doi: 10.1155/2021/1301028
– volume: 11
  start-page: 645
  year: 2019
  ident: 2242_CR17
  publication-title: Pharmaceutics
  doi: 10.3390/PHARMACEUTICS11120645
– ident: 2242_CR31
  doi: 10.3390/PHARMACEUTICS12020166
– volume: 4
  start-page: eaat2544
  year: 2018
  ident: 2242_CR92
  publication-title: Sci Adv
  doi: 10.1126/SCIADV.AAT2544
– volume: 532
  start-page: 313
  year: 2017
  ident: 2242_CR118
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2017.09.003
– volume: 13
  start-page: 1373
  year: 2021
  ident: 2242_CR95
  publication-title: Pharmaceutics
  doi: 10.3390/PHARMACEUTICS13091373
– volume: 45
  start-page: e740
  year: 2018
  ident: 2242_CR68
  publication-title: Med Phys
  doi: 10.1002/MP.13058
– volume: 165
  start-page: 1586
  year: 2016
  ident: 2242_CR100
  publication-title: Cell
  doi: 10.1016/J.CELL.2016.05.082
– volume: 161
  start-page: 1040
  year: 2020
  ident: 2242_CR103
  publication-title: Int J Biol Macromol
  doi: 10.1016/J.IJBIOMAC.2020.06.086
– volume: 2105080
  start-page: 2105080
  year: 2021
  ident: 2242_CR53
  publication-title: Adv Funct Mater
  doi: 10.1002/ADFM.202105080
– volume: 9
  start-page: 71
  year: 2016
  ident: 2242_CR111
  publication-title: Anat Sci Educ
  doi: 10.1002/ASE.1538
– volume: 119
  start-page: 111606
  year: 2021
  ident: 2242_CR123
  publication-title: Mater Sci Eng C
  doi: 10.1016/J.MSEC.2020.111606
– volume: 3
  start-page: 401
  year: 2018
  ident: 2242_CR45
  publication-title: Bioactive Materials
  doi: 10.1016/J.BIOACTMAT.2018.05.006
– volume: 109
  start-page: 110625
  year: 2020
  ident: 2242_CR66
  publication-title: Mater Sci Eng C
  doi: 10.1016/J.MSEC.2020.110625
– volume: 35
  start-page: 217
  year: 2017
  ident: 2242_CR43
  publication-title: Biotechnol Adv
  doi: 10.1016/J.BIOTECHADV.2016.12.006
– volume: 111
  start-page: 1707
  year: 2020
  ident: 2242_CR75
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-06181-1/Published
– volume: 160
  start-page: 255
  year: 2019
  ident: 2242_CR11
  publication-title: Int J Mech Sci
  doi: 10.1016/J.IJMECSCI.2019.06.007
– ident: 2242_CR15
  doi: 10.3390/PHARMACEUTICS12010077
– volume: 6
  start-page: 1388
  year: 2021
  ident: 2242_CR59
  publication-title: Bioactive Materials
  doi: 10.1016/J.BIOACTMAT.2020.10.021
– ident: 2242_CR2
– volume: 123
  start-page: 2
  year: 2015
  ident: 2242_CR97
  publication-title: Cancer Cytopathology
  doi: 10.1002/CNCY.21543
– ident: 2242_CR29
  doi: 10.3390/PHARMACEUTICS10030122
– volume: 74
  start-page: 99
  year: 2016
  ident: 2242_CR36
  publication-title: Biomaterials
  doi: 10.1016/J.BIOMATERIALS.2015.09.044
– volume: 192
  start-page: 108757
  year: 2020
  ident: 2242_CR57
  publication-title: Mater Des
  doi: 10.1016/J.MATDES.2020.108757
– volume: 2232
  year: 2020
  ident: 2242_CR39
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0001732
– volume: 33
  start-page: 253
  year: 2021
  ident: 2242_CR74
  publication-title: J Esthet Restor Dent
  doi: 10.1111/JERD.12702
– volume: 44
  start-page: 5031
  year: 2015
  ident: 2242_CR16
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00278H
– volume: 8
  start-page: 1651
  year: 2018
  ident: 2242_CR78
  publication-title: Appl Sci
  doi: 10.3390/APP8091651
– volume: 10
  year: 2020
  ident: 2242_CR82
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-68578-y
– volume: 10
  start-page: 4326
  year: 2020
  ident: 2242_CR70
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61405-4
– volume: 2344
  year: 2021
  ident: 2242_CR102
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0047183
– volume: 15
  start-page: 493
  issue: 5
  year: 2021
  ident: 2242_CR48
  publication-title: Cell Tissue Biol
  doi: 10.1134/S1990519X21050059
– volume: 9
  year: 2019
  ident: 2242_CR69
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-38565-z
– volume: 11
  start-page: 347
  year: 2019
  ident: 2242_CR105
  publication-title: Polymers
  doi: 10.3390/POLYM11020347
– volume: 205
  start-page: 111919
  year: 2021
  ident: 2242_CR46
  publication-title: Colloids Surf B: Biointerfaces
  doi: 10.1016/J.COLSURFB.2021.111919
– ident: 2242_CR51
  doi: 10.21203/rs.3.rs-861389/v1
– volume: 123
  start-page: 263
  year: 2021
  ident: 2242_CR52
  publication-title: Acta Biomater
  doi: 10.1016/J.ACTBIO.2021.01.012
– volume: 9
  start-page: 202
  year: 2018
  ident: 2242_CR110
  publication-title: J Clin Orthop Trauma
  doi: 10.1016/J.JCOT.2018.04.008
– volume: 533
  start-page: 413
  year: 2017
  ident: 2242_CR116
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2017.05.052
– volume: 8
  start-page: 1801181
  year: 2019
  ident: 2242_CR67
  publication-title: Adv Healthc Mater
  doi: 10.1002/ADHM.201801181
– volume: 579
  start-page: 119155
  year: 2020
  ident: 2242_CR84
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2020.119155
– ident: 2242_CR49
  doi: 10.1088/1758-5090/7/3/035003
– volume: 104
  start-page: 103649
  year: 2020
  ident: 2242_CR106
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/J.JMBBM.2020.103649
– volume: 8
  start-page: 1801631
  year: 2019
  ident: 2242_CR35
  publication-title: Adv Healthc Mater
  doi: 10.1002/ADHM.201801631
– volume: 167
  start-page: 48
  year: 2021
  ident: 2242_CR37
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/J.EJPB.2021.07.005
– ident: 2242_CR87
  doi: 10.3390/PHARMACEUTICS11040148
– volume: 11
  start-page: 148
  year: 2019
  ident: 2242_CR117
  publication-title: Pharmaceutics
  doi: 10.3390/PHARMACEUTICS11040148
– volume: 11
  start-page: 9693
  year: 2021
  ident: 2242_CR76
  publication-title: Appl Sci
  doi: 10.3390/APP11209693
– volume: 45
  start-page: 92
  year: 2018
  ident: 2242_CR122
  publication-title: Med Phys
  doi: 10.1002/MP.12644
– volume: 11
  start-page: 796
  year: 2020
  ident: 2242_CR124
  publication-title: Micromachines
  doi: 10.3390/MI11090796
– volume: 21
  start-page: 1257
  year: 2016
  ident: 2242_CR99
  publication-title: Drug Discov Today
  doi: 10.1016/J.DRUDIS.2016.04.006
– volume: 544
  start-page: 425
  year: 2018
  ident: 2242_CR119
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2018.03.031
– volume: 382
  year: 2020
  ident: 2242_CR104
  publication-title: N Engl J Med
  doi: 10.1056/NEJMP2006141/SUPPL_FILE/NEJMP2006141_DISCLOSURES.PDF
– volume: 25
  year: 2015
  ident: 2242_CR28
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/25/8/085013
– volume: 551
  start-page: 52
  year: 2018
  ident: 2242_CR91
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2018.09.013
– ident: 2242_CR81
  doi: 10.1016/B978-0-323-66164-5.00001-5
– volume: 132
  start-page: 235
  year: 2018
  ident: 2242_CR98
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/J.ADDR.2018.06.011
– volume: 12
  start-page: 738
  year: 2020
  ident: 2242_CR86
  publication-title: Pharmaceutics
  doi: 10.3390/PHARMACEUTICS12080738
– ident: 2242_CR1
  doi: 10.1007/978-1-4939-2113-3_1
– volume: 365
  start-page: 482
  year: 2019
  ident: 2242_CR63
  publication-title: Science
  doi: 10.1126/SCIENCE.AAV9051
– volume: 15
  year: 2020
  ident: 2242_CR55
  publication-title: Biomedical Materials (Bristol, England)
  doi: 10.1088/1748-605X/AB7417
– volume: 12
  start-page: 105
  year: 2020
  ident: 2242_CR14
  publication-title: Pharmaceutics
  doi: 10.3390/PHARMACEUTICS12020105
– volume: 234
  start-page: 19256
  year: 2019
  ident: 2242_CR71
  publication-title: J Cell Physiol
  doi: 10.1002/JCP.28558
– volume: 3
  start-page: 257
  year: 2018
  ident: 2242_CR101
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-018-0034-7
– volume: 109
  start-page: 2757
  year: 2020
  ident: 2242_CR114
  publication-title: J Pharm Sci
  doi: 10.1016/J.XPHS.2020.05.022/ATTACHMENT/C43C2951-100F-49D7-9553-B2180D3C524D/MMC1.DOCX
– volume: 9
  year: 2014
  ident: 2242_CR107
  publication-title: PLoS ONE
  doi: 10.1371/JOURNAL.PONE.0083401
– volume: 8
  start-page: 1801048
  year: 2019
  ident: 2242_CR44
  publication-title: Adv Healthc Mater
  doi: 10.1002/ADHM.201801048
– volume: 10
  start-page: 16
  year: 2020
  ident: 2242_CR90
  publication-title: J Pers Med
  doi: 10.3390/JPM10010016
– volume: 5
  start-page: 157
  year: 2021
  ident: 2242_CR108
  publication-title: COSSMA
  doi: 10.1159/000491860
– ident: 2242_CR22
  doi: 10.4018/978-1-7998-4054-1.CH010
– volume: 4
  start-page: 267
  year: 2002
  ident: 2242_CR27
  publication-title: J Comb Chem
  doi: 10.1021/CC010075E
– volume: 207
  start-page: 297
  year: 2019
  ident: 2242_CR33
  publication-title: Carbohydr Polym
  doi: 10.1016/J.CARBPOL.2018.11.077
– volume: 22
  start-page: 49
  year: 2021
  ident: 2242_CR126
  publication-title: AAPS PharmSciTech
  doi: 10.1208/S12249-020-01905-8
– volume: 33
  start-page: 101071
  year: 2020
  ident: 2242_CR18
  publication-title: Additive Manufacturing
  doi: 10.1016/J.ADDMA.2020.101071
– volume: 555
  start-page: 198
  year: 2019
  ident: 2242_CR115
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2018.11.048
– volume: 8
  start-page: 25210
  year: 2018
  ident: 2242_CR8
  publication-title: RSC Adv
  doi: 10.1039/C8RA04815K
– volume: 2
  start-page: 159
  year: 2015
  ident: 2242_CR125
  publication-title: 3D Print Addit Manuf
  doi: 10.1089/3DP.2015.0039
– ident: 2242_CR5
  doi: 10.1186/S13036-015-0001-4
– volume: 25
  start-page: 197
  year: 2019
  ident: 2242_CR113
  publication-title: Pharm Dev Technol
  doi: 10.1080/10837450.2019.1684520
– ident: 2242_CR13
  doi: 10.3390/MI9080374
– volume: 32
  issue: 4
  year: 2021
  ident: 2242_CR41
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/S10856-021-06509-7
– volume: 35
  start-page: 176
  issue: 9
  year: 2018
  ident: 2242_CR6
  publication-title: Pharm Res
  doi: 10.1007/S11095-018-2454-X
– volume: 117
  start-page: 10212
  year: 2017
  ident: 2242_CR24
  publication-title: Chem Rev
  doi: 10.1021/ACS.CHEMREV.7B00074
– volume: 27
  start-page: 5075
  year: 2015
  ident: 2242_CR25
  publication-title: Adv Mater
  doi: 10.1002/ADMA.201501234
– volume: 3
  start-page: 144
  year: 2018
  ident: 2242_CR42
  publication-title: Bioactive Materials
  doi: 10.1016/J.BIOACTMAT.2017.11.008
– volume: 70
  start-page: 567
  year: 2021
  ident: 2242_CR65
  publication-title: Gut
  doi: 10.1136/GUTJNL-2019-319960
– volume: 10
  start-page: 2100523
  year: 2021
  ident: 2242_CR54
  publication-title: Adv Healthc Mater
  doi: 10.1002/ADHM.202100523
– volume: 6
  start-page: 2995
  year: 2020
  ident: 2242_CR109
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/ACSBIOMATERIALS.9B01825/SUPPL_FILE/AB9B01825_SI_001.PDF
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2242_CR120
  publication-title: Int J Polym Sci
  doi: 10.1155/2019/6062381
– ident: 2242_CR34
  doi: 10.1016/B978-0-12-800972-7.00013-X
– volume: 65
  start-page: 737
  year: 2016
  ident: 2242_CR10
  publication-title: CIRP Ann
  doi: 10.1016/J.CIRP.2016.05.004
– volume: 32
  start-page: 54
  year: 2016
  ident: 2242_CR23
  publication-title: Dental Mater: Official Publication of the Academy of Dental Materials
  doi: 10.1016/J.DENTAL.2015.09.018
– volume: 110
  start-page: 45
  year: 2016
  ident: 2242_CR64
  publication-title: Biomaterials
  doi: 10.1016/J.BIOMATERIALS.2016.09.003
– volume: 11
  start-page: 8584
  year: 2021
  ident: 2242_CR83
  publication-title: Appl Sci
  doi: 10.3390/APP11188584
– volume: 9
  start-page: 742
  year: 2020
  ident: 2242_CR62
  publication-title: Cells
  doi: 10.3390/CELLS9030742
– volume: 246
  start-page: 116519
  year: 2020
  ident: 2242_CR85
  publication-title: Carbohydr Polym
  doi: 10.1016/J.CARBPOL.2020.116519
– volume: 21
  start-page: 2
  year: 2015
  ident: 2242_CR96
  publication-title: Nat Med
  doi: 10.1038/NM0115-2
– ident: 2242_CR26
– volume: 46
  start-page: 531
  year: 2020
  ident: 2242_CR94
  publication-title: Drug Dev Ind Pharm
  doi: 10.1080/03639045.2020.1734018
– volume: 17
  start-page: 1239
  year: 2021
  ident: 2242_CR129
  publication-title: Stem Cell Rev Rep
  doi: 10.1007/S12015-021-10120-2
– volume: 12
  start-page: 1872
  year: 2020
  ident: 2242_CR89
  publication-title: Polymers
  doi: 10.3390/POLYM12091872
– volume: 364
  start-page: 2127
  year: 2009
  ident: 2242_CR32
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/RSTB.2008.0289
– volume: 34
  start-page: 1652
  year: 2020
  ident: 2242_CR50
  publication-title: FASEB J
  doi: 10.1096/FJ.201901063RR
– volume: 32
  start-page: 63
  year: 2018
  ident: 2242_CR112
  publication-title: In Vivo (Athens, Greece)
  doi: 10.21873/INVIVO.11205
– volume: 14
  start-page: 465
  year: 2019
  ident: 2242_CR128
  publication-title: Asian J Pharm Sci
  doi: 10.1016/J.AJPS.2018.11.008
– volume: 12
  start-page: 52
  year: 2020
  ident: 2242_CR93
  publication-title: Pharmaceutics
  doi: 10.3390/PHARMACEUTICS12010052
– ident: 2242_CR7
  doi: 10.1007/978-3-319-56309-1
– volume: 28
  start-page: 103
  year: 2016
  ident: 2242_CR77
  publication-title: J Prosthet Orthot
  doi: 10.1097/JPO.0000000000000097
– volume: 19
  start-page: 1
  year: 2021
  ident: 2242_CR38
  publication-title: J Nanobiotechnology
  doi: 10.1186/S12951-021-01012-1
– volume: 4
  year: 2017
  ident: 2242_CR12
  publication-title: Bioengineering (Basel, Switzerland)
  doi: 10.3390/BIOENGINEERING4040079
– volume: 600
  start-page: 120501
  year: 2021
  ident: 2242_CR130
  publication-title: Int J Pharm
  doi: 10.1016/J.IJPHARM.2021.120501
– volume: 9
  start-page: 11424
  year: 2020
  ident: 2242_CR9
  publication-title: J Mater Res Technol
  doi: 10.1016/J.JMRT.2020.08.039
– volume: 193
  start-page: 108057
  year: 2020
  ident: 2242_CR80
  publication-title: Compos Part B
  doi: 10.1016/J.COMPOSITESB.2020.108057
– volume: 21
  start-page: 256
  year: 2020
  ident: 2242_CR40
  publication-title: AAPS PharmSciTech
  doi: 10.1208/S12249-020-01790-1
– ident: 2242_CR3
  doi: 10.1080/09506608.2015.1116649
SSID ssj0023193
Score 2.5706837
SecondaryResourceType review_article
Snippet The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Drug Delivery Systems - methods
Pharmacology/Toxicology
Pharmacy
Printing, Three-Dimensional
Review
Review Article
Stereolithography
Theme: Novel Advances in 3-D Printing Technology in Drug Delivery
Tissue Engineering - methods
Tissue Scaffolds
Title 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery
URI https://link.springer.com/article/10.1208/s12249-022-02242-8
https://www.ncbi.nlm.nih.gov/pubmed/35301602
https://www.proquest.com/docview/2640997572
https://pubmed.ncbi.nlm.nih.gov/PMC8929713
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuHBBuzy7LMgrIS4kooljO-ZWtbBoV6BKtBKcrNRxAAkFRNtD_z0zTlpaQEhcfIgfijyezDeZmc8Ah030GrJc6jAqrA0T5fJQF1EaKpclkVNykPlkzMsredFP_t2Im5omh2ph5uP3cTM9GVLkR4eUc07WBrV3GVZFxBVd09CW7ZlzhUeJ10Uxn89bNDwf0OTHpMh3kVFvcM5_wHqNFFmrEu1PWHLlBhx1K6rpScB6b5VTw4Adse4bCfVkE655h3VxYcpqPmWtuTA1eyhZz283myMjDFgdsmEd5z8eAcvKnHVexnf45JGyNyZb0D8_67UvwvoChdCiHR-FuYwKncSRaxYCcZBMY5U1HReRkuQWSU3lUggBpeUFel6FsAgW9SCxUtO_Ys63YaV8Kt0uMC14ggqV-7hl7pS2XFiObcaFGkjVgGi6u8bW7OJ0ycWjIS8DJWIqiRiUhvESMWkDjmdznitujS9H_5kKzaAKUFwjK93TeGgQ01H9r1BxA3YqIc7W44IThx72qAXxzgYQvfZiT_lw72m2U0SO6MI3IJgeBFPr9_CL1_z1veF7sBb7Q0pEsb9hZfQydvsIc0aDA1ht_b39f3bgzzm2_bj1CmPY8_Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa69rBdij72yNaHBhS5zMZiy5Ks3oKmRdolRYAlQG-CI8trgcAZ6uSQfz9KtvNohwC9-GA9YIik9NEkPwFctNBrSFIu_SDT2o-ESX2ZBbEvTBIFRvBx4pIx-_e8O4ruHthDVRRW1NnudUjS7dSOAaEV_yxsDEj6Nvvcnjtox-9gD8FAbHV5FLaXbhYqFa3KY_4_bvMIeoUrX6dHvoiRuqPn5gD2K8xI2qWQD2HH5EfQHJSk0wuPDFc1VIVHmmSwoqNeHMNv2iEDnNjmN1-S9lrAmjzlZOgWnqzREnqkCt6QjnHbiEeSPCWd5_kffDOxeRyLjzC6uR5edf3qKgVf44k-81MeZDIKA9PKGCIiHociaRnKAsGtg8SlLZxCMMg1zdAHy5hG2CjHkebS_jWm9BPs5tPcfAEiGY3QtFIXwUyNkJoyTfGZUCbGXDQgqFdX6Ypn3F53MVHW30CJqFIiCqWhnERU3IAfyzF_S5aNrb2_10JTaAw2wpHkZjovFKI7WwnMRNiAz6UQl_NRRi2bHraIDfEuO1ii7c2W_OnREW7HiCHRmW-AVyuCqiy92PKZX9_W_Rzed4f9nurd3v_6Bh9Cp7CWPvYEdmfPc3OK4Gc2PnO6_g8Wf_iQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61VEK9IFpoCa8uEuKCLeKsd9fLDSVEtAUUiUTitnLWa0CKHESSQ_49M2vnVRBSLz54H7L8zXhmPDPfAhzXMWpIM6nDKLc2jJXLQp1HSahcGkdOyX7qizFvbuVVL_5zL-6Xuvh9tfssJVn2NBBLUzE-e87ykg2hnpyNKB-kQ6pEJxuEOv0ZvmCkElH41ZTNeciFAsarVpn3162aozc-5ttSyX_ypd4MtTdho_If2UUJ-Df45IrvcNIpCainAesu-qlGATthnQU19XQL7niLdXBjqnU-ZxdLyWv2VLCuB4EtURQGrErksJbzn5SApUXGWi-TB7wzoJqO6Tb02pfd5lVYHasQWrTu4zCTUa7jRuTquUDvSCYNldYdF5GSFCxJTU1U6BhKy3OMx3Jh0YXU_dhKTX-QOf8Ba8WwcDvAtOAxqlnms5mZU9pyYTleUy5UX6oaRLO3a2zFOU5HXwwMxR6IiCkRMYiG8YiYpAan8zXPJePGh7OPZqAZVAzKdqSFG05GBj096goWqlGDnyWI8_244MSshyNqBd75BCLdXh0pnh49-XaC_iQG9jUIZoJgKq0fffCYu_83_Resd1ptc_379u8efG14eSUm2X1YG79M3AH6QeP-oRf1V0we_LY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printing%3A+Applications+in+Tissue+Engineering%2C+Medical+Devices%2C+and+Drug+Delivery&rft.jtitle=AAPS+PharmSciTech&rft.au=Pavan+Kalyan%2C+B+G&rft.au=Kumar%2C+Lalit&rft.date=2022-03-17&rft.issn=1530-9932&rft.eissn=1530-9932&rft.volume=23&rft.issue=4&rft.spage=92&rft_id=info:doi/10.1208%2Fs12249-022-02242-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon