Navigating the DNA methylation landscape of cancer
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e....
Saved in:
Published in | Trends in genetics Vol. 37; no. 11; pp. 1012 - 1027 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
DNA methylation is an important epigenetic modification that defines the properties of cells. Genome-wide hypomethylation, as well as hypermethylation of CpG islands associated with tumor suppressor genes and developmental regulators, are characteristics of cancer cells.DNA methyltransferases normally exist in an inactive form and their localization and activation are regulated by interaction with unique histone modifications at DNA methylation sites.Changes in DNA methylation patterns associated with carcinogenesis progress gradually with cell proliferation. Genome-wide hypomethylation is found in DNA blocks called partially methylated domains (PMDs) and it frequently occurs in solo-WCGW sequences that have no nearby CpG sequences and are adjacent to A or C.CpG island methylation primarily targets promoters characterized by low gene expression marked by H3K27m3, with the replacement of histone modifications by DNA methylation ensuring more stable gene repression. |
---|---|
AbstractList | DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
DNA methylation is an important epigenetic modification that defines the properties of cells. Genome-wide hypomethylation, as well as hypermethylation of CpG islands associated with tumor suppressor genes and developmental regulators, are characteristics of cancer cells.DNA methyltransferases normally exist in an inactive form and their localization and activation are regulated by interaction with unique histone modifications at DNA methylation sites.Changes in DNA methylation patterns associated with carcinogenesis progress gradually with cell proliferation. Genome-wide hypomethylation is found in DNA blocks called partially methylated domains (PMDs) and it frequently occurs in solo-WCGW sequences that have no nearby CpG sequences and are adjacent to A or C.CpG island methylation primarily targets promoters characterized by low gene expression marked by H3K27m3, with the replacement of histone modifications by DNA methylation ensuring more stable gene repression. DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential. DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential. |
Author | Nishiyama, Atsuya Nakanishi, Makoto |
Author_xml | – sequence: 1 givenname: Atsuya surname: Nishiyama fullname: Nishiyama, Atsuya email: uanishiyama@g.ecc.u-tokyo.ac.jp organization: Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan – sequence: 2 givenname: Makoto surname: Nakanishi fullname: Nakanishi, Makoto email: mkt-naka@g.ecc.u-tokyo.ac.jp organization: Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34120771$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOAyEUQFnUWFv9ADdmlm46XmAYSlw19ZmYutE1ocC01HlUoE3691KrLlxoQkJycw7hngHqtV1rETrHkGPA5dUqj26REyA4B5YDkB46SfPxSDDC-mgQwgoAGKfsGPVpgQlwjk8QmamtW6jo2kUWlza7mU2yxsblrk6zrs1q1Zqg1dpmXZVp1WrrT9FRpepgz77uIXq9u32ZPoyenu8fp5OnkWaYxJEpgIgCqGDAKio4FYryciwUpEPZnDCjxhXX3EAFrFBcKaaJKXFZGCEqTIfo8vDu2nfvGxuibFzQtk5fst0mSMIK4KSkmCT04gvdzBtr5Nq7Rvmd_N4zAfgAaN-F4G31g2CQ-35yJVM_ue8ngcnULzn8l6Nd_KwSvXL1n-b1wbQpz9ZZL4N2NrUzzlsdpencn7b4ZevatU6r-s3u_nE_APp-nDQ |
CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_1111_ijlh_14186 crossref_primary_10_1186_s12964_024_01849_7 crossref_primary_10_1007_s12032_022_01943_1 crossref_primary_10_1007_s10495_023_01884_8 crossref_primary_10_1038_s41598_024_51720_5 crossref_primary_10_1016_j_gendis_2025_101598 crossref_primary_10_1016_j_dnarep_2023_103526 crossref_primary_10_1186_s13148_024_01633_x crossref_primary_10_7717_peerj_16566 crossref_primary_10_1016_j_canlet_2024_217216 crossref_primary_10_1177_17588359231220511 crossref_primary_10_3390_cancers14102384 crossref_primary_10_1016_j_jncc_2024_12_007 crossref_primary_10_1186_s40001_024_02192_w crossref_primary_10_1016_j_humpath_2024_105679 crossref_primary_10_1007_s40203_023_00148_2 crossref_primary_10_1016_j_cca_2024_117823 crossref_primary_10_1021_acs_analchem_4c05030 crossref_primary_10_1016_j_chemosphere_2024_142488 crossref_primary_10_1016_j_xcrm_2025_101975 crossref_primary_10_2217_bmm_2023_0600 crossref_primary_10_1007_s00414_024_03165_8 crossref_primary_10_3390_ijms25052498 crossref_primary_10_3390_dna2010004 crossref_primary_10_1007_s12031_023_02170_7 crossref_primary_10_1080_15592294_2023_2207959 crossref_primary_10_1093_nar_gkae1105 crossref_primary_10_1186_s12989_024_00565_x crossref_primary_10_3390_cancers17061008 crossref_primary_10_3390_ijms25179339 crossref_primary_10_1186_s12301_023_00392_0 crossref_primary_10_3389_fcvm_2022_952949 crossref_primary_10_1007_s10616_025_00735_5 crossref_primary_10_3389_fimmu_2022_1057839 crossref_primary_10_3390_ijerph20043635 crossref_primary_10_1016_j_jare_2024_11_001 crossref_primary_10_1016_j_critrevonc_2024_104498 crossref_primary_10_1016_j_ymeth_2024_09_001 crossref_primary_10_1016_j_ygyno_2024_01_001 crossref_primary_10_1158_2159_8290_CD_23_1060 crossref_primary_10_1007_s13577_023_01013_2 crossref_primary_10_1016_j_csbj_2023_11_043 crossref_primary_10_3390_ani14081222 crossref_primary_10_1002_1878_0261_13622 crossref_primary_10_1007_s10147_024_02617_w crossref_primary_10_3390_biology12030488 crossref_primary_10_1055_a_2499_1140 crossref_primary_10_1093_bib_bbae651 crossref_primary_10_3389_fonc_2024_1446522 crossref_primary_10_1016_j_drudis_2025_104321 crossref_primary_10_2147_CEG_S451676 crossref_primary_10_3389_fcvm_2022_872977 crossref_primary_10_1038_s41598_025_92390_1 crossref_primary_10_3390_ijms241411715 crossref_primary_10_4240_wjgs_v16_i2_276 crossref_primary_10_1016_j_bbcan_2024_189096 crossref_primary_10_2217_epi_2022_0368 crossref_primary_10_3390_ijms24097729 crossref_primary_10_2478_rjim_2025_0005 crossref_primary_10_1038_s41467_024_47314_4 crossref_primary_10_25259_Cytojournal_31_2024 crossref_primary_10_3390_biom12111590 crossref_primary_10_1016_j_bbagrm_2022_194873 crossref_primary_10_1016_j_ajcnut_2024_08_033 crossref_primary_10_1186_s13073_024_01344_1 crossref_primary_10_1002_dev_22466 crossref_primary_10_3389_fphar_2024_1381168 crossref_primary_10_1016_j_tranon_2025_102344 crossref_primary_10_1016_j_bios_2023_115235 crossref_primary_10_1186_s13578_023_01017_3 crossref_primary_10_1038_s41598_024_56073_7 crossref_primary_10_1186_s40478_024_01796_x crossref_primary_10_1016_j_thorsurg_2023_04_011 crossref_primary_10_1111_1759_7714_14822 crossref_primary_10_1002_wrna_70002 crossref_primary_10_1038_s42003_024_06434_9 crossref_primary_10_1186_s13059_024_03405_5 crossref_primary_10_3389_fonc_2024_1513654 crossref_primary_10_31083_j_fbl2712326 crossref_primary_10_3390_nu16142262 crossref_primary_10_1007_s10142_024_01410_2 crossref_primary_10_1016_j_bbcan_2024_189192 crossref_primary_10_1002_advs_202206169 crossref_primary_10_1007_s00262_024_03717_2 crossref_primary_10_1186_s12885_024_12039_6 crossref_primary_10_3390_ijms23094602 crossref_primary_10_1038_s41598_024_78135_6 crossref_primary_10_1016_j_canlet_2024_217010 crossref_primary_10_1007_s12035_024_04041_7 crossref_primary_10_3390_cimb46070390 crossref_primary_10_3389_fgene_2022_1087479 crossref_primary_10_1007_s00204_023_03608_y crossref_primary_10_1002_ijc_34915 crossref_primary_10_1007_s10555_025_10253_7 crossref_primary_10_1016_j_heliyon_2024_e34461 crossref_primary_10_7759_cureus_65504 crossref_primary_10_3390_ijms232415759 crossref_primary_10_3390_jof9121187 crossref_primary_10_2478_aoas_2023_0078 crossref_primary_10_3390_biom14080916 crossref_primary_10_3233_CBM_230517 crossref_primary_10_1016_j_canlet_2024_217114 crossref_primary_10_3389_fcell_2023_1219968 crossref_primary_10_1200_PO_23_00414 crossref_primary_10_12677_acm_2024_1472146 crossref_primary_10_4102_sajo_v8i0_269 crossref_primary_10_1038_s41467_024_50498_4 crossref_primary_10_1097_MD_0000000000034860 crossref_primary_10_3390_cancers16030496 crossref_primary_10_1038_s41568_025_00801_2 crossref_primary_10_1038_s41598_024_77781_0 crossref_primary_10_1111_jcmm_18088 crossref_primary_10_1007_s11912_024_01555_0 crossref_primary_10_3389_fonc_2023_1264090 crossref_primary_10_1002_1873_3468_14686 crossref_primary_10_1016_j_heliyon_2024_e35686 crossref_primary_10_1097_JN9_0000000000000048 crossref_primary_10_1007_s00345_024_05287_5 crossref_primary_10_1080_19490976_2024_2347757 crossref_primary_10_3389_fgene_2023_1258648 crossref_primary_10_3390_cancers14143537 crossref_primary_10_1186_s12885_023_11162_0 crossref_primary_10_3389_fphar_2024_1418456 crossref_primary_10_1097_CMR_0000000000000881 crossref_primary_10_3389_fped_2022_975819 crossref_primary_10_3389_fonc_2024_1464125 crossref_primary_10_3892_mmr_2024_13304 crossref_primary_10_1007_s12672_024_00901_9 crossref_primary_10_1186_s13046_024_03021_y crossref_primary_10_3389_fonc_2022_1055376 crossref_primary_10_3390_jcm14051620 crossref_primary_10_1016_j_bbamcr_2024_119819 crossref_primary_10_3389_fgene_2023_1168713 crossref_primary_10_1016_j_gene_2024_148214 crossref_primary_10_3390_cancers16223725 crossref_primary_10_1186_s12967_024_05553_5 crossref_primary_10_1016_j_semcancer_2022_11_001 crossref_primary_10_1186_s13148_023_01492_y crossref_primary_10_31083_j_ceog5105109 crossref_primary_10_1186_s43556_023_00126_2 crossref_primary_10_3389_fphar_2022_1030766 crossref_primary_10_3390_metabo13080890 crossref_primary_10_5483_BMBRep_2023_0103 crossref_primary_10_1016_j_semcancer_2025_01_003 crossref_primary_10_3390_nu16050699 crossref_primary_10_1254_fpj_22015 crossref_primary_10_3389_fphar_2023_1191262 crossref_primary_10_3390_biom15010071 crossref_primary_10_1038_s41392_023_01537_x crossref_primary_10_1038_s41420_024_02098_w crossref_primary_10_1186_s12935_025_03696_z crossref_primary_10_1101_gad_351444_123 crossref_primary_10_1002_advs_202405997 crossref_primary_10_1038_s41419_023_05959_x crossref_primary_10_1016_j_heliyon_2024_e24811 crossref_primary_10_1016_j_biopha_2025_117955 crossref_primary_10_53065_kaznmu_2024_71_4_001 crossref_primary_10_1038_s41416_023_02292_0 crossref_primary_10_1016_j_trecan_2024_08_001 crossref_primary_10_3892_ijo_2023_5605 crossref_primary_10_3390_biom14101302 crossref_primary_10_1080_07853890_2023_2203946 crossref_primary_10_1007_s11033_023_08966_5 crossref_primary_10_1007_s10142_025_01552_x crossref_primary_10_1186_s12943_021_01464_x crossref_primary_10_1016_j_jare_2024_08_030 crossref_primary_10_62347_NCPH5416 crossref_primary_10_1016_j_pharmthera_2023_108434 crossref_primary_10_1590_1678_4685_gmb_2022_0131 crossref_primary_10_1002_ctm2_1427 crossref_primary_10_1186_s12920_024_01836_4 crossref_primary_10_1360_SSV_2024_0150 crossref_primary_10_1039_D4NJ05217J crossref_primary_10_1186_s13148_023_01535_4 crossref_primary_10_1080_07391102_2023_2293267 crossref_primary_10_1096_fj_202300626R crossref_primary_10_1186_s12864_023_09341_1 crossref_primary_10_1371_journal_pcbi_1012565 crossref_primary_10_1038_s41598_023_36586_3 crossref_primary_10_1016_j_isci_2024_110946 crossref_primary_10_3390_ijms24108591 crossref_primary_10_1016_j_ecoenv_2023_115391 crossref_primary_10_1016_j_ajhg_2024_08_020 crossref_primary_10_3390_cancers14010248 crossref_primary_10_1016_j_neuint_2023_105657 crossref_primary_10_1039_D3TB02947F crossref_primary_10_1177_10732748241255548 crossref_primary_10_3389_fimmu_2022_1087279 crossref_primary_10_1186_s13046_022_02319_z crossref_primary_10_3390_ijms24097817 crossref_primary_10_1186_s12263_024_00750_9 crossref_primary_10_1038_s12276_024_01205_2 crossref_primary_10_15302_J_QB_022_0289 crossref_primary_10_1002_ptr_8108 crossref_primary_10_1002_rmv_70000 crossref_primary_10_1083_jcb_202307026 crossref_primary_10_3390_biom13121685 crossref_primary_10_1016_j_ijbiomac_2024_134212 crossref_primary_10_3390_genes14071330 crossref_primary_10_3389_fphar_2024_1325869 crossref_primary_10_3892_or_2022_8390 crossref_primary_10_1080_14796694_2024_2420629 crossref_primary_10_3389_fcell_2022_1051102 crossref_primary_10_1186_s12903_023_02887_2 crossref_primary_10_3389_fgene_2023_1258862 crossref_primary_10_1038_s43856_025_00783_0 crossref_primary_10_1016_j_trecan_2022_10_010 crossref_primary_10_1002_ctm2_1518 crossref_primary_10_3390_cancers17020266 crossref_primary_10_17650_2313_805X_2022_9_4_24_40 crossref_primary_10_1186_s12943_024_01993_1 crossref_primary_10_3390_biom14091088 crossref_primary_10_1016_j_tibs_2024_01_003 crossref_primary_10_3390_cancers15010272 crossref_primary_10_1007_s12672_024_01449_4 crossref_primary_10_3390_genes15121504 crossref_primary_10_1038_s41388_023_02749_9 crossref_primary_10_1093_clinchem_hvac108 crossref_primary_10_1093_hmg_ddae176 crossref_primary_10_1002_anie_202413304 crossref_primary_10_1016_j_mce_2025_112459 crossref_primary_10_1016_j_critrevonc_2024_104586 crossref_primary_10_1021_acs_analchem_2c04616 crossref_primary_10_1016_j_jasc_2024_09_003 crossref_primary_10_1080_15592294_2023_2196759 crossref_primary_10_1186_s12885_025_13479_4 crossref_primary_10_1038_s12276_023_01020_1 crossref_primary_10_1186_s12943_024_02069_w crossref_primary_10_3389_fonc_2021_780266 crossref_primary_10_1016_j_heliyon_2024_e28086 crossref_primary_10_4251_wjgo_v15_i12_2150 crossref_primary_10_1186_s13148_024_01708_9 crossref_primary_10_1016_j_prp_2023_154827 crossref_primary_10_61958_NDOU6199 crossref_primary_10_1007_s00439_024_02653_6 crossref_primary_10_1016_j_csbj_2024_01_024 crossref_primary_10_1016_j_ijbiomac_2025_140391 crossref_primary_10_1016_j_cellsig_2023_110627 crossref_primary_10_1158_0008_5472_CAN_23_3298 crossref_primary_10_3390_ijms241310663 crossref_primary_10_1158_0008_5472_CAN_22_2236 crossref_primary_10_1515_tjb_2023_0151 crossref_primary_10_2174_0115680096278978240204162353 crossref_primary_10_1186_s12885_022_09616_y crossref_primary_10_1360_SSV_2023_0139 crossref_primary_10_3892_ol_2024_14678 crossref_primary_10_3390_ijms25126495 crossref_primary_10_1016_j_nantod_2024_102251 crossref_primary_10_1038_s41467_024_50098_2 crossref_primary_10_1590_1678_4685_gmb_2023_0139 crossref_primary_10_1038_s41598_025_87038_z crossref_primary_10_1186_s40170_024_00352_4 crossref_primary_10_3390_cells12121595 crossref_primary_10_1002_mnfr_202400662 crossref_primary_10_1016_j_intimp_2022_109105 crossref_primary_10_3390_ijms25137377 crossref_primary_10_1002_mco2_693 crossref_primary_10_3389_fgene_2022_1016797 crossref_primary_10_1016_j_bmc_2021_116500 crossref_primary_10_3390_nu16010077 crossref_primary_10_1002_cac2_12527 crossref_primary_10_3390_ijms24087486 crossref_primary_10_3389_fimmu_2023_1199465 crossref_primary_10_3389_fgene_2022_1037134 crossref_primary_10_3390_biom14060667 crossref_primary_10_1016_j_bbagen_2024_130617 crossref_primary_10_1007_s11684_023_1038_2 crossref_primary_10_1002_mco2_329 crossref_primary_10_1186_s12885_022_09711_0 crossref_primary_10_3390_w14223595 crossref_primary_10_1016_j_csbj_2025_02_007 crossref_primary_10_3390_ijms24021506 crossref_primary_10_18632_aging_205484 crossref_primary_10_7240_jeps_1254802 crossref_primary_10_1002_ped4_12455 crossref_primary_10_1186_s13073_024_01318_3 crossref_primary_10_1016_j_biopha_2023_115324 crossref_primary_10_1016_j_molcel_2022_07_008 crossref_primary_10_1038_s41392_024_01823_2 crossref_primary_10_1016_j_bbrc_2024_149488 crossref_primary_10_1002_jcb_30531 crossref_primary_10_3390_cells10092207 crossref_primary_10_18632_aging_205372 crossref_primary_10_1002_advs_202308531 crossref_primary_10_1038_s42003_023_05459_w crossref_primary_10_3389_fcell_2022_915685 crossref_primary_10_1038_s41467_022_34779_4 crossref_primary_10_1093_nargab_lqae146 crossref_primary_10_3390_f13020288 crossref_primary_10_1080_02664763_2024_2313458 crossref_primary_10_1080_17501911_2024_2374702 crossref_primary_10_3390_ijms24087188 crossref_primary_10_1016_j_gendis_2023_04_040 crossref_primary_10_1016_j_neo_2023_100882 crossref_primary_10_1093_nargab_lqac096 crossref_primary_10_3390_cancers14194882 crossref_primary_10_1016_j_ijbiomac_2025_142401 crossref_primary_10_1371_journal_pone_0311212 crossref_primary_10_1093_nar_gkac1082 crossref_primary_10_1073_pnas_2407096121 crossref_primary_10_1038_s41467_024_50404_y crossref_primary_10_1007_s10528_024_10702_y crossref_primary_10_1016_j_heliyon_2025_e41724 crossref_primary_10_1111_jcmm_70282 crossref_primary_10_1016_j_jnutbio_2022_109092 crossref_primary_10_1016_j_critrevonc_2023_104223 crossref_primary_10_1016_j_prp_2022_154231 crossref_primary_10_1016_j_heliyon_2022_e11119 crossref_primary_10_3389_fcell_2023_1116805 crossref_primary_10_3390_ijms251910496 crossref_primary_10_3390_cancers15102683 crossref_primary_10_3390_ijms23020830 crossref_primary_10_3390_ijms23168991 crossref_primary_10_1016_j_sbsr_2024_100690 crossref_primary_10_1172_JCI178540 crossref_primary_10_3390_cancers15020360 crossref_primary_10_1002_mco2_495 crossref_primary_10_1007_s12672_024_00960_y crossref_primary_10_1186_s13148_024_01695_x crossref_primary_10_7554_eLife_86721_4 crossref_primary_10_1002_cmdc_202400467 crossref_primary_10_1016_j_intimp_2024_113077 crossref_primary_10_1186_s12931_024_03093_6 crossref_primary_10_32607_actanaturae_11822 crossref_primary_10_3389_fcell_2021_793428 crossref_primary_10_18632_aging_204599 crossref_primary_10_3390_ijms24044109 crossref_primary_10_46237_amusbfd_1039164 crossref_primary_10_1016_j_gene_2023_148079 crossref_primary_10_1016_j_preme_2025_100023 crossref_primary_10_3390_biomedicines12040918 crossref_primary_10_1002_advs_202411285 crossref_primary_10_1093_nar_gkae594 crossref_primary_10_1186_s12859_022_04925_2 crossref_primary_10_1126_sciadv_adp5753 crossref_primary_10_1038_s41417_022_00578_8 crossref_primary_10_3390_cancers16244149 crossref_primary_10_1016_j_cpt_2024_07_005 crossref_primary_10_1186_s13148_023_01563_0 crossref_primary_10_1186_s13148_023_01552_3 crossref_primary_10_1016_j_semcancer_2023_10_005 crossref_primary_10_17116_neiro20238706152 crossref_primary_10_3390_ijms24076646 crossref_primary_10_2217_epi_2023_0227 crossref_primary_10_3389_fonc_2023_1238310 crossref_primary_10_1007_s13577_023_00910_w crossref_primary_10_1016_j_phrs_2021_105869 crossref_primary_10_1016_j_gendis_2023_06_015 crossref_primary_10_3389_fonc_2024_1380448 crossref_primary_10_1038_s41467_024_51847_z crossref_primary_10_3389_fmolb_2023_1157558 crossref_primary_10_1007_s12016_025_09039_0 crossref_primary_10_3390_ijms242015077 crossref_primary_10_1093_nar_gkae054 crossref_primary_10_1177_15330338241250317 crossref_primary_10_3390_biom13060944 crossref_primary_10_1007_s11011_024_01414_8 crossref_primary_10_1016_j_aca_2024_343540 crossref_primary_10_1016_j_biopha_2023_114410 crossref_primary_10_3389_fimmu_2022_1062225 crossref_primary_10_1016_j_canlet_2024_217297 crossref_primary_10_1186_s13148_023_01619_1 crossref_primary_10_1186_s40001_023_01366_2 crossref_primary_10_1016_j_fsigen_2025_103243 crossref_primary_10_1016_j_bcp_2023_115466 crossref_primary_10_1002_ange_202413304 crossref_primary_10_1016_j_canlet_2025_217472 crossref_primary_10_3390_antiox13010025 crossref_primary_10_1016_j_arcmed_2022_11_003 crossref_primary_10_3390_cancers16050898 crossref_primary_10_1021_acssensors_2c01330 crossref_primary_10_3390_cancers15082275 crossref_primary_10_1016_j_plabm_2024_e00406 crossref_primary_10_1016_j_ijbiomac_2024_133959 crossref_primary_10_7717_peerj_17916 crossref_primary_10_1042_BCJ20220550 crossref_primary_10_1007_s10142_024_01293_3 crossref_primary_10_1016_j_pupt_2024_102317 crossref_primary_10_1242_dmm_052010 crossref_primary_10_1186_s12885_024_13299_y crossref_primary_10_1186_s13072_024_00554_6 crossref_primary_10_1016_j_compbiomed_2023_107222 crossref_primary_10_3390_genes14051075 crossref_primary_10_1186_s13148_023_01474_0 crossref_primary_10_3748_wjg_v28_i46_6433 crossref_primary_10_1007_s12672_024_01697_4 crossref_primary_10_3892_ijmm_2024_5460 crossref_primary_10_3390_ph18020207 crossref_primary_10_1002_ctd2_191 crossref_primary_10_7554_eLife_86721 crossref_primary_10_1016_j_phrs_2023_106924 crossref_primary_10_1080_15592294_2025_2473770 crossref_primary_10_1093_ageing_afae038 crossref_primary_10_3390_biomedicines12071423 crossref_primary_10_2174_1381612829666230706143026 crossref_primary_10_1098_rsif_2022_0415 crossref_primary_10_3389_freae_2024_1362926 crossref_primary_10_1016_j_csbj_2022_06_046 crossref_primary_10_2147_IJN_S480095 crossref_primary_10_1093_hmg_ddac208 crossref_primary_10_1002_ajmg_b_32985 crossref_primary_10_1186_s12943_025_02269_y crossref_primary_10_3390_curroncol31010033 crossref_primary_10_1038_s41375_024_02459_5 crossref_primary_10_1080_15592294_2024_2305082 crossref_primary_10_1002_mco2_421 crossref_primary_10_1038_s41392_023_01333_7 crossref_primary_10_1016_j_intimp_2023_110417 crossref_primary_10_3390_cancers14215384 crossref_primary_10_3892_or_2023_8687 crossref_primary_10_1016_j_biopha_2023_115788 crossref_primary_10_3389_fphar_2024_1498031 crossref_primary_10_4103_jcrt_jcrt_2542_22 crossref_primary_10_1016_j_tranon_2023_101808 crossref_primary_10_3390_life15010126 crossref_primary_10_1016_j_aca_2022_340636 crossref_primary_10_1016_j_cellsig_2023_110720 crossref_primary_10_3390_ijms24054411 crossref_primary_10_1038_s41598_023_38681_x crossref_primary_10_1016_j_heliyon_2024_e36240 crossref_primary_10_1016_j_heliyon_2024_e38663 crossref_primary_10_1016_j_bbadis_2022_166583 crossref_primary_10_3389_fphar_2025_1563435 crossref_primary_10_1016_j_ailsci_2021_100008 crossref_primary_10_1038_s41698_025_00834_8 crossref_primary_10_1093_narcan_zcab045 crossref_primary_10_3389_fimmu_2024_1424197 crossref_primary_10_1007_s00418_023_02187_4 crossref_primary_10_1002_mco2_761 crossref_primary_10_3390_ijms232314624 crossref_primary_10_1016_j_trecan_2024_02_003 crossref_primary_10_1038_s41598_022_18278_6 crossref_primary_10_1038_s42003_023_05198_y crossref_primary_10_3390_cancers16071275 crossref_primary_10_1097_MS9_0000000000001495 crossref_primary_10_1016_j_tranon_2023_101821 crossref_primary_10_1080_21655979_2022_2038891 crossref_primary_10_3389_fcell_2024_1532614 crossref_primary_10_1016_j_heliyon_2024_e29733 crossref_primary_10_1016_j_devcel_2024_10_009 crossref_primary_10_1016_j_marpolbul_2024_117011 crossref_primary_10_1016_j_gendis_2024_101448 crossref_primary_10_1080_15592294_2024_2397297 crossref_primary_10_1016_j_prnil_2023_01_001 crossref_primary_10_1021_acschembio_3c00251 crossref_primary_10_3390_ijms232314610 crossref_primary_10_3389_fcell_2022_1016955 |
Cites_doi | 10.1016/j.ccr.2014.02.010 10.1016/j.ccell.2018.04.011 10.1016/j.cell.2013.04.022 10.1016/0092-8674(92)90611-F 10.1016/S1470-2045(17)30243-7 10.1038/2413 10.1038/s41467-020-15006-4 10.1111/j.1365-2443.2006.00984.x 10.1038/83730 10.1038/emboj.2012.331 10.1016/j.ccr.2014.01.003 10.1101/gr.132738.111 10.1093/nar/gkq147 10.1038/sj.onc.1210631 10.1038/sj.onc.1204104 10.1074/jbc.M109.089433 10.1038/ncb3296 10.1038/nature13268 10.1074/jbc.C111.284620 10.1038/9727 10.1038/cr.2011.92 10.1186/gb-2012-13-10-r84 10.1126/science.1210597 10.1038/onc.2016.297 10.1016/j.molcel.2015.05.017 10.1038/s41467-020-16213-9 10.1016/j.molcel.2017.07.012 10.1126/science.1083557 10.1016/j.str.2018.11.012 10.1007/BF00286709 10.1038/nrg3230 10.1038/s41588-019-0398-7 10.1016/j.ccell.2017.04.005 10.1016/j.stem.2013.01.016 10.1038/ng1834 10.1101/cshperspect.a019505 10.1038/nature26000 10.1038/nm0795-686 10.1186/s13059-018-1492-3 10.1016/j.molcel.2012.11.001 10.1038/nature11709 10.1016/S0168-9525(97)01181-5 10.7554/eLife.17101 10.1242/dev.093229 10.1053/j.gastro.2004.02.026 10.1038/ncb1519 10.1038/890 10.1038/ng.865 10.1073/pnas.1903059116 10.1126/science.1251343 10.1038/ng.2836 10.1093/nar/gku372 10.1038/nm.2129 10.1038/cr.2015.72 10.1101/gr.125872.111 10.1016/j.molcel.2017.09.037 10.1158/0008-5472.CAN-05-1961 10.1016/0092-8674(83)90150-2 10.1038/nature14176 10.1038/nature09303 10.1016/j.ccell.2019.01.005 10.1016/j.ccell.2017.05.005 10.1242/dev.129.8.1807 10.1016/S0092-8674(00)81656-6 10.1093/nar/gky168 10.1038/nature05987 10.1038/nature07273 10.1126/science.1229277 10.1146/annurev.biochem.74.010904.153721 10.1128/MCB.25.8.3305-3316.2005 10.1016/j.ccell.2019.01.004 10.1038/s41568-019-0223-8 10.1038/nature11093 10.1126/science.1170116 10.1038/nature22973 10.1056/NEJMra023075 10.1016/S0021-9258(17)36700-5 10.1126/science.1147939 10.1038/embor.2009.218 10.1016/j.ccr.2011.09.012 10.1083/jcb.200610062 10.1038/nature25964 10.1128/MCB.23.23.8429-8439.2003 10.1016/j.molcel.2014.08.026 10.1038/nsmb.2391 10.1038/s41588-020-0648-8 10.1038/s41467-020-19603-1 10.1038/nature12805 10.1016/j.cell.2013.12.019 10.1128/MCB.24.6.2526-2535.2004 10.1038/nature07249 10.1038/ng1155 10.1073/pnas.1019629108 10.1016/j.molcel.2018.09.029 10.1038/s41588-020-0689-z 10.1016/j.ccr.2010.03.017 10.1074/jbc.M312296200 10.1038/nature06397 10.1158/0008-5472.CAN-11-2023 10.1016/j.celrep.2014.03.016 10.1101/gad.234294.113 10.1016/j.stem.2017.08.018 10.1038/s41586-018-0751-5 10.1016/j.ygeno.2014.08.012 10.1158/0008-5472.CAN-12-4306 10.1093/nar/gky104 10.1038/ni.3630 10.1126/science.6164095 10.1016/j.ccell.2019.03.003 10.1016/j.stem.2014.09.002 10.1038/nature12488 10.1016/0092-8674(92)90561-P 10.1073/pnas.101617298 10.1016/j.cub.2003.11.026 10.1038/sj.embor.7400295 10.1038/onc.2015.308 10.1016/0092-8674(93)90160-R 10.1038/s41586-020-2135-x 10.1126/science.aaj2239 10.1038/s41586-019-1173-8 10.1371/journal.pgen.1007042 10.1002/cncr.21409 10.1111/j.1525-1438.2007.01117.x 10.1038/nature08514 10.1038/s41586-019-1534-3 10.1016/j.jmb.2017.10.014 10.1074/jbc.RA119.008008 10.1038/nature13899 10.1101/gad.1649908 10.1038/ncomms11197 10.1016/j.cell.2007.03.043 10.1016/j.cell.2013.02.032 10.1038/nature06714 10.1186/s13059-018-1390-8 10.1186/s13100-016-0080-x 10.1016/j.molcel.2018.09.028 10.1038/s41588-018-0073-4 10.1126/science.277.5334.1996 10.1016/j.cell.2012.07.033 10.1016/j.ccr.2010.11.015 10.1073/pnas.81.9.2806 10.1038/nature10866 10.1038/ncomms10806 10.1038/s41467-019-09828-0 10.1056/NEJMoa1005143 10.1038/nchembio.1204 10.1038/s41591-019-0579-z 10.1074/jbc.M110.209882 10.1002/ijc.23849 10.1101/gad.6.12b.2536 10.1038/ng.969 10.1128/MCB.23.12.4207-4218.2003 10.1038/79120 10.1182/blood.V94.5.1773 10.1101/gr.130997.111 10.1016/0092-8674(86)90661-6 10.1038/366362a0 10.1038/ng.298 10.1038/ng.471 10.1093/nar/gky723 10.1073/pnas.1203701109 10.1126/science.1210944 10.1093/nar/gkaa1154 10.1016/j.celrep.2018.09.082 10.1016/j.cell.2017.01.021 10.1038/embor.2013.67 10.1038/s41586-018-0190-3 10.1101/gr.211854.116 10.1038/s41588-020-0661-y 10.1038/s41588-019-0373-3 10.1016/j.devcel.2010.10.005 10.1038/362751a0 10.1128/MCB.24.4.1640-1648.2004 10.1101/gr.201814.115 10.1038/nrm3274 10.1038/nature07280 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.tig.2021.05.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 1027 |
ExternalDocumentID | 34120771 10_1016_j_tig_2021_05_002 S016895252100130X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM 1RT 6I. AACTN AAFTH AAIAV ABYKQ AFCTW AFKWA AFMIJ AJBFU AJOXV AMFUW DOVZS EFLBG G8K RIG XFK ZA5 AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c512t-d40294039505f39739a37689a09a035b25da8f7c7d0f054a7aa5c2d6164d99f13 |
IEDL.DBID | .~1 |
ISSN | 0168-9525 |
IngestDate | Fri Jul 11 03:58:54 EDT 2025 Thu Apr 03 06:59:46 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 01:43:37 EDT 2025 Fri Feb 23 02:43:21 EST 2024 Tue Aug 26 19:13:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | DNA methylation DNA methyltransferase cancer histone modification |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-d40294039505f39739a37689a09a035b25da8f7c7d0f054a7aa5c2d6164d99f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S016895252100130X |
PMID | 34120771 |
PQID | 2540726312 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2540726312 pubmed_primary_34120771 crossref_primary_10_1016_j_tig_2021_05_002 crossref_citationtrail_10_1016_j_tig_2021_05_002 elsevier_sciencedirect_doi_10_1016_j_tig_2021_05_002 elsevier_clinicalkey_doi_10_1016_j_tig_2021_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in genetics |
PublicationTitleAlternate | Trends Genet |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Saghafinia (bb0210) 2018; 25 Takeshita (bb0765) 2011; 108 Ley (bb0320) 2010; 363 Nishiyama (bb0605) 2020; 11 Scott (bb0470) 2016; 26 Hon (bb0355) 2014; 56 Bostick (bb0585) 2007; 317 Sproul (bb0125) 2012; 13 Easwaran (bb0725) 2004; 5 Petryk (bb0610) 2020; 49 Nakamura (bb0400) 2012; 486 Cavalli (bb0535) 2017; 31 Sharif (bb0580) 2007; 450 Kizer (bb0650) 2005; 25 Kagiwada (bb0805) 2013; 32 Zhao (bb0215) 2020; 52 Hajkova (bb0785) 2008; 452 Hovestadt (bb0265) 2014; 510 Seisenberger (bb0815) 2012; 48 Grady (bb0155) 2000; 26 Brinkman (bb0270) 2019; 10 Merlo (bb0135) 1995; 1 Herman, Baylin (bb0120) 2003; 349 Greger (bb0115) 1989; 83 Jirtle (bb0220) 2004; 126 Mohandas (bb0035) 1981; 211 Noh (bb0695) 2015; 59 Guibert (bb0710) 2012; 22 Siegfried (bb0015) 1999; 22 Hansen (bb0255) 2011; 43 Rothbart (bb0565) 2012; 19 Ge (bb0635) 2004; 279 Berdasco, Esteller (bb0225) 2010; 19 Lee (bb0795) 2002; 129 Wolf (bb0040) 1984; 81 Yin (bb0085) 2017; 356 Shen (bb0895) 2014; 15 Skvortsova (bb0310) 2019; 35 Foster (bb0615) 2018; 72 Carlson (bb0885) 1992; 6 Kori (bb0560) 2019; 27 Stirzaker (bb0185) 2017; 36 Ohno (bb0810) 2013; 140 Ferry (bb0570) 2017; 67 Fang (bb0755) 2016; 7 Sansom (bb0190) 2003; 34 Li (bb0295) 2016; 26 Turcan (bb0385) 2012; 483 Krogan (bb0655) 2003; 23 Weinberg (bb0670) 2019; 573 Yoder (bb0450) 1997; 13 Jeong (bb0090) 2014; 46 Lamprecht (bb0490) 2010; 16 Amouroux (bb0900) 2016; 18 Heyn (bb0515) 2014; 7 Kurimoto (bb0820) 2008; 22 Herman (bb0130) 1995; 55 Degirmenci (bb0430) 2018; 558 Spada (bb0720) 2007; 176 Magdinier, Wolffe (bb0180) 2001; 98 Kong (bb0195) 2019; 35 Shirane (bb0675) 2020; 52 Hughes (bb0500) 2013; 73 Okano (bb0625) 1998; 19 Zhang (bb0700) 2010; 38 Cunningham (bb0150) 1998; 58 Karg (bb0775) 2017; 429 Russler-Germain (bb0325) 2014; 25 Nishiyama (bb0575) 2013; 502 Cliff (bb0425) 2017; 21 Tubio (bb0465) 2014; 345 He (bb0850) 2011; 333 Figueroa (bb0375) 2010; 18 Hill (bb0800) 2014; 104 Su (bb0200) 2018; 19 Ooi (bb0680) 2007; 448 Kim (bb0160) 2005; 104 Pattamadilok (bb0475) 2008; 18 Weber (bb0865) 2016; 7 Ito (bb0845) 2010; 466 Xia (bb0285) 2017; 31 Noushmehr (bb0380) 2010; 17 Avvakumov (bb0740) 2008; 455 Doi (bb0080) 2009; 41 Howard (bb0235) 2008; 27 Li (bb0590) 2018; 46 Irizarry (bb0075) 2009; 41 Aksoy (bb0435) 1994; 269 Citterio (bb0595) 2004; 24 Gaudet (bb0230) 2004; 24 Babaian (bb0480) 2016; 35 Otani (bb0685) 2009; 10 Leonhardt (bb0760) 1992; 71 Akiyama (bb0175) 2003; 23 Vincent (bb0875) 2013; 12 Tao (bb0510) 2019; 35 Berman (bb0250) 2012; 44 Maiti, Drohat (bb0860) 2011; 286 Weisenberger (bb0505) 2006; 38 Hashimoto (bb0735) 2008; 455 Wagner, Carpenter (bb0645) 2012; 13 Baubec (bb0660) 2015; 520 Hackett (bb0790) 2013; 339 Maenohara (bb0890) 2017; 13 Waitkus (bb0365) 2018; 34 Schwalbe (bb0545) 2017; 18 Arita (bb0730) 2008; 455 Stöger (bb0025) 1993; 73 Grabole (bb0870) 2013; 14 Yisraeli (bb0005) 1986; 46 Hovestadt (bb0525) 2020; 20 Li (bb0020) 1993; 366 Nakamura (bb0405) 2007; 9 Jones (bb0110) 2012; 13 Yamaguchi (bb0825) 2013; 504 O’Hagan (bb0275) 2011; 20 Yan (bb0390) 2021 Hill (bb0905) 2018; 555 Babaian, Mager (bb0485) 2016; 7 Ito (bb0855) 2011; 333 Anteneh (bb0330) 2020; 11 Li (bb0060) 1992; 69 Houlahan (bb0520) 2019; 25 Shukla (bb0455) 2013; 153 Guo (bb0690) 2015; 517 Zhou (bb0340) 2018; 50 Emperle (bb0335) 2018; 46 Duncan (bb0370) 2012; 22 Xu (bb0665) 2019; 51 Baur (bb0140) 1999; 94 Arita (bb0555) 2012; 109 Li (bb0105) 2018; 19 Yamaguchi (bb0830) 2012; 492 Qin (bb0750) 2015; 25 DaRosa (bb0620) 2018; 72 Ishiyama (bb0745) 2017; 68 Eckert (bb0440) 2019; 569 Jackson-Grusby (bb0240) 2001; 27 Lister (bb0245) 2009; 462 Xie (bb0095) 2013; 153 Raval (bb0170) 2007; 129 Wu, Zhang (bb0835) 2014; 156 Ulanovskaya (bb0445) 2013; 9 Messerschmidt (bb0880) 2014; 28 Eden (bb0050) 2003; 300 Li (bb0205) 2020; 580 López-Moyado (bb0350) 2019; 116 Walsh (bb0045) 1998; 20 Tahiliani (bb0840) 2009; 324 Harrison (bb0600) 2016; 5 Baylin, Jones (bb0100) 2016; 8 Spencer (bb0315) 2017; 168 Dhayalan (bb0640) 2010; 285 Chuang (bb0715) 1997; 277 Daskalos (bb0460) 2009; 124 Jin (bb0290) 2014; 42 Ferguson-Smith (bb0030) 1993; 362 Tsumura (bb0070) 2006; 11 Mudbhary (bb0550) 2014; 25 Hon (bb0260) 2012; 22 Lian (bb0305) 2012; 150 Northcott (bb0540) 2017; 547 O’Hagan (bb0280) 2008; 4 Tsagaratou (bb0360) 2017; 18 Jin (bb0300) 2011; 71 Capper (bb0530) 2018; 555 Wang (bb0345) 2020; 52 Okano (bb0065) 1999; 99 Du (bb0415) 2019; 294 Jang (bb0495) 2019; 51 Toyooka (bb0165) 2001; 61 Li (bb0410) 2018; 564 Syeda (bb0770) 2011; 286 March (bb0780) 2018; 46 Payer (bb0395) 2003; 13 Mulholland (bb0420) 2020; 11 Busslinger (bb0010) 1983; 34 Karpf, Matsui (bb0055) 2005; 65 Li (bb0705) 2011; 21 Fleisher (bb0145) 2001; 20 Goll, Bestor (bb0630) 2005; 74 Jirtle (10.1016/j.tig.2021.05.002_bb0220) 2004; 126 Hansen (10.1016/j.tig.2021.05.002_bb0255) 2011; 43 Sansom (10.1016/j.tig.2021.05.002_bb0190) 2003; 34 Baur (10.1016/j.tig.2021.05.002_bb0140) 1999; 94 Irizarry (10.1016/j.tig.2021.05.002_bb0075) 2009; 41 Baylin (10.1016/j.tig.2021.05.002_bb0100) 2016; 8 Ley (10.1016/j.tig.2021.05.002_bb0320) 2010; 363 Vincent (10.1016/j.tig.2021.05.002_bb0875) 2013; 12 Li (10.1016/j.tig.2021.05.002_bb0590) 2018; 46 López-Moyado (10.1016/j.tig.2021.05.002_bb0350) 2019; 116 Hajkova (10.1016/j.tig.2021.05.002_bb0785) 2008; 452 Sproul (10.1016/j.tig.2021.05.002_bb0125) 2012; 13 Rothbart (10.1016/j.tig.2021.05.002_bb0565) 2012; 19 Tubio (10.1016/j.tig.2021.05.002_bb0465) 2014; 345 Doi (10.1016/j.tig.2021.05.002_bb0080) 2009; 41 Greger (10.1016/j.tig.2021.05.002_bb0115) 1989; 83 Fleisher (10.1016/j.tig.2021.05.002_bb0145) 2001; 20 Ge (10.1016/j.tig.2021.05.002_bb0635) 2004; 279 Okano (10.1016/j.tig.2021.05.002_bb0625) 1998; 19 Grabole (10.1016/j.tig.2021.05.002_bb0870) 2013; 14 Saghafinia (10.1016/j.tig.2021.05.002_bb0210) 2018; 25 Li (10.1016/j.tig.2021.05.002_bb0105) 2018; 19 March (10.1016/j.tig.2021.05.002_bb0780) 2018; 46 Pattamadilok (10.1016/j.tig.2021.05.002_bb0475) 2008; 18 Su (10.1016/j.tig.2021.05.002_bb0200) 2018; 19 Scott (10.1016/j.tig.2021.05.002_bb0470) 2016; 26 Amouroux (10.1016/j.tig.2021.05.002_bb0900) 2016; 18 Maenohara (10.1016/j.tig.2021.05.002_bb0890) 2017; 13 Wang (10.1016/j.tig.2021.05.002_bb0345) 2020; 52 Merlo (10.1016/j.tig.2021.05.002_bb0135) 1995; 1 Xia (10.1016/j.tig.2021.05.002_bb0285) 2017; 31 Okano (10.1016/j.tig.2021.05.002_bb0065) 1999; 99 Yin (10.1016/j.tig.2021.05.002_bb0085) 2017; 356 Guibert (10.1016/j.tig.2021.05.002_bb0710) 2012; 22 Yamaguchi (10.1016/j.tig.2021.05.002_bb0825) 2013; 504 Jones (10.1016/j.tig.2021.05.002_bb0110) 2012; 13 Guo (10.1016/j.tig.2021.05.002_bb0690) 2015; 517 Fang (10.1016/j.tig.2021.05.002_bb0755) 2016; 7 Howard (10.1016/j.tig.2021.05.002_bb0235) 2008; 27 Petryk (10.1016/j.tig.2021.05.002_bb0610) 2020; 49 Noh (10.1016/j.tig.2021.05.002_bb0695) 2015; 59 Li (10.1016/j.tig.2021.05.002_bb0205) 2020; 580 Lee (10.1016/j.tig.2021.05.002_bb0795) 2002; 129 Ito (10.1016/j.tig.2021.05.002_bb0845) 2010; 466 Hackett (10.1016/j.tig.2021.05.002_bb0790) 2013; 339 Bostick (10.1016/j.tig.2021.05.002_bb0585) 2007; 317 Gaudet (10.1016/j.tig.2021.05.002_bb0230) 2004; 24 DaRosa (10.1016/j.tig.2021.05.002_bb0620) 2018; 72 Seisenberger (10.1016/j.tig.2021.05.002_bb0815) 2012; 48 Jackson-Grusby (10.1016/j.tig.2021.05.002_bb0240) 2001; 27 Hon (10.1016/j.tig.2021.05.002_bb0260) 2012; 22 Yoder (10.1016/j.tig.2021.05.002_bb0450) 1997; 13 Houlahan (10.1016/j.tig.2021.05.002_bb0520) 2019; 25 Li (10.1016/j.tig.2021.05.002_bb0705) 2011; 21 Eden (10.1016/j.tig.2021.05.002_bb0050) 2003; 300 Nakamura (10.1016/j.tig.2021.05.002_bb0405) 2007; 9 Babaian (10.1016/j.tig.2021.05.002_bb0485) 2016; 7 Sharif (10.1016/j.tig.2021.05.002_bb0580) 2007; 450 Maiti (10.1016/j.tig.2021.05.002_bb0860) 2011; 286 Turcan (10.1016/j.tig.2021.05.002_bb0385) 2012; 483 Capper (10.1016/j.tig.2021.05.002_bb0530) 2018; 555 Citterio (10.1016/j.tig.2021.05.002_bb0595) 2004; 24 Yamaguchi (10.1016/j.tig.2021.05.002_bb0830) 2012; 492 Shen (10.1016/j.tig.2021.05.002_bb0895) 2014; 15 Hughes (10.1016/j.tig.2021.05.002_bb0500) 2013; 73 Kagiwada (10.1016/j.tig.2021.05.002_bb0805) 2013; 32 Tsagaratou (10.1016/j.tig.2021.05.002_bb0360) 2017; 18 Kori (10.1016/j.tig.2021.05.002_bb0560) 2019; 27 Spencer (10.1016/j.tig.2021.05.002_bb0315) 2017; 168 Noushmehr (10.1016/j.tig.2021.05.002_bb0380) 2010; 17 Ulanovskaya (10.1016/j.tig.2021.05.002_bb0445) 2013; 9 Dhayalan (10.1016/j.tig.2021.05.002_bb0640) 2010; 285 Arita (10.1016/j.tig.2021.05.002_bb0730) 2008; 455 Baubec (10.1016/j.tig.2021.05.002_bb0660) 2015; 520 Xu (10.1016/j.tig.2021.05.002_bb0665) 2019; 51 Krogan (10.1016/j.tig.2021.05.002_bb0655) 2003; 23 Raval (10.1016/j.tig.2021.05.002_bb0170) 2007; 129 Heyn (10.1016/j.tig.2021.05.002_bb0515) 2014; 7 Busslinger (10.1016/j.tig.2021.05.002_bb0010) 1983; 34 Harrison (10.1016/j.tig.2021.05.002_bb0600) 2016; 5 Daskalos (10.1016/j.tig.2021.05.002_bb0460) 2009; 124 Ferguson-Smith (10.1016/j.tig.2021.05.002_bb0030) 1993; 362 Berman (10.1016/j.tig.2021.05.002_bb0250) 2012; 44 Goll (10.1016/j.tig.2021.05.002_bb0630) 2005; 74 Mudbhary (10.1016/j.tig.2021.05.002_bb0550) 2014; 25 Ito (10.1016/j.tig.2021.05.002_bb0855) 2011; 333 Tsumura (10.1016/j.tig.2021.05.002_bb0070) 2006; 11 Mohandas (10.1016/j.tig.2021.05.002_bb0035) 1981; 211 Herman (10.1016/j.tig.2021.05.002_bb0120) 2003; 349 O’Hagan (10.1016/j.tig.2021.05.002_bb0280) 2008; 4 Foster (10.1016/j.tig.2021.05.002_bb0615) 2018; 72 Cliff (10.1016/j.tig.2021.05.002_bb0425) 2017; 21 Leonhardt (10.1016/j.tig.2021.05.002_bb0760) 1992; 71 Weisenberger (10.1016/j.tig.2021.05.002_bb0505) 2006; 38 Walsh (10.1016/j.tig.2021.05.002_bb0045) 1998; 20 Mulholland (10.1016/j.tig.2021.05.002_bb0420) 2020; 11 Northcott (10.1016/j.tig.2021.05.002_bb0540) 2017; 547 Magdinier (10.1016/j.tig.2021.05.002_bb0180) 2001; 98 Chuang (10.1016/j.tig.2021.05.002_bb0715) 1997; 277 Jin (10.1016/j.tig.2021.05.002_bb0290) 2014; 42 Payer (10.1016/j.tig.2021.05.002_bb0395) 2003; 13 Cunningham (10.1016/j.tig.2021.05.002_bb0150) 1998; 58 Jang (10.1016/j.tig.2021.05.002_bb0495) 2019; 51 Zhou (10.1016/j.tig.2021.05.002_bb0340) 2018; 50 Weinberg (10.1016/j.tig.2021.05.002_bb0670) 2019; 573 Skvortsova (10.1016/j.tig.2021.05.002_bb0310) 2019; 35 Qin (10.1016/j.tig.2021.05.002_bb0750) 2015; 25 Otani (10.1016/j.tig.2021.05.002_bb0685) 2009; 10 Degirmenci (10.1016/j.tig.2021.05.002_bb0430) 2018; 558 Jeong (10.1016/j.tig.2021.05.002_bb0090) 2014; 46 Carlson (10.1016/j.tig.2021.05.002_bb0885) 1992; 6 Nakamura (10.1016/j.tig.2021.05.002_bb0400) 2012; 486 Lian (10.1016/j.tig.2021.05.002_bb0305) 2012; 150 Anteneh (10.1016/j.tig.2021.05.002_bb0330) 2020; 11 Hon (10.1016/j.tig.2021.05.002_bb0355) 2014; 56 Kim (10.1016/j.tig.2021.05.002_bb0160) 2005; 104 Li (10.1016/j.tig.2021.05.002_bb0020) 1993; 366 Kizer (10.1016/j.tig.2021.05.002_bb0650) 2005; 25 Ooi (10.1016/j.tig.2021.05.002_bb0680) 2007; 448 Easwaran (10.1016/j.tig.2021.05.002_bb0725) 2004; 5 Hovestadt (10.1016/j.tig.2021.05.002_bb0525) 2020; 20 Nishiyama (10.1016/j.tig.2021.05.002_bb0605) 2020; 11 Jin (10.1016/j.tig.2021.05.002_bb0300) 2011; 71 Kong (10.1016/j.tig.2021.05.002_bb0195) 2019; 35 Siegfried (10.1016/j.tig.2021.05.002_bb0015) 1999; 22 Waitkus (10.1016/j.tig.2021.05.002_bb0365) 2018; 34 Duncan (10.1016/j.tig.2021.05.002_bb0370) 2012; 22 Russler-Germain (10.1016/j.tig.2021.05.002_bb0325) 2014; 25 Akiyama (10.1016/j.tig.2021.05.002_bb0175) 2003; 23 Ferry (10.1016/j.tig.2021.05.002_bb0570) 2017; 67 He (10.1016/j.tig.2021.05.002_bb0850) 2011; 333 Brinkman (10.1016/j.tig.2021.05.002_bb0270) 2019; 10 Syeda (10.1016/j.tig.2021.05.002_bb0770) 2011; 286 Eckert (10.1016/j.tig.2021.05.002_bb0440) 2019; 569 Ohno (10.1016/j.tig.2021.05.002_bb0810) 2013; 140 Aksoy (10.1016/j.tig.2021.05.002_bb0435) 1994; 269 Hill (10.1016/j.tig.2021.05.002_bb0800) 2014; 104 Zhang (10.1016/j.tig.2021.05.002_bb0700) 2010; 38 Yisraeli (10.1016/j.tig.2021.05.002_bb0005) 1986; 46 Babaian (10.1016/j.tig.2021.05.002_bb0480) 2016; 35 Cavalli (10.1016/j.tig.2021.05.002_bb0535) 2017; 31 Hashimoto (10.1016/j.tig.2021.05.002_bb0735) 2008; 455 Karpf (10.1016/j.tig.2021.05.002_bb0055) 2005; 65 Nishiyama (10.1016/j.tig.2021.05.002_bb0575) 2013; 502 Spada (10.1016/j.tig.2021.05.002_bb0720) 2007; 176 Herman (10.1016/j.tig.2021.05.002_bb0130) 1995; 55 Li (10.1016/j.tig.2021.05.002_bb0410) 2018; 564 Avvakumov (10.1016/j.tig.2021.05.002_bb0740) 2008; 455 Schwalbe (10.1016/j.tig.2021.05.002_bb0545) 2017; 18 Hovestadt (10.1016/j.tig.2021.05.002_bb0265) 2014; 510 O’Hagan (10.1016/j.tig.2021.05.002_bb0275) 2011; 20 Takeshita (10.1016/j.tig.2021.05.002_bb0765) 2011; 108 Li (10.1016/j.tig.2021.05.002_bb0295) 2016; 26 Shukla (10.1016/j.tig.2021.05.002_bb0455) 2013; 153 Stöger (10.1016/j.tig.2021.05.002_bb0025) 1993; 73 Lamprecht (10.1016/j.tig.2021.05.002_bb0490) 2010; 16 Toyooka (10.1016/j.tig.2021.05.002_bb0165) 2001; 61 Du (10.1016/j.tig.2021.05.002_bb0415) 2019; 294 Wu (10.1016/j.tig.2021.05.002_bb0835) 2014; 156 Arita (10.1016/j.tig.2021.05.002_bb0555) 2012; 109 Weber (10.1016/j.tig.2021.05.002_bb0865) 2016; 7 Messerschmidt (10.1016/j.tig.2021.05.002_bb0880) 2014; 28 Lister (10.1016/j.tig.2021.05.002_bb0245) 2009; 462 Tao (10.1016/j.tig.2021.05.002_bb0510) 2019; 35 Shirane (10.1016/j.tig.2021.05.002_bb0675) 2020; 52 Figueroa (10.1016/j.tig.2021.05.002_bb0375) 2010; 18 Wolf (10.1016/j.tig.2021.05.002_bb0040) 1984; 81 Grady (10.1016/j.tig.2021.05.002_bb0155) 2000; 26 Stirzaker (10.1016/j.tig.2021.05.002_bb0185) 2017; 36 Ishiyama (10.1016/j.tig.2021.05.002_bb0745) 2017; 68 Tahiliani (10.1016/j.tig.2021.05.002_bb0840) 2009; 324 Li (10.1016/j.tig.2021.05.002_bb0060) 1992; 69 Yan (10.1016/j.tig.2021.05.002_bb0390) 2021 Wagner (10.1016/j.tig.2021.05.002_bb0645) 2012; 13 Xie (10.1016/j.tig.2021.05.002_bb0095) 2013; 153 Karg (10.1016/j.tig.2021.05.002_bb0775) 2017; 429 Kurimoto (10.1016/j.tig.2021.05.002_bb0820) 2008; 22 Berdasco (10.1016/j.tig.2021.05.002_bb0225) 2010; 19 Emperle (10.1016/j.tig.2021.05.002_bb0335) 2018; 46 Zhao (10.1016/j.tig.2021.05.002_bb0215) 2020; 52 Hill (10.1016/j.tig.2021.05.002_bb0905) 2018; 555 |
References_xml | – volume: 286 start-page: 15344 year: 2011 end-page: 15351 ident: bb0770 article-title: The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1 publication-title: J. Biol. Chem. – volume: 356 year: 2017 ident: bb0085 article-title: Impact of cytosine methylation on DNA binding specificities of human transcription factors publication-title: Science – volume: 22 start-page: 2339 year: 2012 end-page: 2355 ident: bb0370 article-title: A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation publication-title: Genome Res. – volume: 34 start-page: 145 year: 2003 end-page: 147 ident: bb0190 article-title: Deficiency of Mbd2 suppresses intestinal tumorigenesis publication-title: Nat. Genet. – volume: 269 start-page: 14835 year: 1994 end-page: 14840 ident: bb0435 article-title: Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization publication-title: J. Biol. Chem. – volume: 41 start-page: 178 year: 2009 end-page: 186 ident: bb0075 article-title: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores publication-title: Nat. Genet. – volume: 126 start-page: 1190 year: 2004 end-page: 1193 ident: bb0220 article-title: IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer publication-title: Gastroenterology – volume: 156 start-page: 45 year: 2014 end-page: 68 ident: bb0835 article-title: Reversing DNA methylation: mechanisms, genomics, and biological functions publication-title: Cell – volume: 5 year: 2016 ident: bb0600 article-title: Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1 publication-title: eLife – volume: 73 start-page: 61 year: 1993 end-page: 71 ident: bb0025 article-title: Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal publication-title: Cell – volume: 116 start-page: 16933 year: 2019 end-page: 16942 ident: bb0350 article-title: Paradoxical association of TET loss of function with genome-wide DNA hypomethylation publication-title: Proc. Natl. Acad. Sci. – volume: 492 start-page: 443 year: 2012 end-page: 447 ident: bb0830 article-title: Tet1 controls meiosis by regulating meiotic gene expression publication-title: Nature – volume: 349 start-page: 2042 year: 2003 end-page: 2054 ident: bb0120 article-title: Gene silencing in cancer in association with promoter hypermethylation publication-title: N. Engl. J. Med. – volume: 25 start-page: 1066 year: 2018 end-page: 1080 ident: bb0210 article-title: Pan-cancer landscape of aberrant DNA methylation across human tumors publication-title: Cell Rep. – volume: 26 start-page: 16 year: 2000 end-page: 17 ident: bb0155 article-title: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer publication-title: Nat. Genet. – volume: 38 start-page: 787 year: 2006 end-page: 793 ident: bb0505 article-title: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer publication-title: Nat. Genet. – volume: 176 start-page: 565 year: 2007 end-page: 571 ident: bb0720 article-title: DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells publication-title: J. Cell Biol. – volume: 24 start-page: 2526 year: 2004 end-page: 2535 ident: bb0595 article-title: Np95 is a histone-binding protein endowed with ubiquitin ligase activity publication-title: Mol. Cell. Biol. – volume: 5 start-page: 1181 year: 2004 end-page: 1186 ident: bb0725 article-title: Replication-independent chromatin loading of Dnmt1 during G2 and M phases publication-title: EMBO Rep. – volume: 13 year: 2017 ident: bb0890 article-title: Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos publication-title: PLoS Genet. – volume: 483 start-page: 479 year: 2012 end-page: 483 ident: bb0385 article-title: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype publication-title: Nature – volume: 450 start-page: 908 year: 2007 end-page: 912 ident: bb0580 article-title: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA publication-title: Nature – volume: 73 start-page: 5858 year: 2013 end-page: 5868 ident: bb0500 article-title: The CpG island methylator phenotype: what’s in a name? publication-title: Cancer Res. – volume: 19 start-page: 1155 year: 2012 end-page: 1160 ident: bb0565 article-title: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation publication-title: Nat. Struct. Mol. Biol. – volume: 59 start-page: 89 year: 2015 end-page: 103 ident: bb0695 article-title: Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs publication-title: Mol. Cell – volume: 46 start-page: 409 year: 1986 end-page: 416 ident: bb0005 article-title: Muscle-specific activation of a methylated chimeric actin gene publication-title: Cell – volume: 20 start-page: 606 year: 2011 end-page: 619 ident: bb0275 article-title: Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG islands publication-title: Cancer Cell – volume: 455 start-page: 818 year: 2008 end-page: 821 ident: bb0730 article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism publication-title: Nature – volume: 8 year: 2016 ident: bb0100 article-title: Epigenetic determinants of cancer publication-title: Cold Spring Harb. Perspect. Biol. – volume: 58 start-page: 3455 year: 1998 end-page: 3460 ident: bb0150 article-title: Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability publication-title: Cancer Res. – volume: 18 start-page: 45 year: 2017 end-page: 53 ident: bb0360 article-title: TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells publication-title: Nat. Immunol. – volume: 124 start-page: 81 year: 2009 end-page: 87 ident: bb0460 article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer publication-title: Int. J. Cancer – volume: 129 start-page: 1807 year: 2002 end-page: 1817 ident: bb0795 article-title: Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells publication-title: Development – volume: 333 start-page: 1300 year: 2011 end-page: 1303 ident: bb0855 article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine publication-title: Science – volume: 520 start-page: 243 year: 2015 end-page: 247 ident: bb0660 article-title: Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation publication-title: Nature – volume: 300 start-page: 455 year: 2003 ident: bb0050 article-title: Chromosomal instability and tumors promoted by DNA hypomethylation publication-title: Science – volume: 345 start-page: 1251343 year: 2014 ident: bb0465 article-title: Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes publication-title: Science – volume: 455 start-page: 822 year: 2008 end-page: 825 ident: bb0740 article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 publication-title: Nature – volume: 46 start-page: 3130 year: 2018 end-page: 3139 ident: bb0335 article-title: The DNMT3A R882H mutant displays altered flanking sequence preferences publication-title: Nucleic Acids Res. – volume: 452 start-page: 877 year: 2008 end-page: 881 ident: bb0785 article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line publication-title: Nature – volume: 333 start-page: 1303 year: 2011 end-page: 1307 ident: bb0850 article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA publication-title: Science – volume: 7 start-page: 331 year: 2014 end-page: 338 ident: bb0515 article-title: Linkage of DNA methylation quantitative trait loci to human cancer risk publication-title: Cell Rep. – volume: 16 start-page: 571 year: 2010 end-page: 579 ident: bb0490 article-title: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma publication-title: Nat. Med. – volume: 46 start-page: 3218 year: 2018 end-page: 3231 ident: bb0590 article-title: Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation publication-title: Nucleic Acids Res. – volume: 7 start-page: 24 year: 2016 ident: bb0485 article-title: Endogenous retroviral promoter exaptation in human cancer publication-title: Mob. DNA – volume: 49 start-page: 3020 year: 2020 end-page: 3032 ident: bb0610 article-title: Staying true to yourself: mechanisms of DNA methylation maintenance in mammals publication-title: Nucleic Acids Res. – volume: 51 start-page: 844 year: 2019 end-page: 856 ident: bb0665 article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development publication-title: Nat. Genet. – volume: 277 start-page: 1996 year: 1997 end-page: 2000 ident: bb0715 article-title: Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1 publication-title: Science – volume: 32 start-page: 340 year: 2013 end-page: 353 ident: bb0805 article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice publication-title: EMBO J. – volume: 27 start-page: 404 year: 2008 end-page: 408 ident: bb0235 article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice publication-title: Oncogene – volume: 61 start-page: 4556 year: 2001 end-page: 4560 ident: bb0165 article-title: Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas publication-title: Cancer Res. – volume: 35 start-page: 2542 year: 2016 end-page: 2546 ident: bb0480 article-title: Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma publication-title: Oncogene – volume: 517 start-page: 640 year: 2015 end-page: 644 ident: bb0690 article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A publication-title: Nature – volume: 324 start-page: 930 year: 2009 end-page: 935 ident: bb0840 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science – volume: 564 start-page: 136 year: 2018 end-page: 140 ident: bb0410 article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1 publication-title: Nature – volume: 67 start-page: 550 year: 2017 end-page: 565 ident: bb0570 article-title: Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation publication-title: Mol. Cell – volume: 211 start-page: 393 year: 1981 end-page: 396 ident: bb0035 article-title: Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation publication-title: Science – volume: 448 start-page: 714 year: 2007 end-page: 717 ident: bb0680 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature – volume: 68 start-page: 350 year: 2017 end-page: 360 ident: bb0745 article-title: Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance publication-title: Mol. Cell – volume: 65 start-page: 8635 year: 2005 end-page: 8639 ident: bb0055 article-title: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells publication-title: Cancer Res. – volume: 286 start-page: 35334 year: 2011 end-page: 35338 ident: bb0860 article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites publication-title: J. Biol. Chem. – volume: 36 start-page: 1328 year: 2017 end-page: 1338 ident: bb0185 article-title: Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer publication-title: Oncogene – volume: 317 start-page: 1760 year: 2007 end-page: 1764 ident: bb0585 article-title: UHRF1 Plays a role in maintaining DNA methylation in mammalian cells publication-title: Science – volume: 13 start-page: R84 year: 2012 ident: bb0125 article-title: Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns publication-title: Genome Biol. – volume: 153 start-page: 101 year: 2013 end-page: 111 ident: bb0455 article-title: Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma publication-title: Cell – volume: 28 start-page: 812 year: 2014 end-page: 828 ident: bb0880 article-title: DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos publication-title: Gene Dev. – volume: 4 year: 2008 ident: bb0280 article-title: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island publication-title: PLoS Genet. – volume: 35 start-page: 297 year: 2019 end-page: 314 ident: bb0310 article-title: DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation patterns publication-title: Cancer Cell – volume: 25 start-page: 911 year: 2015 end-page: 929 ident: bb0750 article-title: DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination publication-title: Cell Res. – volume: 46 start-page: 17 year: 2014 end-page: 23 ident: bb0090 article-title: Large conserved domains of low DNA methylation maintained by Dnmt3a publication-title: Nat. Genet. – volume: 502 start-page: 249 year: 2013 end-page: 253 ident: bb0575 article-title: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication publication-title: Nature – volume: 19 start-page: 108 year: 2018 ident: bb0200 article-title: Homeobox oncogene activation by pan-cancer DNA hypermethylation publication-title: Genome Biol. – volume: 455 start-page: 826 year: 2008 end-page: 829 ident: bb0735 article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix publication-title: Nature – volume: 83 start-page: 155 year: 1989 end-page: 158 ident: bb0115 article-title: Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma publication-title: Hum. Genet. – volume: 19 start-page: 18 year: 2018 ident: bb0105 article-title: Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys publication-title: Genome Biol. – volume: 52 start-page: 778 year: 2020 end-page: 789 ident: bb0215 article-title: The DNA methylation landscape of advanced prostate cancer publication-title: Nat. Genet. – volume: 285 start-page: 26114 year: 2010 end-page: 26120 ident: bb0640 article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation publication-title: J. Biol. Chem. – volume: 31 start-page: 653 year: 2017 end-page: 668 ident: bb0285 article-title: CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes publication-title: Cancer Cell – volume: 46 start-page: 9816 year: 2018 end-page: 9828 ident: bb0780 article-title: p15PAF binding to PCNA modulates the DNA sliding surface publication-title: Nucleic Acids Res. – year: 2021 ident: bb0390 article-title: PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors publication-title: Cell Death Differ. – volume: 22 start-page: 246 year: 2012 end-page: 258 ident: bb0260 article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer publication-title: Genome Res. – volume: 429 start-page: 3814 year: 2017 end-page: 3824 ident: bb0775 article-title: Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells publication-title: J. Mol. Biol. – volume: 22 start-page: 633 year: 2012 end-page: 641 ident: bb0710 article-title: Global profiling of DNA methylation erasure in mouse primordial germ cells publication-title: Genome Res. – volume: 43 start-page: 768 year: 2011 end-page: 775 ident: bb0255 article-title: Increased methylation variation in epigenetic domains across cancer types publication-title: Nat. Genet. – volume: 22 start-page: 203 year: 1999 end-page: 206 ident: bb0015 article-title: DNA methylation represses transcription in vivo publication-title: Nat. Genet. – volume: 18 start-page: 711 year: 2008 ident: bb0475 article-title: LINE- 1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer publication-title: Int. J. Gynecol. Cancer – volume: 104 start-page: 324 year: 2014 end-page: 333 ident: bb0800 article-title: DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story publication-title: Genomics – volume: 1 start-page: 686 year: 1995 end-page: 692 ident: bb0135 article-title: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers publication-title: Nat. Med. – volume: 466 start-page: 1129 year: 2010 end-page: 1133 ident: bb0845 article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification publication-title: Nature – volume: 13 start-page: 115 year: 2012 end-page: 126 ident: bb0645 article-title: Understanding the language of Lys36 methylation at histone H3 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 21 start-page: 502 year: 2017 end-page: 516 ident: bb0425 article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux publication-title: Cell Stem Cell – volume: 31 start-page: 737 year: 2017 end-page: 754 ident: bb0535 article-title: Intertumoral heterogeneity within medulloblastoma subgroups publication-title: Cancer Cell – volume: 18 start-page: 958 year: 2017 end-page: 971 ident: bb0545 article-title: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study publication-title: Lancet Oncol. – volume: 81 start-page: 2806 year: 1984 end-page: 2810 ident: bb0040 article-title: Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 8429 year: 2003 end-page: 8439 ident: bb0175 article-title: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer publication-title: Mol. Cell. Biol. – volume: 129 start-page: 879 year: 2007 end-page: 890 ident: bb0170 article-title: Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia publication-title: Cell – volume: 573 start-page: 281 year: 2019 end-page: 286 ident: bb0670 article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape publication-title: Nature – volume: 48 start-page: 849 year: 2012 end-page: 862 ident: bb0815 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell – volume: 17 start-page: 510 year: 2010 end-page: 522 ident: bb0380 article-title: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma publication-title: Cancer Cell – volume: 339 start-page: 448 year: 2013 end-page: 452 ident: bb0790 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science – volume: 140 start-page: 2892 year: 2013 end-page: 2903 ident: bb0810 article-title: A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells publication-title: Development – volume: 52 start-page: 1088 year: 2020 end-page: 1098 ident: bb0675 article-title: NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing publication-title: Nat. Genet. – volume: 510 start-page: 537 year: 2014 end-page: 541 ident: bb0265 article-title: Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing publication-title: Nature – volume: 9 start-page: 300 year: 2013 end-page: 306 ident: bb0445 article-title: NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink publication-title: Nat. Chem. Biol. – volume: 26 start-page: 745 year: 2016 end-page: 755 ident: bb0470 article-title: A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer publication-title: Genome Res. – volume: 10 start-page: 1749 year: 2019 ident: bb0270 article-title: Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation publication-title: Nat. Commun. – volume: 26 start-page: 1730 year: 2016 end-page: 1741 ident: bb0295 article-title: Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver publication-title: Genome Res. – volume: 52 start-page: 828 year: 2020 end-page: 839 ident: bb0345 article-title: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance publication-title: Nat. Genet. – volume: 555 start-page: 469 year: 2018 end-page: 474 ident: bb0530 article-title: DNA methylation-based classification of central nervous system tumours publication-title: Nature – volume: 15 start-page: 459 year: 2014 end-page: 470 ident: bb0895 article-title: Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes publication-title: Cell Stem Cell – volume: 7 start-page: 10806 year: 2016 ident: bb0865 article-title: Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism publication-title: Nat. Commun. – volume: 11 start-page: 2294 year: 2020 ident: bb0330 article-title: Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation publication-title: Nat. Commun. – volume: 27 start-page: 31 year: 2001 end-page: 39 ident: bb0240 article-title: Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation publication-title: Nat. Genet. – volume: 19 start-page: 698 year: 2010 end-page: 711 ident: bb0225 article-title: Aberrant epigenetic landscape in cancer: how cellular identity goes awry publication-title: Dev. Cell – volume: 7 start-page: 11197 year: 2016 ident: bb0755 article-title: Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition publication-title: Nat. Commun. – volume: 6 start-page: 2536 year: 1992 end-page: 2541 ident: bb0885 article-title: Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting publication-title: Gene Dev. – volume: 38 start-page: 4246 year: 2010 end-page: 4253 ident: bb0700 article-title: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail publication-title: Nucleic Acids Res. – volume: 25 start-page: 3305 year: 2005 end-page: 3316 ident: bb0650 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation publication-title: Mol. Cell. Biol. – volume: 99 start-page: 247 year: 1999 end-page: 257 ident: bb0065 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell – volume: 44 start-page: 40 year: 2012 end-page: 46 ident: bb0250 article-title: Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains publication-title: Nat. Genet. – volume: 25 start-page: 196 year: 2014 end-page: 209 ident: bb0550 article-title: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma publication-title: Cancer Cell – volume: 13 start-page: 484 year: 2012 end-page: 492 ident: bb0110 article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond publication-title: Nat. Rev. Genet. – volume: 20 start-page: 329 year: 2001 end-page: 335 ident: bb0145 article-title: Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia publication-title: Oncogene – volume: 10 start-page: 1235 year: 2009 end-page: 1241 ident: bb0685 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain publication-title: EMBO Rep. – volume: 69 start-page: 915 year: 1992 end-page: 926 ident: bb0060 article-title: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality publication-title: Cell – volume: 71 start-page: 865 year: 1992 end-page: 873 ident: bb0760 article-title: A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei publication-title: Cell – volume: 98 start-page: 4990 year: 2001 end-page: 4995 ident: bb0180 article-title: Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia publication-title: Proc. Natl. Acad. Sci. – volume: 580 start-page: 93 year: 2020 end-page: 99 ident: bb0205 article-title: A genomic and epigenomic atlas of prostate cancer in Asian populations publication-title: Nature – volume: 71 start-page: 7360 year: 2011 end-page: 7365 ident: bb0300 article-title: 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations publication-title: Cancer Res. – volume: 366 start-page: 362 year: 1993 end-page: 365 ident: bb0020 article-title: Role for DNA methylation in genomic imprinting publication-title: Nature – volume: 294 start-page: 8907 year: 2019 end-page: 8917 ident: bb0415 article-title: Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger–type E3 ubiquitin ligase UHRF1 publication-title: J. Biol. Chem. – volume: 94 start-page: 1773 year: 1999 end-page: 1781 ident: bb0140 article-title: Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas publication-title: Blood – volume: 462 start-page: 315 year: 2009 ident: bb0245 article-title: Human DNA methylomes at base resolution show widespread epigenomic differences publication-title: Nature – volume: 42 start-page: 6956 year: 2014 end-page: 6971 ident: bb0290 article-title: TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells publication-title: Nucleic Acids Res. – volume: 150 start-page: 1135 year: 2012 end-page: 1146 ident: bb0305 article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma publication-title: Cell – volume: 569 start-page: 723 year: 2019 end-page: 728 ident: bb0440 article-title: Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts publication-title: Nature – volume: 504 start-page: 460 year: 2013 end-page: 464 ident: bb0825 article-title: Role of Tet1 in erasure of genomic imprinting publication-title: Nature – volume: 362 start-page: 751 year: 1993 end-page: 755 ident: bb0030 article-title: Parental-origin-specific epigenetic modification of the mouse H19 gene publication-title: Nature – volume: 25 start-page: 1615 year: 2019 end-page: 1626 ident: bb0520 article-title: Genome-wide germline correlates of the epigenetic landscape of prostate cancer publication-title: Nat. Med. – volume: 18 start-page: 553 year: 2010 end-page: 567 ident: bb0375 article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation publication-title: Cancer Cell – volume: 11 start-page: 5972 year: 2020 ident: bb0420 article-title: Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals publication-title: Nat. Commun. – volume: 168 start-page: 801 year: 2017 end-page: 816 ident: bb0315 article-title: CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression publication-title: Cell – volume: 13 start-page: 335 year: 1997 end-page: 340 ident: bb0450 article-title: Cytosine methylation and the ecology of intragenomic parasites publication-title: Trends Genet. – volume: 25 start-page: 442 year: 2014 end-page: 454 ident: bb0325 article-title: The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers publication-title: Cancer Cell – volume: 547 start-page: 311 year: 2017 end-page: 317 ident: bb0540 article-title: The whole-genome landscape of medulloblastoma subtypes publication-title: Nature – volume: 108 start-page: 9055 year: 2011 end-page: 9059 ident: bb0765 article-title: Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1) publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 805 year: 2006 end-page: 814 ident: bb0070 article-title: Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b publication-title: Genes Cells – volume: 12 start-page: 470 year: 2013 end-page: 478 ident: bb0875 article-title: Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells publication-title: Cell Stem Cell – volume: 34 start-page: 186 year: 2018 end-page: 195 ident: bb0365 article-title: Biological role and therapeutic potential of IDH mutations in cancer publication-title: Cancer Cell – volume: 35 start-page: 633 year: 2019 end-page: 648 ident: bb0195 article-title: Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties publication-title: Cancer Cell – volume: 153 start-page: 1134 year: 2013 end-page: 1148 ident: bb0095 article-title: Epigenomic analysis of multilineage differentiation of human embryonic stem cells publication-title: Cell – volume: 104 start-page: 1825 year: 2005 end-page: 1833 ident: bb0160 article-title: Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma publication-title: Cancer – volume: 35 start-page: 315 year: 2019 end-page: 328 ident: bb0510 article-title: Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf V600E-induced tumorigenesis publication-title: Cancer Cell – volume: 279 start-page: 25447 year: 2004 end-page: 25454 ident: bb0635 article-title: Chromatin targeting of de novo DNA methyltransferases by the PWWP domain publication-title: J. Biol. Chem. – volume: 18 start-page: 225 year: 2016 end-page: 233 ident: bb0900 article-title: De novo DNA methylation drives 5hmC accumulation in mouse zygotes publication-title: Nat. Cell Biol. – volume: 41 start-page: 1350 year: 2009 end-page: 1353 ident: bb0080 article-title: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts publication-title: Nat. Genet. – volume: 363 start-page: 2424 year: 2010 end-page: 2433 ident: bb0320 article-title: DNMT3A mutations in acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 56 start-page: 286 year: 2014 end-page: 297 ident: bb0355 article-title: 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation publication-title: Mol. Cell – volume: 24 start-page: 1640 year: 2004 end-page: 1648 ident: bb0230 article-title: Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing publication-title: Mol. Cell. Biol. – volume: 50 start-page: 591 year: 2018 ident: bb0340 article-title: DNA methylation loss in late-replicating domains is linked to mitotic cell division publication-title: Nat. Genet. – volume: 13 start-page: 2110 year: 2003 end-page: 2117 ident: bb0395 article-title: Stella is a maternal effect gene required for normal early development in mice publication-title: Curr. Biol. – volume: 20 start-page: 42 year: 2020 end-page: 56 ident: bb0525 article-title: Medulloblastomics revisited: biological and clinical insights from thousands of patients publication-title: Nat. Rev. Cancer – volume: 55 start-page: 4525 year: 1995 end-page: 4530 ident: bb0130 article-title: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers publication-title: Cancer Res. – volume: 21 start-page: 1172 year: 2011 end-page: 1181 ident: bb0705 article-title: Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase publication-title: Cell Res. – volume: 22 start-page: 1617 year: 2008 end-page: 1635 ident: bb0820 article-title: Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice publication-title: Gene Dev. – volume: 9 start-page: 64 year: 2007 end-page: 71 ident: bb0405 article-title: PGC7/Stella protects against DNA demethylation in early embryogenesis publication-title: Nat. Cell Biol. – volume: 558 start-page: 449 year: 2018 end-page: 453 ident: bb0430 article-title: GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells publication-title: Nature – volume: 11 start-page: 1222 year: 2020 ident: bb0605 article-title: Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation publication-title: Nat. Commun. – volume: 19 start-page: 219 year: 1998 end-page: 220 ident: bb0625 article-title: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases publication-title: Nat. Genet. – volume: 34 start-page: 197 year: 1983 end-page: 206 ident: bb0010 article-title: DNA methylation and the regulation of globin gene expression publication-title: Cell – volume: 51 start-page: 611 year: 2019 end-page: 617 ident: bb0495 article-title: Transposable elements drive widespread expression of oncogenes in human cancers publication-title: Nat. Genet. – volume: 14 start-page: 629 year: 2013 end-page: 637 ident: bb0870 article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation publication-title: EMBO Rep. – volume: 72 start-page: 753 year: 2018 end-page: 765 ident: bb0620 article-title: A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation publication-title: Mol. Cell – volume: 72 start-page: 739 year: 2018 end-page: 752 ident: bb0615 article-title: Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin publication-title: Mol. Cell – volume: 27 start-page: 485 year: 2019 end-page: 496 ident: bb0560 article-title: Structure of the UHRF1 tandem Tudor domain bound to a methylated non-histone protein, LIG1, reveals rules for binding and regulation publication-title: Structure – volume: 74 start-page: 481 year: 2005 end-page: 514 ident: bb0630 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. – volume: 20 start-page: 116 year: 1998 end-page: 117 ident: bb0045 article-title: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation publication-title: Nat. Genet. – volume: 486 start-page: 415 year: 2012 ident: bb0400 article-title: PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos publication-title: Nature – volume: 23 start-page: 4207 year: 2003 end-page: 4218 ident: bb0655 article-title: Methylation of histone H3 by Set2 in publication-title: Mol. Cell. Biol. – volume: 109 start-page: 12950 year: 2012 end-page: 12955 ident: bb0555 article-title: Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1 publication-title: Proc. Natl. Acad. Sci. – volume: 555 start-page: 392 year: 2018 end-page: 396 ident: bb0905 article-title: Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte publication-title: Nature – volume: 25 start-page: 442 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0325 article-title: The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.02.010 – volume: 34 start-page: 186 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0365 article-title: Biological role and therapeutic potential of IDH mutations in cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.04.011 – volume: 153 start-page: 1134 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0095 article-title: Epigenomic analysis of multilineage differentiation of human embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2013.04.022 – volume: 69 start-page: 915 year: 1992 ident: 10.1016/j.tig.2021.05.002_bb0060 article-title: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality publication-title: Cell doi: 10.1016/0092-8674(92)90611-F – volume: 18 start-page: 958 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0545 article-title: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30243-7 – volume: 20 start-page: 116 year: 1998 ident: 10.1016/j.tig.2021.05.002_bb0045 article-title: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation publication-title: Nat. Genet. doi: 10.1038/2413 – volume: 11 start-page: 1222 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0605 article-title: Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation publication-title: Nat. Commun. doi: 10.1038/s41467-020-15006-4 – volume: 11 start-page: 805 year: 2006 ident: 10.1016/j.tig.2021.05.002_bb0070 article-title: Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b publication-title: Genes Cells doi: 10.1111/j.1365-2443.2006.00984.x – volume: 27 start-page: 31 year: 2001 ident: 10.1016/j.tig.2021.05.002_bb0240 article-title: Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation publication-title: Nat. Genet. doi: 10.1038/83730 – volume: 32 start-page: 340 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0805 article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice publication-title: EMBO J. doi: 10.1038/emboj.2012.331 – volume: 25 start-page: 196 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0550 article-title: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.01.003 – volume: 22 start-page: 2339 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0370 article-title: A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation publication-title: Genome Res. doi: 10.1101/gr.132738.111 – volume: 38 start-page: 4246 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0700 article-title: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq147 – volume: 27 start-page: 404 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0235 article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice publication-title: Oncogene doi: 10.1038/sj.onc.1210631 – volume: 20 start-page: 329 year: 2001 ident: 10.1016/j.tig.2021.05.002_bb0145 article-title: Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia publication-title: Oncogene doi: 10.1038/sj.onc.1204104 – volume: 285 start-page: 26114 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0640 article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.089433 – volume: 18 start-page: 225 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0900 article-title: De novo DNA methylation drives 5hmC accumulation in mouse zygotes publication-title: Nat. Cell Biol. doi: 10.1038/ncb3296 – volume: 510 start-page: 537 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0265 article-title: Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing publication-title: Nature doi: 10.1038/nature13268 – volume: 286 start-page: 35334 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0860 article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.284620 – volume: 22 start-page: 203 year: 1999 ident: 10.1016/j.tig.2021.05.002_bb0015 article-title: DNA methylation represses transcription in vivo publication-title: Nat. Genet. doi: 10.1038/9727 – volume: 21 start-page: 1172 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0705 article-title: Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase publication-title: Cell Res. doi: 10.1038/cr.2011.92 – volume: 13 start-page: R84 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0125 article-title: Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns publication-title: Genome Biol. doi: 10.1186/gb-2012-13-10-r84 – volume: 333 start-page: 1300 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0855 article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine publication-title: Science doi: 10.1126/science.1210597 – volume: 36 start-page: 1328 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0185 article-title: Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer publication-title: Oncogene doi: 10.1038/onc.2016.297 – volume: 59 start-page: 89 year: 2015 ident: 10.1016/j.tig.2021.05.002_bb0695 article-title: Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.017 – volume: 11 start-page: 2294 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0330 article-title: Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation publication-title: Nat. Commun. doi: 10.1038/s41467-020-16213-9 – volume: 67 start-page: 550 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0570 article-title: Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.07.012 – volume: 300 start-page: 455 year: 2003 ident: 10.1016/j.tig.2021.05.002_bb0050 article-title: Chromosomal instability and tumors promoted by DNA hypomethylation publication-title: Science doi: 10.1126/science.1083557 – volume: 27 start-page: 485 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0560 article-title: Structure of the UHRF1 tandem Tudor domain bound to a methylated non-histone protein, LIG1, reveals rules for binding and regulation publication-title: Structure doi: 10.1016/j.str.2018.11.012 – volume: 83 start-page: 155 year: 1989 ident: 10.1016/j.tig.2021.05.002_bb0115 article-title: Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma publication-title: Hum. Genet. doi: 10.1007/BF00286709 – volume: 13 start-page: 484 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0110 article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3230 – volume: 51 start-page: 844 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0665 article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development publication-title: Nat. Genet. doi: 10.1038/s41588-019-0398-7 – volume: 31 start-page: 653 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0285 article-title: CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.04.005 – volume: 12 start-page: 470 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0875 article-title: Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.01.016 – volume: 38 start-page: 787 year: 2006 ident: 10.1016/j.tig.2021.05.002_bb0505 article-title: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer publication-title: Nat. Genet. doi: 10.1038/ng1834 – volume: 8 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0100 article-title: Epigenetic determinants of cancer publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a019505 – volume: 555 start-page: 469 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0530 article-title: DNA methylation-based classification of central nervous system tumours publication-title: Nature doi: 10.1038/nature26000 – volume: 1 start-page: 686 year: 1995 ident: 10.1016/j.tig.2021.05.002_bb0135 article-title: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers publication-title: Nat. Med. doi: 10.1038/nm0795-686 – volume: 19 start-page: 108 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0200 article-title: Homeobox oncogene activation by pan-cancer DNA hypermethylation publication-title: Genome Biol. doi: 10.1186/s13059-018-1492-3 – volume: 48 start-page: 849 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0815 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.001 – volume: 492 start-page: 443 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0830 article-title: Tet1 controls meiosis by regulating meiotic gene expression publication-title: Nature doi: 10.1038/nature11709 – volume: 13 start-page: 335 year: 1997 ident: 10.1016/j.tig.2021.05.002_bb0450 article-title: Cytosine methylation and the ecology of intragenomic parasites publication-title: Trends Genet. doi: 10.1016/S0168-9525(97)01181-5 – volume: 5 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0600 article-title: Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1 publication-title: eLife doi: 10.7554/eLife.17101 – volume: 140 start-page: 2892 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0810 article-title: A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells publication-title: Development doi: 10.1242/dev.093229 – volume: 126 start-page: 1190 year: 2004 ident: 10.1016/j.tig.2021.05.002_bb0220 article-title: IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2004.02.026 – volume: 9 start-page: 64 year: 2007 ident: 10.1016/j.tig.2021.05.002_bb0405 article-title: PGC7/Stella protects against DNA demethylation in early embryogenesis publication-title: Nat. Cell Biol. doi: 10.1038/ncb1519 – volume: 19 start-page: 219 year: 1998 ident: 10.1016/j.tig.2021.05.002_bb0625 article-title: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases publication-title: Nat. Genet. doi: 10.1038/890 – volume: 43 start-page: 768 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0255 article-title: Increased methylation variation in epigenetic domains across cancer types publication-title: Nat. Genet. doi: 10.1038/ng.865 – volume: 116 start-page: 16933 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0350 article-title: Paradoxical association of TET loss of function with genome-wide DNA hypomethylation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1903059116 – volume: 345 start-page: 1251343 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0465 article-title: Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes publication-title: Science doi: 10.1126/science.1251343 – volume: 46 start-page: 17 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0090 article-title: Large conserved domains of low DNA methylation maintained by Dnmt3a publication-title: Nat. Genet. doi: 10.1038/ng.2836 – volume: 42 start-page: 6956 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0290 article-title: TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku372 – volume: 16 start-page: 571 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0490 article-title: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma publication-title: Nat. Med. doi: 10.1038/nm.2129 – volume: 25 start-page: 911 year: 2015 ident: 10.1016/j.tig.2021.05.002_bb0750 article-title: DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination publication-title: Cell Res. doi: 10.1038/cr.2015.72 – volume: 22 start-page: 246 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0260 article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer publication-title: Genome Res. doi: 10.1101/gr.125872.111 – volume: 68 start-page: 350 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0745 article-title: Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.037 – volume: 61 start-page: 4556 year: 2001 ident: 10.1016/j.tig.2021.05.002_bb0165 article-title: Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas publication-title: Cancer Res. – volume: 65 start-page: 8635 year: 2005 ident: 10.1016/j.tig.2021.05.002_bb0055 article-title: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1961 – volume: 34 start-page: 197 year: 1983 ident: 10.1016/j.tig.2021.05.002_bb0010 article-title: DNA methylation and the regulation of globin gene expression publication-title: Cell doi: 10.1016/0092-8674(83)90150-2 – volume: 520 start-page: 243 year: 2015 ident: 10.1016/j.tig.2021.05.002_bb0660 article-title: Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation publication-title: Nature doi: 10.1038/nature14176 – volume: 466 start-page: 1129 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0845 article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification publication-title: Nature doi: 10.1038/nature09303 – volume: 35 start-page: 315 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0510 article-title: Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf V600E-induced tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.01.005 – volume: 31 start-page: 737 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0535 article-title: Intertumoral heterogeneity within medulloblastoma subgroups publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.05.005 – volume: 129 start-page: 1807 year: 2002 ident: 10.1016/j.tig.2021.05.002_bb0795 article-title: Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells publication-title: Development doi: 10.1242/dev.129.8.1807 – volume: 99 start-page: 247 year: 1999 ident: 10.1016/j.tig.2021.05.002_bb0065 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell doi: 10.1016/S0092-8674(00)81656-6 – volume: 46 start-page: 3130 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0335 article-title: The DNMT3A R882H mutant displays altered flanking sequence preferences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky168 – volume: 448 start-page: 714 year: 2007 ident: 10.1016/j.tig.2021.05.002_bb0680 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature doi: 10.1038/nature05987 – volume: 455 start-page: 822 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0740 article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 publication-title: Nature doi: 10.1038/nature07273 – volume: 339 start-page: 448 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0790 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science doi: 10.1126/science.1229277 – volume: 74 start-page: 481 year: 2005 ident: 10.1016/j.tig.2021.05.002_bb0630 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.010904.153721 – volume: 25 start-page: 3305 year: 2005 ident: 10.1016/j.tig.2021.05.002_bb0650 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.8.3305-3316.2005 – volume: 35 start-page: 297 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0310 article-title: DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation patterns publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.01.004 – volume: 20 start-page: 42 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0525 article-title: Medulloblastomics revisited: biological and clinical insights from thousands of patients publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0223-8 – volume: 486 start-page: 415 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0400 article-title: PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos publication-title: Nature doi: 10.1038/nature11093 – volume: 324 start-page: 930 year: 2009 ident: 10.1016/j.tig.2021.05.002_bb0840 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science doi: 10.1126/science.1170116 – volume: 547 start-page: 311 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0540 article-title: The whole-genome landscape of medulloblastoma subtypes publication-title: Nature doi: 10.1038/nature22973 – volume: 349 start-page: 2042 year: 2003 ident: 10.1016/j.tig.2021.05.002_bb0120 article-title: Gene silencing in cancer in association with promoter hypermethylation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra023075 – volume: 269 start-page: 14835 year: 1994 ident: 10.1016/j.tig.2021.05.002_bb0435 article-title: Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)36700-5 – volume: 317 start-page: 1760 year: 2007 ident: 10.1016/j.tig.2021.05.002_bb0585 article-title: UHRF1 Plays a role in maintaining DNA methylation in mammalian cells publication-title: Science doi: 10.1126/science.1147939 – volume: 10 start-page: 1235 year: 2009 ident: 10.1016/j.tig.2021.05.002_bb0685 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain publication-title: EMBO Rep. doi: 10.1038/embor.2009.218 – volume: 20 start-page: 606 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0275 article-title: Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG islands publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.09.012 – volume: 176 start-page: 565 year: 2007 ident: 10.1016/j.tig.2021.05.002_bb0720 article-title: DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200610062 – volume: 555 start-page: 392 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0905 article-title: Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte publication-title: Nature doi: 10.1038/nature25964 – volume: 23 start-page: 8429 year: 2003 ident: 10.1016/j.tig.2021.05.002_bb0175 article-title: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.23.8429-8439.2003 – volume: 56 start-page: 286 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0355 article-title: 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.026 – volume: 19 start-page: 1155 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0565 article-title: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2391 – volume: 52 start-page: 778 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0215 article-title: The DNA methylation landscape of advanced prostate cancer publication-title: Nat. Genet. doi: 10.1038/s41588-020-0648-8 – volume: 11 start-page: 5972 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0420 article-title: Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals publication-title: Nat. Commun. doi: 10.1038/s41467-020-19603-1 – volume: 55 start-page: 4525 year: 1995 ident: 10.1016/j.tig.2021.05.002_bb0130 article-title: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers publication-title: Cancer Res. – volume: 504 start-page: 460 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0825 article-title: Role of Tet1 in erasure of genomic imprinting publication-title: Nature doi: 10.1038/nature12805 – volume: 156 start-page: 45 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0835 article-title: Reversing DNA methylation: mechanisms, genomics, and biological functions publication-title: Cell doi: 10.1016/j.cell.2013.12.019 – volume: 24 start-page: 2526 year: 2004 ident: 10.1016/j.tig.2021.05.002_bb0595 article-title: Np95 is a histone-binding protein endowed with ubiquitin ligase activity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.6.2526-2535.2004 – volume: 455 start-page: 818 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0730 article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism publication-title: Nature doi: 10.1038/nature07249 – volume: 34 start-page: 145 year: 2003 ident: 10.1016/j.tig.2021.05.002_bb0190 article-title: Deficiency of Mbd2 suppresses intestinal tumorigenesis publication-title: Nat. Genet. doi: 10.1038/ng1155 – volume: 108 start-page: 9055 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0765 article-title: Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1) publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1019629108 – volume: 72 start-page: 753 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0620 article-title: A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.09.029 – volume: 52 start-page: 1088 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0675 article-title: NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing publication-title: Nat. Genet. doi: 10.1038/s41588-020-0689-z – volume: 17 start-page: 510 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0380 article-title: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.03.017 – volume: 279 start-page: 25447 year: 2004 ident: 10.1016/j.tig.2021.05.002_bb0635 article-title: Chromatin targeting of de novo DNA methyltransferases by the PWWP domain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312296200 – volume: 450 start-page: 908 year: 2007 ident: 10.1016/j.tig.2021.05.002_bb0580 article-title: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA publication-title: Nature doi: 10.1038/nature06397 – volume: 71 start-page: 7360 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0300 article-title: 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2023 – volume: 7 start-page: 331 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0515 article-title: Linkage of DNA methylation quantitative trait loci to human cancer risk publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.016 – volume: 28 start-page: 812 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0880 article-title: DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos publication-title: Gene Dev. doi: 10.1101/gad.234294.113 – volume: 21 start-page: 502 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0425 article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.08.018 – volume: 564 start-page: 136 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0410 article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1 publication-title: Nature doi: 10.1038/s41586-018-0751-5 – volume: 104 start-page: 324 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0800 article-title: DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story publication-title: Genomics doi: 10.1016/j.ygeno.2014.08.012 – volume: 58 start-page: 3455 year: 1998 ident: 10.1016/j.tig.2021.05.002_bb0150 article-title: Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability publication-title: Cancer Res. – volume: 73 start-page: 5858 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0500 article-title: The CpG island methylator phenotype: what’s in a name? publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4306 – volume: 46 start-page: 3218 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0590 article-title: Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky104 – volume: 18 start-page: 45 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0360 article-title: TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells publication-title: Nat. Immunol. doi: 10.1038/ni.3630 – volume: 211 start-page: 393 year: 1981 ident: 10.1016/j.tig.2021.05.002_bb0035 article-title: Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation publication-title: Science doi: 10.1126/science.6164095 – volume: 35 start-page: 633 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0195 article-title: Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.03.003 – volume: 15 start-page: 459 year: 2014 ident: 10.1016/j.tig.2021.05.002_bb0895 article-title: Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.09.002 – volume: 502 start-page: 249 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0575 article-title: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication publication-title: Nature doi: 10.1038/nature12488 – volume: 71 start-page: 865 year: 1992 ident: 10.1016/j.tig.2021.05.002_bb0760 article-title: A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei publication-title: Cell doi: 10.1016/0092-8674(92)90561-P – volume: 98 start-page: 4990 year: 2001 ident: 10.1016/j.tig.2021.05.002_bb0180 article-title: Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.101617298 – volume: 13 start-page: 2110 year: 2003 ident: 10.1016/j.tig.2021.05.002_bb0395 article-title: Stella is a maternal effect gene required for normal early development in mice publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.11.026 – volume: 5 start-page: 1181 year: 2004 ident: 10.1016/j.tig.2021.05.002_bb0725 article-title: Replication-independent chromatin loading of Dnmt1 during G2 and M phases publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400295 – volume: 35 start-page: 2542 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0480 article-title: Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma publication-title: Oncogene doi: 10.1038/onc.2015.308 – volume: 73 start-page: 61 year: 1993 ident: 10.1016/j.tig.2021.05.002_bb0025 article-title: Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal publication-title: Cell doi: 10.1016/0092-8674(93)90160-R – volume: 580 start-page: 93 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0205 article-title: A genomic and epigenomic atlas of prostate cancer in Asian populations publication-title: Nature doi: 10.1038/s41586-020-2135-x – volume: 356 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0085 article-title: Impact of cytosine methylation on DNA binding specificities of human transcription factors publication-title: Science doi: 10.1126/science.aaj2239 – volume: 569 start-page: 723 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0440 article-title: Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts publication-title: Nature doi: 10.1038/s41586-019-1173-8 – volume: 13 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0890 article-title: Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007042 – volume: 104 start-page: 1825 year: 2005 ident: 10.1016/j.tig.2021.05.002_bb0160 article-title: Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma publication-title: Cancer doi: 10.1002/cncr.21409 – volume: 18 start-page: 711 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0475 article-title: LINE- 1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer publication-title: Int. J. Gynecol. Cancer doi: 10.1111/j.1525-1438.2007.01117.x – volume: 462 start-page: 315 year: 2009 ident: 10.1016/j.tig.2021.05.002_bb0245 article-title: Human DNA methylomes at base resolution show widespread epigenomic differences publication-title: Nature doi: 10.1038/nature08514 – volume: 573 start-page: 281 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0670 article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape publication-title: Nature doi: 10.1038/s41586-019-1534-3 – volume: 429 start-page: 3814 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0775 article-title: Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.10.014 – volume: 294 start-page: 8907 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0415 article-title: Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger–type E3 ubiquitin ligase UHRF1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.008008 – volume: 517 start-page: 640 year: 2015 ident: 10.1016/j.tig.2021.05.002_bb0690 article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A publication-title: Nature doi: 10.1038/nature13899 – volume: 22 start-page: 1617 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0820 article-title: Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice publication-title: Gene Dev. doi: 10.1101/gad.1649908 – volume: 7 start-page: 11197 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0755 article-title: Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition publication-title: Nat. Commun. doi: 10.1038/ncomms11197 – volume: 129 start-page: 879 year: 2007 ident: 10.1016/j.tig.2021.05.002_bb0170 article-title: Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia publication-title: Cell doi: 10.1016/j.cell.2007.03.043 – volume: 153 start-page: 101 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0455 article-title: Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma publication-title: Cell doi: 10.1016/j.cell.2013.02.032 – volume: 452 start-page: 877 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0785 article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line publication-title: Nature doi: 10.1038/nature06714 – volume: 19 start-page: 18 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0105 article-title: Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys publication-title: Genome Biol. doi: 10.1186/s13059-018-1390-8 – volume: 7 start-page: 24 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0485 article-title: Endogenous retroviral promoter exaptation in human cancer publication-title: Mob. DNA doi: 10.1186/s13100-016-0080-x – volume: 72 start-page: 739 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0615 article-title: Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.09.028 – volume: 50 start-page: 591 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0340 article-title: DNA methylation loss in late-replicating domains is linked to mitotic cell division publication-title: Nat. Genet. doi: 10.1038/s41588-018-0073-4 – volume: 277 start-page: 1996 year: 1997 ident: 10.1016/j.tig.2021.05.002_bb0715 article-title: Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1 publication-title: Science doi: 10.1126/science.277.5334.1996 – volume: 4 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0280 article-title: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island publication-title: PLoS Genet. – volume: 150 start-page: 1135 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0305 article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma publication-title: Cell doi: 10.1016/j.cell.2012.07.033 – volume: 18 start-page: 553 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0375 article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.11.015 – volume: 81 start-page: 2806 year: 1984 ident: 10.1016/j.tig.2021.05.002_bb0040 article-title: Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.81.9.2806 – volume: 483 start-page: 479 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0385 article-title: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype publication-title: Nature doi: 10.1038/nature10866 – volume: 7 start-page: 10806 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0865 article-title: Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism publication-title: Nat. Commun. doi: 10.1038/ncomms10806 – volume: 10 start-page: 1749 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0270 article-title: Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation publication-title: Nat. Commun. doi: 10.1038/s41467-019-09828-0 – volume: 363 start-page: 2424 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0320 article-title: DNMT3A mutations in acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1005143 – volume: 9 start-page: 300 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0445 article-title: NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1204 – volume: 25 start-page: 1615 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0520 article-title: Genome-wide germline correlates of the epigenetic landscape of prostate cancer publication-title: Nat. Med. doi: 10.1038/s41591-019-0579-z – volume: 286 start-page: 15344 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0770 article-title: The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.209882 – volume: 124 start-page: 81 year: 2009 ident: 10.1016/j.tig.2021.05.002_bb0460 article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.23849 – volume: 6 start-page: 2536 year: 1992 ident: 10.1016/j.tig.2021.05.002_bb0885 article-title: Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting publication-title: Gene Dev. doi: 10.1101/gad.6.12b.2536 – volume: 44 start-page: 40 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0250 article-title: Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains publication-title: Nat. Genet. doi: 10.1038/ng.969 – volume: 23 start-page: 4207 year: 2003 ident: 10.1016/j.tig.2021.05.002_bb0655 article-title: Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.12.4207-4218.2003 – volume: 26 start-page: 16 year: 2000 ident: 10.1016/j.tig.2021.05.002_bb0155 article-title: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer publication-title: Nat. Genet. doi: 10.1038/79120 – volume: 94 start-page: 1773 year: 1999 ident: 10.1016/j.tig.2021.05.002_bb0140 article-title: Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas publication-title: Blood doi: 10.1182/blood.V94.5.1773 – volume: 22 start-page: 633 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0710 article-title: Global profiling of DNA methylation erasure in mouse primordial germ cells publication-title: Genome Res. doi: 10.1101/gr.130997.111 – volume: 46 start-page: 409 year: 1986 ident: 10.1016/j.tig.2021.05.002_bb0005 article-title: Muscle-specific activation of a methylated chimeric actin gene publication-title: Cell doi: 10.1016/0092-8674(86)90661-6 – volume: 366 start-page: 362 year: 1993 ident: 10.1016/j.tig.2021.05.002_bb0020 article-title: Role for DNA methylation in genomic imprinting publication-title: Nature doi: 10.1038/366362a0 – volume: 41 start-page: 178 year: 2009 ident: 10.1016/j.tig.2021.05.002_bb0075 article-title: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores publication-title: Nat. Genet. doi: 10.1038/ng.298 – volume: 41 start-page: 1350 year: 2009 ident: 10.1016/j.tig.2021.05.002_bb0080 article-title: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts publication-title: Nat. Genet. doi: 10.1038/ng.471 – volume: 46 start-page: 9816 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0780 article-title: p15PAF binding to PCNA modulates the DNA sliding surface publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky723 – volume: 109 start-page: 12950 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0555 article-title: Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1203701109 – volume: 333 start-page: 1303 year: 2011 ident: 10.1016/j.tig.2021.05.002_bb0850 article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA publication-title: Science doi: 10.1126/science.1210944 – volume: 49 start-page: 3020 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0610 article-title: Staying true to yourself: mechanisms of DNA methylation maintenance in mammals publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1154 – volume: 25 start-page: 1066 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0210 article-title: Pan-cancer landscape of aberrant DNA methylation across human tumors publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.082 – volume: 168 start-page: 801 year: 2017 ident: 10.1016/j.tig.2021.05.002_bb0315 article-title: CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression publication-title: Cell doi: 10.1016/j.cell.2017.01.021 – volume: 14 start-page: 629 year: 2013 ident: 10.1016/j.tig.2021.05.002_bb0870 article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation publication-title: EMBO Rep. doi: 10.1038/embor.2013.67 – volume: 558 start-page: 449 year: 2018 ident: 10.1016/j.tig.2021.05.002_bb0430 article-title: GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells publication-title: Nature doi: 10.1038/s41586-018-0190-3 – volume: 26 start-page: 1730 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0295 article-title: Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver publication-title: Genome Res. doi: 10.1101/gr.211854.116 – volume: 52 start-page: 828 year: 2020 ident: 10.1016/j.tig.2021.05.002_bb0345 article-title: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance publication-title: Nat. Genet. doi: 10.1038/s41588-020-0661-y – volume: 51 start-page: 611 year: 2019 ident: 10.1016/j.tig.2021.05.002_bb0495 article-title: Transposable elements drive widespread expression of oncogenes in human cancers publication-title: Nat. Genet. doi: 10.1038/s41588-019-0373-3 – volume: 19 start-page: 698 year: 2010 ident: 10.1016/j.tig.2021.05.002_bb0225 article-title: Aberrant epigenetic landscape in cancer: how cellular identity goes awry publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.10.005 – volume: 362 start-page: 751 year: 1993 ident: 10.1016/j.tig.2021.05.002_bb0030 article-title: Parental-origin-specific epigenetic modification of the mouse H19 gene publication-title: Nature doi: 10.1038/362751a0 – volume: 24 start-page: 1640 year: 2004 ident: 10.1016/j.tig.2021.05.002_bb0230 article-title: Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.4.1640-1648.2004 – volume: 26 start-page: 745 year: 2016 ident: 10.1016/j.tig.2021.05.002_bb0470 article-title: A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer publication-title: Genome Res. doi: 10.1101/gr.201814.115 – volume: 13 start-page: 115 year: 2012 ident: 10.1016/j.tig.2021.05.002_bb0645 article-title: Understanding the language of Lys36 methylation at histone H3 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3274 – year: 2021 ident: 10.1016/j.tig.2021.05.002_bb0390 article-title: PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors publication-title: Cell Death Differ. – volume: 455 start-page: 826 year: 2008 ident: 10.1016/j.tig.2021.05.002_bb0735 article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix publication-title: Nature doi: 10.1038/nature07280 |
SSID | ssj0005735 |
Score | 2.724962 |
SecondaryResourceType | review_article |
Snippet | DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1012 |
SubjectTerms | cancer CpG Islands - genetics DNA methylation DNA Methylation - genetics DNA methyltransferase Genome-Wide Association Study histone modification Humans Neoplasms - genetics Neoplasms - metabolism |
Title | Navigating the DNA methylation landscape of cancer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S016895252100130X https://dx.doi.org/10.1016/j.tig.2021.05.002 https://www.ncbi.nlm.nih.gov/pubmed/34120771 https://www.proquest.com/docview/2540726312 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DUbyIzq_5MSp4ErqladMkxzEdU1kvOtgtpE07JtKN2Qm7-Lf70o8xQScIvbS8R8NL8t4veV8I3fg45CQ2N_eaUdtLfGwLN-J2RGmEmYp9j5t850Hg94fe44iOaqhb5cKYsMpS9xc6PdfW5Zd2Kc32bDJpPwNY4YISsD-5-21kMtg9ZlZ563MtzIMVTTaB2DbUlWczj_HKJmM4IhKntXaz8oNt-g175jaod4D2S_BodYrxHaJanNbRTtFOcllHu4PSUX6ESKA-8uIZ6dgCiGfdBR3LNIteFqFvVp7ha2KfrGliRWbm58do2Lt_6fbtsj0CCNIhma3h6Cc87AoAMQnAClco0BZcKAyPS0NCteIJi5jGCQAzxZSiEdE-HJC0EInjnqCtdJrGZ8iKeRiCJdeawPbUjqeow0Ow7dqnrqn41UC4EoyMytrhpoXFm6yCxF4lyFIaWUpMJciygW5XLLOicMYmYlJJW1YZoaDDJKj1TUzeiunbkvmL7bqaTglbyfhHVBpPF--SmGKExHcdoDkt5nk1dDD2BDPmnP_vpxdoz7wVSYyXaCubL-IrQDNZ2MyXaxNtdx6e-sEXH0vtzw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba8IwFD44ZZeXsbmbu3awp0Fnmja9PIqb6NS-TMG3kDatOEYVpwP__U56cRvsAoM-tTk0fEnO-ZKcC8CNTQKXRurkXjpMt2Kb6J4ZunrIWEgcEdmWq-Kd-77dHlqPIzYqQbOIhVFulbnuz3R6qq3zN_UczfpsMqk_IVlxPUbR_qTXb6MNqKjsVKwMlUan2_Y_PD2crM4mtteVQHG5mbp5LSZj3CVS4-7T4co35ukn-pmaodYe7Ob8UWtkXdyHUpRUYTOrKLmqwlY_vys_AOqLtzR_RjLWkOVp935DU_WiV5n3m5YG-Sr3J20aa6Ea_PkhDFsPg2ZbzyskIJYGXegSd3-eRUwPeUyMzML0BCoM1xMEH5MFlEnhxk7oSBIjNxOOECyk0sY9kvS82DCPoJxMk-gEtMgNAjTmUlJcodKwBDPcAM27tJmpYK0BKYDhYZ4-XFWxeOGFn9gzRyy5wpITxhHLGtyuRWZZ7ozfGtMCbV4EhaIa46jZfxOy1kJfZs1fYtfFcHJcTeqKRCTRdPnKqcpHSG3TwDbH2Tivu472nhLHMU7_99Mr2G4P-j3e6_jdM9hRX7KYxnMoL-bL6ALJzSK4zCfvO1b48IA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigating+the+DNA+methylation+landscape+of+cancer&rft.jtitle=Trends+in+genetics&rft.au=Nishiyama%2C+Atsuya&rft.au=Nakanishi%2C+Makoto&rft.date=2021-11-01&rft.issn=0168-9525&rft.volume=37&rft.issue=11&rft.spage=1012&rft_id=info:doi/10.1016%2Fj.tig.2021.05.002&rft_id=info%3Apmid%2F34120771&rft.externalDocID=34120771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |