Navigating the DNA methylation landscape of cancer

DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e....

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 37; no. 11; pp. 1012 - 1027
Main Authors Nishiyama, Atsuya, Nakanishi, Makoto
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential. DNA methylation is an important epigenetic modification that defines the properties of cells. Genome-wide hypomethylation, as well as hypermethylation of CpG islands associated with tumor suppressor genes and developmental regulators, are characteristics of cancer cells.DNA methyltransferases normally exist in an inactive form and their localization and activation are regulated by interaction with unique histone modifications at DNA methylation sites.Changes in DNA methylation patterns associated with carcinogenesis progress gradually with cell proliferation. Genome-wide hypomethylation is found in DNA blocks called partially methylated domains (PMDs) and it frequently occurs in solo-WCGW sequences that have no nearby CpG sequences and are adjacent to A or C.CpG island methylation primarily targets promoters characterized by low gene expression marked by H3K27m3, with the replacement of histone modifications by DNA methylation ensuring more stable gene repression.
AbstractList DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential. DNA methylation is an important epigenetic modification that defines the properties of cells. Genome-wide hypomethylation, as well as hypermethylation of CpG islands associated with tumor suppressor genes and developmental regulators, are characteristics of cancer cells.DNA methyltransferases normally exist in an inactive form and their localization and activation are regulated by interaction with unique histone modifications at DNA methylation sites.Changes in DNA methylation patterns associated with carcinogenesis progress gradually with cell proliferation. Genome-wide hypomethylation is found in DNA blocks called partially methylated domains (PMDs) and it frequently occurs in solo-WCGW sequences that have no nearby CpG sequences and are adjacent to A or C.CpG island methylation primarily targets promoters characterized by low gene expression marked by H3K27m3, with the replacement of histone modifications by DNA methylation ensuring more stable gene repression.
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
Author Nishiyama, Atsuya
Nakanishi, Makoto
Author_xml – sequence: 1
  givenname: Atsuya
  surname: Nishiyama
  fullname: Nishiyama, Atsuya
  email: uanishiyama@g.ecc.u-tokyo.ac.jp
  organization: Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
– sequence: 2
  givenname: Makoto
  surname: Nakanishi
  fullname: Nakanishi, Makoto
  email: mkt-naka@g.ecc.u-tokyo.ac.jp
  organization: Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34120771$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOAyEUQFnUWFv9ADdmlm46XmAYSlw19ZmYutE1ocC01HlUoE3691KrLlxoQkJycw7hngHqtV1rETrHkGPA5dUqj26REyA4B5YDkB46SfPxSDDC-mgQwgoAGKfsGPVpgQlwjk8QmamtW6jo2kUWlza7mU2yxsblrk6zrs1q1Zqg1dpmXZVp1WrrT9FRpepgz77uIXq9u32ZPoyenu8fp5OnkWaYxJEpgIgCqGDAKio4FYryciwUpEPZnDCjxhXX3EAFrFBcKaaJKXFZGCEqTIfo8vDu2nfvGxuibFzQtk5fst0mSMIK4KSkmCT04gvdzBtr5Nq7Rvmd_N4zAfgAaN-F4G31g2CQ-35yJVM_ue8ngcnULzn8l6Nd_KwSvXL1n-b1wbQpz9ZZL4N2NrUzzlsdpencn7b4ZevatU6r-s3u_nE_APp-nDQ
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_1111_ijlh_14186
crossref_primary_10_1186_s12964_024_01849_7
crossref_primary_10_1007_s12032_022_01943_1
crossref_primary_10_1007_s10495_023_01884_8
crossref_primary_10_1038_s41598_024_51720_5
crossref_primary_10_1016_j_gendis_2025_101598
crossref_primary_10_1016_j_dnarep_2023_103526
crossref_primary_10_1186_s13148_024_01633_x
crossref_primary_10_7717_peerj_16566
crossref_primary_10_1016_j_canlet_2024_217216
crossref_primary_10_1177_17588359231220511
crossref_primary_10_3390_cancers14102384
crossref_primary_10_1016_j_jncc_2024_12_007
crossref_primary_10_1186_s40001_024_02192_w
crossref_primary_10_1016_j_humpath_2024_105679
crossref_primary_10_1007_s40203_023_00148_2
crossref_primary_10_1016_j_cca_2024_117823
crossref_primary_10_1021_acs_analchem_4c05030
crossref_primary_10_1016_j_chemosphere_2024_142488
crossref_primary_10_1016_j_xcrm_2025_101975
crossref_primary_10_2217_bmm_2023_0600
crossref_primary_10_1007_s00414_024_03165_8
crossref_primary_10_3390_ijms25052498
crossref_primary_10_3390_dna2010004
crossref_primary_10_1007_s12031_023_02170_7
crossref_primary_10_1080_15592294_2023_2207959
crossref_primary_10_1093_nar_gkae1105
crossref_primary_10_1186_s12989_024_00565_x
crossref_primary_10_3390_cancers17061008
crossref_primary_10_3390_ijms25179339
crossref_primary_10_1186_s12301_023_00392_0
crossref_primary_10_3389_fcvm_2022_952949
crossref_primary_10_1007_s10616_025_00735_5
crossref_primary_10_3389_fimmu_2022_1057839
crossref_primary_10_3390_ijerph20043635
crossref_primary_10_1016_j_jare_2024_11_001
crossref_primary_10_1016_j_critrevonc_2024_104498
crossref_primary_10_1016_j_ymeth_2024_09_001
crossref_primary_10_1016_j_ygyno_2024_01_001
crossref_primary_10_1158_2159_8290_CD_23_1060
crossref_primary_10_1007_s13577_023_01013_2
crossref_primary_10_1016_j_csbj_2023_11_043
crossref_primary_10_3390_ani14081222
crossref_primary_10_1002_1878_0261_13622
crossref_primary_10_1007_s10147_024_02617_w
crossref_primary_10_3390_biology12030488
crossref_primary_10_1055_a_2499_1140
crossref_primary_10_1093_bib_bbae651
crossref_primary_10_3389_fonc_2024_1446522
crossref_primary_10_1016_j_drudis_2025_104321
crossref_primary_10_2147_CEG_S451676
crossref_primary_10_3389_fcvm_2022_872977
crossref_primary_10_1038_s41598_025_92390_1
crossref_primary_10_3390_ijms241411715
crossref_primary_10_4240_wjgs_v16_i2_276
crossref_primary_10_1016_j_bbcan_2024_189096
crossref_primary_10_2217_epi_2022_0368
crossref_primary_10_3390_ijms24097729
crossref_primary_10_2478_rjim_2025_0005
crossref_primary_10_1038_s41467_024_47314_4
crossref_primary_10_25259_Cytojournal_31_2024
crossref_primary_10_3390_biom12111590
crossref_primary_10_1016_j_bbagrm_2022_194873
crossref_primary_10_1016_j_ajcnut_2024_08_033
crossref_primary_10_1186_s13073_024_01344_1
crossref_primary_10_1002_dev_22466
crossref_primary_10_3389_fphar_2024_1381168
crossref_primary_10_1016_j_tranon_2025_102344
crossref_primary_10_1016_j_bios_2023_115235
crossref_primary_10_1186_s13578_023_01017_3
crossref_primary_10_1038_s41598_024_56073_7
crossref_primary_10_1186_s40478_024_01796_x
crossref_primary_10_1016_j_thorsurg_2023_04_011
crossref_primary_10_1111_1759_7714_14822
crossref_primary_10_1002_wrna_70002
crossref_primary_10_1038_s42003_024_06434_9
crossref_primary_10_1186_s13059_024_03405_5
crossref_primary_10_3389_fonc_2024_1513654
crossref_primary_10_31083_j_fbl2712326
crossref_primary_10_3390_nu16142262
crossref_primary_10_1007_s10142_024_01410_2
crossref_primary_10_1016_j_bbcan_2024_189192
crossref_primary_10_1002_advs_202206169
crossref_primary_10_1007_s00262_024_03717_2
crossref_primary_10_1186_s12885_024_12039_6
crossref_primary_10_3390_ijms23094602
crossref_primary_10_1038_s41598_024_78135_6
crossref_primary_10_1016_j_canlet_2024_217010
crossref_primary_10_1007_s12035_024_04041_7
crossref_primary_10_3390_cimb46070390
crossref_primary_10_3389_fgene_2022_1087479
crossref_primary_10_1007_s00204_023_03608_y
crossref_primary_10_1002_ijc_34915
crossref_primary_10_1007_s10555_025_10253_7
crossref_primary_10_1016_j_heliyon_2024_e34461
crossref_primary_10_7759_cureus_65504
crossref_primary_10_3390_ijms232415759
crossref_primary_10_3390_jof9121187
crossref_primary_10_2478_aoas_2023_0078
crossref_primary_10_3390_biom14080916
crossref_primary_10_3233_CBM_230517
crossref_primary_10_1016_j_canlet_2024_217114
crossref_primary_10_3389_fcell_2023_1219968
crossref_primary_10_1200_PO_23_00414
crossref_primary_10_12677_acm_2024_1472146
crossref_primary_10_4102_sajo_v8i0_269
crossref_primary_10_1038_s41467_024_50498_4
crossref_primary_10_1097_MD_0000000000034860
crossref_primary_10_3390_cancers16030496
crossref_primary_10_1038_s41568_025_00801_2
crossref_primary_10_1038_s41598_024_77781_0
crossref_primary_10_1111_jcmm_18088
crossref_primary_10_1007_s11912_024_01555_0
crossref_primary_10_3389_fonc_2023_1264090
crossref_primary_10_1002_1873_3468_14686
crossref_primary_10_1016_j_heliyon_2024_e35686
crossref_primary_10_1097_JN9_0000000000000048
crossref_primary_10_1007_s00345_024_05287_5
crossref_primary_10_1080_19490976_2024_2347757
crossref_primary_10_3389_fgene_2023_1258648
crossref_primary_10_3390_cancers14143537
crossref_primary_10_1186_s12885_023_11162_0
crossref_primary_10_3389_fphar_2024_1418456
crossref_primary_10_1097_CMR_0000000000000881
crossref_primary_10_3389_fped_2022_975819
crossref_primary_10_3389_fonc_2024_1464125
crossref_primary_10_3892_mmr_2024_13304
crossref_primary_10_1007_s12672_024_00901_9
crossref_primary_10_1186_s13046_024_03021_y
crossref_primary_10_3389_fonc_2022_1055376
crossref_primary_10_3390_jcm14051620
crossref_primary_10_1016_j_bbamcr_2024_119819
crossref_primary_10_3389_fgene_2023_1168713
crossref_primary_10_1016_j_gene_2024_148214
crossref_primary_10_3390_cancers16223725
crossref_primary_10_1186_s12967_024_05553_5
crossref_primary_10_1016_j_semcancer_2022_11_001
crossref_primary_10_1186_s13148_023_01492_y
crossref_primary_10_31083_j_ceog5105109
crossref_primary_10_1186_s43556_023_00126_2
crossref_primary_10_3389_fphar_2022_1030766
crossref_primary_10_3390_metabo13080890
crossref_primary_10_5483_BMBRep_2023_0103
crossref_primary_10_1016_j_semcancer_2025_01_003
crossref_primary_10_3390_nu16050699
crossref_primary_10_1254_fpj_22015
crossref_primary_10_3389_fphar_2023_1191262
crossref_primary_10_3390_biom15010071
crossref_primary_10_1038_s41392_023_01537_x
crossref_primary_10_1038_s41420_024_02098_w
crossref_primary_10_1186_s12935_025_03696_z
crossref_primary_10_1101_gad_351444_123
crossref_primary_10_1002_advs_202405997
crossref_primary_10_1038_s41419_023_05959_x
crossref_primary_10_1016_j_heliyon_2024_e24811
crossref_primary_10_1016_j_biopha_2025_117955
crossref_primary_10_53065_kaznmu_2024_71_4_001
crossref_primary_10_1038_s41416_023_02292_0
crossref_primary_10_1016_j_trecan_2024_08_001
crossref_primary_10_3892_ijo_2023_5605
crossref_primary_10_3390_biom14101302
crossref_primary_10_1080_07853890_2023_2203946
crossref_primary_10_1007_s11033_023_08966_5
crossref_primary_10_1007_s10142_025_01552_x
crossref_primary_10_1186_s12943_021_01464_x
crossref_primary_10_1016_j_jare_2024_08_030
crossref_primary_10_62347_NCPH5416
crossref_primary_10_1016_j_pharmthera_2023_108434
crossref_primary_10_1590_1678_4685_gmb_2022_0131
crossref_primary_10_1002_ctm2_1427
crossref_primary_10_1186_s12920_024_01836_4
crossref_primary_10_1360_SSV_2024_0150
crossref_primary_10_1039_D4NJ05217J
crossref_primary_10_1186_s13148_023_01535_4
crossref_primary_10_1080_07391102_2023_2293267
crossref_primary_10_1096_fj_202300626R
crossref_primary_10_1186_s12864_023_09341_1
crossref_primary_10_1371_journal_pcbi_1012565
crossref_primary_10_1038_s41598_023_36586_3
crossref_primary_10_1016_j_isci_2024_110946
crossref_primary_10_3390_ijms24108591
crossref_primary_10_1016_j_ecoenv_2023_115391
crossref_primary_10_1016_j_ajhg_2024_08_020
crossref_primary_10_3390_cancers14010248
crossref_primary_10_1016_j_neuint_2023_105657
crossref_primary_10_1039_D3TB02947F
crossref_primary_10_1177_10732748241255548
crossref_primary_10_3389_fimmu_2022_1087279
crossref_primary_10_1186_s13046_022_02319_z
crossref_primary_10_3390_ijms24097817
crossref_primary_10_1186_s12263_024_00750_9
crossref_primary_10_1038_s12276_024_01205_2
crossref_primary_10_15302_J_QB_022_0289
crossref_primary_10_1002_ptr_8108
crossref_primary_10_1002_rmv_70000
crossref_primary_10_1083_jcb_202307026
crossref_primary_10_3390_biom13121685
crossref_primary_10_1016_j_ijbiomac_2024_134212
crossref_primary_10_3390_genes14071330
crossref_primary_10_3389_fphar_2024_1325869
crossref_primary_10_3892_or_2022_8390
crossref_primary_10_1080_14796694_2024_2420629
crossref_primary_10_3389_fcell_2022_1051102
crossref_primary_10_1186_s12903_023_02887_2
crossref_primary_10_3389_fgene_2023_1258862
crossref_primary_10_1038_s43856_025_00783_0
crossref_primary_10_1016_j_trecan_2022_10_010
crossref_primary_10_1002_ctm2_1518
crossref_primary_10_3390_cancers17020266
crossref_primary_10_17650_2313_805X_2022_9_4_24_40
crossref_primary_10_1186_s12943_024_01993_1
crossref_primary_10_3390_biom14091088
crossref_primary_10_1016_j_tibs_2024_01_003
crossref_primary_10_3390_cancers15010272
crossref_primary_10_1007_s12672_024_01449_4
crossref_primary_10_3390_genes15121504
crossref_primary_10_1038_s41388_023_02749_9
crossref_primary_10_1093_clinchem_hvac108
crossref_primary_10_1093_hmg_ddae176
crossref_primary_10_1002_anie_202413304
crossref_primary_10_1016_j_mce_2025_112459
crossref_primary_10_1016_j_critrevonc_2024_104586
crossref_primary_10_1021_acs_analchem_2c04616
crossref_primary_10_1016_j_jasc_2024_09_003
crossref_primary_10_1080_15592294_2023_2196759
crossref_primary_10_1186_s12885_025_13479_4
crossref_primary_10_1038_s12276_023_01020_1
crossref_primary_10_1186_s12943_024_02069_w
crossref_primary_10_3389_fonc_2021_780266
crossref_primary_10_1016_j_heliyon_2024_e28086
crossref_primary_10_4251_wjgo_v15_i12_2150
crossref_primary_10_1186_s13148_024_01708_9
crossref_primary_10_1016_j_prp_2023_154827
crossref_primary_10_61958_NDOU6199
crossref_primary_10_1007_s00439_024_02653_6
crossref_primary_10_1016_j_csbj_2024_01_024
crossref_primary_10_1016_j_ijbiomac_2025_140391
crossref_primary_10_1016_j_cellsig_2023_110627
crossref_primary_10_1158_0008_5472_CAN_23_3298
crossref_primary_10_3390_ijms241310663
crossref_primary_10_1158_0008_5472_CAN_22_2236
crossref_primary_10_1515_tjb_2023_0151
crossref_primary_10_2174_0115680096278978240204162353
crossref_primary_10_1186_s12885_022_09616_y
crossref_primary_10_1360_SSV_2023_0139
crossref_primary_10_3892_ol_2024_14678
crossref_primary_10_3390_ijms25126495
crossref_primary_10_1016_j_nantod_2024_102251
crossref_primary_10_1038_s41467_024_50098_2
crossref_primary_10_1590_1678_4685_gmb_2023_0139
crossref_primary_10_1038_s41598_025_87038_z
crossref_primary_10_1186_s40170_024_00352_4
crossref_primary_10_3390_cells12121595
crossref_primary_10_1002_mnfr_202400662
crossref_primary_10_1016_j_intimp_2022_109105
crossref_primary_10_3390_ijms25137377
crossref_primary_10_1002_mco2_693
crossref_primary_10_3389_fgene_2022_1016797
crossref_primary_10_1016_j_bmc_2021_116500
crossref_primary_10_3390_nu16010077
crossref_primary_10_1002_cac2_12527
crossref_primary_10_3390_ijms24087486
crossref_primary_10_3389_fimmu_2023_1199465
crossref_primary_10_3389_fgene_2022_1037134
crossref_primary_10_3390_biom14060667
crossref_primary_10_1016_j_bbagen_2024_130617
crossref_primary_10_1007_s11684_023_1038_2
crossref_primary_10_1002_mco2_329
crossref_primary_10_1186_s12885_022_09711_0
crossref_primary_10_3390_w14223595
crossref_primary_10_1016_j_csbj_2025_02_007
crossref_primary_10_3390_ijms24021506
crossref_primary_10_18632_aging_205484
crossref_primary_10_7240_jeps_1254802
crossref_primary_10_1002_ped4_12455
crossref_primary_10_1186_s13073_024_01318_3
crossref_primary_10_1016_j_biopha_2023_115324
crossref_primary_10_1016_j_molcel_2022_07_008
crossref_primary_10_1038_s41392_024_01823_2
crossref_primary_10_1016_j_bbrc_2024_149488
crossref_primary_10_1002_jcb_30531
crossref_primary_10_3390_cells10092207
crossref_primary_10_18632_aging_205372
crossref_primary_10_1002_advs_202308531
crossref_primary_10_1038_s42003_023_05459_w
crossref_primary_10_3389_fcell_2022_915685
crossref_primary_10_1038_s41467_022_34779_4
crossref_primary_10_1093_nargab_lqae146
crossref_primary_10_3390_f13020288
crossref_primary_10_1080_02664763_2024_2313458
crossref_primary_10_1080_17501911_2024_2374702
crossref_primary_10_3390_ijms24087188
crossref_primary_10_1016_j_gendis_2023_04_040
crossref_primary_10_1016_j_neo_2023_100882
crossref_primary_10_1093_nargab_lqac096
crossref_primary_10_3390_cancers14194882
crossref_primary_10_1016_j_ijbiomac_2025_142401
crossref_primary_10_1371_journal_pone_0311212
crossref_primary_10_1093_nar_gkac1082
crossref_primary_10_1073_pnas_2407096121
crossref_primary_10_1038_s41467_024_50404_y
crossref_primary_10_1007_s10528_024_10702_y
crossref_primary_10_1016_j_heliyon_2025_e41724
crossref_primary_10_1111_jcmm_70282
crossref_primary_10_1016_j_jnutbio_2022_109092
crossref_primary_10_1016_j_critrevonc_2023_104223
crossref_primary_10_1016_j_prp_2022_154231
crossref_primary_10_1016_j_heliyon_2022_e11119
crossref_primary_10_3389_fcell_2023_1116805
crossref_primary_10_3390_ijms251910496
crossref_primary_10_3390_cancers15102683
crossref_primary_10_3390_ijms23020830
crossref_primary_10_3390_ijms23168991
crossref_primary_10_1016_j_sbsr_2024_100690
crossref_primary_10_1172_JCI178540
crossref_primary_10_3390_cancers15020360
crossref_primary_10_1002_mco2_495
crossref_primary_10_1007_s12672_024_00960_y
crossref_primary_10_1186_s13148_024_01695_x
crossref_primary_10_7554_eLife_86721_4
crossref_primary_10_1002_cmdc_202400467
crossref_primary_10_1016_j_intimp_2024_113077
crossref_primary_10_1186_s12931_024_03093_6
crossref_primary_10_32607_actanaturae_11822
crossref_primary_10_3389_fcell_2021_793428
crossref_primary_10_18632_aging_204599
crossref_primary_10_3390_ijms24044109
crossref_primary_10_46237_amusbfd_1039164
crossref_primary_10_1016_j_gene_2023_148079
crossref_primary_10_1016_j_preme_2025_100023
crossref_primary_10_3390_biomedicines12040918
crossref_primary_10_1002_advs_202411285
crossref_primary_10_1093_nar_gkae594
crossref_primary_10_1186_s12859_022_04925_2
crossref_primary_10_1126_sciadv_adp5753
crossref_primary_10_1038_s41417_022_00578_8
crossref_primary_10_3390_cancers16244149
crossref_primary_10_1016_j_cpt_2024_07_005
crossref_primary_10_1186_s13148_023_01563_0
crossref_primary_10_1186_s13148_023_01552_3
crossref_primary_10_1016_j_semcancer_2023_10_005
crossref_primary_10_17116_neiro20238706152
crossref_primary_10_3390_ijms24076646
crossref_primary_10_2217_epi_2023_0227
crossref_primary_10_3389_fonc_2023_1238310
crossref_primary_10_1007_s13577_023_00910_w
crossref_primary_10_1016_j_phrs_2021_105869
crossref_primary_10_1016_j_gendis_2023_06_015
crossref_primary_10_3389_fonc_2024_1380448
crossref_primary_10_1038_s41467_024_51847_z
crossref_primary_10_3389_fmolb_2023_1157558
crossref_primary_10_1007_s12016_025_09039_0
crossref_primary_10_3390_ijms242015077
crossref_primary_10_1093_nar_gkae054
crossref_primary_10_1177_15330338241250317
crossref_primary_10_3390_biom13060944
crossref_primary_10_1007_s11011_024_01414_8
crossref_primary_10_1016_j_aca_2024_343540
crossref_primary_10_1016_j_biopha_2023_114410
crossref_primary_10_3389_fimmu_2022_1062225
crossref_primary_10_1016_j_canlet_2024_217297
crossref_primary_10_1186_s13148_023_01619_1
crossref_primary_10_1186_s40001_023_01366_2
crossref_primary_10_1016_j_fsigen_2025_103243
crossref_primary_10_1016_j_bcp_2023_115466
crossref_primary_10_1002_ange_202413304
crossref_primary_10_1016_j_canlet_2025_217472
crossref_primary_10_3390_antiox13010025
crossref_primary_10_1016_j_arcmed_2022_11_003
crossref_primary_10_3390_cancers16050898
crossref_primary_10_1021_acssensors_2c01330
crossref_primary_10_3390_cancers15082275
crossref_primary_10_1016_j_plabm_2024_e00406
crossref_primary_10_1016_j_ijbiomac_2024_133959
crossref_primary_10_7717_peerj_17916
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_1007_s10142_024_01293_3
crossref_primary_10_1016_j_pupt_2024_102317
crossref_primary_10_1242_dmm_052010
crossref_primary_10_1186_s12885_024_13299_y
crossref_primary_10_1186_s13072_024_00554_6
crossref_primary_10_1016_j_compbiomed_2023_107222
crossref_primary_10_3390_genes14051075
crossref_primary_10_1186_s13148_023_01474_0
crossref_primary_10_3748_wjg_v28_i46_6433
crossref_primary_10_1007_s12672_024_01697_4
crossref_primary_10_3892_ijmm_2024_5460
crossref_primary_10_3390_ph18020207
crossref_primary_10_1002_ctd2_191
crossref_primary_10_7554_eLife_86721
crossref_primary_10_1016_j_phrs_2023_106924
crossref_primary_10_1080_15592294_2025_2473770
crossref_primary_10_1093_ageing_afae038
crossref_primary_10_3390_biomedicines12071423
crossref_primary_10_2174_1381612829666230706143026
crossref_primary_10_1098_rsif_2022_0415
crossref_primary_10_3389_freae_2024_1362926
crossref_primary_10_1016_j_csbj_2022_06_046
crossref_primary_10_2147_IJN_S480095
crossref_primary_10_1093_hmg_ddac208
crossref_primary_10_1002_ajmg_b_32985
crossref_primary_10_1186_s12943_025_02269_y
crossref_primary_10_3390_curroncol31010033
crossref_primary_10_1038_s41375_024_02459_5
crossref_primary_10_1080_15592294_2024_2305082
crossref_primary_10_1002_mco2_421
crossref_primary_10_1038_s41392_023_01333_7
crossref_primary_10_1016_j_intimp_2023_110417
crossref_primary_10_3390_cancers14215384
crossref_primary_10_3892_or_2023_8687
crossref_primary_10_1016_j_biopha_2023_115788
crossref_primary_10_3389_fphar_2024_1498031
crossref_primary_10_4103_jcrt_jcrt_2542_22
crossref_primary_10_1016_j_tranon_2023_101808
crossref_primary_10_3390_life15010126
crossref_primary_10_1016_j_aca_2022_340636
crossref_primary_10_1016_j_cellsig_2023_110720
crossref_primary_10_3390_ijms24054411
crossref_primary_10_1038_s41598_023_38681_x
crossref_primary_10_1016_j_heliyon_2024_e36240
crossref_primary_10_1016_j_heliyon_2024_e38663
crossref_primary_10_1016_j_bbadis_2022_166583
crossref_primary_10_3389_fphar_2025_1563435
crossref_primary_10_1016_j_ailsci_2021_100008
crossref_primary_10_1038_s41698_025_00834_8
crossref_primary_10_1093_narcan_zcab045
crossref_primary_10_3389_fimmu_2024_1424197
crossref_primary_10_1007_s00418_023_02187_4
crossref_primary_10_1002_mco2_761
crossref_primary_10_3390_ijms232314624
crossref_primary_10_1016_j_trecan_2024_02_003
crossref_primary_10_1038_s41598_022_18278_6
crossref_primary_10_1038_s42003_023_05198_y
crossref_primary_10_3390_cancers16071275
crossref_primary_10_1097_MS9_0000000000001495
crossref_primary_10_1016_j_tranon_2023_101821
crossref_primary_10_1080_21655979_2022_2038891
crossref_primary_10_3389_fcell_2024_1532614
crossref_primary_10_1016_j_heliyon_2024_e29733
crossref_primary_10_1016_j_devcel_2024_10_009
crossref_primary_10_1016_j_marpolbul_2024_117011
crossref_primary_10_1016_j_gendis_2024_101448
crossref_primary_10_1080_15592294_2024_2397297
crossref_primary_10_1016_j_prnil_2023_01_001
crossref_primary_10_1021_acschembio_3c00251
crossref_primary_10_3390_ijms232314610
crossref_primary_10_3389_fcell_2022_1016955
Cites_doi 10.1016/j.ccr.2014.02.010
10.1016/j.ccell.2018.04.011
10.1016/j.cell.2013.04.022
10.1016/0092-8674(92)90611-F
10.1016/S1470-2045(17)30243-7
10.1038/2413
10.1038/s41467-020-15006-4
10.1111/j.1365-2443.2006.00984.x
10.1038/83730
10.1038/emboj.2012.331
10.1016/j.ccr.2014.01.003
10.1101/gr.132738.111
10.1093/nar/gkq147
10.1038/sj.onc.1210631
10.1038/sj.onc.1204104
10.1074/jbc.M109.089433
10.1038/ncb3296
10.1038/nature13268
10.1074/jbc.C111.284620
10.1038/9727
10.1038/cr.2011.92
10.1186/gb-2012-13-10-r84
10.1126/science.1210597
10.1038/onc.2016.297
10.1016/j.molcel.2015.05.017
10.1038/s41467-020-16213-9
10.1016/j.molcel.2017.07.012
10.1126/science.1083557
10.1016/j.str.2018.11.012
10.1007/BF00286709
10.1038/nrg3230
10.1038/s41588-019-0398-7
10.1016/j.ccell.2017.04.005
10.1016/j.stem.2013.01.016
10.1038/ng1834
10.1101/cshperspect.a019505
10.1038/nature26000
10.1038/nm0795-686
10.1186/s13059-018-1492-3
10.1016/j.molcel.2012.11.001
10.1038/nature11709
10.1016/S0168-9525(97)01181-5
10.7554/eLife.17101
10.1242/dev.093229
10.1053/j.gastro.2004.02.026
10.1038/ncb1519
10.1038/890
10.1038/ng.865
10.1073/pnas.1903059116
10.1126/science.1251343
10.1038/ng.2836
10.1093/nar/gku372
10.1038/nm.2129
10.1038/cr.2015.72
10.1101/gr.125872.111
10.1016/j.molcel.2017.09.037
10.1158/0008-5472.CAN-05-1961
10.1016/0092-8674(83)90150-2
10.1038/nature14176
10.1038/nature09303
10.1016/j.ccell.2019.01.005
10.1016/j.ccell.2017.05.005
10.1242/dev.129.8.1807
10.1016/S0092-8674(00)81656-6
10.1093/nar/gky168
10.1038/nature05987
10.1038/nature07273
10.1126/science.1229277
10.1146/annurev.biochem.74.010904.153721
10.1128/MCB.25.8.3305-3316.2005
10.1016/j.ccell.2019.01.004
10.1038/s41568-019-0223-8
10.1038/nature11093
10.1126/science.1170116
10.1038/nature22973
10.1056/NEJMra023075
10.1016/S0021-9258(17)36700-5
10.1126/science.1147939
10.1038/embor.2009.218
10.1016/j.ccr.2011.09.012
10.1083/jcb.200610062
10.1038/nature25964
10.1128/MCB.23.23.8429-8439.2003
10.1016/j.molcel.2014.08.026
10.1038/nsmb.2391
10.1038/s41588-020-0648-8
10.1038/s41467-020-19603-1
10.1038/nature12805
10.1016/j.cell.2013.12.019
10.1128/MCB.24.6.2526-2535.2004
10.1038/nature07249
10.1038/ng1155
10.1073/pnas.1019629108
10.1016/j.molcel.2018.09.029
10.1038/s41588-020-0689-z
10.1016/j.ccr.2010.03.017
10.1074/jbc.M312296200
10.1038/nature06397
10.1158/0008-5472.CAN-11-2023
10.1016/j.celrep.2014.03.016
10.1101/gad.234294.113
10.1016/j.stem.2017.08.018
10.1038/s41586-018-0751-5
10.1016/j.ygeno.2014.08.012
10.1158/0008-5472.CAN-12-4306
10.1093/nar/gky104
10.1038/ni.3630
10.1126/science.6164095
10.1016/j.ccell.2019.03.003
10.1016/j.stem.2014.09.002
10.1038/nature12488
10.1016/0092-8674(92)90561-P
10.1073/pnas.101617298
10.1016/j.cub.2003.11.026
10.1038/sj.embor.7400295
10.1038/onc.2015.308
10.1016/0092-8674(93)90160-R
10.1038/s41586-020-2135-x
10.1126/science.aaj2239
10.1038/s41586-019-1173-8
10.1371/journal.pgen.1007042
10.1002/cncr.21409
10.1111/j.1525-1438.2007.01117.x
10.1038/nature08514
10.1038/s41586-019-1534-3
10.1016/j.jmb.2017.10.014
10.1074/jbc.RA119.008008
10.1038/nature13899
10.1101/gad.1649908
10.1038/ncomms11197
10.1016/j.cell.2007.03.043
10.1016/j.cell.2013.02.032
10.1038/nature06714
10.1186/s13059-018-1390-8
10.1186/s13100-016-0080-x
10.1016/j.molcel.2018.09.028
10.1038/s41588-018-0073-4
10.1126/science.277.5334.1996
10.1016/j.cell.2012.07.033
10.1016/j.ccr.2010.11.015
10.1073/pnas.81.9.2806
10.1038/nature10866
10.1038/ncomms10806
10.1038/s41467-019-09828-0
10.1056/NEJMoa1005143
10.1038/nchembio.1204
10.1038/s41591-019-0579-z
10.1074/jbc.M110.209882
10.1002/ijc.23849
10.1101/gad.6.12b.2536
10.1038/ng.969
10.1128/MCB.23.12.4207-4218.2003
10.1038/79120
10.1182/blood.V94.5.1773
10.1101/gr.130997.111
10.1016/0092-8674(86)90661-6
10.1038/366362a0
10.1038/ng.298
10.1038/ng.471
10.1093/nar/gky723
10.1073/pnas.1203701109
10.1126/science.1210944
10.1093/nar/gkaa1154
10.1016/j.celrep.2018.09.082
10.1016/j.cell.2017.01.021
10.1038/embor.2013.67
10.1038/s41586-018-0190-3
10.1101/gr.211854.116
10.1038/s41588-020-0661-y
10.1038/s41588-019-0373-3
10.1016/j.devcel.2010.10.005
10.1038/362751a0
10.1128/MCB.24.4.1640-1648.2004
10.1101/gr.201814.115
10.1038/nrm3274
10.1038/nature07280
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.tig.2021.05.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 1027
ExternalDocumentID 34120771
10_1016_j_tig_2021_05_002
S016895252100130X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
6I.
AACTN
AAFTH
AAIAV
ABYKQ
AFCTW
AFKWA
AFMIJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
RIG
XFK
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c512t-d40294039505f39739a37689a09a035b25da8f7c7d0f054a7aa5c2d6164d99f13
IEDL.DBID .~1
ISSN 0168-9525
IngestDate Fri Jul 11 03:58:54 EDT 2025
Thu Apr 03 06:59:46 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 01:43:37 EDT 2025
Fri Feb 23 02:43:21 EST 2024
Tue Aug 26 19:13:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords DNA methylation
DNA methyltransferase
cancer
histone modification
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-d40294039505f39739a37689a09a035b25da8f7c7d0f054a7aa5c2d6164d99f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S016895252100130X
PMID 34120771
PQID 2540726312
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2540726312
pubmed_primary_34120771
crossref_primary_10_1016_j_tig_2021_05_002
crossref_citationtrail_10_1016_j_tig_2021_05_002
elsevier_sciencedirect_doi_10_1016_j_tig_2021_05_002
elsevier_clinicalkey_doi_10_1016_j_tig_2021_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in genetics
PublicationTitleAlternate Trends Genet
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saghafinia (bb0210) 2018; 25
Takeshita (bb0765) 2011; 108
Ley (bb0320) 2010; 363
Nishiyama (bb0605) 2020; 11
Scott (bb0470) 2016; 26
Hon (bb0355) 2014; 56
Bostick (bb0585) 2007; 317
Sproul (bb0125) 2012; 13
Easwaran (bb0725) 2004; 5
Petryk (bb0610) 2020; 49
Nakamura (bb0400) 2012; 486
Cavalli (bb0535) 2017; 31
Sharif (bb0580) 2007; 450
Kizer (bb0650) 2005; 25
Kagiwada (bb0805) 2013; 32
Zhao (bb0215) 2020; 52
Hajkova (bb0785) 2008; 452
Hovestadt (bb0265) 2014; 510
Seisenberger (bb0815) 2012; 48
Grady (bb0155) 2000; 26
Brinkman (bb0270) 2019; 10
Merlo (bb0135) 1995; 1
Herman, Baylin (bb0120) 2003; 349
Greger (bb0115) 1989; 83
Jirtle (bb0220) 2004; 126
Mohandas (bb0035) 1981; 211
Noh (bb0695) 2015; 59
Guibert (bb0710) 2012; 22
Siegfried (bb0015) 1999; 22
Hansen (bb0255) 2011; 43
Rothbart (bb0565) 2012; 19
Ge (bb0635) 2004; 279
Berdasco, Esteller (bb0225) 2010; 19
Lee (bb0795) 2002; 129
Wolf (bb0040) 1984; 81
Yin (bb0085) 2017; 356
Shen (bb0895) 2014; 15
Skvortsova (bb0310) 2019; 35
Foster (bb0615) 2018; 72
Carlson (bb0885) 1992; 6
Kori (bb0560) 2019; 27
Stirzaker (bb0185) 2017; 36
Ohno (bb0810) 2013; 140
Ferry (bb0570) 2017; 67
Fang (bb0755) 2016; 7
Sansom (bb0190) 2003; 34
Li (bb0295) 2016; 26
Turcan (bb0385) 2012; 483
Krogan (bb0655) 2003; 23
Weinberg (bb0670) 2019; 573
Yoder (bb0450) 1997; 13
Jeong (bb0090) 2014; 46
Lamprecht (bb0490) 2010; 16
Amouroux (bb0900) 2016; 18
Heyn (bb0515) 2014; 7
Kurimoto (bb0820) 2008; 22
Herman (bb0130) 1995; 55
Degirmenci (bb0430) 2018; 558
Spada (bb0720) 2007; 176
Magdinier, Wolffe (bb0180) 2001; 98
Kong (bb0195) 2019; 35
Shirane (bb0675) 2020; 52
Hughes (bb0500) 2013; 73
Okano (bb0625) 1998; 19
Zhang (bb0700) 2010; 38
Cunningham (bb0150) 1998; 58
Karg (bb0775) 2017; 429
Russler-Germain (bb0325) 2014; 25
Nishiyama (bb0575) 2013; 502
Cliff (bb0425) 2017; 21
Tubio (bb0465) 2014; 345
He (bb0850) 2011; 333
Figueroa (bb0375) 2010; 18
Hill (bb0800) 2014; 104
Su (bb0200) 2018; 19
Ooi (bb0680) 2007; 448
Kim (bb0160) 2005; 104
Pattamadilok (bb0475) 2008; 18
Weber (bb0865) 2016; 7
Ito (bb0845) 2010; 466
Xia (bb0285) 2017; 31
Noushmehr (bb0380) 2010; 17
Avvakumov (bb0740) 2008; 455
Doi (bb0080) 2009; 41
Howard (bb0235) 2008; 27
Li (bb0590) 2018; 46
Irizarry (bb0075) 2009; 41
Aksoy (bb0435) 1994; 269
Citterio (bb0595) 2004; 24
Gaudet (bb0230) 2004; 24
Babaian (bb0480) 2016; 35
Otani (bb0685) 2009; 10
Leonhardt (bb0760) 1992; 71
Akiyama (bb0175) 2003; 23
Vincent (bb0875) 2013; 12
Tao (bb0510) 2019; 35
Berman (bb0250) 2012; 44
Maiti, Drohat (bb0860) 2011; 286
Weisenberger (bb0505) 2006; 38
Hashimoto (bb0735) 2008; 455
Wagner, Carpenter (bb0645) 2012; 13
Baubec (bb0660) 2015; 520
Hackett (bb0790) 2013; 339
Maenohara (bb0890) 2017; 13
Waitkus (bb0365) 2018; 34
Schwalbe (bb0545) 2017; 18
Arita (bb0730) 2008; 455
Stöger (bb0025) 1993; 73
Grabole (bb0870) 2013; 14
Yisraeli (bb0005) 1986; 46
Hovestadt (bb0525) 2020; 20
Li (bb0020) 1993; 366
Nakamura (bb0405) 2007; 9
Jones (bb0110) 2012; 13
Yamaguchi (bb0825) 2013; 504
O’Hagan (bb0275) 2011; 20
Yan (bb0390) 2021
Hill (bb0905) 2018; 555
Babaian, Mager (bb0485) 2016; 7
Ito (bb0855) 2011; 333
Anteneh (bb0330) 2020; 11
Li (bb0060) 1992; 69
Houlahan (bb0520) 2019; 25
Shukla (bb0455) 2013; 153
Guo (bb0690) 2015; 517
Zhou (bb0340) 2018; 50
Emperle (bb0335) 2018; 46
Duncan (bb0370) 2012; 22
Xu (bb0665) 2019; 51
Baur (bb0140) 1999; 94
Arita (bb0555) 2012; 109
Li (bb0105) 2018; 19
Yamaguchi (bb0830) 2012; 492
Qin (bb0750) 2015; 25
DaRosa (bb0620) 2018; 72
Ishiyama (bb0745) 2017; 68
Eckert (bb0440) 2019; 569
Jackson-Grusby (bb0240) 2001; 27
Lister (bb0245) 2009; 462
Xie (bb0095) 2013; 153
Raval (bb0170) 2007; 129
Wu, Zhang (bb0835) 2014; 156
Ulanovskaya (bb0445) 2013; 9
Messerschmidt (bb0880) 2014; 28
Eden (bb0050) 2003; 300
Li (bb0205) 2020; 580
López-Moyado (bb0350) 2019; 116
Walsh (bb0045) 1998; 20
Tahiliani (bb0840) 2009; 324
Harrison (bb0600) 2016; 5
Baylin, Jones (bb0100) 2016; 8
Spencer (bb0315) 2017; 168
Dhayalan (bb0640) 2010; 285
Chuang (bb0715) 1997; 277
Daskalos (bb0460) 2009; 124
Jin (bb0290) 2014; 42
Ferguson-Smith (bb0030) 1993; 362
Tsumura (bb0070) 2006; 11
Mudbhary (bb0550) 2014; 25
Hon (bb0260) 2012; 22
Lian (bb0305) 2012; 150
Northcott (bb0540) 2017; 547
O’Hagan (bb0280) 2008; 4
Tsagaratou (bb0360) 2017; 18
Jin (bb0300) 2011; 71
Capper (bb0530) 2018; 555
Wang (bb0345) 2020; 52
Okano (bb0065) 1999; 99
Du (bb0415) 2019; 294
Jang (bb0495) 2019; 51
Toyooka (bb0165) 2001; 61
Li (bb0410) 2018; 564
Syeda (bb0770) 2011; 286
March (bb0780) 2018; 46
Payer (bb0395) 2003; 13
Mulholland (bb0420) 2020; 11
Busslinger (bb0010) 1983; 34
Karpf, Matsui (bb0055) 2005; 65
Li (bb0705) 2011; 21
Fleisher (bb0145) 2001; 20
Goll, Bestor (bb0630) 2005; 74
Jirtle (10.1016/j.tig.2021.05.002_bb0220) 2004; 126
Hansen (10.1016/j.tig.2021.05.002_bb0255) 2011; 43
Sansom (10.1016/j.tig.2021.05.002_bb0190) 2003; 34
Baur (10.1016/j.tig.2021.05.002_bb0140) 1999; 94
Irizarry (10.1016/j.tig.2021.05.002_bb0075) 2009; 41
Baylin (10.1016/j.tig.2021.05.002_bb0100) 2016; 8
Ley (10.1016/j.tig.2021.05.002_bb0320) 2010; 363
Vincent (10.1016/j.tig.2021.05.002_bb0875) 2013; 12
Li (10.1016/j.tig.2021.05.002_bb0590) 2018; 46
López-Moyado (10.1016/j.tig.2021.05.002_bb0350) 2019; 116
Hajkova (10.1016/j.tig.2021.05.002_bb0785) 2008; 452
Sproul (10.1016/j.tig.2021.05.002_bb0125) 2012; 13
Rothbart (10.1016/j.tig.2021.05.002_bb0565) 2012; 19
Tubio (10.1016/j.tig.2021.05.002_bb0465) 2014; 345
Doi (10.1016/j.tig.2021.05.002_bb0080) 2009; 41
Greger (10.1016/j.tig.2021.05.002_bb0115) 1989; 83
Fleisher (10.1016/j.tig.2021.05.002_bb0145) 2001; 20
Ge (10.1016/j.tig.2021.05.002_bb0635) 2004; 279
Okano (10.1016/j.tig.2021.05.002_bb0625) 1998; 19
Grabole (10.1016/j.tig.2021.05.002_bb0870) 2013; 14
Saghafinia (10.1016/j.tig.2021.05.002_bb0210) 2018; 25
Li (10.1016/j.tig.2021.05.002_bb0105) 2018; 19
March (10.1016/j.tig.2021.05.002_bb0780) 2018; 46
Pattamadilok (10.1016/j.tig.2021.05.002_bb0475) 2008; 18
Su (10.1016/j.tig.2021.05.002_bb0200) 2018; 19
Scott (10.1016/j.tig.2021.05.002_bb0470) 2016; 26
Amouroux (10.1016/j.tig.2021.05.002_bb0900) 2016; 18
Maenohara (10.1016/j.tig.2021.05.002_bb0890) 2017; 13
Wang (10.1016/j.tig.2021.05.002_bb0345) 2020; 52
Merlo (10.1016/j.tig.2021.05.002_bb0135) 1995; 1
Xia (10.1016/j.tig.2021.05.002_bb0285) 2017; 31
Okano (10.1016/j.tig.2021.05.002_bb0065) 1999; 99
Yin (10.1016/j.tig.2021.05.002_bb0085) 2017; 356
Guibert (10.1016/j.tig.2021.05.002_bb0710) 2012; 22
Yamaguchi (10.1016/j.tig.2021.05.002_bb0825) 2013; 504
Jones (10.1016/j.tig.2021.05.002_bb0110) 2012; 13
Guo (10.1016/j.tig.2021.05.002_bb0690) 2015; 517
Fang (10.1016/j.tig.2021.05.002_bb0755) 2016; 7
Howard (10.1016/j.tig.2021.05.002_bb0235) 2008; 27
Petryk (10.1016/j.tig.2021.05.002_bb0610) 2020; 49
Noh (10.1016/j.tig.2021.05.002_bb0695) 2015; 59
Li (10.1016/j.tig.2021.05.002_bb0205) 2020; 580
Lee (10.1016/j.tig.2021.05.002_bb0795) 2002; 129
Ito (10.1016/j.tig.2021.05.002_bb0845) 2010; 466
Hackett (10.1016/j.tig.2021.05.002_bb0790) 2013; 339
Bostick (10.1016/j.tig.2021.05.002_bb0585) 2007; 317
Gaudet (10.1016/j.tig.2021.05.002_bb0230) 2004; 24
DaRosa (10.1016/j.tig.2021.05.002_bb0620) 2018; 72
Seisenberger (10.1016/j.tig.2021.05.002_bb0815) 2012; 48
Jackson-Grusby (10.1016/j.tig.2021.05.002_bb0240) 2001; 27
Hon (10.1016/j.tig.2021.05.002_bb0260) 2012; 22
Yoder (10.1016/j.tig.2021.05.002_bb0450) 1997; 13
Houlahan (10.1016/j.tig.2021.05.002_bb0520) 2019; 25
Li (10.1016/j.tig.2021.05.002_bb0705) 2011; 21
Eden (10.1016/j.tig.2021.05.002_bb0050) 2003; 300
Nakamura (10.1016/j.tig.2021.05.002_bb0405) 2007; 9
Babaian (10.1016/j.tig.2021.05.002_bb0485) 2016; 7
Sharif (10.1016/j.tig.2021.05.002_bb0580) 2007; 450
Maiti (10.1016/j.tig.2021.05.002_bb0860) 2011; 286
Turcan (10.1016/j.tig.2021.05.002_bb0385) 2012; 483
Capper (10.1016/j.tig.2021.05.002_bb0530) 2018; 555
Citterio (10.1016/j.tig.2021.05.002_bb0595) 2004; 24
Yamaguchi (10.1016/j.tig.2021.05.002_bb0830) 2012; 492
Shen (10.1016/j.tig.2021.05.002_bb0895) 2014; 15
Hughes (10.1016/j.tig.2021.05.002_bb0500) 2013; 73
Kagiwada (10.1016/j.tig.2021.05.002_bb0805) 2013; 32
Tsagaratou (10.1016/j.tig.2021.05.002_bb0360) 2017; 18
Kori (10.1016/j.tig.2021.05.002_bb0560) 2019; 27
Spencer (10.1016/j.tig.2021.05.002_bb0315) 2017; 168
Noushmehr (10.1016/j.tig.2021.05.002_bb0380) 2010; 17
Ulanovskaya (10.1016/j.tig.2021.05.002_bb0445) 2013; 9
Dhayalan (10.1016/j.tig.2021.05.002_bb0640) 2010; 285
Arita (10.1016/j.tig.2021.05.002_bb0730) 2008; 455
Baubec (10.1016/j.tig.2021.05.002_bb0660) 2015; 520
Xu (10.1016/j.tig.2021.05.002_bb0665) 2019; 51
Krogan (10.1016/j.tig.2021.05.002_bb0655) 2003; 23
Raval (10.1016/j.tig.2021.05.002_bb0170) 2007; 129
Heyn (10.1016/j.tig.2021.05.002_bb0515) 2014; 7
Busslinger (10.1016/j.tig.2021.05.002_bb0010) 1983; 34
Harrison (10.1016/j.tig.2021.05.002_bb0600) 2016; 5
Daskalos (10.1016/j.tig.2021.05.002_bb0460) 2009; 124
Ferguson-Smith (10.1016/j.tig.2021.05.002_bb0030) 1993; 362
Berman (10.1016/j.tig.2021.05.002_bb0250) 2012; 44
Goll (10.1016/j.tig.2021.05.002_bb0630) 2005; 74
Mudbhary (10.1016/j.tig.2021.05.002_bb0550) 2014; 25
Ito (10.1016/j.tig.2021.05.002_bb0855) 2011; 333
Tsumura (10.1016/j.tig.2021.05.002_bb0070) 2006; 11
Mohandas (10.1016/j.tig.2021.05.002_bb0035) 1981; 211
Herman (10.1016/j.tig.2021.05.002_bb0120) 2003; 349
O’Hagan (10.1016/j.tig.2021.05.002_bb0280) 2008; 4
Foster (10.1016/j.tig.2021.05.002_bb0615) 2018; 72
Cliff (10.1016/j.tig.2021.05.002_bb0425) 2017; 21
Leonhardt (10.1016/j.tig.2021.05.002_bb0760) 1992; 71
Weisenberger (10.1016/j.tig.2021.05.002_bb0505) 2006; 38
Walsh (10.1016/j.tig.2021.05.002_bb0045) 1998; 20
Mulholland (10.1016/j.tig.2021.05.002_bb0420) 2020; 11
Northcott (10.1016/j.tig.2021.05.002_bb0540) 2017; 547
Magdinier (10.1016/j.tig.2021.05.002_bb0180) 2001; 98
Chuang (10.1016/j.tig.2021.05.002_bb0715) 1997; 277
Jin (10.1016/j.tig.2021.05.002_bb0290) 2014; 42
Payer (10.1016/j.tig.2021.05.002_bb0395) 2003; 13
Cunningham (10.1016/j.tig.2021.05.002_bb0150) 1998; 58
Jang (10.1016/j.tig.2021.05.002_bb0495) 2019; 51
Zhou (10.1016/j.tig.2021.05.002_bb0340) 2018; 50
Weinberg (10.1016/j.tig.2021.05.002_bb0670) 2019; 573
Skvortsova (10.1016/j.tig.2021.05.002_bb0310) 2019; 35
Qin (10.1016/j.tig.2021.05.002_bb0750) 2015; 25
Otani (10.1016/j.tig.2021.05.002_bb0685) 2009; 10
Degirmenci (10.1016/j.tig.2021.05.002_bb0430) 2018; 558
Jeong (10.1016/j.tig.2021.05.002_bb0090) 2014; 46
Carlson (10.1016/j.tig.2021.05.002_bb0885) 1992; 6
Nakamura (10.1016/j.tig.2021.05.002_bb0400) 2012; 486
Lian (10.1016/j.tig.2021.05.002_bb0305) 2012; 150
Anteneh (10.1016/j.tig.2021.05.002_bb0330) 2020; 11
Hon (10.1016/j.tig.2021.05.002_bb0355) 2014; 56
Kim (10.1016/j.tig.2021.05.002_bb0160) 2005; 104
Li (10.1016/j.tig.2021.05.002_bb0020) 1993; 366
Kizer (10.1016/j.tig.2021.05.002_bb0650) 2005; 25
Ooi (10.1016/j.tig.2021.05.002_bb0680) 2007; 448
Easwaran (10.1016/j.tig.2021.05.002_bb0725) 2004; 5
Hovestadt (10.1016/j.tig.2021.05.002_bb0525) 2020; 20
Nishiyama (10.1016/j.tig.2021.05.002_bb0605) 2020; 11
Jin (10.1016/j.tig.2021.05.002_bb0300) 2011; 71
Kong (10.1016/j.tig.2021.05.002_bb0195) 2019; 35
Siegfried (10.1016/j.tig.2021.05.002_bb0015) 1999; 22
Waitkus (10.1016/j.tig.2021.05.002_bb0365) 2018; 34
Duncan (10.1016/j.tig.2021.05.002_bb0370) 2012; 22
Russler-Germain (10.1016/j.tig.2021.05.002_bb0325) 2014; 25
Akiyama (10.1016/j.tig.2021.05.002_bb0175) 2003; 23
Ferry (10.1016/j.tig.2021.05.002_bb0570) 2017; 67
He (10.1016/j.tig.2021.05.002_bb0850) 2011; 333
Brinkman (10.1016/j.tig.2021.05.002_bb0270) 2019; 10
Syeda (10.1016/j.tig.2021.05.002_bb0770) 2011; 286
Eckert (10.1016/j.tig.2021.05.002_bb0440) 2019; 569
Ohno (10.1016/j.tig.2021.05.002_bb0810) 2013; 140
Aksoy (10.1016/j.tig.2021.05.002_bb0435) 1994; 269
Hill (10.1016/j.tig.2021.05.002_bb0800) 2014; 104
Zhang (10.1016/j.tig.2021.05.002_bb0700) 2010; 38
Yisraeli (10.1016/j.tig.2021.05.002_bb0005) 1986; 46
Babaian (10.1016/j.tig.2021.05.002_bb0480) 2016; 35
Cavalli (10.1016/j.tig.2021.05.002_bb0535) 2017; 31
Hashimoto (10.1016/j.tig.2021.05.002_bb0735) 2008; 455
Karpf (10.1016/j.tig.2021.05.002_bb0055) 2005; 65
Nishiyama (10.1016/j.tig.2021.05.002_bb0575) 2013; 502
Spada (10.1016/j.tig.2021.05.002_bb0720) 2007; 176
Herman (10.1016/j.tig.2021.05.002_bb0130) 1995; 55
Li (10.1016/j.tig.2021.05.002_bb0410) 2018; 564
Avvakumov (10.1016/j.tig.2021.05.002_bb0740) 2008; 455
Schwalbe (10.1016/j.tig.2021.05.002_bb0545) 2017; 18
Hovestadt (10.1016/j.tig.2021.05.002_bb0265) 2014; 510
O’Hagan (10.1016/j.tig.2021.05.002_bb0275) 2011; 20
Takeshita (10.1016/j.tig.2021.05.002_bb0765) 2011; 108
Li (10.1016/j.tig.2021.05.002_bb0295) 2016; 26
Shukla (10.1016/j.tig.2021.05.002_bb0455) 2013; 153
Stöger (10.1016/j.tig.2021.05.002_bb0025) 1993; 73
Lamprecht (10.1016/j.tig.2021.05.002_bb0490) 2010; 16
Toyooka (10.1016/j.tig.2021.05.002_bb0165) 2001; 61
Du (10.1016/j.tig.2021.05.002_bb0415) 2019; 294
Wu (10.1016/j.tig.2021.05.002_bb0835) 2014; 156
Arita (10.1016/j.tig.2021.05.002_bb0555) 2012; 109
Weber (10.1016/j.tig.2021.05.002_bb0865) 2016; 7
Messerschmidt (10.1016/j.tig.2021.05.002_bb0880) 2014; 28
Lister (10.1016/j.tig.2021.05.002_bb0245) 2009; 462
Tao (10.1016/j.tig.2021.05.002_bb0510) 2019; 35
Shirane (10.1016/j.tig.2021.05.002_bb0675) 2020; 52
Figueroa (10.1016/j.tig.2021.05.002_bb0375) 2010; 18
Wolf (10.1016/j.tig.2021.05.002_bb0040) 1984; 81
Grady (10.1016/j.tig.2021.05.002_bb0155) 2000; 26
Stirzaker (10.1016/j.tig.2021.05.002_bb0185) 2017; 36
Ishiyama (10.1016/j.tig.2021.05.002_bb0745) 2017; 68
Tahiliani (10.1016/j.tig.2021.05.002_bb0840) 2009; 324
Li (10.1016/j.tig.2021.05.002_bb0060) 1992; 69
Yan (10.1016/j.tig.2021.05.002_bb0390) 2021
Wagner (10.1016/j.tig.2021.05.002_bb0645) 2012; 13
Xie (10.1016/j.tig.2021.05.002_bb0095) 2013; 153
Karg (10.1016/j.tig.2021.05.002_bb0775) 2017; 429
Kurimoto (10.1016/j.tig.2021.05.002_bb0820) 2008; 22
Berdasco (10.1016/j.tig.2021.05.002_bb0225) 2010; 19
Emperle (10.1016/j.tig.2021.05.002_bb0335) 2018; 46
Zhao (10.1016/j.tig.2021.05.002_bb0215) 2020; 52
Hill (10.1016/j.tig.2021.05.002_bb0905) 2018; 555
References_xml – volume: 286
  start-page: 15344
  year: 2011
  end-page: 15351
  ident: bb0770
  article-title: The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1
  publication-title: J. Biol. Chem.
– volume: 356
  year: 2017
  ident: bb0085
  article-title: Impact of cytosine methylation on DNA binding specificities of human transcription factors
  publication-title: Science
– volume: 22
  start-page: 2339
  year: 2012
  end-page: 2355
  ident: bb0370
  article-title: A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation
  publication-title: Genome Res.
– volume: 34
  start-page: 145
  year: 2003
  end-page: 147
  ident: bb0190
  article-title: Deficiency of Mbd2 suppresses intestinal tumorigenesis
  publication-title: Nat. Genet.
– volume: 269
  start-page: 14835
  year: 1994
  end-page: 14840
  ident: bb0435
  article-title: Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 178
  year: 2009
  end-page: 186
  ident: bb0075
  article-title: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores
  publication-title: Nat. Genet.
– volume: 126
  start-page: 1190
  year: 2004
  end-page: 1193
  ident: bb0220
  article-title: IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer
  publication-title: Gastroenterology
– volume: 156
  start-page: 45
  year: 2014
  end-page: 68
  ident: bb0835
  article-title: Reversing DNA methylation: mechanisms, genomics, and biological functions
  publication-title: Cell
– volume: 5
  year: 2016
  ident: bb0600
  article-title: Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1
  publication-title: eLife
– volume: 73
  start-page: 61
  year: 1993
  end-page: 71
  ident: bb0025
  article-title: Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal
  publication-title: Cell
– volume: 116
  start-page: 16933
  year: 2019
  end-page: 16942
  ident: bb0350
  article-title: Paradoxical association of TET loss of function with genome-wide DNA hypomethylation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 492
  start-page: 443
  year: 2012
  end-page: 447
  ident: bb0830
  article-title: Tet1 controls meiosis by regulating meiotic gene expression
  publication-title: Nature
– volume: 349
  start-page: 2042
  year: 2003
  end-page: 2054
  ident: bb0120
  article-title: Gene silencing in cancer in association with promoter hypermethylation
  publication-title: N. Engl. J. Med.
– volume: 25
  start-page: 1066
  year: 2018
  end-page: 1080
  ident: bb0210
  article-title: Pan-cancer landscape of aberrant DNA methylation across human tumors
  publication-title: Cell Rep.
– volume: 26
  start-page: 16
  year: 2000
  end-page: 17
  ident: bb0155
  article-title: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer
  publication-title: Nat. Genet.
– volume: 38
  start-page: 787
  year: 2006
  end-page: 793
  ident: bb0505
  article-title: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer
  publication-title: Nat. Genet.
– volume: 176
  start-page: 565
  year: 2007
  end-page: 571
  ident: bb0720
  article-title: DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells
  publication-title: J. Cell Biol.
– volume: 24
  start-page: 2526
  year: 2004
  end-page: 2535
  ident: bb0595
  article-title: Np95 is a histone-binding protein endowed with ubiquitin ligase activity
  publication-title: Mol. Cell. Biol.
– volume: 5
  start-page: 1181
  year: 2004
  end-page: 1186
  ident: bb0725
  article-title: Replication-independent chromatin loading of Dnmt1 during G2 and M phases
  publication-title: EMBO Rep.
– volume: 13
  year: 2017
  ident: bb0890
  article-title: Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos
  publication-title: PLoS Genet.
– volume: 483
  start-page: 479
  year: 2012
  end-page: 483
  ident: bb0385
  article-title: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype
  publication-title: Nature
– volume: 450
  start-page: 908
  year: 2007
  end-page: 912
  ident: bb0580
  article-title: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA
  publication-title: Nature
– volume: 73
  start-page: 5858
  year: 2013
  end-page: 5868
  ident: bb0500
  article-title: The CpG island methylator phenotype: what’s in a name?
  publication-title: Cancer Res.
– volume: 19
  start-page: 1155
  year: 2012
  end-page: 1160
  ident: bb0565
  article-title: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 59
  start-page: 89
  year: 2015
  end-page: 103
  ident: bb0695
  article-title: Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs
  publication-title: Mol. Cell
– volume: 46
  start-page: 409
  year: 1986
  end-page: 416
  ident: bb0005
  article-title: Muscle-specific activation of a methylated chimeric actin gene
  publication-title: Cell
– volume: 20
  start-page: 606
  year: 2011
  end-page: 619
  ident: bb0275
  article-title: Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG islands
  publication-title: Cancer Cell
– volume: 455
  start-page: 818
  year: 2008
  end-page: 821
  ident: bb0730
  article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
  publication-title: Nature
– volume: 8
  year: 2016
  ident: bb0100
  article-title: Epigenetic determinants of cancer
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 58
  start-page: 3455
  year: 1998
  end-page: 3460
  ident: bb0150
  article-title: Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability
  publication-title: Cancer Res.
– volume: 18
  start-page: 45
  year: 2017
  end-page: 53
  ident: bb0360
  article-title: TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells
  publication-title: Nat. Immunol.
– volume: 124
  start-page: 81
  year: 2009
  end-page: 87
  ident: bb0460
  article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer
  publication-title: Int. J. Cancer
– volume: 129
  start-page: 1807
  year: 2002
  end-page: 1817
  ident: bb0795
  article-title: Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells
  publication-title: Development
– volume: 333
  start-page: 1300
  year: 2011
  end-page: 1303
  ident: bb0855
  article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
  publication-title: Science
– volume: 520
  start-page: 243
  year: 2015
  end-page: 247
  ident: bb0660
  article-title: Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation
  publication-title: Nature
– volume: 300
  start-page: 455
  year: 2003
  ident: bb0050
  article-title: Chromosomal instability and tumors promoted by DNA hypomethylation
  publication-title: Science
– volume: 345
  start-page: 1251343
  year: 2014
  ident: bb0465
  article-title: Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes
  publication-title: Science
– volume: 455
  start-page: 822
  year: 2008
  end-page: 825
  ident: bb0740
  article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
  publication-title: Nature
– volume: 46
  start-page: 3130
  year: 2018
  end-page: 3139
  ident: bb0335
  article-title: The DNMT3A R882H mutant displays altered flanking sequence preferences
  publication-title: Nucleic Acids Res.
– volume: 452
  start-page: 877
  year: 2008
  end-page: 881
  ident: bb0785
  article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line
  publication-title: Nature
– volume: 333
  start-page: 1303
  year: 2011
  end-page: 1307
  ident: bb0850
  article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
  publication-title: Science
– volume: 7
  start-page: 331
  year: 2014
  end-page: 338
  ident: bb0515
  article-title: Linkage of DNA methylation quantitative trait loci to human cancer risk
  publication-title: Cell Rep.
– volume: 16
  start-page: 571
  year: 2010
  end-page: 579
  ident: bb0490
  article-title: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma
  publication-title: Nat. Med.
– volume: 46
  start-page: 3218
  year: 2018
  end-page: 3231
  ident: bb0590
  article-title: Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 24
  year: 2016
  ident: bb0485
  article-title: Endogenous retroviral promoter exaptation in human cancer
  publication-title: Mob. DNA
– volume: 49
  start-page: 3020
  year: 2020
  end-page: 3032
  ident: bb0610
  article-title: Staying true to yourself: mechanisms of DNA methylation maintenance in mammals
  publication-title: Nucleic Acids Res.
– volume: 51
  start-page: 844
  year: 2019
  end-page: 856
  ident: bb0665
  article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development
  publication-title: Nat. Genet.
– volume: 277
  start-page: 1996
  year: 1997
  end-page: 2000
  ident: bb0715
  article-title: Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1
  publication-title: Science
– volume: 32
  start-page: 340
  year: 2013
  end-page: 353
  ident: bb0805
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
– volume: 27
  start-page: 404
  year: 2008
  end-page: 408
  ident: bb0235
  article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice
  publication-title: Oncogene
– volume: 61
  start-page: 4556
  year: 2001
  end-page: 4560
  ident: bb0165
  article-title: Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas
  publication-title: Cancer Res.
– volume: 35
  start-page: 2542
  year: 2016
  end-page: 2546
  ident: bb0480
  article-title: Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma
  publication-title: Oncogene
– volume: 517
  start-page: 640
  year: 2015
  end-page: 644
  ident: bb0690
  article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A
  publication-title: Nature
– volume: 324
  start-page: 930
  year: 2009
  end-page: 935
  ident: bb0840
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
– volume: 564
  start-page: 136
  year: 2018
  end-page: 140
  ident: bb0410
  article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1
  publication-title: Nature
– volume: 67
  start-page: 550
  year: 2017
  end-page: 565
  ident: bb0570
  article-title: Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation
  publication-title: Mol. Cell
– volume: 211
  start-page: 393
  year: 1981
  end-page: 396
  ident: bb0035
  article-title: Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation
  publication-title: Science
– volume: 448
  start-page: 714
  year: 2007
  end-page: 717
  ident: bb0680
  article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
  publication-title: Nature
– volume: 68
  start-page: 350
  year: 2017
  end-page: 360
  ident: bb0745
  article-title: Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance
  publication-title: Mol. Cell
– volume: 65
  start-page: 8635
  year: 2005
  end-page: 8639
  ident: bb0055
  article-title: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells
  publication-title: Cancer Res.
– volume: 286
  start-page: 35334
  year: 2011
  end-page: 35338
  ident: bb0860
  article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
  publication-title: J. Biol. Chem.
– volume: 36
  start-page: 1328
  year: 2017
  end-page: 1338
  ident: bb0185
  article-title: Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer
  publication-title: Oncogene
– volume: 317
  start-page: 1760
  year: 2007
  end-page: 1764
  ident: bb0585
  article-title: UHRF1 Plays a role in maintaining DNA methylation in mammalian cells
  publication-title: Science
– volume: 13
  start-page: R84
  year: 2012
  ident: bb0125
  article-title: Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns
  publication-title: Genome Biol.
– volume: 153
  start-page: 101
  year: 2013
  end-page: 111
  ident: bb0455
  article-title: Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma
  publication-title: Cell
– volume: 28
  start-page: 812
  year: 2014
  end-page: 828
  ident: bb0880
  article-title: DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos
  publication-title: Gene Dev.
– volume: 4
  year: 2008
  ident: bb0280
  article-title: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island
  publication-title: PLoS Genet.
– volume: 35
  start-page: 297
  year: 2019
  end-page: 314
  ident: bb0310
  article-title: DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation patterns
  publication-title: Cancer Cell
– volume: 25
  start-page: 911
  year: 2015
  end-page: 929
  ident: bb0750
  article-title: DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination
  publication-title: Cell Res.
– volume: 46
  start-page: 17
  year: 2014
  end-page: 23
  ident: bb0090
  article-title: Large conserved domains of low DNA methylation maintained by Dnmt3a
  publication-title: Nat. Genet.
– volume: 502
  start-page: 249
  year: 2013
  end-page: 253
  ident: bb0575
  article-title: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication
  publication-title: Nature
– volume: 19
  start-page: 108
  year: 2018
  ident: bb0200
  article-title: Homeobox oncogene activation by pan-cancer DNA hypermethylation
  publication-title: Genome Biol.
– volume: 455
  start-page: 826
  year: 2008
  end-page: 829
  ident: bb0735
  article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
  publication-title: Nature
– volume: 83
  start-page: 155
  year: 1989
  end-page: 158
  ident: bb0115
  article-title: Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma
  publication-title: Hum. Genet.
– volume: 19
  start-page: 18
  year: 2018
  ident: bb0105
  article-title: Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys
  publication-title: Genome Biol.
– volume: 52
  start-page: 778
  year: 2020
  end-page: 789
  ident: bb0215
  article-title: The DNA methylation landscape of advanced prostate cancer
  publication-title: Nat. Genet.
– volume: 285
  start-page: 26114
  year: 2010
  end-page: 26120
  ident: bb0640
  article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 653
  year: 2017
  end-page: 668
  ident: bb0285
  article-title: CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes
  publication-title: Cancer Cell
– volume: 46
  start-page: 9816
  year: 2018
  end-page: 9828
  ident: bb0780
  article-title: p15PAF binding to PCNA modulates the DNA sliding surface
  publication-title: Nucleic Acids Res.
– year: 2021
  ident: bb0390
  article-title: PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors
  publication-title: Cell Death Differ.
– volume: 22
  start-page: 246
  year: 2012
  end-page: 258
  ident: bb0260
  article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer
  publication-title: Genome Res.
– volume: 429
  start-page: 3814
  year: 2017
  end-page: 3824
  ident: bb0775
  article-title: Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells
  publication-title: J. Mol. Biol.
– volume: 22
  start-page: 633
  year: 2012
  end-page: 641
  ident: bb0710
  article-title: Global profiling of DNA methylation erasure in mouse primordial germ cells
  publication-title: Genome Res.
– volume: 43
  start-page: 768
  year: 2011
  end-page: 775
  ident: bb0255
  article-title: Increased methylation variation in epigenetic domains across cancer types
  publication-title: Nat. Genet.
– volume: 22
  start-page: 203
  year: 1999
  end-page: 206
  ident: bb0015
  article-title: DNA methylation represses transcription in vivo
  publication-title: Nat. Genet.
– volume: 18
  start-page: 711
  year: 2008
  ident: bb0475
  article-title: LINE- 1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer
  publication-title: Int. J. Gynecol. Cancer
– volume: 104
  start-page: 324
  year: 2014
  end-page: 333
  ident: bb0800
  article-title: DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story
  publication-title: Genomics
– volume: 1
  start-page: 686
  year: 1995
  end-page: 692
  ident: bb0135
  article-title: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers
  publication-title: Nat. Med.
– volume: 466
  start-page: 1129
  year: 2010
  end-page: 1133
  ident: bb0845
  article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
  publication-title: Nature
– volume: 13
  start-page: 115
  year: 2012
  end-page: 126
  ident: bb0645
  article-title: Understanding the language of Lys36 methylation at histone H3
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 21
  start-page: 502
  year: 2017
  end-page: 516
  ident: bb0425
  article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux
  publication-title: Cell Stem Cell
– volume: 31
  start-page: 737
  year: 2017
  end-page: 754
  ident: bb0535
  article-title: Intertumoral heterogeneity within medulloblastoma subgroups
  publication-title: Cancer Cell
– volume: 18
  start-page: 958
  year: 2017
  end-page: 971
  ident: bb0545
  article-title: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study
  publication-title: Lancet Oncol.
– volume: 81
  start-page: 2806
  year: 1984
  end-page: 2810
  ident: bb0040
  article-title: Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 8429
  year: 2003
  end-page: 8439
  ident: bb0175
  article-title: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer
  publication-title: Mol. Cell. Biol.
– volume: 129
  start-page: 879
  year: 2007
  end-page: 890
  ident: bb0170
  article-title: Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia
  publication-title: Cell
– volume: 573
  start-page: 281
  year: 2019
  end-page: 286
  ident: bb0670
  article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape
  publication-title: Nature
– volume: 48
  start-page: 849
  year: 2012
  end-page: 862
  ident: bb0815
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
– volume: 17
  start-page: 510
  year: 2010
  end-page: 522
  ident: bb0380
  article-title: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma
  publication-title: Cancer Cell
– volume: 339
  start-page: 448
  year: 2013
  end-page: 452
  ident: bb0790
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
– volume: 140
  start-page: 2892
  year: 2013
  end-page: 2903
  ident: bb0810
  article-title: A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells
  publication-title: Development
– volume: 52
  start-page: 1088
  year: 2020
  end-page: 1098
  ident: bb0675
  article-title: NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing
  publication-title: Nat. Genet.
– volume: 510
  start-page: 537
  year: 2014
  end-page: 541
  ident: bb0265
  article-title: Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing
  publication-title: Nature
– volume: 9
  start-page: 300
  year: 2013
  end-page: 306
  ident: bb0445
  article-title: NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink
  publication-title: Nat. Chem. Biol.
– volume: 26
  start-page: 745
  year: 2016
  end-page: 755
  ident: bb0470
  article-title: A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer
  publication-title: Genome Res.
– volume: 10
  start-page: 1749
  year: 2019
  ident: bb0270
  article-title: Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1730
  year: 2016
  end-page: 1741
  ident: bb0295
  article-title: Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver
  publication-title: Genome Res.
– volume: 52
  start-page: 828
  year: 2020
  end-page: 839
  ident: bb0345
  article-title: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance
  publication-title: Nat. Genet.
– volume: 555
  start-page: 469
  year: 2018
  end-page: 474
  ident: bb0530
  article-title: DNA methylation-based classification of central nervous system tumours
  publication-title: Nature
– volume: 15
  start-page: 459
  year: 2014
  end-page: 470
  ident: bb0895
  article-title: Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 10806
  year: 2016
  ident: bb0865
  article-title: Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2294
  year: 2020
  ident: bb0330
  article-title: Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation
  publication-title: Nat. Commun.
– volume: 27
  start-page: 31
  year: 2001
  end-page: 39
  ident: bb0240
  article-title: Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation
  publication-title: Nat. Genet.
– volume: 19
  start-page: 698
  year: 2010
  end-page: 711
  ident: bb0225
  article-title: Aberrant epigenetic landscape in cancer: how cellular identity goes awry
  publication-title: Dev. Cell
– volume: 7
  start-page: 11197
  year: 2016
  ident: bb0755
  article-title: Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2536
  year: 1992
  end-page: 2541
  ident: bb0885
  article-title: Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting
  publication-title: Gene Dev.
– volume: 38
  start-page: 4246
  year: 2010
  end-page: 4253
  ident: bb0700
  article-title: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 3305
  year: 2005
  end-page: 3316
  ident: bb0650
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
  publication-title: Mol. Cell. Biol.
– volume: 99
  start-page: 247
  year: 1999
  end-page: 257
  ident: bb0065
  article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
  publication-title: Cell
– volume: 44
  start-page: 40
  year: 2012
  end-page: 46
  ident: bb0250
  article-title: Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains
  publication-title: Nat. Genet.
– volume: 25
  start-page: 196
  year: 2014
  end-page: 209
  ident: bb0550
  article-title: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma
  publication-title: Cancer Cell
– volume: 13
  start-page: 484
  year: 2012
  end-page: 492
  ident: bb0110
  article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond
  publication-title: Nat. Rev. Genet.
– volume: 20
  start-page: 329
  year: 2001
  end-page: 335
  ident: bb0145
  article-title: Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia
  publication-title: Oncogene
– volume: 10
  start-page: 1235
  year: 2009
  end-page: 1241
  ident: bb0685
  article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain
  publication-title: EMBO Rep.
– volume: 69
  start-page: 915
  year: 1992
  end-page: 926
  ident: bb0060
  article-title: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
  publication-title: Cell
– volume: 71
  start-page: 865
  year: 1992
  end-page: 873
  ident: bb0760
  article-title: A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei
  publication-title: Cell
– volume: 98
  start-page: 4990
  year: 2001
  end-page: 4995
  ident: bb0180
  article-title: Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia
  publication-title: Proc. Natl. Acad. Sci.
– volume: 580
  start-page: 93
  year: 2020
  end-page: 99
  ident: bb0205
  article-title: A genomic and epigenomic atlas of prostate cancer in Asian populations
  publication-title: Nature
– volume: 71
  start-page: 7360
  year: 2011
  end-page: 7365
  ident: bb0300
  article-title: 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations
  publication-title: Cancer Res.
– volume: 366
  start-page: 362
  year: 1993
  end-page: 365
  ident: bb0020
  article-title: Role for DNA methylation in genomic imprinting
  publication-title: Nature
– volume: 294
  start-page: 8907
  year: 2019
  end-page: 8917
  ident: bb0415
  article-title: Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger–type E3 ubiquitin ligase UHRF1
  publication-title: J. Biol. Chem.
– volume: 94
  start-page: 1773
  year: 1999
  end-page: 1781
  ident: bb0140
  article-title: Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas
  publication-title: Blood
– volume: 462
  start-page: 315
  year: 2009
  ident: bb0245
  article-title: Human DNA methylomes at base resolution show widespread epigenomic differences
  publication-title: Nature
– volume: 42
  start-page: 6956
  year: 2014
  end-page: 6971
  ident: bb0290
  article-title: TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells
  publication-title: Nucleic Acids Res.
– volume: 150
  start-page: 1135
  year: 2012
  end-page: 1146
  ident: bb0305
  article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma
  publication-title: Cell
– volume: 569
  start-page: 723
  year: 2019
  end-page: 728
  ident: bb0440
  article-title: Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts
  publication-title: Nature
– volume: 504
  start-page: 460
  year: 2013
  end-page: 464
  ident: bb0825
  article-title: Role of Tet1 in erasure of genomic imprinting
  publication-title: Nature
– volume: 362
  start-page: 751
  year: 1993
  end-page: 755
  ident: bb0030
  article-title: Parental-origin-specific epigenetic modification of the mouse H19 gene
  publication-title: Nature
– volume: 25
  start-page: 1615
  year: 2019
  end-page: 1626
  ident: bb0520
  article-title: Genome-wide germline correlates of the epigenetic landscape of prostate cancer
  publication-title: Nat. Med.
– volume: 18
  start-page: 553
  year: 2010
  end-page: 567
  ident: bb0375
  article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
  publication-title: Cancer Cell
– volume: 11
  start-page: 5972
  year: 2020
  ident: bb0420
  article-title: Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals
  publication-title: Nat. Commun.
– volume: 168
  start-page: 801
  year: 2017
  end-page: 816
  ident: bb0315
  article-title: CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression
  publication-title: Cell
– volume: 13
  start-page: 335
  year: 1997
  end-page: 340
  ident: bb0450
  article-title: Cytosine methylation and the ecology of intragenomic parasites
  publication-title: Trends Genet.
– volume: 25
  start-page: 442
  year: 2014
  end-page: 454
  ident: bb0325
  article-title: The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers
  publication-title: Cancer Cell
– volume: 547
  start-page: 311
  year: 2017
  end-page: 317
  ident: bb0540
  article-title: The whole-genome landscape of medulloblastoma subtypes
  publication-title: Nature
– volume: 108
  start-page: 9055
  year: 2011
  end-page: 9059
  ident: bb0765
  article-title: Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1)
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 805
  year: 2006
  end-page: 814
  ident: bb0070
  article-title: Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b
  publication-title: Genes Cells
– volume: 12
  start-page: 470
  year: 2013
  end-page: 478
  ident: bb0875
  article-title: Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells
  publication-title: Cell Stem Cell
– volume: 34
  start-page: 186
  year: 2018
  end-page: 195
  ident: bb0365
  article-title: Biological role and therapeutic potential of IDH mutations in cancer
  publication-title: Cancer Cell
– volume: 35
  start-page: 633
  year: 2019
  end-page: 648
  ident: bb0195
  article-title: Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties
  publication-title: Cancer Cell
– volume: 153
  start-page: 1134
  year: 2013
  end-page: 1148
  ident: bb0095
  article-title: Epigenomic analysis of multilineage differentiation of human embryonic stem cells
  publication-title: Cell
– volume: 104
  start-page: 1825
  year: 2005
  end-page: 1833
  ident: bb0160
  article-title: Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma
  publication-title: Cancer
– volume: 35
  start-page: 315
  year: 2019
  end-page: 328
  ident: bb0510
  article-title: Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf V600E-induced tumorigenesis
  publication-title: Cancer Cell
– volume: 279
  start-page: 25447
  year: 2004
  end-page: 25454
  ident: bb0635
  article-title: Chromatin targeting of de novo DNA methyltransferases by the PWWP domain
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 225
  year: 2016
  end-page: 233
  ident: bb0900
  article-title: De novo DNA methylation drives 5hmC accumulation in mouse zygotes
  publication-title: Nat. Cell Biol.
– volume: 41
  start-page: 1350
  year: 2009
  end-page: 1353
  ident: bb0080
  article-title: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts
  publication-title: Nat. Genet.
– volume: 363
  start-page: 2424
  year: 2010
  end-page: 2433
  ident: bb0320
  article-title: DNMT3A mutations in acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 56
  start-page: 286
  year: 2014
  end-page: 297
  ident: bb0355
  article-title: 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation
  publication-title: Mol. Cell
– volume: 24
  start-page: 1640
  year: 2004
  end-page: 1648
  ident: bb0230
  article-title: Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing
  publication-title: Mol. Cell. Biol.
– volume: 50
  start-page: 591
  year: 2018
  ident: bb0340
  article-title: DNA methylation loss in late-replicating domains is linked to mitotic cell division
  publication-title: Nat. Genet.
– volume: 13
  start-page: 2110
  year: 2003
  end-page: 2117
  ident: bb0395
  article-title: Stella is a maternal effect gene required for normal early development in mice
  publication-title: Curr. Biol.
– volume: 20
  start-page: 42
  year: 2020
  end-page: 56
  ident: bb0525
  article-title: Medulloblastomics revisited: biological and clinical insights from thousands of patients
  publication-title: Nat. Rev. Cancer
– volume: 55
  start-page: 4525
  year: 1995
  end-page: 4530
  ident: bb0130
  article-title: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers
  publication-title: Cancer Res.
– volume: 21
  start-page: 1172
  year: 2011
  end-page: 1181
  ident: bb0705
  article-title: Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase
  publication-title: Cell Res.
– volume: 22
  start-page: 1617
  year: 2008
  end-page: 1635
  ident: bb0820
  article-title: Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice
  publication-title: Gene Dev.
– volume: 9
  start-page: 64
  year: 2007
  end-page: 71
  ident: bb0405
  article-title: PGC7/Stella protects against DNA demethylation in early embryogenesis
  publication-title: Nat. Cell Biol.
– volume: 558
  start-page: 449
  year: 2018
  end-page: 453
  ident: bb0430
  article-title: GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells
  publication-title: Nature
– volume: 11
  start-page: 1222
  year: 2020
  ident: bb0605
  article-title: Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation
  publication-title: Nat. Commun.
– volume: 19
  start-page: 219
  year: 1998
  end-page: 220
  ident: bb0625
  article-title: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases
  publication-title: Nat. Genet.
– volume: 34
  start-page: 197
  year: 1983
  end-page: 206
  ident: bb0010
  article-title: DNA methylation and the regulation of globin gene expression
  publication-title: Cell
– volume: 51
  start-page: 611
  year: 2019
  end-page: 617
  ident: bb0495
  article-title: Transposable elements drive widespread expression of oncogenes in human cancers
  publication-title: Nat. Genet.
– volume: 14
  start-page: 629
  year: 2013
  end-page: 637
  ident: bb0870
  article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation
  publication-title: EMBO Rep.
– volume: 72
  start-page: 753
  year: 2018
  end-page: 765
  ident: bb0620
  article-title: A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation
  publication-title: Mol. Cell
– volume: 72
  start-page: 739
  year: 2018
  end-page: 752
  ident: bb0615
  article-title: Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin
  publication-title: Mol. Cell
– volume: 27
  start-page: 485
  year: 2019
  end-page: 496
  ident: bb0560
  article-title: Structure of the UHRF1 tandem Tudor domain bound to a methylated non-histone protein, LIG1, reveals rules for binding and regulation
  publication-title: Structure
– volume: 74
  start-page: 481
  year: 2005
  end-page: 514
  ident: bb0630
  article-title: Eukaryotic cytosine methyltransferases
  publication-title: Annu. Rev. Biochem.
– volume: 20
  start-page: 116
  year: 1998
  end-page: 117
  ident: bb0045
  article-title: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation
  publication-title: Nat. Genet.
– volume: 486
  start-page: 415
  year: 2012
  ident: bb0400
  article-title: PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos
  publication-title: Nature
– volume: 23
  start-page: 4207
  year: 2003
  end-page: 4218
  ident: bb0655
  article-title: Methylation of histone H3 by Set2 in
  publication-title: Mol. Cell. Biol.
– volume: 109
  start-page: 12950
  year: 2012
  end-page: 12955
  ident: bb0555
  article-title: Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1
  publication-title: Proc. Natl. Acad. Sci.
– volume: 555
  start-page: 392
  year: 2018
  end-page: 396
  ident: bb0905
  article-title: Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte
  publication-title: Nature
– volume: 25
  start-page: 442
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0325
  article-title: The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.02.010
– volume: 34
  start-page: 186
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0365
  article-title: Biological role and therapeutic potential of IDH mutations in cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.04.011
– volume: 153
  start-page: 1134
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0095
  article-title: Epigenomic analysis of multilineage differentiation of human embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.022
– volume: 69
  start-page: 915
  year: 1992
  ident: 10.1016/j.tig.2021.05.002_bb0060
  article-title: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90611-F
– volume: 18
  start-page: 958
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0545
  article-title: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30243-7
– volume: 20
  start-page: 116
  year: 1998
  ident: 10.1016/j.tig.2021.05.002_bb0045
  article-title: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation
  publication-title: Nat. Genet.
  doi: 10.1038/2413
– volume: 11
  start-page: 1222
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0605
  article-title: Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15006-4
– volume: 11
  start-page: 805
  year: 2006
  ident: 10.1016/j.tig.2021.05.002_bb0070
  article-title: Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2006.00984.x
– volume: 27
  start-page: 31
  year: 2001
  ident: 10.1016/j.tig.2021.05.002_bb0240
  article-title: Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation
  publication-title: Nat. Genet.
  doi: 10.1038/83730
– volume: 32
  start-page: 340
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0805
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.331
– volume: 25
  start-page: 196
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0550
  article-title: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.01.003
– volume: 22
  start-page: 2339
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0370
  article-title: A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation
  publication-title: Genome Res.
  doi: 10.1101/gr.132738.111
– volume: 38
  start-page: 4246
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0700
  article-title: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq147
– volume: 27
  start-page: 404
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0235
  article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210631
– volume: 20
  start-page: 329
  year: 2001
  ident: 10.1016/j.tig.2021.05.002_bb0145
  article-title: Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204104
– volume: 285
  start-page: 26114
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0640
  article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.089433
– volume: 18
  start-page: 225
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0900
  article-title: De novo DNA methylation drives 5hmC accumulation in mouse zygotes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3296
– volume: 510
  start-page: 537
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0265
  article-title: Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing
  publication-title: Nature
  doi: 10.1038/nature13268
– volume: 286
  start-page: 35334
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0860
  article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.284620
– volume: 22
  start-page: 203
  year: 1999
  ident: 10.1016/j.tig.2021.05.002_bb0015
  article-title: DNA methylation represses transcription in vivo
  publication-title: Nat. Genet.
  doi: 10.1038/9727
– volume: 21
  start-page: 1172
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0705
  article-title: Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.92
– volume: 13
  start-page: R84
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0125
  article-title: Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-10-r84
– volume: 333
  start-page: 1300
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0855
  article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
  publication-title: Science
  doi: 10.1126/science.1210597
– volume: 36
  start-page: 1328
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0185
  article-title: Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2016.297
– volume: 59
  start-page: 89
  year: 2015
  ident: 10.1016/j.tig.2021.05.002_bb0695
  article-title: Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.017
– volume: 11
  start-page: 2294
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0330
  article-title: Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16213-9
– volume: 67
  start-page: 550
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0570
  article-title: Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.07.012
– volume: 300
  start-page: 455
  year: 2003
  ident: 10.1016/j.tig.2021.05.002_bb0050
  article-title: Chromosomal instability and tumors promoted by DNA hypomethylation
  publication-title: Science
  doi: 10.1126/science.1083557
– volume: 27
  start-page: 485
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0560
  article-title: Structure of the UHRF1 tandem Tudor domain bound to a methylated non-histone protein, LIG1, reveals rules for binding and regulation
  publication-title: Structure
  doi: 10.1016/j.str.2018.11.012
– volume: 83
  start-page: 155
  year: 1989
  ident: 10.1016/j.tig.2021.05.002_bb0115
  article-title: Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma
  publication-title: Hum. Genet.
  doi: 10.1007/BF00286709
– volume: 13
  start-page: 484
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0110
  article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3230
– volume: 51
  start-page: 844
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0665
  article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0398-7
– volume: 31
  start-page: 653
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0285
  article-title: CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.04.005
– volume: 12
  start-page: 470
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0875
  article-title: Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.01.016
– volume: 38
  start-page: 787
  year: 2006
  ident: 10.1016/j.tig.2021.05.002_bb0505
  article-title: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng1834
– volume: 8
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0100
  article-title: Epigenetic determinants of cancer
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a019505
– volume: 555
  start-page: 469
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0530
  article-title: DNA methylation-based classification of central nervous system tumours
  publication-title: Nature
  doi: 10.1038/nature26000
– volume: 1
  start-page: 686
  year: 1995
  ident: 10.1016/j.tig.2021.05.002_bb0135
  article-title: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers
  publication-title: Nat. Med.
  doi: 10.1038/nm0795-686
– volume: 19
  start-page: 108
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0200
  article-title: Homeobox oncogene activation by pan-cancer DNA hypermethylation
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1492-3
– volume: 48
  start-page: 849
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0815
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.001
– volume: 492
  start-page: 443
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0830
  article-title: Tet1 controls meiosis by regulating meiotic gene expression
  publication-title: Nature
  doi: 10.1038/nature11709
– volume: 13
  start-page: 335
  year: 1997
  ident: 10.1016/j.tig.2021.05.002_bb0450
  article-title: Cytosine methylation and the ecology of intragenomic parasites
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(97)01181-5
– volume: 5
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0600
  article-title: Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1
  publication-title: eLife
  doi: 10.7554/eLife.17101
– volume: 140
  start-page: 2892
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0810
  article-title: A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells
  publication-title: Development
  doi: 10.1242/dev.093229
– volume: 126
  start-page: 1190
  year: 2004
  ident: 10.1016/j.tig.2021.05.002_bb0220
  article-title: IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2004.02.026
– volume: 9
  start-page: 64
  year: 2007
  ident: 10.1016/j.tig.2021.05.002_bb0405
  article-title: PGC7/Stella protects against DNA demethylation in early embryogenesis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1519
– volume: 19
  start-page: 219
  year: 1998
  ident: 10.1016/j.tig.2021.05.002_bb0625
  article-title: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases
  publication-title: Nat. Genet.
  doi: 10.1038/890
– volume: 43
  start-page: 768
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0255
  article-title: Increased methylation variation in epigenetic domains across cancer types
  publication-title: Nat. Genet.
  doi: 10.1038/ng.865
– volume: 116
  start-page: 16933
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0350
  article-title: Paradoxical association of TET loss of function with genome-wide DNA hypomethylation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1903059116
– volume: 345
  start-page: 1251343
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0465
  article-title: Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes
  publication-title: Science
  doi: 10.1126/science.1251343
– volume: 46
  start-page: 17
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0090
  article-title: Large conserved domains of low DNA methylation maintained by Dnmt3a
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2836
– volume: 42
  start-page: 6956
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0290
  article-title: TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku372
– volume: 16
  start-page: 571
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0490
  article-title: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma
  publication-title: Nat. Med.
  doi: 10.1038/nm.2129
– volume: 25
  start-page: 911
  year: 2015
  ident: 10.1016/j.tig.2021.05.002_bb0750
  article-title: DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.72
– volume: 22
  start-page: 246
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0260
  article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer
  publication-title: Genome Res.
  doi: 10.1101/gr.125872.111
– volume: 68
  start-page: 350
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0745
  article-title: Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.09.037
– volume: 61
  start-page: 4556
  year: 2001
  ident: 10.1016/j.tig.2021.05.002_bb0165
  article-title: Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas
  publication-title: Cancer Res.
– volume: 65
  start-page: 8635
  year: 2005
  ident: 10.1016/j.tig.2021.05.002_bb0055
  article-title: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1961
– volume: 34
  start-page: 197
  year: 1983
  ident: 10.1016/j.tig.2021.05.002_bb0010
  article-title: DNA methylation and the regulation of globin gene expression
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90150-2
– volume: 520
  start-page: 243
  year: 2015
  ident: 10.1016/j.tig.2021.05.002_bb0660
  article-title: Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation
  publication-title: Nature
  doi: 10.1038/nature14176
– volume: 466
  start-page: 1129
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0845
  article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
  publication-title: Nature
  doi: 10.1038/nature09303
– volume: 35
  start-page: 315
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0510
  article-title: Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf V600E-induced tumorigenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.01.005
– volume: 31
  start-page: 737
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0535
  article-title: Intertumoral heterogeneity within medulloblastoma subgroups
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.05.005
– volume: 129
  start-page: 1807
  year: 2002
  ident: 10.1016/j.tig.2021.05.002_bb0795
  article-title: Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells
  publication-title: Development
  doi: 10.1242/dev.129.8.1807
– volume: 99
  start-page: 247
  year: 1999
  ident: 10.1016/j.tig.2021.05.002_bb0065
  article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81656-6
– volume: 46
  start-page: 3130
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0335
  article-title: The DNMT3A R882H mutant displays altered flanking sequence preferences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky168
– volume: 448
  start-page: 714
  year: 2007
  ident: 10.1016/j.tig.2021.05.002_bb0680
  article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
  publication-title: Nature
  doi: 10.1038/nature05987
– volume: 455
  start-page: 822
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0740
  article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
  publication-title: Nature
  doi: 10.1038/nature07273
– volume: 339
  start-page: 448
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0790
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
  doi: 10.1126/science.1229277
– volume: 74
  start-page: 481
  year: 2005
  ident: 10.1016/j.tig.2021.05.002_bb0630
  article-title: Eukaryotic cytosine methyltransferases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.010904.153721
– volume: 25
  start-page: 3305
  year: 2005
  ident: 10.1016/j.tig.2021.05.002_bb0650
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.8.3305-3316.2005
– volume: 35
  start-page: 297
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0310
  article-title: DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation patterns
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.01.004
– volume: 20
  start-page: 42
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0525
  article-title: Medulloblastomics revisited: biological and clinical insights from thousands of patients
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0223-8
– volume: 486
  start-page: 415
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0400
  article-title: PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos
  publication-title: Nature
  doi: 10.1038/nature11093
– volume: 324
  start-page: 930
  year: 2009
  ident: 10.1016/j.tig.2021.05.002_bb0840
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
  doi: 10.1126/science.1170116
– volume: 547
  start-page: 311
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0540
  article-title: The whole-genome landscape of medulloblastoma subtypes
  publication-title: Nature
  doi: 10.1038/nature22973
– volume: 349
  start-page: 2042
  year: 2003
  ident: 10.1016/j.tig.2021.05.002_bb0120
  article-title: Gene silencing in cancer in association with promoter hypermethylation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra023075
– volume: 269
  start-page: 14835
  year: 1994
  ident: 10.1016/j.tig.2021.05.002_bb0435
  article-title: Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)36700-5
– volume: 317
  start-page: 1760
  year: 2007
  ident: 10.1016/j.tig.2021.05.002_bb0585
  article-title: UHRF1 Plays a role in maintaining DNA methylation in mammalian cells
  publication-title: Science
  doi: 10.1126/science.1147939
– volume: 10
  start-page: 1235
  year: 2009
  ident: 10.1016/j.tig.2021.05.002_bb0685
  article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.218
– volume: 20
  start-page: 606
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0275
  article-title: Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG islands
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.09.012
– volume: 176
  start-page: 565
  year: 2007
  ident: 10.1016/j.tig.2021.05.002_bb0720
  article-title: DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200610062
– volume: 555
  start-page: 392
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0905
  article-title: Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte
  publication-title: Nature
  doi: 10.1038/nature25964
– volume: 23
  start-page: 8429
  year: 2003
  ident: 10.1016/j.tig.2021.05.002_bb0175
  article-title: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.23.8429-8439.2003
– volume: 56
  start-page: 286
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0355
  article-title: 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.026
– volume: 19
  start-page: 1155
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0565
  article-title: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2391
– volume: 52
  start-page: 778
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0215
  article-title: The DNA methylation landscape of advanced prostate cancer
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0648-8
– volume: 11
  start-page: 5972
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0420
  article-title: Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19603-1
– volume: 55
  start-page: 4525
  year: 1995
  ident: 10.1016/j.tig.2021.05.002_bb0130
  article-title: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers
  publication-title: Cancer Res.
– volume: 504
  start-page: 460
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0825
  article-title: Role of Tet1 in erasure of genomic imprinting
  publication-title: Nature
  doi: 10.1038/nature12805
– volume: 156
  start-page: 45
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0835
  article-title: Reversing DNA methylation: mechanisms, genomics, and biological functions
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.019
– volume: 24
  start-page: 2526
  year: 2004
  ident: 10.1016/j.tig.2021.05.002_bb0595
  article-title: Np95 is a histone-binding protein endowed with ubiquitin ligase activity
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.6.2526-2535.2004
– volume: 455
  start-page: 818
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0730
  article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
  publication-title: Nature
  doi: 10.1038/nature07249
– volume: 34
  start-page: 145
  year: 2003
  ident: 10.1016/j.tig.2021.05.002_bb0190
  article-title: Deficiency of Mbd2 suppresses intestinal tumorigenesis
  publication-title: Nat. Genet.
  doi: 10.1038/ng1155
– volume: 108
  start-page: 9055
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0765
  article-title: Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1)
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1019629108
– volume: 72
  start-page: 753
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0620
  article-title: A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.09.029
– volume: 52
  start-page: 1088
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0675
  article-title: NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0689-z
– volume: 17
  start-page: 510
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0380
  article-title: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.03.017
– volume: 279
  start-page: 25447
  year: 2004
  ident: 10.1016/j.tig.2021.05.002_bb0635
  article-title: Chromatin targeting of de novo DNA methyltransferases by the PWWP domain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312296200
– volume: 450
  start-page: 908
  year: 2007
  ident: 10.1016/j.tig.2021.05.002_bb0580
  article-title: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA
  publication-title: Nature
  doi: 10.1038/nature06397
– volume: 71
  start-page: 7360
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0300
  article-title: 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2023
– volume: 7
  start-page: 331
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0515
  article-title: Linkage of DNA methylation quantitative trait loci to human cancer risk
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.03.016
– volume: 28
  start-page: 812
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0880
  article-title: DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos
  publication-title: Gene Dev.
  doi: 10.1101/gad.234294.113
– volume: 21
  start-page: 502
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0425
  article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.08.018
– volume: 564
  start-page: 136
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0410
  article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1
  publication-title: Nature
  doi: 10.1038/s41586-018-0751-5
– volume: 104
  start-page: 324
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0800
  article-title: DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2014.08.012
– volume: 58
  start-page: 3455
  year: 1998
  ident: 10.1016/j.tig.2021.05.002_bb0150
  article-title: Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability
  publication-title: Cancer Res.
– volume: 73
  start-page: 5858
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0500
  article-title: The CpG island methylator phenotype: what’s in a name?
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4306
– volume: 46
  start-page: 3218
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0590
  article-title: Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky104
– volume: 18
  start-page: 45
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0360
  article-title: TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3630
– volume: 211
  start-page: 393
  year: 1981
  ident: 10.1016/j.tig.2021.05.002_bb0035
  article-title: Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation
  publication-title: Science
  doi: 10.1126/science.6164095
– volume: 35
  start-page: 633
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0195
  article-title: Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.03.003
– volume: 15
  start-page: 459
  year: 2014
  ident: 10.1016/j.tig.2021.05.002_bb0895
  article-title: Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.09.002
– volume: 502
  start-page: 249
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0575
  article-title: Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication
  publication-title: Nature
  doi: 10.1038/nature12488
– volume: 71
  start-page: 865
  year: 1992
  ident: 10.1016/j.tig.2021.05.002_bb0760
  article-title: A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90561-P
– volume: 98
  start-page: 4990
  year: 2001
  ident: 10.1016/j.tig.2021.05.002_bb0180
  article-title: Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.101617298
– volume: 13
  start-page: 2110
  year: 2003
  ident: 10.1016/j.tig.2021.05.002_bb0395
  article-title: Stella is a maternal effect gene required for normal early development in mice
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.11.026
– volume: 5
  start-page: 1181
  year: 2004
  ident: 10.1016/j.tig.2021.05.002_bb0725
  article-title: Replication-independent chromatin loading of Dnmt1 during G2 and M phases
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400295
– volume: 35
  start-page: 2542
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0480
  article-title: Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma
  publication-title: Oncogene
  doi: 10.1038/onc.2015.308
– volume: 73
  start-page: 61
  year: 1993
  ident: 10.1016/j.tig.2021.05.002_bb0025
  article-title: Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90160-R
– volume: 580
  start-page: 93
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0205
  article-title: A genomic and epigenomic atlas of prostate cancer in Asian populations
  publication-title: Nature
  doi: 10.1038/s41586-020-2135-x
– volume: 356
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0085
  article-title: Impact of cytosine methylation on DNA binding specificities of human transcription factors
  publication-title: Science
  doi: 10.1126/science.aaj2239
– volume: 569
  start-page: 723
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0440
  article-title: Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts
  publication-title: Nature
  doi: 10.1038/s41586-019-1173-8
– volume: 13
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0890
  article-title: Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007042
– volume: 104
  start-page: 1825
  year: 2005
  ident: 10.1016/j.tig.2021.05.002_bb0160
  article-title: Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma
  publication-title: Cancer
  doi: 10.1002/cncr.21409
– volume: 18
  start-page: 711
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0475
  article-title: LINE- 1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1111/j.1525-1438.2007.01117.x
– volume: 462
  start-page: 315
  year: 2009
  ident: 10.1016/j.tig.2021.05.002_bb0245
  article-title: Human DNA methylomes at base resolution show widespread epigenomic differences
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 573
  start-page: 281
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0670
  article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape
  publication-title: Nature
  doi: 10.1038/s41586-019-1534-3
– volume: 429
  start-page: 3814
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0775
  article-title: Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.10.014
– volume: 294
  start-page: 8907
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0415
  article-title: Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger–type E3 ubiquitin ligase UHRF1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.008008
– volume: 517
  start-page: 640
  year: 2015
  ident: 10.1016/j.tig.2021.05.002_bb0690
  article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A
  publication-title: Nature
  doi: 10.1038/nature13899
– volume: 22
  start-page: 1617
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0820
  article-title: Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice
  publication-title: Gene Dev.
  doi: 10.1101/gad.1649908
– volume: 7
  start-page: 11197
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0755
  article-title: Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11197
– volume: 129
  start-page: 879
  year: 2007
  ident: 10.1016/j.tig.2021.05.002_bb0170
  article-title: Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia
  publication-title: Cell
  doi: 10.1016/j.cell.2007.03.043
– volume: 153
  start-page: 101
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0455
  article-title: Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.032
– volume: 452
  start-page: 877
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0785
  article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line
  publication-title: Nature
  doi: 10.1038/nature06714
– volume: 19
  start-page: 18
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0105
  article-title: Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1390-8
– volume: 7
  start-page: 24
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0485
  article-title: Endogenous retroviral promoter exaptation in human cancer
  publication-title: Mob. DNA
  doi: 10.1186/s13100-016-0080-x
– volume: 72
  start-page: 739
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0615
  article-title: Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.09.028
– volume: 50
  start-page: 591
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0340
  article-title: DNA methylation loss in late-replicating domains is linked to mitotic cell division
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0073-4
– volume: 277
  start-page: 1996
  year: 1997
  ident: 10.1016/j.tig.2021.05.002_bb0715
  article-title: Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1
  publication-title: Science
  doi: 10.1126/science.277.5334.1996
– volume: 4
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0280
  article-title: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island
  publication-title: PLoS Genet.
– volume: 150
  start-page: 1135
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0305
  article-title: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.033
– volume: 18
  start-page: 553
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0375
  article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.11.015
– volume: 81
  start-page: 2806
  year: 1984
  ident: 10.1016/j.tig.2021.05.002_bb0040
  article-title: Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.81.9.2806
– volume: 483
  start-page: 479
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0385
  article-title: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype
  publication-title: Nature
  doi: 10.1038/nature10866
– volume: 7
  start-page: 10806
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0865
  article-title: Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10806
– volume: 10
  start-page: 1749
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0270
  article-title: Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09828-0
– volume: 363
  start-page: 2424
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0320
  article-title: DNMT3A mutations in acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1005143
– volume: 9
  start-page: 300
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0445
  article-title: NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1204
– volume: 25
  start-page: 1615
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0520
  article-title: Genome-wide germline correlates of the epigenetic landscape of prostate cancer
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0579-z
– volume: 286
  start-page: 15344
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0770
  article-title: The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.209882
– volume: 124
  start-page: 81
  year: 2009
  ident: 10.1016/j.tig.2021.05.002_bb0460
  article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.23849
– volume: 6
  start-page: 2536
  year: 1992
  ident: 10.1016/j.tig.2021.05.002_bb0885
  article-title: Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting
  publication-title: Gene Dev.
  doi: 10.1101/gad.6.12b.2536
– volume: 44
  start-page: 40
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0250
  article-title: Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains
  publication-title: Nat. Genet.
  doi: 10.1038/ng.969
– volume: 23
  start-page: 4207
  year: 2003
  ident: 10.1016/j.tig.2021.05.002_bb0655
  article-title: Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.12.4207-4218.2003
– volume: 26
  start-page: 16
  year: 2000
  ident: 10.1016/j.tig.2021.05.002_bb0155
  article-title: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer
  publication-title: Nat. Genet.
  doi: 10.1038/79120
– volume: 94
  start-page: 1773
  year: 1999
  ident: 10.1016/j.tig.2021.05.002_bb0140
  article-title: Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas
  publication-title: Blood
  doi: 10.1182/blood.V94.5.1773
– volume: 22
  start-page: 633
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0710
  article-title: Global profiling of DNA methylation erasure in mouse primordial germ cells
  publication-title: Genome Res.
  doi: 10.1101/gr.130997.111
– volume: 46
  start-page: 409
  year: 1986
  ident: 10.1016/j.tig.2021.05.002_bb0005
  article-title: Muscle-specific activation of a methylated chimeric actin gene
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90661-6
– volume: 366
  start-page: 362
  year: 1993
  ident: 10.1016/j.tig.2021.05.002_bb0020
  article-title: Role for DNA methylation in genomic imprinting
  publication-title: Nature
  doi: 10.1038/366362a0
– volume: 41
  start-page: 178
  year: 2009
  ident: 10.1016/j.tig.2021.05.002_bb0075
  article-title: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores
  publication-title: Nat. Genet.
  doi: 10.1038/ng.298
– volume: 41
  start-page: 1350
  year: 2009
  ident: 10.1016/j.tig.2021.05.002_bb0080
  article-title: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts
  publication-title: Nat. Genet.
  doi: 10.1038/ng.471
– volume: 46
  start-page: 9816
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0780
  article-title: p15PAF binding to PCNA modulates the DNA sliding surface
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky723
– volume: 109
  start-page: 12950
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0555
  article-title: Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1203701109
– volume: 333
  start-page: 1303
  year: 2011
  ident: 10.1016/j.tig.2021.05.002_bb0850
  article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
  publication-title: Science
  doi: 10.1126/science.1210944
– volume: 49
  start-page: 3020
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0610
  article-title: Staying true to yourself: mechanisms of DNA methylation maintenance in mammals
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1154
– volume: 25
  start-page: 1066
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0210
  article-title: Pan-cancer landscape of aberrant DNA methylation across human tumors
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.09.082
– volume: 168
  start-page: 801
  year: 2017
  ident: 10.1016/j.tig.2021.05.002_bb0315
  article-title: CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.021
– volume: 14
  start-page: 629
  year: 2013
  ident: 10.1016/j.tig.2021.05.002_bb0870
  article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.67
– volume: 558
  start-page: 449
  year: 2018
  ident: 10.1016/j.tig.2021.05.002_bb0430
  article-title: GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0190-3
– volume: 26
  start-page: 1730
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0295
  article-title: Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver
  publication-title: Genome Res.
  doi: 10.1101/gr.211854.116
– volume: 52
  start-page: 828
  year: 2020
  ident: 10.1016/j.tig.2021.05.002_bb0345
  article-title: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0661-y
– volume: 51
  start-page: 611
  year: 2019
  ident: 10.1016/j.tig.2021.05.002_bb0495
  article-title: Transposable elements drive widespread expression of oncogenes in human cancers
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0373-3
– volume: 19
  start-page: 698
  year: 2010
  ident: 10.1016/j.tig.2021.05.002_bb0225
  article-title: Aberrant epigenetic landscape in cancer: how cellular identity goes awry
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.10.005
– volume: 362
  start-page: 751
  year: 1993
  ident: 10.1016/j.tig.2021.05.002_bb0030
  article-title: Parental-origin-specific epigenetic modification of the mouse H19 gene
  publication-title: Nature
  doi: 10.1038/362751a0
– volume: 24
  start-page: 1640
  year: 2004
  ident: 10.1016/j.tig.2021.05.002_bb0230
  article-title: Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.4.1640-1648.2004
– volume: 26
  start-page: 745
  year: 2016
  ident: 10.1016/j.tig.2021.05.002_bb0470
  article-title: A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer
  publication-title: Genome Res.
  doi: 10.1101/gr.201814.115
– volume: 13
  start-page: 115
  year: 2012
  ident: 10.1016/j.tig.2021.05.002_bb0645
  article-title: Understanding the language of Lys36 methylation at histone H3
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3274
– year: 2021
  ident: 10.1016/j.tig.2021.05.002_bb0390
  article-title: PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors
  publication-title: Cell Death Differ.
– volume: 455
  start-page: 826
  year: 2008
  ident: 10.1016/j.tig.2021.05.002_bb0735
  article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
  publication-title: Nature
  doi: 10.1038/nature07280
SSID ssj0005735
Score 2.724962
SecondaryResourceType review_article
Snippet DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1012
SubjectTerms cancer
CpG Islands - genetics
DNA methylation
DNA Methylation - genetics
DNA methyltransferase
Genome-Wide Association Study
histone modification
Humans
Neoplasms - genetics
Neoplasms - metabolism
Title Navigating the DNA methylation landscape of cancer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016895252100130X
https://dx.doi.org/10.1016/j.tig.2021.05.002
https://www.ncbi.nlm.nih.gov/pubmed/34120771
https://www.proquest.com/docview/2540726312
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DUbyIzq_5MSp4ErqladMkxzEdU1kvOtgtpE07JtKN2Qm7-Lf70o8xQScIvbS8R8NL8t4veV8I3fg45CQ2N_eaUdtLfGwLN-J2RGmEmYp9j5t850Hg94fe44iOaqhb5cKYsMpS9xc6PdfW5Zd2Kc32bDJpPwNY4YISsD-5-21kMtg9ZlZ563MtzIMVTTaB2DbUlWczj_HKJmM4IhKntXaz8oNt-g175jaod4D2S_BodYrxHaJanNbRTtFOcllHu4PSUX6ESKA-8uIZ6dgCiGfdBR3LNIteFqFvVp7ha2KfrGliRWbm58do2Lt_6fbtsj0CCNIhma3h6Cc87AoAMQnAClco0BZcKAyPS0NCteIJi5jGCQAzxZSiEdE-HJC0EInjnqCtdJrGZ8iKeRiCJdeawPbUjqeow0Ow7dqnrqn41UC4EoyMytrhpoXFm6yCxF4lyFIaWUpMJciygW5XLLOicMYmYlJJW1YZoaDDJKj1TUzeiunbkvmL7bqaTglbyfhHVBpPF--SmGKExHcdoDkt5nk1dDD2BDPmnP_vpxdoz7wVSYyXaCubL-IrQDNZ2MyXaxNtdx6e-sEXH0vtzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba8IwFD44ZZeXsbmbu3awp0Fnmja9PIqb6NS-TMG3kDatOEYVpwP__U56cRvsAoM-tTk0fEnO-ZKcC8CNTQKXRurkXjpMt2Kb6J4ZunrIWEgcEdmWq-Kd-77dHlqPIzYqQbOIhVFulbnuz3R6qq3zN_UczfpsMqk_IVlxPUbR_qTXb6MNqKjsVKwMlUan2_Y_PD2crM4mtteVQHG5mbp5LSZj3CVS4-7T4co35ukn-pmaodYe7Ob8UWtkXdyHUpRUYTOrKLmqwlY_vys_AOqLtzR_RjLWkOVp935DU_WiV5n3m5YG-Sr3J20aa6Ea_PkhDFsPg2ZbzyskIJYGXegSd3-eRUwPeUyMzML0BCoM1xMEH5MFlEnhxk7oSBIjNxOOECyk0sY9kvS82DCPoJxMk-gEtMgNAjTmUlJcodKwBDPcAM27tJmpYK0BKYDhYZ4-XFWxeOGFn9gzRyy5wpITxhHLGtyuRWZZ7ozfGtMCbV4EhaIa46jZfxOy1kJfZs1fYtfFcHJcTeqKRCTRdPnKqcpHSG3TwDbH2Tivu472nhLHMU7_99Mr2G4P-j3e6_jdM9hRX7KYxnMoL-bL6ALJzSK4zCfvO1b48IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigating+the+DNA+methylation+landscape+of+cancer&rft.jtitle=Trends+in+genetics&rft.au=Nishiyama%2C+Atsuya&rft.au=Nakanishi%2C+Makoto&rft.date=2021-11-01&rft.issn=0168-9525&rft.volume=37&rft.issue=11&rft.spage=1012&rft_id=info:doi/10.1016%2Fj.tig.2021.05.002&rft_id=info%3Apmid%2F34120771&rft.externalDocID=34120771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon