Role of nitric oxide in the regulation of digital pulse volume amplitude in humans
Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts Submitted 6 October 2005 ; accepted in final form 11 April 2006 Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a c...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 101; no. 2; pp. 545 - 548 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Am Physiological Soc
01.08.2006
American Physiological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
Submitted 6 October 2005
; accepted in final form 11 April 2006
Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N G -nitro- L -arginine methyl ester ( L -NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L -NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (5 ± 2%), baseline PVA was unchanged by L -NAME infusion (10 ± 2%), but it decreased significantly with phenylephrine (50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by L -NAME administration (46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans.
endothelium; vasodilation; reactive hyperemia
Address for reprint requests and other correspondence: A. Nohria, Cardiovascular Div., Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115 (e-mail: anohria{at}partners.org ) |
---|---|
AbstractList | Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N
G
-nitro-l-arginine methyl ester (l-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of l-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (−5 ± 2%), baseline PVA was unchanged by l-NAME infusion (−10 ± 2%), but it decreased significantly with phenylephrine (−50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by l-NAME administration (−46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N^sup G^-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 ± 2%), baseline PVA was unchanged by L-NAME infusion (-10 ± 2%), but it decreased significantly with phenylephrine (-50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. [PUBLICATION ABSTRACT] Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 +/- 2%), baseline PVA was unchanged by L-NAME infusion (-10 +/- 2%), but it decreased significantly with phenylephrine (-50 +/- 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 +/- 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 +/- 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 +/- 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans.Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 +/- 2%), baseline PVA was unchanged by L-NAME infusion (-10 +/- 2%), but it decreased significantly with phenylephrine (-50 +/- 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 +/- 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 +/- 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 +/- 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts Submitted 6 October 2005 ; accepted in final form 11 April 2006 Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N G -nitro- L -arginine methyl ester ( L -NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L -NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (5 ± 2%), baseline PVA was unchanged by L -NAME infusion (10 ± 2%), but it decreased significantly with phenylephrine (50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by L -NAME administration (46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. endothelium; vasodilation; reactive hyperemia Address for reprint requests and other correspondence: A. Nohria, Cardiovascular Div., Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115 (e-mail: anohria{at}partners.org ) Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 +/- 2%), baseline PVA was unchanged by L-NAME infusion (-10 +/- 2%), but it decreased significantly with phenylephrine (-50 +/- 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 +/- 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 +/- 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 +/- 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. |
Author | Gerhard-Herman, Marie Hurley, Shauna Mitra, Debi Creager, Mark A Ganz, Peter Nohria, Anju |
Author_xml | – sequence: 1 fullname: Nohria, Anju – sequence: 2 fullname: Gerhard-Herman, Marie – sequence: 3 fullname: Creager, Mark A – sequence: 4 fullname: Hurley, Shauna – sequence: 5 fullname: Mitra, Debi – sequence: 6 fullname: Ganz, Peter |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17976665$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16614356$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFr1TAYhoNM3Nn0L2gRHN70mKRJ2l54IWNTYTAY8zqk6dfTHNKmJo3u_HtTz9mUwdjVR8jzfAnve4KORjcCQu8IXhPC6aetmiY79btgnF1jQiu-phjzF2iVbmlOBCZHaFWVHOclr8pjdBLCFmPCGCev0DERgrCCixW6uXEWMtdlo5m90Zm7My1kZszmHjIPm2jVbNy4EK3ZmFnZbIo2QPbL2ThApobJmjnunT4Oagyv0ctOJeTNYZ6iH5cXt-ff8qvrr9_Pv1zlmhM65xo45zWhuIFGt7yEpm3S0CXuaK11A7quFFOl6ljbCVyJoi7aNh07wgQQUZyis_3eybufEcIsBxM0WKtGcDFIUQnGKKsS-P4RuHXRj-lvklKasqKkTtDbAxSbAVo5eTMov5P3USXgwwFQQSvbeTVqE_5xZV0KIXjiPu857V0IHjqpU2xLiLNXxkqC5VKh_L9C-bdCuVSY_PKR__DEs-bHvdmbTf_beJAHyG12i5QWEEklZwvKnkYvo7W3cDcvzoMip7Yr_gAh5MdB |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1507_endocrj_EJ11_0030 crossref_primary_10_1007_s10286_021_00772_y crossref_primary_10_1186_1475_2840_13_99 crossref_primary_10_1093_cvr_cvab087 crossref_primary_10_1093_cvr_cvz096 crossref_primary_10_1155_2016_3805380 crossref_primary_10_1017_S0007114516002348 crossref_primary_10_3389_fphys_2020_00840 crossref_primary_10_3390_nu12072053 crossref_primary_10_1164_rccm_200704_632OC crossref_primary_10_1016_j_nutres_2012_06_011 crossref_primary_10_1016_j_trsl_2010_12_002 crossref_primary_10_3109_13697130902943287 crossref_primary_10_3389_fneur_2017_00178 crossref_primary_10_1016_j_amjcard_2015_07_073 crossref_primary_10_1586_17512433_2013_841077 crossref_primary_10_1042_CS20110284 crossref_primary_10_1164_rccm_201405_0850OC crossref_primary_10_3389_fendo_2018_00094 crossref_primary_10_1177_1358863X09349523 crossref_primary_10_1109_TIM_2011_2159416 crossref_primary_10_1186_s12933_015_0276_2 crossref_primary_10_3233_THC_202281 crossref_primary_10_5339_gcsp_2014_43 crossref_primary_10_1016_j_jvs_2013_05_029 crossref_primary_10_1017_S1047951114001024 crossref_primary_10_1016_j_amjcard_2014_12_011 crossref_primary_10_1016_j_rec_2015_12_020 crossref_primary_10_1177_1358863X12468194 crossref_primary_10_1177_2399369320911657 crossref_primary_10_1155_2013_394934 crossref_primary_10_1016_j_ijcha_2020_100584 crossref_primary_10_1097_JIM_0000000000000096 crossref_primary_10_1097_MPH_0000000000000122 crossref_primary_10_1016_j_metabol_2013_11_005 crossref_primary_10_12659_MSM_893531 crossref_primary_10_1016_j_arteri_2013_11_004 crossref_primary_10_1088_0967_3334_31_6_003 crossref_primary_10_1177_1358863X241288139 crossref_primary_10_1016_j_pharmthera_2014_06_003 crossref_primary_10_1186_1687_9856_2013_18 crossref_primary_10_2174_1573397115666181126105318 crossref_primary_10_3233_CH_151956 crossref_primary_10_3390_nu9080908 crossref_primary_10_3945_ajcn_110_006155 crossref_primary_10_1177_1479164113482593 crossref_primary_10_1017_S0007114515002950 crossref_primary_10_1016_j_ijcard_2017_06_038 crossref_primary_10_1016_j_pcad_2014_11_005 crossref_primary_10_1016_j_amjcard_2011_03_064 crossref_primary_10_1016_j_niox_2014_07_003 crossref_primary_10_1007_s40292_014_0047_2 crossref_primary_10_1161_CIRCULATIONAHA_107_748574 crossref_primary_10_1016_j_artres_2017_12_001 crossref_primary_10_1016_j_atherosclerosis_2017_03_012 crossref_primary_10_1016_j_ijcard_2011_07_076 crossref_primary_10_1093_nutrit_nuu013 crossref_primary_10_1088_0967_3334_36_7_1551 crossref_primary_10_4061_2011_164832 crossref_primary_10_1016_j_atherosclerosis_2014_02_004 crossref_primary_10_1016_j_atherosclerosis_2010_11_040 crossref_primary_10_1093_infdis_jiw427 crossref_primary_10_1111_j_1751_7176_2011_00569_x crossref_primary_10_1136_bmjopen_2013_004399 crossref_primary_10_1007_s00392_011_0287_2 crossref_primary_10_1016_j_jacc_2009_10_074 crossref_primary_10_1097_MCA_0000000000001352 crossref_primary_10_1097_MD_0000000000001403 crossref_primary_10_1161_CIRCIMAGING_110_961557 crossref_primary_10_1161_STROKEAHA_114_005937 crossref_primary_10_1536_ihj_15_493 crossref_primary_10_1536_ihj_54_59 crossref_primary_10_1016_j_jpeds_2020_06_023 crossref_primary_10_1093_eurheartj_ehu163 crossref_primary_10_1155_2013_645702 crossref_primary_10_1519_JSC_0000000000002769 crossref_primary_10_1016_j_amjcard_2011_10_023 crossref_primary_10_1371_journal_pone_0009257 crossref_primary_10_1007_s12265_013_9513_9 crossref_primary_10_1111_j_1440_1681_2011_05647_x crossref_primary_10_1152_japplphysiol_90431_2008 crossref_primary_10_1186_s12933_017_0521_y crossref_primary_10_1371_journal_pone_0069587 crossref_primary_10_1371_journal_ppat_1000868 crossref_primary_10_1136_bjophthalmol_2014_306075 crossref_primary_10_1038_hr_2012_138 crossref_primary_10_1002_jbmr_1761 crossref_primary_10_1371_journal_pone_0233484 crossref_primary_10_1093_bja_aew410 crossref_primary_10_1002_clc_20854 crossref_primary_10_1007_s10384_017_0515_z crossref_primary_10_3390_jcm9082487 crossref_primary_10_1007_s00421_013_2735_3 crossref_primary_10_3390_life11020128 crossref_primary_10_1016_j_atherosclerosis_2017_03_039 crossref_primary_10_3389_fmed_2022_935977 crossref_primary_10_1016_j_ijcha_2019_100385 crossref_primary_10_1007_s13167_017_0099_1 crossref_primary_10_1016_j_clnu_2020_10_012 crossref_primary_10_1016_j_ejvs_2012_12_002 crossref_primary_10_1016_j_tcm_2009_03_001 crossref_primary_10_1136_bmjopen_2016_012091 crossref_primary_10_3390_biomedicines9070781 crossref_primary_10_1136_bmjdrc_2020_001321 crossref_primary_10_1186_s12931_016_0488_3 crossref_primary_10_1371_journal_pone_0076457 crossref_primary_10_1016_j_ijcard_2012_04_113 crossref_primary_10_1111_ijcp_13296 crossref_primary_10_1183_23120541_00037_2017 crossref_primary_10_4244_EIJV10I7A137 crossref_primary_10_1186_s40814_024_01569_2 crossref_primary_10_3389_fphys_2014_00459 crossref_primary_10_3390_cells12060911 crossref_primary_10_1152_ajpheart_00256_2023 crossref_primary_10_3390_ijerph19159340 crossref_primary_10_1016_j_mvr_2020_104008 crossref_primary_10_1164_rccm_201609_1817OC crossref_primary_10_1016_j_physa_2013_03_033 crossref_primary_10_1111_joim_20005 crossref_primary_10_1111_micc_12268 crossref_primary_10_4061_2011_870132 crossref_primary_10_1093_eurheartj_ehq010 crossref_primary_10_1016_j_artres_2011_03_001 crossref_primary_10_1177_1741826711398179 crossref_primary_10_1016_j_jcmg_2016_02_005 crossref_primary_10_1109_JBHI_2016_2515938 crossref_primary_10_1186_s12871_020_00977_0 crossref_primary_10_1177_1479164114525971 crossref_primary_10_1016_j_rec_2011_10_004 crossref_primary_10_1371_journal_pone_0006733 crossref_primary_10_1016_j_crvasa_2017_07_006 crossref_primary_10_1161_HYPERTENSIONAHA_121_17954 crossref_primary_10_1177_0961203308096663 crossref_primary_10_1536_ihj_17_143 crossref_primary_10_1186_s12989_014_0070_4 crossref_primary_10_1136_bmjopen_2017_020525 crossref_primary_10_1007_s00380_015_0713_x crossref_primary_10_1016_j_jpeds_2012_04_033 crossref_primary_10_1161_CIRCULATIONAHA_108_775155 crossref_primary_10_1111_ncn3_12000 crossref_primary_10_1016_j_jpeds_2009_04_060 crossref_primary_10_1016_j_ijcard_2013_07_236 crossref_primary_10_1177_1358863X11433188 crossref_primary_10_1007_s12471_011_0202_5 crossref_primary_10_3390_jcm12175512 crossref_primary_10_1016_j_atherosclerosis_2011_01_039 crossref_primary_10_1016_j_jcmg_2016_02_015 crossref_primary_10_1007_s40279_019_01146_1 crossref_primary_10_1016_j_phrs_2017_01_011 crossref_primary_10_1136_bmjopen_2023_073357 crossref_primary_10_1093_ofid_ofw027 crossref_primary_10_1159_000540200 crossref_primary_10_1111_j_1549_8719_2011_00129_x crossref_primary_10_1080_21548331_2020_1752506 crossref_primary_10_1111_j_1365_2362_2011_02553_x crossref_primary_10_1161_JAHA_114_001279 crossref_primary_10_1161_CIRCULATIONAHA_106_652859 crossref_primary_10_1039_C9FO01844A crossref_primary_10_1093_aje_kwu161 crossref_primary_10_3851_IMP3257 crossref_primary_10_1007_s00592_018_1204_1 crossref_primary_10_1093_cvr_cvaa085 crossref_primary_10_1371_journal_pone_0235463 crossref_primary_10_4028_www_scientific_net_JBBBE_54_41 crossref_primary_10_1097_MCA_0b013e32832a198b crossref_primary_10_2310_JIM_0b013e318292fc7d crossref_primary_10_1038_s41440_022_01141_6 crossref_primary_10_1007_s00395_012_0311_3 crossref_primary_10_1161_JAHA_119_012509 crossref_primary_10_1186_1471_2261_13_83 crossref_primary_10_1177_2047487312460516 crossref_primary_10_1155_2013_174782 crossref_primary_10_1016_j_cjca_2019_12_003 crossref_primary_10_1002_pri_1820 crossref_primary_10_1016_j_ijcard_2018_08_068 crossref_primary_10_1186_1475_2840_12_92 crossref_primary_10_1536_ihj_15_322 crossref_primary_10_1097_PSY_0b013e3182228644 crossref_primary_10_1111_eci_12341 crossref_primary_10_1017_S1047951115000657 crossref_primary_10_1378_chest_10_2531 crossref_primary_10_5551_jat_14340 crossref_primary_10_1161_JAHA_123_032698 crossref_primary_10_1016_j_clnu_2022_03_014 crossref_primary_10_1038_ijir_2008_13 crossref_primary_10_1186_1475_2840_11_79 crossref_primary_10_1186_cc11223 crossref_primary_10_1016_j_jand_2019_03_016 crossref_primary_10_1155_2013_370461 crossref_primary_10_3389_fcvm_2024_1411424 crossref_primary_10_30548_vascfail_2_1_53 crossref_primary_10_1016_j_ijcard_2015_03_118 crossref_primary_10_1159_000347122 crossref_primary_10_5551_jat_13243 crossref_primary_10_1017_S1047951112001357 crossref_primary_10_1177_1358863X17706752 crossref_primary_10_1177_2047487319884246 crossref_primary_10_1016_j_bbrc_2017_09_028 crossref_primary_10_1186_s12933_020_01062_z crossref_primary_10_1253_circj_CJ_15_0068 crossref_primary_10_1007_s10545_013_9642_y crossref_primary_10_24884_1682_6655_2018_17_3_5_22 crossref_primary_10_1016_j_ijcard_2009_03_075 crossref_primary_10_1016_j_jmv_2013_11_004 crossref_primary_10_1186_1475_2840_11_64 crossref_primary_10_5500_wjt_v15_i1_97458 crossref_primary_10_1007_s13167_022_00280_7 crossref_primary_10_1016_j_jash_2017_04_008 crossref_primary_10_1016_j_mvr_2021_104223 crossref_primary_10_1016_j_mvr_2020_104040 crossref_primary_10_1590_S1980_65742016000100001 crossref_primary_10_1161_CIRCULATIONAHA_112_093245 crossref_primary_10_1161_HYPERTENSIONAHA_112_191874 crossref_primary_10_1093_jn_nxaa252 crossref_primary_10_1016_j_atherosclerosis_2020_09_022 crossref_primary_10_1128_AAC_01479_15 crossref_primary_10_1007_s00421_016_3328_8 crossref_primary_10_5551_jat_19497 crossref_primary_10_1007_s00421_012_2542_2 crossref_primary_10_1111_pedi_12139 crossref_primary_10_1210_jc_2008_1829 crossref_primary_10_1016_j_mvr_2020_104038 crossref_primary_10_1007_s00125_011_2415_y crossref_primary_10_1084_jem_20070819 crossref_primary_10_1152_japplphysiol_00414_2010 crossref_primary_10_1080_21551197_2012_702541 crossref_primary_10_1536_ihj_15_094 crossref_primary_10_5402_2011_696124 crossref_primary_10_1093_eurheartj_eht351 crossref_primary_10_1155_2013_383624 crossref_primary_10_1161_JAHA_113_000426 crossref_primary_10_1115_1_4030112 crossref_primary_10_1177_0333102412444014 crossref_primary_10_1111_aas_12426 crossref_primary_10_1016_j_ijcard_2016_12_110 crossref_primary_10_1093_eurheartj_ehaa857 crossref_primary_10_18632_oncotarget_27118 crossref_primary_10_1007_s11883_014_0417_1 crossref_primary_10_1007_s13668_016_0149_7 crossref_primary_10_1016_j_jjcc_2015_03_010 crossref_primary_10_1016_j_jcte_2024_100351 crossref_primary_10_1038_ajh_2012_8 crossref_primary_10_21886_2308_6424_2020_8_2_78_92 crossref_primary_10_1007_s00417_022_05596_8 crossref_primary_10_1016_j_smrv_2021_101566 crossref_primary_10_1007_s00431_013_1988_5 crossref_primary_10_1016_j_jacc_2011_11_082 crossref_primary_10_1016_j_jacasi_2024_09_015 crossref_primary_10_1186_1743_8977_5_13 crossref_primary_10_1111_cpf_12570 crossref_primary_10_1161_ATVBAHA_121_316083 crossref_primary_10_1177_1358863X13480551 crossref_primary_10_1371_journal_pone_0017260 crossref_primary_10_3390_ijerph18063230 crossref_primary_10_1161_HYPERTENSIONAHA_118_11554 crossref_primary_10_1038_s41371_020_00440_0 crossref_primary_10_1161_HYPERTENSIONAHA_110_160812 crossref_primary_10_1016_j_atherosclerosis_2015_10_101 crossref_primary_10_15420_ecr_2019_14 crossref_primary_10_30548_vascfail_5_1_31 crossref_primary_10_1161_STROKEAHA_120_031102 crossref_primary_10_3390_ijerph13080748 crossref_primary_10_1016_j_revmed_2013_12_010 crossref_primary_10_1186_s12882_019_1484_x crossref_primary_10_1088_0967_3334_36_11_2247 crossref_primary_10_3109_10641955_2013_784780 crossref_primary_10_1016_j_carrev_2016_12_019 crossref_primary_10_1016_j_mvr_2018_10_009 crossref_primary_10_1016_j_hlc_2014_01_005 crossref_primary_10_1097_HJH_0b013e3283619d50 crossref_primary_10_1016_j_jacc_2010_03_107 crossref_primary_10_1097_MPG_0000000000002374 crossref_primary_10_1161_JAHA_112_002154 crossref_primary_10_1089_ham_2018_0128 crossref_primary_10_1186_s12933_018_0670_7 crossref_primary_10_1155_2016_1723485 crossref_primary_10_1016_j_recesp_2011_09_012 crossref_primary_10_1371_journal_pone_0021185 crossref_primary_10_1536_ihj_14_385 crossref_primary_10_3233_JAD_150516 crossref_primary_10_1016_j_atherosclerosis_2012_08_003 crossref_primary_10_1016_j_numecd_2020_05_018 crossref_primary_10_1093_humrep_der159 crossref_primary_10_1038_hr_2014_142 crossref_primary_10_1097_CRD_0b013e3181c46a15 crossref_primary_10_1186_s12931_020_01345_9 crossref_primary_10_3390_diagnostics7020031 crossref_primary_10_1007_s00394_016_1185_1 crossref_primary_10_1007_s10865_007_9141_4 crossref_primary_10_1038_oby_2010_318 crossref_primary_10_1016_j_jash_2018_07_002 crossref_primary_10_1016_j_cxom_2007_06_002 crossref_primary_10_30548_vascfail_4_1_32 crossref_primary_10_1016_j_atherosclerosis_2014_03_031 crossref_primary_10_1038_s41426_018_0105_2 crossref_primary_10_1016_j_recesp_2015_12_020 crossref_primary_10_1038_oby_2009_331 crossref_primary_10_1002_clc_20705 crossref_primary_10_1111_jsr_12026 crossref_primary_10_3389_fcvm_2021_716916 crossref_primary_10_4244_EIJV8I11A193 crossref_primary_10_1016_j_ijcard_2011_10_099 crossref_primary_10_1016_j_autneu_2016_11_004 crossref_primary_10_1177_1358863X15584753 crossref_primary_10_1152_japplphysiol_00616_2020 crossref_primary_10_1073_pnas_0805782105 crossref_primary_10_1002_ehf2_14116 crossref_primary_10_1097_HJH_0b013e328362d913 crossref_primary_10_1016_j_ijcard_2021_02_085 crossref_primary_10_1164_rccm_201010_1572OC crossref_primary_10_1186_cc8055 crossref_primary_10_1111_apa_16646 crossref_primary_10_1155_2016_2969740 crossref_primary_10_1159_000522098 crossref_primary_10_1017_S0007114512003091 crossref_primary_10_1111_j_1475_097X_2007_00759_x crossref_primary_10_1097_GME_0000000000001386 crossref_primary_10_1007_s00380_016_0870_6 crossref_primary_10_1016_j_phanu_2016_05_002 crossref_primary_10_1253_circj_CJ_16_0870 crossref_primary_10_1186_cc9020 crossref_primary_10_1253_circj_CJ_13_1325 crossref_primary_10_1086_590209 crossref_primary_10_1016_j_ijcard_2017_10_069 crossref_primary_10_1016_j_orcp_2012_10_005 crossref_primary_10_1016_j_ab_2021_114387 crossref_primary_10_1097_MCA_0000000000000208 crossref_primary_10_1111_jch_12451 crossref_primary_10_1016_j_autneu_2013_04_009 crossref_primary_10_1161_JAHA_115_002270 crossref_primary_10_1111_cen_12137 crossref_primary_10_3390_life12071048 crossref_primary_10_1161_JAHA_116_004199 crossref_primary_10_3390_molecules27227921 crossref_primary_10_1016_j_atherosclerosis_2019_07_013 crossref_primary_10_1177_1358863X06076227 crossref_primary_10_1371_journal_pone_0206523 |
Cites_doi | 10.1016/S0008-6363(98)00316-2 10.1111/j.1365-2796.1994.tb01278.x 10.1111/j.2042-7158.1991.tb03198.x 10.1152/ajpheart.1994.267.6.H2087 10.1161/01.CIR.100.12.1316 10.1113/jphysiol.1996.sp021161 10.1152/ajpheart.01207.2003 10.1161/01.ATV.0000051384.43104.FC 10.1111/j.1532-5415.2000.tb03911.x 10.1016/S0002-9149(02)02963-6 10.1038/76135 10.1161/01.CIR.103.16.2084 10.1038/288373a0 10.1016/S0002-9149(96)00597-8 10.1161/hy1101.095329 10.1016/j.jacc.2004.08.062 10.1161/01.CIR.91.5.1314 10.1016/S0735-1097(03)00329-2 10.1161/01.CIR.0000089507.19675.F9 10.1161/01.CIR.0000089191.72957.ED 10.1016/S0002-8703(03)00094-2 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright American Physiological Society Aug 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright American Physiological Society Aug 2006 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/japplphysiol.01285.2005 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 548 |
ExternalDocumentID | 1148163071 16614356 17976665 10_1152_japplphysiol_01285_2005 jap_101_2_545 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P50-HL-48743 – fundername: NHLBI NIH HHS grantid: 1P50 HL-56985 |
GroupedDBID | - 02 2WC 39C 3O- 4.4 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GJ GX1 H13 H~9 KQ8 L7B MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT WH7 WOQ X X7M YCJ --- -~X .55 .GJ 18M 1CY 29J 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ACKIV ACYGS ADFNX ADXHL AETEA AFOSN AGNAY AI. AIDAL AJUXI BKKCC BTFSW C2- CITATION EMOBN ITBOX J5H MVM P6G RPRKH TR2 VH1 W8F XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM VXZ 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c512t-ce5559120bebcd57ebdbd57c70f29ccbec98a4a7af4df6086393dd7aff146e163 |
ISSN | 8750-7587 |
IngestDate | Fri Jul 11 05:06:38 EDT 2025 Mon Jun 30 08:42:31 EDT 2025 Wed Feb 19 01:49:13 EST 2025 Mon Jul 21 09:13:04 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 01:13:17 EDT 2025 Mon May 06 11:52:07 EDT 2019 Tue Jan 05 17:53:17 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Amplitude Human Vasomotricity Vertebrata Mammalia Nitric oxide Vasodilation Endothelium Reactive hyperemia |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c512t-ce5559120bebcd57ebdbd57c70f29ccbec98a4a7af4df6086393dd7aff146e163 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 16614356 |
PQID | 222160219 |
PQPubID | 40905 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1152_japplphysiol_01285_2005 proquest_miscellaneous_68644248 pubmed_primary_16614356 proquest_journals_222160219 pascalfrancis_primary_17976665 crossref_primary_10_1152_japplphysiol_01285_2005 highwire_physiology_jap_101_2_545 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-01 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2006 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | R2 R3 R4 R5 R6 R7 R8 R9 R10 R21 R20 R12 R11 R14 R13 R16 R15 R18 R17 R19 R1 |
References_xml | – ident: R10 doi: 10.1016/S0008-6363(98)00316-2 – ident: R11 doi: 10.1111/j.1365-2796.1994.tb01278.x – ident: R21 doi: 10.1111/j.2042-7158.1991.tb03198.x – ident: R6 doi: 10.1152/ajpheart.1994.267.6.H2087 – ident: R7 doi: 10.1161/01.CIR.100.12.1316 – ident: R17 doi: 10.1113/jphysiol.1996.sp021161 – ident: R19 doi: 10.1152/ajpheart.01207.2003 – ident: R4 doi: 10.1161/01.ATV.0000051384.43104.FC – ident: R1 doi: 10.1111/j.1532-5415.2000.tb03911.x – ident: R2 doi: 10.1016/S0002-9149(02)02963-6 – ident: R15 doi: 10.1038/76135 – ident: R18 doi: 10.1161/01.CIR.103.16.2084 – ident: R8 doi: 10.1038/288373a0 – ident: R16 doi: 10.1016/S0002-9149(96)00597-8 – ident: R13 doi: 10.1161/hy1101.095329 – ident: R5 doi: 10.1016/j.jacc.2004.08.062 – ident: R12 doi: 10.1161/01.CIR.91.5.1314 – ident: R3 doi: 10.1016/S0735-1097(03)00329-2 – ident: R9 doi: 10.1161/01.CIR.0000089507.19675.F9 – ident: R20 doi: 10.1161/01.CIR.0000089191.72957.ED – ident: R14 doi: 10.1016/S0002-8703(03)00094-2 |
SSID | ssj0014451 |
Score | 2.3957787 |
Snippet | Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
Submitted 6 October 2005
; accepted in final form 11 April 2006
Measurement of the... Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 545 |
SubjectTerms | Adult Bioavailability Biological and medical sciences Blood Volume - physiology Cells Enzyme Inhibitors - pharmacology Female Fingers - blood supply Fundamental and applied biological sciences. Psychology Heart Human subjects Humans Hyperemia - physiopathology Male NG-Nitroarginine Methyl Ester - pharmacology Nitric oxide Nitric Oxide - physiology Nitric Oxide Synthase - antagonists & inhibitors Phenylephrine - pharmacology Pulsatile Flow - drug effects Pulsatile Flow - physiology Regional Blood Flow - drug effects Regional Blood Flow - physiology Sodium Chloride - pharmacology Vasoconstrictor Agents - pharmacology |
Title | Role of nitric oxide in the regulation of digital pulse volume amplitude in humans |
URI | http://jap.physiology.org/cgi/content/abstract/101/2/545 https://www.ncbi.nlm.nih.gov/pubmed/16614356 https://www.proquest.com/docview/222160219 https://www.proquest.com/docview/68644248 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXNDZg2WAYCfFSZSRpPh-raVMFW4HRSn2zHMfeiiCp2kYC_nrubCdpxaoBL2mb2vm639m_u5zvCHnTLxLlcV-4fpxJN8yD0OWxkm4_A7ZQRCnvx7jA-XIUDyfh-2k07eLn9eqSVX4ift26ruR_pAr7QK64SvYfJNseFHbAd5AvbEHCsP0rGV_Z0EBQSwyIr37MCtkELi5MkXnLB4vZNVYH6c1rmAp7ZkjqcYwmx9yW2EcX61tu4arcclXtBzFZmzDBU5ZGa56EUXWzMKG3g_Jr3Qb2yAUu7HKHOAWUdnnQrIXTKZDWawMbXDbUuVaH9cK607_c8NrU-F53T6SNe6KJ4PRcMEqSjSG3a9GavmYAjUxyyT8H9ijQBQXgdu2tnuDUGmmvWDeXNe_vRx_Z-eTigo3PpuP75EEANgSWt_jwuXvFhJnZjPPXXJ8N_oMTvdtymk3q0qSTxmhavgSFUqYSynZTRVOW8S55bOVHBwY4T8g9We6R_UHJV9X3n_Qt_dRKc488vLRBFvvkCmFFK0UNrKiGFZ2VFGBFO1hhCwsrqmFFzWOnLaywj4HVUzI5PxufDl1besMVwABXrpARmJp-4OUyF0WUyLzI4UMkngoyIUDxs5SHPOEqLFQMZnEfNLuAnwpmXgkc_xnZKatSHhAqheJgZCd57qehyPJU-EnqBQoMdeX7uXBI3DxVJmxeeiyP8o1p-zQK2Lo4mBYHFk-NHOK1HecmNcvdXdxGbKzTGIbenjHgB7sBNFnAAIZsXiiHvL6tPTRjbTuHHG_Iv7uWBKh-HEODowYQzA4eSwa03I-BX2cOedX-CyM7vq7jpazqJYtTsFWCMHXIc4Oi7shIqvtRfHhn3yPyqFPKF2RntajlS2DRq_xYa8NvDuvOxg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+nitric+oxide+in+the+regulation+of+digital+pulse+volume+amplitude+in+humans&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nohria%2C+Anju&rft.au=Gerhard-Herman%2C+Marie&rft.au=Creager%2C+Mark+A&rft.au=Hurley%2C+Shauna&rft.date=2006-08-01&rft.issn=8750-7587&rft.volume=101&rft.issue=2&rft.spage=545&rft_id=info:doi/10.1152%2Fjapplphysiol.01285.2005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |