Role of nitric oxide in the regulation of digital pulse volume amplitude in humans

Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts Submitted 6 October 2005 ; accepted in final form 11 April 2006 Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a c...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 101; no. 2; pp. 545 - 548
Main Authors Nohria, Anju, Gerhard-Herman, Marie, Creager, Mark A, Hurley, Shauna, Mitra, Debi, Ganz, Peter
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.08.2006
American Physiological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts Submitted 6 October 2005 ; accepted in final form 11 April 2006 Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N G -nitro- L -arginine methyl ester ( L -NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L -NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (–5 ± 2%), baseline PVA was unchanged by L -NAME infusion (–10 ± 2%), but it decreased significantly with phenylephrine (–50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by L -NAME administration (–46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. endothelium; vasodilation; reactive hyperemia Address for reprint requests and other correspondence: A. Nohria, Cardiovascular Div., Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115 (e-mail: anohria{at}partners.org )
AbstractList Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N G -nitro-l-arginine methyl ester (l-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of l-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (−5 ± 2%), baseline PVA was unchanged by l-NAME infusion (−10 ± 2%), but it decreased significantly with phenylephrine (−50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by l-NAME administration (−46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans.
Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N^sup G^-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 ± 2%), baseline PVA was unchanged by L-NAME infusion (-10 ± 2%), but it decreased significantly with phenylephrine (-50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. [PUBLICATION ABSTRACT]
Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 +/- 2%), baseline PVA was unchanged by L-NAME infusion (-10 +/- 2%), but it decreased significantly with phenylephrine (-50 +/- 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 +/- 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 +/- 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 +/- 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans.Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 +/- 2%), baseline PVA was unchanged by L-NAME infusion (-10 +/- 2%), but it decreased significantly with phenylephrine (-50 +/- 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 +/- 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 +/- 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 +/- 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans.
Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts Submitted 6 October 2005 ; accepted in final form 11 April 2006 Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N G -nitro- L -arginine methyl ester ( L -NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L -NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (–5 ± 2%), baseline PVA was unchanged by L -NAME infusion (–10 ± 2%), but it decreased significantly with phenylephrine (–50 ± 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 ± 4%). In comparison, PVA-RH was significantly blunted by L -NAME administration (–46 ± 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 ± 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans. endothelium; vasodilation; reactive hyperemia Address for reprint requests and other correspondence: A. Nohria, Cardiovascular Div., Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115 (e-mail: anohria{at}partners.org )
Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a convenient test of nitric oxide bioavailability. However, evidence linking digital PVA-RH to nitric oxide is currently lacking. Accordingly, we investigated whether nitric oxide is responsible for the increase in digital PVA. During reactive hyperemia, we used a peripheral arterial tonometer to record digital PVA at baseline and during reactive hyperemia. The role of nitric oxide in these responses was investigated in 19 healthy subjects by inhibiting nitric oxide synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME). Ten subjects underwent the identical protocol with saline and five with phenylephrine, a nonspecific vasoconstrictor, instead of L-NAME. The change in digital PVA after drug administration was compared between the three groups. Relative to the response with saline (-5 +/- 2%), baseline PVA was unchanged by L-NAME infusion (-10 +/- 2%), but it decreased significantly with phenylephrine (-50 +/- 12%; P = 0.003). PVA-RH increased slightly with saline infusion (9 +/- 4%). In comparison, PVA-RH was significantly blunted by L-NAME administration (-46 +/- 21%; P = 0.002) and was relatively unchanged by phenylephrine (20 +/- 9%). The present study establishes a central role for nitric oxide in the augmentation of PVA during reactive hyperemia. The measurement of digital PVA-RH may indeed provide a simple means of assessing endothelial function in humans.
Author Gerhard-Herman, Marie
Hurley, Shauna
Mitra, Debi
Creager, Mark A
Ganz, Peter
Nohria, Anju
Author_xml – sequence: 1
  fullname: Nohria, Anju
– sequence: 2
  fullname: Gerhard-Herman, Marie
– sequence: 3
  fullname: Creager, Mark A
– sequence: 4
  fullname: Hurley, Shauna
– sequence: 5
  fullname: Mitra, Debi
– sequence: 6
  fullname: Ganz, Peter
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17976665$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16614356$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFr1TAYhoNM3Nn0L2gRHN70mKRJ2l54IWNTYTAY8zqk6dfTHNKmJo3u_HtTz9mUwdjVR8jzfAnve4KORjcCQu8IXhPC6aetmiY79btgnF1jQiu-phjzF2iVbmlOBCZHaFWVHOclr8pjdBLCFmPCGCev0DERgrCCixW6uXEWMtdlo5m90Zm7My1kZszmHjIPm2jVbNy4EK3ZmFnZbIo2QPbL2ThApobJmjnunT4Oagyv0ctOJeTNYZ6iH5cXt-ff8qvrr9_Pv1zlmhM65xo45zWhuIFGt7yEpm3S0CXuaK11A7quFFOl6ljbCVyJoi7aNh07wgQQUZyis_3eybufEcIsBxM0WKtGcDFIUQnGKKsS-P4RuHXRj-lvklKasqKkTtDbAxSbAVo5eTMov5P3USXgwwFQQSvbeTVqE_5xZV0KIXjiPu857V0IHjqpU2xLiLNXxkqC5VKh_L9C-bdCuVSY_PKR__DEs-bHvdmbTf_beJAHyG12i5QWEEklZwvKnkYvo7W3cDcvzoMip7Yr_gAh5MdB
CODEN JAPHEV
CitedBy_id crossref_primary_10_1507_endocrj_EJ11_0030
crossref_primary_10_1007_s10286_021_00772_y
crossref_primary_10_1186_1475_2840_13_99
crossref_primary_10_1093_cvr_cvab087
crossref_primary_10_1093_cvr_cvz096
crossref_primary_10_1155_2016_3805380
crossref_primary_10_1017_S0007114516002348
crossref_primary_10_3389_fphys_2020_00840
crossref_primary_10_3390_nu12072053
crossref_primary_10_1164_rccm_200704_632OC
crossref_primary_10_1016_j_nutres_2012_06_011
crossref_primary_10_1016_j_trsl_2010_12_002
crossref_primary_10_3109_13697130902943287
crossref_primary_10_3389_fneur_2017_00178
crossref_primary_10_1016_j_amjcard_2015_07_073
crossref_primary_10_1586_17512433_2013_841077
crossref_primary_10_1042_CS20110284
crossref_primary_10_1164_rccm_201405_0850OC
crossref_primary_10_3389_fendo_2018_00094
crossref_primary_10_1177_1358863X09349523
crossref_primary_10_1109_TIM_2011_2159416
crossref_primary_10_1186_s12933_015_0276_2
crossref_primary_10_3233_THC_202281
crossref_primary_10_5339_gcsp_2014_43
crossref_primary_10_1016_j_jvs_2013_05_029
crossref_primary_10_1017_S1047951114001024
crossref_primary_10_1016_j_amjcard_2014_12_011
crossref_primary_10_1016_j_rec_2015_12_020
crossref_primary_10_1177_1358863X12468194
crossref_primary_10_1177_2399369320911657
crossref_primary_10_1155_2013_394934
crossref_primary_10_1016_j_ijcha_2020_100584
crossref_primary_10_1097_JIM_0000000000000096
crossref_primary_10_1097_MPH_0000000000000122
crossref_primary_10_1016_j_metabol_2013_11_005
crossref_primary_10_12659_MSM_893531
crossref_primary_10_1016_j_arteri_2013_11_004
crossref_primary_10_1088_0967_3334_31_6_003
crossref_primary_10_1177_1358863X241288139
crossref_primary_10_1016_j_pharmthera_2014_06_003
crossref_primary_10_1186_1687_9856_2013_18
crossref_primary_10_2174_1573397115666181126105318
crossref_primary_10_3233_CH_151956
crossref_primary_10_3390_nu9080908
crossref_primary_10_3945_ajcn_110_006155
crossref_primary_10_1177_1479164113482593
crossref_primary_10_1017_S0007114515002950
crossref_primary_10_1016_j_ijcard_2017_06_038
crossref_primary_10_1016_j_pcad_2014_11_005
crossref_primary_10_1016_j_amjcard_2011_03_064
crossref_primary_10_1016_j_niox_2014_07_003
crossref_primary_10_1007_s40292_014_0047_2
crossref_primary_10_1161_CIRCULATIONAHA_107_748574
crossref_primary_10_1016_j_artres_2017_12_001
crossref_primary_10_1016_j_atherosclerosis_2017_03_012
crossref_primary_10_1016_j_ijcard_2011_07_076
crossref_primary_10_1093_nutrit_nuu013
crossref_primary_10_1088_0967_3334_36_7_1551
crossref_primary_10_4061_2011_164832
crossref_primary_10_1016_j_atherosclerosis_2014_02_004
crossref_primary_10_1016_j_atherosclerosis_2010_11_040
crossref_primary_10_1093_infdis_jiw427
crossref_primary_10_1111_j_1751_7176_2011_00569_x
crossref_primary_10_1136_bmjopen_2013_004399
crossref_primary_10_1007_s00392_011_0287_2
crossref_primary_10_1016_j_jacc_2009_10_074
crossref_primary_10_1097_MCA_0000000000001352
crossref_primary_10_1097_MD_0000000000001403
crossref_primary_10_1161_CIRCIMAGING_110_961557
crossref_primary_10_1161_STROKEAHA_114_005937
crossref_primary_10_1536_ihj_15_493
crossref_primary_10_1536_ihj_54_59
crossref_primary_10_1016_j_jpeds_2020_06_023
crossref_primary_10_1093_eurheartj_ehu163
crossref_primary_10_1155_2013_645702
crossref_primary_10_1519_JSC_0000000000002769
crossref_primary_10_1016_j_amjcard_2011_10_023
crossref_primary_10_1371_journal_pone_0009257
crossref_primary_10_1007_s12265_013_9513_9
crossref_primary_10_1111_j_1440_1681_2011_05647_x
crossref_primary_10_1152_japplphysiol_90431_2008
crossref_primary_10_1186_s12933_017_0521_y
crossref_primary_10_1371_journal_pone_0069587
crossref_primary_10_1371_journal_ppat_1000868
crossref_primary_10_1136_bjophthalmol_2014_306075
crossref_primary_10_1038_hr_2012_138
crossref_primary_10_1002_jbmr_1761
crossref_primary_10_1371_journal_pone_0233484
crossref_primary_10_1093_bja_aew410
crossref_primary_10_1002_clc_20854
crossref_primary_10_1007_s10384_017_0515_z
crossref_primary_10_3390_jcm9082487
crossref_primary_10_1007_s00421_013_2735_3
crossref_primary_10_3390_life11020128
crossref_primary_10_1016_j_atherosclerosis_2017_03_039
crossref_primary_10_3389_fmed_2022_935977
crossref_primary_10_1016_j_ijcha_2019_100385
crossref_primary_10_1007_s13167_017_0099_1
crossref_primary_10_1016_j_clnu_2020_10_012
crossref_primary_10_1016_j_ejvs_2012_12_002
crossref_primary_10_1016_j_tcm_2009_03_001
crossref_primary_10_1136_bmjopen_2016_012091
crossref_primary_10_3390_biomedicines9070781
crossref_primary_10_1136_bmjdrc_2020_001321
crossref_primary_10_1186_s12931_016_0488_3
crossref_primary_10_1371_journal_pone_0076457
crossref_primary_10_1016_j_ijcard_2012_04_113
crossref_primary_10_1111_ijcp_13296
crossref_primary_10_1183_23120541_00037_2017
crossref_primary_10_4244_EIJV10I7A137
crossref_primary_10_1186_s40814_024_01569_2
crossref_primary_10_3389_fphys_2014_00459
crossref_primary_10_3390_cells12060911
crossref_primary_10_1152_ajpheart_00256_2023
crossref_primary_10_3390_ijerph19159340
crossref_primary_10_1016_j_mvr_2020_104008
crossref_primary_10_1164_rccm_201609_1817OC
crossref_primary_10_1016_j_physa_2013_03_033
crossref_primary_10_1111_joim_20005
crossref_primary_10_1111_micc_12268
crossref_primary_10_4061_2011_870132
crossref_primary_10_1093_eurheartj_ehq010
crossref_primary_10_1016_j_artres_2011_03_001
crossref_primary_10_1177_1741826711398179
crossref_primary_10_1016_j_jcmg_2016_02_005
crossref_primary_10_1109_JBHI_2016_2515938
crossref_primary_10_1186_s12871_020_00977_0
crossref_primary_10_1177_1479164114525971
crossref_primary_10_1016_j_rec_2011_10_004
crossref_primary_10_1371_journal_pone_0006733
crossref_primary_10_1016_j_crvasa_2017_07_006
crossref_primary_10_1161_HYPERTENSIONAHA_121_17954
crossref_primary_10_1177_0961203308096663
crossref_primary_10_1536_ihj_17_143
crossref_primary_10_1186_s12989_014_0070_4
crossref_primary_10_1136_bmjopen_2017_020525
crossref_primary_10_1007_s00380_015_0713_x
crossref_primary_10_1016_j_jpeds_2012_04_033
crossref_primary_10_1161_CIRCULATIONAHA_108_775155
crossref_primary_10_1111_ncn3_12000
crossref_primary_10_1016_j_jpeds_2009_04_060
crossref_primary_10_1016_j_ijcard_2013_07_236
crossref_primary_10_1177_1358863X11433188
crossref_primary_10_1007_s12471_011_0202_5
crossref_primary_10_3390_jcm12175512
crossref_primary_10_1016_j_atherosclerosis_2011_01_039
crossref_primary_10_1016_j_jcmg_2016_02_015
crossref_primary_10_1007_s40279_019_01146_1
crossref_primary_10_1016_j_phrs_2017_01_011
crossref_primary_10_1136_bmjopen_2023_073357
crossref_primary_10_1093_ofid_ofw027
crossref_primary_10_1159_000540200
crossref_primary_10_1111_j_1549_8719_2011_00129_x
crossref_primary_10_1080_21548331_2020_1752506
crossref_primary_10_1111_j_1365_2362_2011_02553_x
crossref_primary_10_1161_JAHA_114_001279
crossref_primary_10_1161_CIRCULATIONAHA_106_652859
crossref_primary_10_1039_C9FO01844A
crossref_primary_10_1093_aje_kwu161
crossref_primary_10_3851_IMP3257
crossref_primary_10_1007_s00592_018_1204_1
crossref_primary_10_1093_cvr_cvaa085
crossref_primary_10_1371_journal_pone_0235463
crossref_primary_10_4028_www_scientific_net_JBBBE_54_41
crossref_primary_10_1097_MCA_0b013e32832a198b
crossref_primary_10_2310_JIM_0b013e318292fc7d
crossref_primary_10_1038_s41440_022_01141_6
crossref_primary_10_1007_s00395_012_0311_3
crossref_primary_10_1161_JAHA_119_012509
crossref_primary_10_1186_1471_2261_13_83
crossref_primary_10_1177_2047487312460516
crossref_primary_10_1155_2013_174782
crossref_primary_10_1016_j_cjca_2019_12_003
crossref_primary_10_1002_pri_1820
crossref_primary_10_1016_j_ijcard_2018_08_068
crossref_primary_10_1186_1475_2840_12_92
crossref_primary_10_1536_ihj_15_322
crossref_primary_10_1097_PSY_0b013e3182228644
crossref_primary_10_1111_eci_12341
crossref_primary_10_1017_S1047951115000657
crossref_primary_10_1378_chest_10_2531
crossref_primary_10_5551_jat_14340
crossref_primary_10_1161_JAHA_123_032698
crossref_primary_10_1016_j_clnu_2022_03_014
crossref_primary_10_1038_ijir_2008_13
crossref_primary_10_1186_1475_2840_11_79
crossref_primary_10_1186_cc11223
crossref_primary_10_1016_j_jand_2019_03_016
crossref_primary_10_1155_2013_370461
crossref_primary_10_3389_fcvm_2024_1411424
crossref_primary_10_30548_vascfail_2_1_53
crossref_primary_10_1016_j_ijcard_2015_03_118
crossref_primary_10_1159_000347122
crossref_primary_10_5551_jat_13243
crossref_primary_10_1017_S1047951112001357
crossref_primary_10_1177_1358863X17706752
crossref_primary_10_1177_2047487319884246
crossref_primary_10_1016_j_bbrc_2017_09_028
crossref_primary_10_1186_s12933_020_01062_z
crossref_primary_10_1253_circj_CJ_15_0068
crossref_primary_10_1007_s10545_013_9642_y
crossref_primary_10_24884_1682_6655_2018_17_3_5_22
crossref_primary_10_1016_j_ijcard_2009_03_075
crossref_primary_10_1016_j_jmv_2013_11_004
crossref_primary_10_1186_1475_2840_11_64
crossref_primary_10_5500_wjt_v15_i1_97458
crossref_primary_10_1007_s13167_022_00280_7
crossref_primary_10_1016_j_jash_2017_04_008
crossref_primary_10_1016_j_mvr_2021_104223
crossref_primary_10_1016_j_mvr_2020_104040
crossref_primary_10_1590_S1980_65742016000100001
crossref_primary_10_1161_CIRCULATIONAHA_112_093245
crossref_primary_10_1161_HYPERTENSIONAHA_112_191874
crossref_primary_10_1093_jn_nxaa252
crossref_primary_10_1016_j_atherosclerosis_2020_09_022
crossref_primary_10_1128_AAC_01479_15
crossref_primary_10_1007_s00421_016_3328_8
crossref_primary_10_5551_jat_19497
crossref_primary_10_1007_s00421_012_2542_2
crossref_primary_10_1111_pedi_12139
crossref_primary_10_1210_jc_2008_1829
crossref_primary_10_1016_j_mvr_2020_104038
crossref_primary_10_1007_s00125_011_2415_y
crossref_primary_10_1084_jem_20070819
crossref_primary_10_1152_japplphysiol_00414_2010
crossref_primary_10_1080_21551197_2012_702541
crossref_primary_10_1536_ihj_15_094
crossref_primary_10_5402_2011_696124
crossref_primary_10_1093_eurheartj_eht351
crossref_primary_10_1155_2013_383624
crossref_primary_10_1161_JAHA_113_000426
crossref_primary_10_1115_1_4030112
crossref_primary_10_1177_0333102412444014
crossref_primary_10_1111_aas_12426
crossref_primary_10_1016_j_ijcard_2016_12_110
crossref_primary_10_1093_eurheartj_ehaa857
crossref_primary_10_18632_oncotarget_27118
crossref_primary_10_1007_s11883_014_0417_1
crossref_primary_10_1007_s13668_016_0149_7
crossref_primary_10_1016_j_jjcc_2015_03_010
crossref_primary_10_1016_j_jcte_2024_100351
crossref_primary_10_1038_ajh_2012_8
crossref_primary_10_21886_2308_6424_2020_8_2_78_92
crossref_primary_10_1007_s00417_022_05596_8
crossref_primary_10_1016_j_smrv_2021_101566
crossref_primary_10_1007_s00431_013_1988_5
crossref_primary_10_1016_j_jacc_2011_11_082
crossref_primary_10_1016_j_jacasi_2024_09_015
crossref_primary_10_1186_1743_8977_5_13
crossref_primary_10_1111_cpf_12570
crossref_primary_10_1161_ATVBAHA_121_316083
crossref_primary_10_1177_1358863X13480551
crossref_primary_10_1371_journal_pone_0017260
crossref_primary_10_3390_ijerph18063230
crossref_primary_10_1161_HYPERTENSIONAHA_118_11554
crossref_primary_10_1038_s41371_020_00440_0
crossref_primary_10_1161_HYPERTENSIONAHA_110_160812
crossref_primary_10_1016_j_atherosclerosis_2015_10_101
crossref_primary_10_15420_ecr_2019_14
crossref_primary_10_30548_vascfail_5_1_31
crossref_primary_10_1161_STROKEAHA_120_031102
crossref_primary_10_3390_ijerph13080748
crossref_primary_10_1016_j_revmed_2013_12_010
crossref_primary_10_1186_s12882_019_1484_x
crossref_primary_10_1088_0967_3334_36_11_2247
crossref_primary_10_3109_10641955_2013_784780
crossref_primary_10_1016_j_carrev_2016_12_019
crossref_primary_10_1016_j_mvr_2018_10_009
crossref_primary_10_1016_j_hlc_2014_01_005
crossref_primary_10_1097_HJH_0b013e3283619d50
crossref_primary_10_1016_j_jacc_2010_03_107
crossref_primary_10_1097_MPG_0000000000002374
crossref_primary_10_1161_JAHA_112_002154
crossref_primary_10_1089_ham_2018_0128
crossref_primary_10_1186_s12933_018_0670_7
crossref_primary_10_1155_2016_1723485
crossref_primary_10_1016_j_recesp_2011_09_012
crossref_primary_10_1371_journal_pone_0021185
crossref_primary_10_1536_ihj_14_385
crossref_primary_10_3233_JAD_150516
crossref_primary_10_1016_j_atherosclerosis_2012_08_003
crossref_primary_10_1016_j_numecd_2020_05_018
crossref_primary_10_1093_humrep_der159
crossref_primary_10_1038_hr_2014_142
crossref_primary_10_1097_CRD_0b013e3181c46a15
crossref_primary_10_1186_s12931_020_01345_9
crossref_primary_10_3390_diagnostics7020031
crossref_primary_10_1007_s00394_016_1185_1
crossref_primary_10_1007_s10865_007_9141_4
crossref_primary_10_1038_oby_2010_318
crossref_primary_10_1016_j_jash_2018_07_002
crossref_primary_10_1016_j_cxom_2007_06_002
crossref_primary_10_30548_vascfail_4_1_32
crossref_primary_10_1016_j_atherosclerosis_2014_03_031
crossref_primary_10_1038_s41426_018_0105_2
crossref_primary_10_1016_j_recesp_2015_12_020
crossref_primary_10_1038_oby_2009_331
crossref_primary_10_1002_clc_20705
crossref_primary_10_1111_jsr_12026
crossref_primary_10_3389_fcvm_2021_716916
crossref_primary_10_4244_EIJV8I11A193
crossref_primary_10_1016_j_ijcard_2011_10_099
crossref_primary_10_1016_j_autneu_2016_11_004
crossref_primary_10_1177_1358863X15584753
crossref_primary_10_1152_japplphysiol_00616_2020
crossref_primary_10_1073_pnas_0805782105
crossref_primary_10_1002_ehf2_14116
crossref_primary_10_1097_HJH_0b013e328362d913
crossref_primary_10_1016_j_ijcard_2021_02_085
crossref_primary_10_1164_rccm_201010_1572OC
crossref_primary_10_1186_cc8055
crossref_primary_10_1111_apa_16646
crossref_primary_10_1155_2016_2969740
crossref_primary_10_1159_000522098
crossref_primary_10_1017_S0007114512003091
crossref_primary_10_1111_j_1475_097X_2007_00759_x
crossref_primary_10_1097_GME_0000000000001386
crossref_primary_10_1007_s00380_016_0870_6
crossref_primary_10_1016_j_phanu_2016_05_002
crossref_primary_10_1253_circj_CJ_16_0870
crossref_primary_10_1186_cc9020
crossref_primary_10_1253_circj_CJ_13_1325
crossref_primary_10_1086_590209
crossref_primary_10_1016_j_ijcard_2017_10_069
crossref_primary_10_1016_j_orcp_2012_10_005
crossref_primary_10_1016_j_ab_2021_114387
crossref_primary_10_1097_MCA_0000000000000208
crossref_primary_10_1111_jch_12451
crossref_primary_10_1016_j_autneu_2013_04_009
crossref_primary_10_1161_JAHA_115_002270
crossref_primary_10_1111_cen_12137
crossref_primary_10_3390_life12071048
crossref_primary_10_1161_JAHA_116_004199
crossref_primary_10_3390_molecules27227921
crossref_primary_10_1016_j_atherosclerosis_2019_07_013
crossref_primary_10_1177_1358863X06076227
crossref_primary_10_1371_journal_pone_0206523
Cites_doi 10.1016/S0008-6363(98)00316-2
10.1111/j.1365-2796.1994.tb01278.x
10.1111/j.2042-7158.1991.tb03198.x
10.1152/ajpheart.1994.267.6.H2087
10.1161/01.CIR.100.12.1316
10.1113/jphysiol.1996.sp021161
10.1152/ajpheart.01207.2003
10.1161/01.ATV.0000051384.43104.FC
10.1111/j.1532-5415.2000.tb03911.x
10.1016/S0002-9149(02)02963-6
10.1038/76135
10.1161/01.CIR.103.16.2084
10.1038/288373a0
10.1016/S0002-9149(96)00597-8
10.1161/hy1101.095329
10.1016/j.jacc.2004.08.062
10.1161/01.CIR.91.5.1314
10.1016/S0735-1097(03)00329-2
10.1161/01.CIR.0000089507.19675.F9
10.1161/01.CIR.0000089191.72957.ED
10.1016/S0002-8703(03)00094-2
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Physiological Society Aug 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Physiological Society Aug 2006
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.01285.2005
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 548
ExternalDocumentID 1148163071
16614356
17976665
10_1152_japplphysiol_01285_2005
jap_101_2_545
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P50-HL-48743
– fundername: NHLBI NIH HHS
  grantid: 1P50 HL-56985
GroupedDBID -
02
2WC
39C
3O-
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
18M
1CY
29J
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
ADXHL
AETEA
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
CITATION
EMOBN
ITBOX
J5H
MVM
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c512t-ce5559120bebcd57ebdbd57c70f29ccbec98a4a7af4df6086393dd7aff146e163
ISSN 8750-7587
IngestDate Fri Jul 11 05:06:38 EDT 2025
Mon Jun 30 08:42:31 EDT 2025
Wed Feb 19 01:49:13 EST 2025
Mon Jul 21 09:13:04 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 01:13:17 EDT 2025
Mon May 06 11:52:07 EDT 2019
Tue Jan 05 17:53:17 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Amplitude
Human
Vasomotricity
Vertebrata
Mammalia
Nitric oxide
Vasodilation
Endothelium
Reactive hyperemia
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-ce5559120bebcd57ebdbd57c70f29ccbec98a4a7af4df6086393dd7aff146e163
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16614356
PQID 222160219
PQPubID 40905
PageCount 4
ParticipantIDs crossref_citationtrail_10_1152_japplphysiol_01285_2005
proquest_miscellaneous_68644248
pubmed_primary_16614356
proquest_journals_222160219
pascalfrancis_primary_17976665
crossref_primary_10_1152_japplphysiol_01285_2005
highwire_physiology_jap_101_2_545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2006
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R2
R3
R4
R5
R6
R7
R8
R9
R10
R21
R20
R12
R11
R14
R13
R16
R15
R18
R17
R19
R1
References_xml – ident: R10
  doi: 10.1016/S0008-6363(98)00316-2
– ident: R11
  doi: 10.1111/j.1365-2796.1994.tb01278.x
– ident: R21
  doi: 10.1111/j.2042-7158.1991.tb03198.x
– ident: R6
  doi: 10.1152/ajpheart.1994.267.6.H2087
– ident: R7
  doi: 10.1161/01.CIR.100.12.1316
– ident: R17
  doi: 10.1113/jphysiol.1996.sp021161
– ident: R19
  doi: 10.1152/ajpheart.01207.2003
– ident: R4
  doi: 10.1161/01.ATV.0000051384.43104.FC
– ident: R1
  doi: 10.1111/j.1532-5415.2000.tb03911.x
– ident: R2
  doi: 10.1016/S0002-9149(02)02963-6
– ident: R15
  doi: 10.1038/76135
– ident: R18
  doi: 10.1161/01.CIR.103.16.2084
– ident: R8
  doi: 10.1038/288373a0
– ident: R16
  doi: 10.1016/S0002-9149(96)00597-8
– ident: R13
  doi: 10.1161/hy1101.095329
– ident: R5
  doi: 10.1016/j.jacc.2004.08.062
– ident: R12
  doi: 10.1161/01.CIR.91.5.1314
– ident: R3
  doi: 10.1016/S0735-1097(03)00329-2
– ident: R9
  doi: 10.1161/01.CIR.0000089507.19675.F9
– ident: R20
  doi: 10.1161/01.CIR.0000089191.72957.ED
– ident: R14
  doi: 10.1016/S0002-8703(03)00094-2
SSID ssj0014451
Score 2.3957787
Snippet Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts Submitted 6 October 2005 ; accepted in final form 11 April 2006 Measurement of the...
Measurement of the increase in digital pulse volume amplitude (PVA) during reactive hyperemia relative to baseline (PVA-RH) is being applied widely as a...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 545
SubjectTerms Adult
Bioavailability
Biological and medical sciences
Blood Volume - physiology
Cells
Enzyme Inhibitors - pharmacology
Female
Fingers - blood supply
Fundamental and applied biological sciences. Psychology
Heart
Human subjects
Humans
Hyperemia - physiopathology
Male
NG-Nitroarginine Methyl Ester - pharmacology
Nitric oxide
Nitric Oxide - physiology
Nitric Oxide Synthase - antagonists & inhibitors
Phenylephrine - pharmacology
Pulsatile Flow - drug effects
Pulsatile Flow - physiology
Regional Blood Flow - drug effects
Regional Blood Flow - physiology
Sodium Chloride - pharmacology
Vasoconstrictor Agents - pharmacology
Title Role of nitric oxide in the regulation of digital pulse volume amplitude in humans
URI http://jap.physiology.org/cgi/content/abstract/101/2/545
https://www.ncbi.nlm.nih.gov/pubmed/16614356
https://www.proquest.com/docview/222160219
https://www.proquest.com/docview/68644248
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXNDZg2WAYCfFSZSRpPh-raVMFW4HRSn2zHMfeiiCp2kYC_nrubCdpxaoBL2mb2vm639m_u5zvCHnTLxLlcV-4fpxJN8yD0OWxkm4_A7ZQRCnvx7jA-XIUDyfh-2k07eLn9eqSVX4ift26ruR_pAr7QK64SvYfJNseFHbAd5AvbEHCsP0rGV_Z0EBQSwyIr37MCtkELi5MkXnLB4vZNVYH6c1rmAp7ZkjqcYwmx9yW2EcX61tu4arcclXtBzFZmzDBU5ZGa56EUXWzMKG3g_Jr3Qb2yAUu7HKHOAWUdnnQrIXTKZDWawMbXDbUuVaH9cK607_c8NrU-F53T6SNe6KJ4PRcMEqSjSG3a9GavmYAjUxyyT8H9ijQBQXgdu2tnuDUGmmvWDeXNe_vRx_Z-eTigo3PpuP75EEANgSWt_jwuXvFhJnZjPPXXJ8N_oMTvdtymk3q0qSTxmhavgSFUqYSynZTRVOW8S55bOVHBwY4T8g9We6R_UHJV9X3n_Qt_dRKc488vLRBFvvkCmFFK0UNrKiGFZ2VFGBFO1hhCwsrqmFFzWOnLaywj4HVUzI5PxufDl1besMVwABXrpARmJp-4OUyF0WUyLzI4UMkngoyIUDxs5SHPOEqLFQMZnEfNLuAnwpmXgkc_xnZKatSHhAqheJgZCd57qehyPJU-EnqBQoMdeX7uXBI3DxVJmxeeiyP8o1p-zQK2Lo4mBYHFk-NHOK1HecmNcvdXdxGbKzTGIbenjHgB7sBNFnAAIZsXiiHvL6tPTRjbTuHHG_Iv7uWBKh-HEODowYQzA4eSwa03I-BX2cOedX-CyM7vq7jpazqJYtTsFWCMHXIc4Oi7shIqvtRfHhn3yPyqFPKF2RntajlS2DRq_xYa8NvDuvOxg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+nitric+oxide+in+the+regulation+of+digital+pulse+volume+amplitude+in+humans&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nohria%2C+Anju&rft.au=Gerhard-Herman%2C+Marie&rft.au=Creager%2C+Mark+A&rft.au=Hurley%2C+Shauna&rft.date=2006-08-01&rft.issn=8750-7587&rft.volume=101&rft.issue=2&rft.spage=545&rft_id=info:doi/10.1152%2Fjapplphysiol.01285.2005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon