Pressure-induced commensurate stacking of graphene on boron nitride
Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on th...
Saved in:
Published in | Nature communications Vol. 7; no. 1; pp. 13168 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.10.2016
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.
Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the interaction between layers by application of pressure with a scanning tunnelling microscopy tip. |
---|---|
AbstractList | Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure. Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure. Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the interaction between layers by application of pressure with a scanning tunnelling microscopy tip. Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the interaction between layers by application of pressure with a scanning tunnelling microscopy tip. Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure. |
ArticleNumber | 13168 |
Author | San-Jose, Pablo Watanabe, K. Taniguchi, T. LeRoy, Brian J. Yankowitz, Matthew |
Author_xml | – sequence: 1 givenname: Matthew surname: Yankowitz fullname: Yankowitz, Matthew organization: Physics Department, University of Arizona, Present address: Department of Physics, Columbia University, New York, NY 10027, USA – sequence: 2 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: National Institute for Materials Science – sequence: 3 givenname: T. surname: Taniguchi fullname: Taniguchi, T. organization: National Institute for Materials Science – sequence: 4 givenname: Pablo surname: San-Jose fullname: San-Jose, Pablo organization: Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) – sequence: 5 givenname: Brian J. orcidid: 0000-0003-1610-5424 surname: LeRoy fullname: LeRoy, Brian J. email: leroy@physics.arizona.edu organization: Physics Department, University of Arizona |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27762272$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk9PHCEchkmjqXbrqXcziZcm7VpgYJi5mDSbtpqY2EN7Jgz8GFlnYAXGpN--bFeb1cgBCDw8vPx5hw588IDQB4LPCa7bL16HaUqkJk37Bh1TzMiSCFof7PWP0ElKa1xK3ZGWsbfoiArRUCroMVr9jJDSHGHpvJk1mGorBF-GVIYqZaXvnB-qYKshqs0teKiCr_oQS-1djs7Ae3Ro1Zjg5LFdoN_fv_1aXS6vb35crb5eLzUnNJeaWUYZ7voSRSujWqV1j4XRitAOjKVtzwFsx5sOOksYh5bWGDg2vWW9rhfoauc1Qa3lJrpJxT8yKCf_DYQ4SBWz0yPIIjZCWKoIL3sa0hMO1mJLm3Juo0RxXexcm7mfwGjwOarxmfT5jHe3cggPkrOGYkyK4OOjIIb7GVKWk0saxlF5CHOSpK05x7wTrKBnL9B1mKMvV7WlcM268hSFOt1P9D_K01sVgOwAHUNKEazULqvswjagGyXBcvsl5N6XKGs-vVjzpH2d_ryjU6H8AHEv6Cv4X80iyPc |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_157766 crossref_primary_10_1002_smll_202305870 crossref_primary_10_1103_PhysRevB_102_115421 crossref_primary_10_1063_5_0159598 crossref_primary_10_1088_2053_1583_3_4_042001 crossref_primary_10_1021_acsami_3c03553 crossref_primary_10_1063_5_0117670 crossref_primary_10_1088_2053_1583_ab0113 crossref_primary_10_1088_1361_648X_ace86f crossref_primary_10_1016_j_scib_2019_11_023 crossref_primary_10_1002_adfm_202002672 crossref_primary_10_1088_1361_6528_acb442 crossref_primary_10_1016_j_physleta_2023_129048 crossref_primary_10_1039_D0NH00395F crossref_primary_10_1063_5_0123283 crossref_primary_10_1016_j_carbon_2019_08_054 crossref_primary_10_1038_s41586_018_0107_1 crossref_primary_10_1007_s40042_023_00936_1 crossref_primary_10_1016_j_carbon_2024_119532 crossref_primary_10_3390_molecules28145607 crossref_primary_10_1039_C7NR07395J crossref_primary_10_1103_PhysRevB_103_165112 crossref_primary_10_1016_j_cossms_2020_100837 crossref_primary_10_1088_2053_1583_ada621 crossref_primary_10_1103_PhysRevB_96_155416 crossref_primary_10_1103_PhysRevLett_128_226101 crossref_primary_10_1021_acs_langmuir_3c01546 crossref_primary_10_1016_j_apsusc_2020_146740 crossref_primary_10_1140_epjp_s13360_023_03682_2 crossref_primary_10_1039_C7CS00210F crossref_primary_10_1088_2053_1591_aaf5a0 crossref_primary_10_1016_j_apcatb_2018_07_011 crossref_primary_10_1002_smll_202105877 crossref_primary_10_1038_s41699_021_00281_6 crossref_primary_10_1039_C7RA06865D crossref_primary_10_7498_aps_72_20230318 crossref_primary_10_1039_C9CP00374F crossref_primary_10_1039_D2CP02054H crossref_primary_10_1088_1361_648X_ad987d crossref_primary_10_1039_D2NJ05606B crossref_primary_10_1016_j_nanoen_2025_110854 crossref_primary_10_1021_acsnano_7b02716 crossref_primary_10_1103_PhysRevApplied_17_034013 crossref_primary_10_1016_j_ijhydene_2018_07_008 crossref_primary_10_1016_j_surfin_2024_105608 crossref_primary_10_1039_D2NR07252A crossref_primary_10_1039_C7FD00104E crossref_primary_10_1021_acsnano_0c03414 crossref_primary_10_1103_PhysRevLett_127_266801 crossref_primary_10_1016_j_apsusc_2022_156095 crossref_primary_10_1016_j_surfin_2022_101725 crossref_primary_10_1016_j_physb_2018_11_029 crossref_primary_10_1016_j_pmatsci_2024_101325 crossref_primary_10_1103_PhysRevB_107_035416 crossref_primary_10_1039_D5TA00818B crossref_primary_10_1021_acsnano_1c11498 crossref_primary_10_1016_j_spmi_2021_106981 crossref_primary_10_1103_PhysRevB_108_085432 crossref_primary_10_1126_sciadv_aay8897 crossref_primary_10_1039_D1TC01278A crossref_primary_10_1038_s42254_018_0016_0 crossref_primary_10_1016_j_aop_2023_169553 crossref_primary_10_1016_j_physe_2020_114481 crossref_primary_10_1039_D4CP01174K crossref_primary_10_1016_j_physleta_2017_08_057 crossref_primary_10_1088_1361_6463_ab9782 crossref_primary_10_1038_s41467_025_56055_x crossref_primary_10_1039_D3CP04546C crossref_primary_10_1016_j_mssp_2025_109416 crossref_primary_10_1088_1361_6633_acfe89 crossref_primary_10_1021_jacs_3c11984 crossref_primary_10_1088_2053_1583_4_1_015027 crossref_primary_10_1021_acsnano_1c04286 crossref_primary_10_1021_acs_jpcc_3c01249 crossref_primary_10_1039_C9CP04654B crossref_primary_10_1039_D0NJ05787H crossref_primary_10_1063_5_0104799 crossref_primary_10_1039_D1TA02645C crossref_primary_10_20517_microstructures_2023_100 crossref_primary_10_1039_C8CP04360D crossref_primary_10_1016_j_apsusc_2020_148389 crossref_primary_10_3390_molecules29153554 crossref_primary_10_1039_C9TA00624A crossref_primary_10_1103_PhysRevB_104_165421 crossref_primary_10_1016_j_physleta_2021_127594 crossref_primary_10_1103_PhysRevB_95_035432 crossref_primary_10_1103_PhysRevB_101_224107 crossref_primary_10_1016_j_diamond_2023_110663 crossref_primary_10_1016_j_jmps_2024_105693 crossref_primary_10_1039_C8CP03508C crossref_primary_10_1038_s41467_024_46672_3 crossref_primary_10_1103_PhysRevLett_125_226403 crossref_primary_10_1038_s41598_024_63354_8 crossref_primary_10_1021_acs_nanolett_7b04604 crossref_primary_10_1016_j_cjph_2023_05_006 crossref_primary_10_1039_C8CP02190B crossref_primary_10_1016_j_mtcomm_2024_108891 crossref_primary_10_1021_acs_jpclett_2c00245 crossref_primary_10_1063_5_0202832 crossref_primary_10_1103_PhysRevB_98_085144 crossref_primary_10_1016_j_isci_2023_108025 crossref_primary_10_1103_PhysRevB_97_165402 crossref_primary_10_1103_PhysRevB_105_045303 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1088_1674_1056_ad9e96 crossref_primary_10_1039_D1CP02436A crossref_primary_10_1021_acs_nanolett_7b04453 crossref_primary_10_1103_PhysRevB_110_235414 crossref_primary_10_1039_D2CP04146D crossref_primary_10_1016_j_apsusc_2021_151465 crossref_primary_10_1063_5_0062672 crossref_primary_10_1039_C9CC04919C crossref_primary_10_1103_PhysRevB_101_235419 crossref_primary_10_1103_PhysRevB_107_L161402 crossref_primary_10_1039_D2CP02559K crossref_primary_10_3390_nano12193418 crossref_primary_10_1007_s11433_024_2376_9 crossref_primary_10_1021_acsaelm_2c00374 crossref_primary_10_1103_PhysRevB_108_125304 crossref_primary_10_1021_acsaelm_3c01708 crossref_primary_10_1088_1361_6528_aa68d8 crossref_primary_10_1103_PhysRevB_109_235429 crossref_primary_10_1039_D1TC03166J crossref_primary_10_1039_D1MA00263E crossref_primary_10_1016_j_cjph_2024_02_043 crossref_primary_10_1103_PhysRevB_101_125411 crossref_primary_10_1039_D0TC02100H crossref_primary_10_1103_PhysRevB_106_205417 crossref_primary_10_1021_acsnano_3c09993 crossref_primary_10_1103_PhysRevLett_125_236102 crossref_primary_10_1002_andp_201900344 crossref_primary_10_1073_pnas_2304274120 crossref_primary_10_7498_aps_71_20220405 crossref_primary_10_1088_1361_648X_ab8b9d crossref_primary_10_1002_adfm_202420760 crossref_primary_10_1016_j_apsusc_2022_154540 crossref_primary_10_1103_PhysRevB_98_224102 crossref_primary_10_1039_D0NJ01272F crossref_primary_10_1016_j_diamond_2022_109206 crossref_primary_10_1021_acs_jpcc_6b12681 crossref_primary_10_1016_j_cplett_2018_12_027 crossref_primary_10_1021_acsanm_8b00997 crossref_primary_10_1002_adma_202414442 crossref_primary_10_1017_S1431927618008565 crossref_primary_10_1021_acs_jpcc_9b07862 crossref_primary_10_1088_2053_1583_aaf1dc |
Cites_doi | 10.1021/nl903133w 10.1126/science.1220335 10.1088/0957-4484/26/25/255704 10.1103/PhysRevLett.113.135504 10.1103/PhysRevLett.112.096802 10.1038/ncomms9339 10.1016/j.carbon.2012.05.050 10.1038/srep10872 10.1021/nl2005115 10.1063/1.4863661 10.1038/nphys2954 10.1103/PhysRevB.90.075428 10.1103/PhysRevB.84.195414 10.1088/0034-4885/76/5/056503 10.1038/nmat3965 10.1103/PhysRevB.90.115152 10.1021/nl902948m 10.1103/PhysRevLett.111.266801 10.1103/PhysRevB.89.201404 10.1038/nmat2968 10.1038/ncomms7308 10.1126/science.1102370 10.1021/nn500317r 10.1038/nature12385 10.1038/nphys2272 10.1103/PhysRevLett.115.186801 10.1103/PhysRevB.76.073103 10.1088/1367-2630/16/5/053036 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Copyright Nature Publishing Group Oct 2016 Copyright © 2016, The Author(s) 2016 The Author(s) |
Copyright_xml | – notice: The Author(s) 2016 – notice: Copyright Nature Publishing Group Oct 2016 – notice: Copyright © 2016, The Author(s) 2016 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/ncomms13168 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_ccbd77f2a15f42d1b15eff0f26622da7 PMC5462001 4220379591 27762272 10_1038_ncomms13168 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c512t-c54f42409b000cada8accb07dca129edf28b5eef9569e9f145e8230e50dbf4bc3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:04 EDT 2025 Thu Aug 21 18:45:22 EDT 2025 Fri Jul 11 15:32:46 EDT 2025 Wed Aug 13 06:12:09 EDT 2025 Thu Apr 03 06:59:17 EDT 2025 Tue Jul 01 02:31:29 EDT 2025 Thu Apr 24 22:50:19 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-c54f42409b000cada8accb07dca129edf28b5eef9569e9f145e8230e50dbf4bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Department of Physics, Columbia University, New York, NY 10027, USA |
ORCID | 0000-0003-3701-8119 0000-0003-1610-5424 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms13168 |
PMID | 27762272 |
PQID | 1830349272 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ccbd77f2a15f42d1b15eff0f26622da7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462001 proquest_miscellaneous_1835505974 proquest_journals_1830349272 pubmed_primary_27762272 crossref_citationtrail_10_1038_ncomms13168 crossref_primary_10_1038_ncomms13168 springer_journals_10_1038_ncomms13168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-20 |
PublicationDateYYYYMMDD | 2016-10-20 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Altenburg, Berndt (CR19) 2014; 16 Decker (CR8) 2011; 11 Geim, Grigorieva (CR1) 2013; 499 Meza, Lubin, Thoyer, Cousty (CR20) 2015; 26 Song, Shytov, Levitov (CR25) 2013; 111 Xue (CR7) 2011; 10 Jung, DaSilva, MacDonald, Adam (CR12) 2015; 6 Boneschanscher, Hämäläinen, Liljeroth, Swart (CR27) 2014; 8 Trambly De, Mayou, Magaud (CR2) 2010; 10 San-Jose, Gutiérrez-Rubio, Sturla, Guinea (CR15) 2014; 90 Xu (CR18) 2012; 50 San-Jose, Gutiérrez-Rubio, Sturla, Guinea (CR10) 2014; 90 Woods (CR22) 2014; 10 Neek-Amal, Peeters (CR24) 2014; 104 Yankowitz (CR9) 2012; 8 Stroscio, Celotta (CR28) 2004; 306 McCann, Koshino (CR3) 2013; 76 Bokdam, Amlaki, Brocks, Kelly (CR14) 2014; 89 Slotman (CR26) 2015; 115 Kumar, Er, Dong, Li, Shenoy (CR13) 2015; 5 Wang (CR5) 2015; 6 Mashoff (CR16) 2010; 10 Sachs, Wehling, Katsnelson, Lichtenstein (CR23) 2011; 84 Yankowitz (CR21) 2014; 13 van Wijk, Schuring, Katsnelson, Fasolino (CR11) 2014; 113 Klimov (CR17) 2012; 336 Giovannetti, Khomyakov, Brocks, Kelly, van der Brink (CR6) 2007; 76 Zhang, Triola, Rossi (CR4) 2014; 112 AK Geim (BFncomms13168_CR1) 2013; 499 JA Stroscio (BFncomms13168_CR28) 2004; 306 SJ Altenburg (BFncomms13168_CR19) 2014; 16 MP Boneschanscher (BFncomms13168_CR27) 2014; 8 JCW Song (BFncomms13168_CR25) 2013; 111 J Xue (BFncomms13168_CR7) 2011; 10 NN Klimov (BFncomms13168_CR17) 2012; 336 T Mashoff (BFncomms13168_CR16) 2010; 10 H Kumar (BFncomms13168_CR13) 2015; 5 JA Meza (BFncomms13168_CR20) 2015; 26 M Neek-Amal (BFncomms13168_CR24) 2014; 104 M Yankowitz (BFncomms13168_CR9) 2012; 8 G Giovannetti (BFncomms13168_CR6) 2007; 76 M Bokdam (BFncomms13168_CR14) 2014; 89 J Jung (BFncomms13168_CR12) 2015; 6 R Decker (BFncomms13168_CR8) 2011; 11 M Yankowitz (BFncomms13168_CR21) 2014; 13 B Sachs (BFncomms13168_CR23) 2011; 84 P San-Jose (BFncomms13168_CR15) 2014; 90 MM van Wijk (BFncomms13168_CR11) 2014; 113 CR Woods (BFncomms13168_CR22) 2014; 10 P Xu (BFncomms13168_CR18) 2012; 50 E McCann (BFncomms13168_CR3) 2013; 76 LG Trambly De (BFncomms13168_CR2) 2010; 10 Z Wang (BFncomms13168_CR5) 2015; 6 P San-Jose (BFncomms13168_CR10) 2014; 90 G Slotman (BFncomms13168_CR26) 2015; 115 J Zhang (BFncomms13168_CR4) 2014; 112 26391068 - Nat Commun. 2015 Sep 22;6:8339 24655268 - Phys Rev Lett. 2014 Mar 7;112(9):096802 26565485 - Phys Rev Lett. 2015 Oct 30;115(18):186801 20121163 - Nano Lett. 2010 Mar 10;10(3):804-8 25302903 - Phys Rev Lett. 2014 Sep 26;113(13):135504 24776537 - Nat Mater. 2014 Aug;13(8):786-9 22723417 - Science. 2012 Jun 22;336(6088):1557-61 23604050 - Rep Prog Phys. 2013 May;76(5):056503 24483808 - Phys Rev Lett. 2013 Dec 27;111(26):266801 25695638 - Nat Commun. 2015 Feb 19;6:6308 23887427 - Nature. 2013 Jul 25;499(7459):419-25 21553853 - Nano Lett. 2011 Jun 8;11(6):2291-5 26076932 - Sci Rep. 2015 Jun 16;5:10872 26040291 - Nanotechnology. 2015 Jan 26;26(25):255704 20058873 - Nano Lett. 2010 Feb 10;10(2):461-5 15358867 - Science. 2004 Oct 8;306(5694):242-7 21317900 - Nat Mater. 2011 Apr;10(4):282-5 24559211 - ACS Nano. 2014 Mar 25;8(3):3006-14 |
References_xml | – volume: 10 start-page: 461 year: 2010 end-page: 465 ident: CR16 article-title: Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide publication-title: Nano Lett. doi: 10.1021/nl903133w – volume: 336 start-page: 1557 year: 2012 end-page: 1561 ident: CR17 article-title: Electromechanical properties of graphene drumheads publication-title: Science doi: 10.1126/science.1220335 – volume: 26 start-page: 255704 year: 2015 ident: CR20 article-title: Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies publication-title: Nanotechnology doi: 10.1088/0957-4484/26/25/255704 – volume: 113 start-page: 135504 year: 2014 ident: CR11 article-title: Moiré patterns as a probe of interplanar interactions for graphene on h-BN publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.135504 – volume: 112 start-page: 096802 year: 2014 ident: CR4 article-title: Proximity effect in graphene—topological-insulator heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.096802 – volume: 6 start-page: 8339 year: 2015 ident: CR5 article-title: Strong interface-induced spin—orbit interaction in graphene on WS publication-title: Nat. Commun. doi: 10.1038/ncomms9339 – volume: 50 start-page: 4633 year: 2012 end-page: 4639 ident: CR18 article-title: New scanning tunneling microscopy technique enables systematic study of the unique electronic transition from graphite to graphene publication-title: Carbon doi: 10.1016/j.carbon.2012.05.050 – volume: 5 start-page: 10872 year: 2015 ident: CR13 article-title: Elastic deformations in 2D van der Waals heterostructures and their impact on optoelectronic properties: predictions from a multiscale computational approach publication-title: Sci. Rep. doi: 10.1038/srep10872 – volume: 11 start-page: 2291 year: 2011 end-page: 2295 ident: CR8 article-title: Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy publication-title: Nano Lett. doi: 10.1021/nl2005115 – volume: 104 start-page: 041909 year: 2014 ident: CR24 article-title: Graphene on boron-nitride: moiré pattern in the van der Waals energy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4863661 – volume: 10 start-page: 451 year: 2014 end-page: 456 ident: CR22 article-title: Commensurate-incommensurate transition in graphene on hexagonal boron nitride publication-title: Nat. Phys. doi: 10.1038/nphys2954 – volume: 90 start-page: 075428 year: 2014 ident: CR10 article-title: Spontaneous strains and gap in graphene on boron nitride publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.075428 – volume: 84 start-page: 195414 year: 2011 ident: CR23 article-title: Adhesion and electronic structure of graphene on hexagonal boron nitride substrates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195414 – volume: 76 start-page: 056503 year: 2013 ident: CR3 article-title: The electronic properties of bilayer graphene publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/5/056503 – volume: 13 start-page: 786 year: 2014 end-page: 789 ident: CR21 article-title: Electric field control of soliton motion and stacking in trilayer graphene publication-title: Nat. Mater. doi: 10.1038/nmat3965 – volume: 90 start-page: 115152 year: 2014 ident: CR15 article-title: Electronic structure of spontaneously strained graphene on hexagonal boron nitride publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.115152 – volume: 10 start-page: 804 year: 2010 end-page: 808 ident: CR2 article-title: Localization of Dirac electrons in rotated graphene bilayers publication-title: Nano Lett. doi: 10.1021/nl902948m – volume: 111 start-page: 266801 year: 2013 ident: CR25 article-title: Electron interactions and gap opening in graphene superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.266801 – volume: 89 start-page: 201404 year: 2014 ident: CR14 article-title: Band gaps in incommensurable graphene on hexagonal boron nitride publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.201404 – volume: 10 start-page: 282 year: 2011 end-page: 285 ident: CR7 article-title: Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride publication-title: Nat. Mater. doi: 10.1038/nmat2968 – volume: 6 start-page: 6308 year: 2015 ident: CR12 article-title: Origin of band gaps in graphene on hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/ncomms7308 – volume: 306 start-page: 242 year: 2004 end-page: 247 ident: CR28 article-title: Controlling the dynamics of a single atom in lateral atom manipulation publication-title: Science doi: 10.1126/science.1102370 – volume: 8 start-page: 3006 year: 2014 end-page: 3014 ident: CR27 article-title: Sample corrugation affects the apparent bond lengths in atomic force microscopy publication-title: ACS Nano doi: 10.1021/nn500317r – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR1 article-title: Van der waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 8 start-page: 382 year: 2012 end-page: 386 ident: CR9 article-title: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride publication-title: Nat. Phys. doi: 10.1038/nphys2272 – volume: 115 start-page: 186801 year: 2015 ident: CR26 article-title: Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.186801 – volume: 76 start-page: 073103 year: 2007 ident: CR6 article-title: Substrate-induced band gap in graphene on hexagonal boron nitride: density functional calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.073103 – volume: 16 start-page: 053036 year: 2014 ident: CR19 article-title: Local work function and STM tip-induced distortion of graphene on Ir(111) publication-title: New. J. Phys. doi: 10.1088/1367-2630/16/5/053036 – volume: 10 start-page: 804 year: 2010 ident: BFncomms13168_CR2 publication-title: Nano Lett. doi: 10.1021/nl902948m – volume: 115 start-page: 186801 year: 2015 ident: BFncomms13168_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.186801 – volume: 90 start-page: 075428 year: 2014 ident: BFncomms13168_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.075428 – volume: 84 start-page: 195414 year: 2011 ident: BFncomms13168_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195414 – volume: 90 start-page: 115152 year: 2014 ident: BFncomms13168_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.115152 – volume: 336 start-page: 1557 year: 2012 ident: BFncomms13168_CR17 publication-title: Science doi: 10.1126/science.1220335 – volume: 10 start-page: 282 year: 2011 ident: BFncomms13168_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat2968 – volume: 76 start-page: 056503 year: 2013 ident: BFncomms13168_CR3 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/5/056503 – volume: 76 start-page: 073103 year: 2007 ident: BFncomms13168_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.073103 – volume: 6 start-page: 6308 year: 2015 ident: BFncomms13168_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms7308 – volume: 6 start-page: 8339 year: 2015 ident: BFncomms13168_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms9339 – volume: 113 start-page: 135504 year: 2014 ident: BFncomms13168_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.135504 – volume: 111 start-page: 266801 year: 2013 ident: BFncomms13168_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.266801 – volume: 499 start-page: 419 year: 2013 ident: BFncomms13168_CR1 publication-title: Nature doi: 10.1038/nature12385 – volume: 5 start-page: 10872 year: 2015 ident: BFncomms13168_CR13 publication-title: Sci. Rep. doi: 10.1038/srep10872 – volume: 104 start-page: 041909 year: 2014 ident: BFncomms13168_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4863661 – volume: 11 start-page: 2291 year: 2011 ident: BFncomms13168_CR8 publication-title: Nano Lett. doi: 10.1021/nl2005115 – volume: 10 start-page: 451 year: 2014 ident: BFncomms13168_CR22 publication-title: Nat. Phys. doi: 10.1038/nphys2954 – volume: 112 start-page: 096802 year: 2014 ident: BFncomms13168_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.096802 – volume: 8 start-page: 3006 year: 2014 ident: BFncomms13168_CR27 publication-title: ACS Nano doi: 10.1021/nn500317r – volume: 16 start-page: 053036 year: 2014 ident: BFncomms13168_CR19 publication-title: New. J. Phys. doi: 10.1088/1367-2630/16/5/053036 – volume: 26 start-page: 255704 year: 2015 ident: BFncomms13168_CR20 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/25/255704 – volume: 13 start-page: 786 year: 2014 ident: BFncomms13168_CR21 publication-title: Nat. Mater. doi: 10.1038/nmat3965 – volume: 50 start-page: 4633 year: 2012 ident: BFncomms13168_CR18 publication-title: Carbon doi: 10.1016/j.carbon.2012.05.050 – volume: 306 start-page: 242 year: 2004 ident: BFncomms13168_CR28 publication-title: Science doi: 10.1126/science.1102370 – volume: 89 start-page: 201404 year: 2014 ident: BFncomms13168_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.201404 – volume: 10 start-page: 461 year: 2010 ident: BFncomms13168_CR16 publication-title: Nano Lett. doi: 10.1021/nl903133w – volume: 8 start-page: 382 year: 2012 ident: BFncomms13168_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys2272 – reference: 23604050 - Rep Prog Phys. 2013 May;76(5):056503 – reference: 24655268 - Phys Rev Lett. 2014 Mar 7;112(9):096802 – reference: 23887427 - Nature. 2013 Jul 25;499(7459):419-25 – reference: 26565485 - Phys Rev Lett. 2015 Oct 30;115(18):186801 – reference: 20121163 - Nano Lett. 2010 Mar 10;10(3):804-8 – reference: 26040291 - Nanotechnology. 2015 Jan 26;26(25):255704 – reference: 15358867 - Science. 2004 Oct 8;306(5694):242-7 – reference: 21553853 - Nano Lett. 2011 Jun 8;11(6):2291-5 – reference: 21317900 - Nat Mater. 2011 Apr;10(4):282-5 – reference: 20058873 - Nano Lett. 2010 Feb 10;10(2):461-5 – reference: 22723417 - Science. 2012 Jun 22;336(6088):1557-61 – reference: 25695638 - Nat Commun. 2015 Feb 19;6:6308 – reference: 26076932 - Sci Rep. 2015 Jun 16;5:10872 – reference: 24776537 - Nat Mater. 2014 Aug;13(8):786-9 – reference: 24483808 - Phys Rev Lett. 2013 Dec 27;111(26):266801 – reference: 26391068 - Nat Commun. 2015 Sep 22;6:8339 – reference: 25302903 - Phys Rev Lett. 2014 Sep 26;113(13):135504 – reference: 24559211 - ACS Nano. 2014 Mar 25;8(3):3006-14 |
SSID | ssj0000391844 |
Score | 2.5720572 |
Snippet | Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The... Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13168 |
SubjectTerms | 639/301/119/995 639/925/918/1052 Boron Composite materials Electrons Graphene Humanities and Social Sciences Hydrostatic pressure multidisciplinary Physics Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EELyIb-uLCHoRim2aNN2jLi4i6EnBW8kTBe3K7nrw3zuTdpddFbx4KaVNYZiZ5JvpJN8AnHJZUSQQUk1baETmi9RIqdOyCNJZ62ylqaJ7d1_ePIrbJ_k01-qL9oS19MCt4i6sNU6pwHUug-AuN7n0IWQBgYVzp-M5csS8uWQqrsFFD1MX0R3Iy4rqokEDvo1z6tO0AEGRqf-38PLnLslvpdKIQIN1WOtCR3bZirwBS77ZhJW2meTnFvTbk34jn2KajQZzjGShThbEBsEwCrT0W5wNA4ss1bjIsWHDDFEYMJzYoxfnt-FxcP3Qv0m7FgmpRaSe4FWgVjBHIzC32ulKo8Iy5axGIPcu8MpI7wNmQT3fC7mQniprXmbOBGFssQPLzbDxe8C8VUWulSkCZlBVJXqWl9IYpTOPd84mcD7VWm07_nBqY_Faxzp2UdVzKk7gdDb4vaXN-H3YFal_NoS4ruMD9IC684D6Lw9I4HBqvLqbgOMaVypi3uGKJ3Aye41Th-ohuvHDjziG8jPMqBLYbW09k4QrRIn4tVrwggVRF980L8-RnluKkjaqJXA29Zc5sX7qYP8_dHAAqxjJlQSqPDuE5cnowx9htDQxx3FifAHyfRgf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIX1PIMfchI5YIUNXHs2HtCUHVbIcGJSr1FfkIlSMru9sC_Z8bxhm5bcYmsxIkmnrFnxjP-BuCQS02WQCwNpdCIKjSlldKUbROld847bSii--Vre3YuPl_Ii7zhtsxples1MS3UfnC0R36EokdQKlzxD1e_S6oaRdHVXELjITyqUdNQSpeen057LIR-roXIx_KqRh_1-Mlfy5qqNW0oooTXf5-ReTdX8lbANOmh-TY8zQYk-zhyfAcehP4ZPB5LSv7BVkrpdMvncDye_FuEEt1uZKBnRBVVtiB0CIZWoaNtcjZEllCrcdFjQ88sQRownOiLSx9ewPn85NvxWZlLJpQONfcKryIKVNKEdFg54402ztlKeWdQsQcfubYyhIhe0SzMYi1koEhbkJW3UVjXvIStfujDa2DBqaY2yjYRPSqtxczxVlqrTBWw5V0B79fj17mMJ05lLX52Ka7d6O7GYBdwOHW-GmE07u_2iRgxdSHs63RjWHzv8lTq8Ie8UpGbWuK_-trWMsRYRRQAzr1RBeyt2djlCbns_olPAW-nxziVKD5i-jBcpz7kr6GHVcCrkesTJVyh1khvqw152CB180l_-SPBdUvRUuJaAe_WknODrLtj8Ob_5O_CE7TZWlKfvNqDrdXiOuyjXbSyB0n4_wJWWRF0 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ahEIvIX3GSVpUSC8FU1uWLO1xGxrCQntpA7kZPdtAa5fdzaH_vjOy1uwmOfRibGsEo-fMaEbfAJxxqUkTiKWhEBpRhaa0UpqybaL0znmnDXl0v3xtL6_E4lpeZ5ztVQ6rHCEt0za9iQ772OPX71VNaZYewz5htOOk3p_PF98W05EKgZ1rIfItvKrR27V25E6C539Ip7wfGnnHP5rEzsUhHGR9kc1HDp_Bo9A_hydjBsm_L-B8vN63DCXa1jhKnhEvlL6CICAYqn6OzsLZEFmCpsadjQ09s4RbwHA1L298eAlXF5-_n1-WOS9C6VA8r_EpokBJTHCGlTPeaOOcrZR3BqV38JFrK0OIaPrMwizWQgZypwVZeRuFdc0r2OuHPhwBC041tVG2iWg2aS1mjrfSWmWqgG_eFfBh02udy6DhlLviV5ec143utrq4gLOJ-M-IlfEw2Sfq_omEAK7Tj2H5o8sD3mGDvFKRm1piW31taxlirCLqE5x7owo43Qxel1fdqsPtieB2uOIFvJuKcb2QE8T0YbhNNGSUoRlVwOtxrCdOuELRkGqrnVmww-puSX_zM2FyS9FSdFoB7zfzZYut-31w_J90J_AUNbSWhCWvTmFvvbwNb1ALWtu3efb_A9BgDIQ priority: 102 providerName: Springer Nature |
Title | Pressure-induced commensurate stacking of graphene on boron nitride |
URI | https://link.springer.com/article/10.1038/ncomms13168 https://www.ncbi.nlm.nih.gov/pubmed/27762272 https://www.proquest.com/docview/1830349272 https://www.proquest.com/docview/1835505974 https://pubmed.ncbi.nlm.nih.gov/PMC5462001 https://doaj.org/article/ccbd77f2a15f42d1b15eff0f26622da7 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY91X3bXBg-5l4M2WLct5GCMNzUqgZWwL5M3ocyu09uqksP73u5Pt0LRhL7axZTjd6XR3Oul3AMeMF-QJuEjSFpostmmkOJdRnjputDa6kJTRPb_Iz2bZdM7nW9AX4-wYuNgY2lE9qVlz9fHvzd0XVPjP7ZHx4lOFsrleJFSCaRt20SQJKmVw3vn5fkpOhxjJZN35vAf_rFkkD9y_ydt8vGnyQebUG6TJc3jWeZLhqBX9HmzZ6gU8aWtL3uGT39upFy9h3B4BbGyE8TdK0oREFZW4IJiIEN1DTevlYe1CD1-Ns19YV6EibIMQNb65NPYVzCanP8dnUVc7IdJowpd4zVyG1pogD2MtjSyk1ioWRku08NY4VihurcPwaGiHLsm4pZSb5bFRLlM6fQ07VV3ZfQitFmkihUodhlZFkQ01y7lSQsYWn4wO4EPPv1J3wOJU3-Kq9AnutCjvMTuA41XjPy2exuZmJySIVRMCwfYv6uZX2elUiR0yQjgmE459NYlKuHUuduhzMGakCOCwF2PZD6wSpzCC5GGCBfBu9Rl1ihIlsrL1rW9DgRuGWgG8aaW-ooQJNB_-b7E2HtZIXf9SXf72uN08y2kHWwDv-5Fzj6zHPDj4P_lv4Sk6bznZURYfws6yubVH6CAt1QC2xVzgtZh8HcDuaDT9McX7yenFt-_4dpyPB37pYeCV5B-S-xsl |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChipvSBFTRw7zh4QgsKypY9TK_UW_IRKkJTdrVD_FL-RGSdZurTi1ksUJU40tsfz8Iy_AdjgsiJLIKSaUmhE5ovUSKnTsgjSWetspSmiu39QTo7E52N5vAK_h7MwlFY5yMQoqF1raY98C1mPoFS44m9Pf6ZUNYqiq0MJjY4tdv35L3TZZm92PuD8bnI-_ni4PUn7qgKpReU2x6sIAvUYgQFmVjtdaWtNppzVqPu8C7wy0vuAjsPIj0IupKdglJeZM0EYW-B_b8BNUaAmp5Pp40-LPR1CW6-E6I8BZkW11WAXfsxyqg61pPhifYCrjNrLuZn_BGij3hvfg7u9wcredRx2H1Z88wBudSUsz_EuppDa2UPY7k4aTn2Kbj4yjGNEFVXSIDQKhlaopW151gYWUbJRyLK2YYYgFBgKlumJ84_g6FoG8zGsNm3jnwDzVhW5VqYI6MFVlRhZXkpjlM483jmbwOth_Grb45dTGY3vdYyjF1V9YbAT2Fg0Pu1gO65u9p4mYtGEsLbjg3b6te6Xbo0dckoFrnOJfXW5yaUPIQto2nDutEpgfZjGuhcAs_ovuybwavEaly7FY3Tj27PYhvxD9OgSWOtmfUEJV6il4tdqiR-WSF1-05x8i_DgUpSUKJfA5sA5F8i6PAZP_0_-S7g9Odzfq_d2DnafwR20F0tS3Txbh9X59Mw_R5tsbl7EhcDgy3WvvD8JI1A- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKBeEG8MBRapvSBZsde7XueAEH1ELYWoQlTqzewTKhW7JKlQ_xq_jhk_QkMrbr1EVryJZnfnuTP7DcAGlwV5AiHWVEIjEp_FRkod51mQzlpnC00Z3U-TfO9IfDiWxyvwu78LQ2WVvU5sFLWrLZ2RD5H1CEqFKz4MXVnE4c743dnPmDpIUaa1b6fRssiBv_iF4dvs7f4O7vUm5-PdL9t7cddhILZo6Ob4KYJAm0bAgInVThfaWpMoZzXaQe8CL4z0PmAQMfKjkArpKTHlZeJMEMZm-L-3YFVRVDSA1a3dyeHnxQkPYa8XQnSXApOsGFY4oR-zlHpFLZnBplvAdS7u1UrNf9K1jRUc34O7nfvK3rf8dh9WfPUAbrcNLS_wqSkotbOHsN3eO5z6GIN-ZB_HiCrqq0HYFAx9UkuH9KwOrMHMRpXL6ooZAlRgqGamJ84_gqMbWc7HMKjqyj8F5q3KUq1MFjCeKwoxsjyXxiideHxyNoI3_fqVtkMzp6Yap2WTVc-K8tJiR7CxGHzWgnhcP2yLNmIxhJC3my_q6beyE-QSJ-SUClynEufqUpNKH0IS0NHh3GkVwXq_jWWnDmblX-aN4PXiNQoyZWd05evzZgxFixjfRfCk3fUFJVyhzWp-rZb4YYnU5TfVyfcGLFyKnMrmItjsOecSWVfX4Nn_yX8Fd1Dqyo_7k4PnsIbOY052nCfrMJhPz_0LdNDm5mUnCQy-3rTw_QHcNlXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure-induced+commensurate+stacking+of+graphene+on+boron+nitride&rft.jtitle=Nature+communications&rft.au=Yankowitz%2C+Matthew&rft.au=Watanabe%2C+K&rft.au=Taniguchi%2C+T&rft.au=San-jose%2C+Pablo&rft.date=2016-10-20&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=7&rft.spage=13168&rft_id=info:doi/10.1038%2Fncomms13168&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4220379591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |