Pressure-induced commensurate stacking of graphene on boron nitride

Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on th...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; no. 1; pp. 13168 - 8
Main Authors Yankowitz, Matthew, Watanabe, K., Taniguchi, T., San-Jose, Pablo, LeRoy, Brian J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.10.2016
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure. Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the interaction between layers by application of pressure with a scanning tunnelling microscopy tip.
AbstractList Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.
Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure. Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the interaction between layers by application of pressure with a scanning tunnelling microscopy tip.
Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the interaction between layers by application of pressure with a scanning tunnelling microscopy tip.
Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.
ArticleNumber 13168
Author San-Jose, Pablo
Watanabe, K.
Taniguchi, T.
LeRoy, Brian J.
Yankowitz, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  surname: Yankowitz
  fullname: Yankowitz, Matthew
  organization: Physics Department, University of Arizona, Present address: Department of Physics, Columbia University, New York, NY 10027, USA
– sequence: 2
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: National Institute for Materials Science
– sequence: 3
  givenname: T.
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: National Institute for Materials Science
– sequence: 4
  givenname: Pablo
  surname: San-Jose
  fullname: San-Jose, Pablo
  organization: Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
– sequence: 5
  givenname: Brian J.
  orcidid: 0000-0003-1610-5424
  surname: LeRoy
  fullname: LeRoy, Brian J.
  email: leroy@physics.arizona.edu
  organization: Physics Department, University of Arizona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27762272$$D View this record in MEDLINE/PubMed
BookMark eNptkk9PHCEchkmjqXbrqXcziZcm7VpgYJi5mDSbtpqY2EN7Jgz8GFlnYAXGpN--bFeb1cgBCDw8vPx5hw588IDQB4LPCa7bL16HaUqkJk37Bh1TzMiSCFof7PWP0ElKa1xK3ZGWsbfoiArRUCroMVr9jJDSHGHpvJk1mGorBF-GVIYqZaXvnB-qYKshqs0teKiCr_oQS-1djs7Ae3Ro1Zjg5LFdoN_fv_1aXS6vb35crb5eLzUnNJeaWUYZ7voSRSujWqV1j4XRitAOjKVtzwFsx5sOOksYh5bWGDg2vWW9rhfoauc1Qa3lJrpJxT8yKCf_DYQ4SBWz0yPIIjZCWKoIL3sa0hMO1mJLm3Juo0RxXexcm7mfwGjwOarxmfT5jHe3cggPkrOGYkyK4OOjIIb7GVKWk0saxlF5CHOSpK05x7wTrKBnL9B1mKMvV7WlcM268hSFOt1P9D_K01sVgOwAHUNKEazULqvswjagGyXBcvsl5N6XKGs-vVjzpH2d_ryjU6H8AHEv6Cv4X80iyPc
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_157766
crossref_primary_10_1002_smll_202305870
crossref_primary_10_1103_PhysRevB_102_115421
crossref_primary_10_1063_5_0159598
crossref_primary_10_1088_2053_1583_3_4_042001
crossref_primary_10_1021_acsami_3c03553
crossref_primary_10_1063_5_0117670
crossref_primary_10_1088_2053_1583_ab0113
crossref_primary_10_1088_1361_648X_ace86f
crossref_primary_10_1016_j_scib_2019_11_023
crossref_primary_10_1002_adfm_202002672
crossref_primary_10_1088_1361_6528_acb442
crossref_primary_10_1016_j_physleta_2023_129048
crossref_primary_10_1039_D0NH00395F
crossref_primary_10_1063_5_0123283
crossref_primary_10_1016_j_carbon_2019_08_054
crossref_primary_10_1038_s41586_018_0107_1
crossref_primary_10_1007_s40042_023_00936_1
crossref_primary_10_1016_j_carbon_2024_119532
crossref_primary_10_3390_molecules28145607
crossref_primary_10_1039_C7NR07395J
crossref_primary_10_1103_PhysRevB_103_165112
crossref_primary_10_1016_j_cossms_2020_100837
crossref_primary_10_1088_2053_1583_ada621
crossref_primary_10_1103_PhysRevB_96_155416
crossref_primary_10_1103_PhysRevLett_128_226101
crossref_primary_10_1021_acs_langmuir_3c01546
crossref_primary_10_1016_j_apsusc_2020_146740
crossref_primary_10_1140_epjp_s13360_023_03682_2
crossref_primary_10_1039_C7CS00210F
crossref_primary_10_1088_2053_1591_aaf5a0
crossref_primary_10_1016_j_apcatb_2018_07_011
crossref_primary_10_1002_smll_202105877
crossref_primary_10_1038_s41699_021_00281_6
crossref_primary_10_1039_C7RA06865D
crossref_primary_10_7498_aps_72_20230318
crossref_primary_10_1039_C9CP00374F
crossref_primary_10_1039_D2CP02054H
crossref_primary_10_1088_1361_648X_ad987d
crossref_primary_10_1039_D2NJ05606B
crossref_primary_10_1016_j_nanoen_2025_110854
crossref_primary_10_1021_acsnano_7b02716
crossref_primary_10_1103_PhysRevApplied_17_034013
crossref_primary_10_1016_j_ijhydene_2018_07_008
crossref_primary_10_1016_j_surfin_2024_105608
crossref_primary_10_1039_D2NR07252A
crossref_primary_10_1039_C7FD00104E
crossref_primary_10_1021_acsnano_0c03414
crossref_primary_10_1103_PhysRevLett_127_266801
crossref_primary_10_1016_j_apsusc_2022_156095
crossref_primary_10_1016_j_surfin_2022_101725
crossref_primary_10_1016_j_physb_2018_11_029
crossref_primary_10_1016_j_pmatsci_2024_101325
crossref_primary_10_1103_PhysRevB_107_035416
crossref_primary_10_1039_D5TA00818B
crossref_primary_10_1021_acsnano_1c11498
crossref_primary_10_1016_j_spmi_2021_106981
crossref_primary_10_1103_PhysRevB_108_085432
crossref_primary_10_1126_sciadv_aay8897
crossref_primary_10_1039_D1TC01278A
crossref_primary_10_1038_s42254_018_0016_0
crossref_primary_10_1016_j_aop_2023_169553
crossref_primary_10_1016_j_physe_2020_114481
crossref_primary_10_1039_D4CP01174K
crossref_primary_10_1016_j_physleta_2017_08_057
crossref_primary_10_1088_1361_6463_ab9782
crossref_primary_10_1038_s41467_025_56055_x
crossref_primary_10_1039_D3CP04546C
crossref_primary_10_1016_j_mssp_2025_109416
crossref_primary_10_1088_1361_6633_acfe89
crossref_primary_10_1021_jacs_3c11984
crossref_primary_10_1088_2053_1583_4_1_015027
crossref_primary_10_1021_acsnano_1c04286
crossref_primary_10_1021_acs_jpcc_3c01249
crossref_primary_10_1039_C9CP04654B
crossref_primary_10_1039_D0NJ05787H
crossref_primary_10_1063_5_0104799
crossref_primary_10_1039_D1TA02645C
crossref_primary_10_20517_microstructures_2023_100
crossref_primary_10_1039_C8CP04360D
crossref_primary_10_1016_j_apsusc_2020_148389
crossref_primary_10_3390_molecules29153554
crossref_primary_10_1039_C9TA00624A
crossref_primary_10_1103_PhysRevB_104_165421
crossref_primary_10_1016_j_physleta_2021_127594
crossref_primary_10_1103_PhysRevB_95_035432
crossref_primary_10_1103_PhysRevB_101_224107
crossref_primary_10_1016_j_diamond_2023_110663
crossref_primary_10_1016_j_jmps_2024_105693
crossref_primary_10_1039_C8CP03508C
crossref_primary_10_1038_s41467_024_46672_3
crossref_primary_10_1103_PhysRevLett_125_226403
crossref_primary_10_1038_s41598_024_63354_8
crossref_primary_10_1021_acs_nanolett_7b04604
crossref_primary_10_1016_j_cjph_2023_05_006
crossref_primary_10_1039_C8CP02190B
crossref_primary_10_1016_j_mtcomm_2024_108891
crossref_primary_10_1021_acs_jpclett_2c00245
crossref_primary_10_1063_5_0202832
crossref_primary_10_1103_PhysRevB_98_085144
crossref_primary_10_1016_j_isci_2023_108025
crossref_primary_10_1103_PhysRevB_97_165402
crossref_primary_10_1103_PhysRevB_105_045303
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1088_1674_1056_ad9e96
crossref_primary_10_1039_D1CP02436A
crossref_primary_10_1021_acs_nanolett_7b04453
crossref_primary_10_1103_PhysRevB_110_235414
crossref_primary_10_1039_D2CP04146D
crossref_primary_10_1016_j_apsusc_2021_151465
crossref_primary_10_1063_5_0062672
crossref_primary_10_1039_C9CC04919C
crossref_primary_10_1103_PhysRevB_101_235419
crossref_primary_10_1103_PhysRevB_107_L161402
crossref_primary_10_1039_D2CP02559K
crossref_primary_10_3390_nano12193418
crossref_primary_10_1007_s11433_024_2376_9
crossref_primary_10_1021_acsaelm_2c00374
crossref_primary_10_1103_PhysRevB_108_125304
crossref_primary_10_1021_acsaelm_3c01708
crossref_primary_10_1088_1361_6528_aa68d8
crossref_primary_10_1103_PhysRevB_109_235429
crossref_primary_10_1039_D1TC03166J
crossref_primary_10_1039_D1MA00263E
crossref_primary_10_1016_j_cjph_2024_02_043
crossref_primary_10_1103_PhysRevB_101_125411
crossref_primary_10_1039_D0TC02100H
crossref_primary_10_1103_PhysRevB_106_205417
crossref_primary_10_1021_acsnano_3c09993
crossref_primary_10_1103_PhysRevLett_125_236102
crossref_primary_10_1002_andp_201900344
crossref_primary_10_1073_pnas_2304274120
crossref_primary_10_7498_aps_71_20220405
crossref_primary_10_1088_1361_648X_ab8b9d
crossref_primary_10_1002_adfm_202420760
crossref_primary_10_1016_j_apsusc_2022_154540
crossref_primary_10_1103_PhysRevB_98_224102
crossref_primary_10_1039_D0NJ01272F
crossref_primary_10_1016_j_diamond_2022_109206
crossref_primary_10_1021_acs_jpcc_6b12681
crossref_primary_10_1016_j_cplett_2018_12_027
crossref_primary_10_1021_acsanm_8b00997
crossref_primary_10_1002_adma_202414442
crossref_primary_10_1017_S1431927618008565
crossref_primary_10_1021_acs_jpcc_9b07862
crossref_primary_10_1088_2053_1583_aaf1dc
Cites_doi 10.1021/nl903133w
10.1126/science.1220335
10.1088/0957-4484/26/25/255704
10.1103/PhysRevLett.113.135504
10.1103/PhysRevLett.112.096802
10.1038/ncomms9339
10.1016/j.carbon.2012.05.050
10.1038/srep10872
10.1021/nl2005115
10.1063/1.4863661
10.1038/nphys2954
10.1103/PhysRevB.90.075428
10.1103/PhysRevB.84.195414
10.1088/0034-4885/76/5/056503
10.1038/nmat3965
10.1103/PhysRevB.90.115152
10.1021/nl902948m
10.1103/PhysRevLett.111.266801
10.1103/PhysRevB.89.201404
10.1038/nmat2968
10.1038/ncomms7308
10.1126/science.1102370
10.1021/nn500317r
10.1038/nature12385
10.1038/nphys2272
10.1103/PhysRevLett.115.186801
10.1103/PhysRevB.76.073103
10.1088/1367-2630/16/5/053036
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Oct 2016
Copyright © 2016, The Author(s) 2016 The Author(s)
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Oct 2016
– notice: Copyright © 2016, The Author(s) 2016 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/ncomms13168
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
CrossRef



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_ccbd77f2a15f42d1b15eff0f26622da7
PMC5462001
4220379591
27762272
10_1038_ncomms13168
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c512t-c54f42409b000cada8accb07dca129edf28b5eef9569e9f145e8230e50dbf4bc3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:04 EDT 2025
Thu Aug 21 18:45:22 EDT 2025
Fri Jul 11 15:32:46 EDT 2025
Wed Aug 13 06:12:09 EDT 2025
Thu Apr 03 06:59:17 EDT 2025
Tue Jul 01 02:31:29 EDT 2025
Thu Apr 24 22:50:19 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-c54f42409b000cada8accb07dca129edf28b5eef9569e9f145e8230e50dbf4bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Department of Physics, Columbia University, New York, NY 10027, USA
ORCID 0000-0003-3701-8119
0000-0003-1610-5424
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms13168
PMID 27762272
PQID 1830349272
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_ccbd77f2a15f42d1b15eff0f26622da7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462001
proquest_miscellaneous_1835505974
proquest_journals_1830349272
pubmed_primary_27762272
crossref_citationtrail_10_1038_ncomms13168
crossref_primary_10_1038_ncomms13168
springer_journals_10_1038_ncomms13168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-20
PublicationDateYYYYMMDD 2016-10-20
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Altenburg, Berndt (CR19) 2014; 16
Decker (CR8) 2011; 11
Geim, Grigorieva (CR1) 2013; 499
Meza, Lubin, Thoyer, Cousty (CR20) 2015; 26
Song, Shytov, Levitov (CR25) 2013; 111
Xue (CR7) 2011; 10
Jung, DaSilva, MacDonald, Adam (CR12) 2015; 6
Boneschanscher, Hämäläinen, Liljeroth, Swart (CR27) 2014; 8
Trambly De, Mayou, Magaud (CR2) 2010; 10
San-Jose, Gutiérrez-Rubio, Sturla, Guinea (CR15) 2014; 90
Xu (CR18) 2012; 50
San-Jose, Gutiérrez-Rubio, Sturla, Guinea (CR10) 2014; 90
Woods (CR22) 2014; 10
Neek-Amal, Peeters (CR24) 2014; 104
Yankowitz (CR9) 2012; 8
Stroscio, Celotta (CR28) 2004; 306
McCann, Koshino (CR3) 2013; 76
Bokdam, Amlaki, Brocks, Kelly (CR14) 2014; 89
Slotman (CR26) 2015; 115
Kumar, Er, Dong, Li, Shenoy (CR13) 2015; 5
Wang (CR5) 2015; 6
Mashoff (CR16) 2010; 10
Sachs, Wehling, Katsnelson, Lichtenstein (CR23) 2011; 84
Yankowitz (CR21) 2014; 13
van Wijk, Schuring, Katsnelson, Fasolino (CR11) 2014; 113
Klimov (CR17) 2012; 336
Giovannetti, Khomyakov, Brocks, Kelly, van der Brink (CR6) 2007; 76
Zhang, Triola, Rossi (CR4) 2014; 112
AK Geim (BFncomms13168_CR1) 2013; 499
JA Stroscio (BFncomms13168_CR28) 2004; 306
SJ Altenburg (BFncomms13168_CR19) 2014; 16
MP Boneschanscher (BFncomms13168_CR27) 2014; 8
JCW Song (BFncomms13168_CR25) 2013; 111
J Xue (BFncomms13168_CR7) 2011; 10
NN Klimov (BFncomms13168_CR17) 2012; 336
T Mashoff (BFncomms13168_CR16) 2010; 10
H Kumar (BFncomms13168_CR13) 2015; 5
JA Meza (BFncomms13168_CR20) 2015; 26
M Neek-Amal (BFncomms13168_CR24) 2014; 104
M Yankowitz (BFncomms13168_CR9) 2012; 8
G Giovannetti (BFncomms13168_CR6) 2007; 76
M Bokdam (BFncomms13168_CR14) 2014; 89
J Jung (BFncomms13168_CR12) 2015; 6
R Decker (BFncomms13168_CR8) 2011; 11
M Yankowitz (BFncomms13168_CR21) 2014; 13
B Sachs (BFncomms13168_CR23) 2011; 84
P San-Jose (BFncomms13168_CR15) 2014; 90
MM van Wijk (BFncomms13168_CR11) 2014; 113
CR Woods (BFncomms13168_CR22) 2014; 10
P Xu (BFncomms13168_CR18) 2012; 50
E McCann (BFncomms13168_CR3) 2013; 76
LG Trambly De (BFncomms13168_CR2) 2010; 10
Z Wang (BFncomms13168_CR5) 2015; 6
P San-Jose (BFncomms13168_CR10) 2014; 90
G Slotman (BFncomms13168_CR26) 2015; 115
J Zhang (BFncomms13168_CR4) 2014; 112
26391068 - Nat Commun. 2015 Sep 22;6:8339
24655268 - Phys Rev Lett. 2014 Mar 7;112(9):096802
26565485 - Phys Rev Lett. 2015 Oct 30;115(18):186801
20121163 - Nano Lett. 2010 Mar 10;10(3):804-8
25302903 - Phys Rev Lett. 2014 Sep 26;113(13):135504
24776537 - Nat Mater. 2014 Aug;13(8):786-9
22723417 - Science. 2012 Jun 22;336(6088):1557-61
23604050 - Rep Prog Phys. 2013 May;76(5):056503
24483808 - Phys Rev Lett. 2013 Dec 27;111(26):266801
25695638 - Nat Commun. 2015 Feb 19;6:6308
23887427 - Nature. 2013 Jul 25;499(7459):419-25
21553853 - Nano Lett. 2011 Jun 8;11(6):2291-5
26076932 - Sci Rep. 2015 Jun 16;5:10872
26040291 - Nanotechnology. 2015 Jan 26;26(25):255704
20058873 - Nano Lett. 2010 Feb 10;10(2):461-5
15358867 - Science. 2004 Oct 8;306(5694):242-7
21317900 - Nat Mater. 2011 Apr;10(4):282-5
24559211 - ACS Nano. 2014 Mar 25;8(3):3006-14
References_xml – volume: 10
  start-page: 461
  year: 2010
  end-page: 465
  ident: CR16
  article-title: Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide
  publication-title: Nano Lett.
  doi: 10.1021/nl903133w
– volume: 336
  start-page: 1557
  year: 2012
  end-page: 1561
  ident: CR17
  article-title: Electromechanical properties of graphene drumheads
  publication-title: Science
  doi: 10.1126/science.1220335
– volume: 26
  start-page: 255704
  year: 2015
  ident: CR20
  article-title: Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/25/255704
– volume: 113
  start-page: 135504
  year: 2014
  ident: CR11
  article-title: Moiré patterns as a probe of interplanar interactions for graphene on h-BN
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.135504
– volume: 112
  start-page: 096802
  year: 2014
  ident: CR4
  article-title: Proximity effect in graphene—topological-insulator heterostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.096802
– volume: 6
  start-page: 8339
  year: 2015
  ident: CR5
  article-title: Strong interface-induced spin—orbit interaction in graphene on WS
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9339
– volume: 50
  start-page: 4633
  year: 2012
  end-page: 4639
  ident: CR18
  article-title: New scanning tunneling microscopy technique enables systematic study of the unique electronic transition from graphite to graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.05.050
– volume: 5
  start-page: 10872
  year: 2015
  ident: CR13
  article-title: Elastic deformations in 2D van der Waals heterostructures and their impact on optoelectronic properties: predictions from a multiscale computational approach
  publication-title: Sci. Rep.
  doi: 10.1038/srep10872
– volume: 11
  start-page: 2291
  year: 2011
  end-page: 2295
  ident: CR8
  article-title: Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl2005115
– volume: 104
  start-page: 041909
  year: 2014
  ident: CR24
  article-title: Graphene on boron-nitride: moiré pattern in the van der Waals energy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4863661
– volume: 10
  start-page: 451
  year: 2014
  end-page: 456
  ident: CR22
  article-title: Commensurate-incommensurate transition in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2954
– volume: 90
  start-page: 075428
  year: 2014
  ident: CR10
  article-title: Spontaneous strains and gap in graphene on boron nitride
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.075428
– volume: 84
  start-page: 195414
  year: 2011
  ident: CR23
  article-title: Adhesion and electronic structure of graphene on hexagonal boron nitride substrates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.195414
– volume: 76
  start-page: 056503
  year: 2013
  ident: CR3
  article-title: The electronic properties of bilayer graphene
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/5/056503
– volume: 13
  start-page: 786
  year: 2014
  end-page: 789
  ident: CR21
  article-title: Electric field control of soliton motion and stacking in trilayer graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3965
– volume: 90
  start-page: 115152
  year: 2014
  ident: CR15
  article-title: Electronic structure of spontaneously strained graphene on hexagonal boron nitride
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.115152
– volume: 10
  start-page: 804
  year: 2010
  end-page: 808
  ident: CR2
  article-title: Localization of Dirac electrons in rotated graphene bilayers
  publication-title: Nano Lett.
  doi: 10.1021/nl902948m
– volume: 111
  start-page: 266801
  year: 2013
  ident: CR25
  article-title: Electron interactions and gap opening in graphene superlattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.266801
– volume: 89
  start-page: 201404
  year: 2014
  ident: CR14
  article-title: Band gaps in incommensurable graphene on hexagonal boron nitride
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.201404
– volume: 10
  start-page: 282
  year: 2011
  end-page: 285
  ident: CR7
  article-title: Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2968
– volume: 6
  start-page: 6308
  year: 2015
  ident: CR12
  article-title: Origin of band gaps in graphene on hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7308
– volume: 306
  start-page: 242
  year: 2004
  end-page: 247
  ident: CR28
  article-title: Controlling the dynamics of a single atom in lateral atom manipulation
  publication-title: Science
  doi: 10.1126/science.1102370
– volume: 8
  start-page: 3006
  year: 2014
  end-page: 3014
  ident: CR27
  article-title: Sample corrugation affects the apparent bond lengths in atomic force microscopy
  publication-title: ACS Nano
  doi: 10.1021/nn500317r
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR1
  article-title: Van der waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 8
  start-page: 382
  year: 2012
  end-page: 386
  ident: CR9
  article-title: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2272
– volume: 115
  start-page: 186801
  year: 2015
  ident: CR26
  article-title: Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.186801
– volume: 76
  start-page: 073103
  year: 2007
  ident: CR6
  article-title: Substrate-induced band gap in graphene on hexagonal boron nitride: density functional calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.073103
– volume: 16
  start-page: 053036
  year: 2014
  ident: CR19
  article-title: Local work function and STM tip-induced distortion of graphene on Ir(111)
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/16/5/053036
– volume: 10
  start-page: 804
  year: 2010
  ident: BFncomms13168_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl902948m
– volume: 115
  start-page: 186801
  year: 2015
  ident: BFncomms13168_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.186801
– volume: 90
  start-page: 075428
  year: 2014
  ident: BFncomms13168_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.075428
– volume: 84
  start-page: 195414
  year: 2011
  ident: BFncomms13168_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.195414
– volume: 90
  start-page: 115152
  year: 2014
  ident: BFncomms13168_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.115152
– volume: 336
  start-page: 1557
  year: 2012
  ident: BFncomms13168_CR17
  publication-title: Science
  doi: 10.1126/science.1220335
– volume: 10
  start-page: 282
  year: 2011
  ident: BFncomms13168_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2968
– volume: 76
  start-page: 056503
  year: 2013
  ident: BFncomms13168_CR3
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/5/056503
– volume: 76
  start-page: 073103
  year: 2007
  ident: BFncomms13168_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.073103
– volume: 6
  start-page: 6308
  year: 2015
  ident: BFncomms13168_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7308
– volume: 6
  start-page: 8339
  year: 2015
  ident: BFncomms13168_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9339
– volume: 113
  start-page: 135504
  year: 2014
  ident: BFncomms13168_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.135504
– volume: 111
  start-page: 266801
  year: 2013
  ident: BFncomms13168_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.266801
– volume: 499
  start-page: 419
  year: 2013
  ident: BFncomms13168_CR1
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 5
  start-page: 10872
  year: 2015
  ident: BFncomms13168_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/srep10872
– volume: 104
  start-page: 041909
  year: 2014
  ident: BFncomms13168_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4863661
– volume: 11
  start-page: 2291
  year: 2011
  ident: BFncomms13168_CR8
  publication-title: Nano Lett.
  doi: 10.1021/nl2005115
– volume: 10
  start-page: 451
  year: 2014
  ident: BFncomms13168_CR22
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2954
– volume: 112
  start-page: 096802
  year: 2014
  ident: BFncomms13168_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.096802
– volume: 8
  start-page: 3006
  year: 2014
  ident: BFncomms13168_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn500317r
– volume: 16
  start-page: 053036
  year: 2014
  ident: BFncomms13168_CR19
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/16/5/053036
– volume: 26
  start-page: 255704
  year: 2015
  ident: BFncomms13168_CR20
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/25/255704
– volume: 13
  start-page: 786
  year: 2014
  ident: BFncomms13168_CR21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3965
– volume: 50
  start-page: 4633
  year: 2012
  ident: BFncomms13168_CR18
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.05.050
– volume: 306
  start-page: 242
  year: 2004
  ident: BFncomms13168_CR28
  publication-title: Science
  doi: 10.1126/science.1102370
– volume: 89
  start-page: 201404
  year: 2014
  ident: BFncomms13168_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.201404
– volume: 10
  start-page: 461
  year: 2010
  ident: BFncomms13168_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl903133w
– volume: 8
  start-page: 382
  year: 2012
  ident: BFncomms13168_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2272
– reference: 23604050 - Rep Prog Phys. 2013 May;76(5):056503
– reference: 24655268 - Phys Rev Lett. 2014 Mar 7;112(9):096802
– reference: 23887427 - Nature. 2013 Jul 25;499(7459):419-25
– reference: 26565485 - Phys Rev Lett. 2015 Oct 30;115(18):186801
– reference: 20121163 - Nano Lett. 2010 Mar 10;10(3):804-8
– reference: 26040291 - Nanotechnology. 2015 Jan 26;26(25):255704
– reference: 15358867 - Science. 2004 Oct 8;306(5694):242-7
– reference: 21553853 - Nano Lett. 2011 Jun 8;11(6):2291-5
– reference: 21317900 - Nat Mater. 2011 Apr;10(4):282-5
– reference: 20058873 - Nano Lett. 2010 Feb 10;10(2):461-5
– reference: 22723417 - Science. 2012 Jun 22;336(6088):1557-61
– reference: 25695638 - Nat Commun. 2015 Feb 19;6:6308
– reference: 26076932 - Sci Rep. 2015 Jun 16;5:10872
– reference: 24776537 - Nat Mater. 2014 Aug;13(8):786-9
– reference: 24483808 - Phys Rev Lett. 2013 Dec 27;111(26):266801
– reference: 26391068 - Nat Commun. 2015 Sep 22;6:8339
– reference: 25302903 - Phys Rev Lett. 2014 Sep 26;113(13):135504
– reference: 24559211 - ACS Nano. 2014 Mar 25;8(3):3006-14
SSID ssj0000391844
Score 2.5720572
Snippet Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The...
Van der Waals heterostructures enable fabrication of materials with engineered functionalities. Here, the authors demonstrate precise control over the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13168
SubjectTerms 639/301/119/995
639/925/918/1052
Boron
Composite materials
Electrons
Graphene
Humanities and Social Sciences
Hydrostatic pressure
multidisciplinary
Physics
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EELyIb-uLCHoRim2aNN2jLi4i6EnBW8kTBe3K7nrw3zuTdpddFbx4KaVNYZiZ5JvpJN8AnHJZUSQQUk1baETmi9RIqdOyCNJZ62ylqaJ7d1_ePIrbJ_k01-qL9oS19MCt4i6sNU6pwHUug-AuN7n0IWQBgYVzp-M5csS8uWQqrsFFD1MX0R3Iy4rqokEDvo1z6tO0AEGRqf-38PLnLslvpdKIQIN1WOtCR3bZirwBS77ZhJW2meTnFvTbk34jn2KajQZzjGShThbEBsEwCrT0W5wNA4ss1bjIsWHDDFEYMJzYoxfnt-FxcP3Qv0m7FgmpRaSe4FWgVjBHIzC32ulKo8Iy5axGIPcu8MpI7wNmQT3fC7mQniprXmbOBGFssQPLzbDxe8C8VUWulSkCZlBVJXqWl9IYpTOPd84mcD7VWm07_nBqY_Faxzp2UdVzKk7gdDb4vaXN-H3YFal_NoS4ruMD9IC684D6Lw9I4HBqvLqbgOMaVypi3uGKJ3Aye41Th-ohuvHDjziG8jPMqBLYbW09k4QrRIn4tVrwggVRF980L8-RnluKkjaqJXA29Zc5sX7qYP8_dHAAqxjJlQSqPDuE5cnowx9htDQxx3FifAHyfRgf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIX1PIMfchI5YIUNXHs2HtCUHVbIcGJSr1FfkIlSMru9sC_Z8bxhm5bcYmsxIkmnrFnxjP-BuCQS02WQCwNpdCIKjSlldKUbROld847bSii--Vre3YuPl_Ii7zhtsxples1MS3UfnC0R36EokdQKlzxD1e_S6oaRdHVXELjITyqUdNQSpeen057LIR-roXIx_KqRh_1-Mlfy5qqNW0oooTXf5-ReTdX8lbANOmh-TY8zQYk-zhyfAcehP4ZPB5LSv7BVkrpdMvncDye_FuEEt1uZKBnRBVVtiB0CIZWoaNtcjZEllCrcdFjQ88sQRownOiLSx9ewPn85NvxWZlLJpQONfcKryIKVNKEdFg54402ztlKeWdQsQcfubYyhIhe0SzMYi1koEhbkJW3UVjXvIStfujDa2DBqaY2yjYRPSqtxczxVlqrTBWw5V0B79fj17mMJ05lLX52Ka7d6O7GYBdwOHW-GmE07u_2iRgxdSHs63RjWHzv8lTq8Ie8UpGbWuK_-trWMsRYRRQAzr1RBeyt2djlCbns_olPAW-nxziVKD5i-jBcpz7kr6GHVcCrkesTJVyh1khvqw152CB180l_-SPBdUvRUuJaAe_WknODrLtj8Ob_5O_CE7TZWlKfvNqDrdXiOuyjXbSyB0n4_wJWWRF0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ahEIvIX3GSVpUSC8FU1uWLO1xGxrCQntpA7kZPdtAa5fdzaH_vjOy1uwmOfRibGsEo-fMaEbfAJxxqUkTiKWhEBpRhaa0UpqybaL0znmnDXl0v3xtL6_E4lpeZ5ztVQ6rHCEt0za9iQ772OPX71VNaZYewz5htOOk3p_PF98W05EKgZ1rIfItvKrR27V25E6C539Ip7wfGnnHP5rEzsUhHGR9kc1HDp_Bo9A_hydjBsm_L-B8vN63DCXa1jhKnhEvlL6CICAYqn6OzsLZEFmCpsadjQ09s4RbwHA1L298eAlXF5-_n1-WOS9C6VA8r_EpokBJTHCGlTPeaOOcrZR3BqV38JFrK0OIaPrMwizWQgZypwVZeRuFdc0r2OuHPhwBC041tVG2iWg2aS1mjrfSWmWqgG_eFfBh02udy6DhlLviV5ec143utrq4gLOJ-M-IlfEw2Sfq_omEAK7Tj2H5o8sD3mGDvFKRm1piW31taxlirCLqE5x7owo43Qxel1fdqsPtieB2uOIFvJuKcb2QE8T0YbhNNGSUoRlVwOtxrCdOuELRkGqrnVmww-puSX_zM2FyS9FSdFoB7zfzZYut-31w_J90J_AUNbSWhCWvTmFvvbwNb1ALWtu3efb_A9BgDIQ
  priority: 102
  providerName: Springer Nature
Title Pressure-induced commensurate stacking of graphene on boron nitride
URI https://link.springer.com/article/10.1038/ncomms13168
https://www.ncbi.nlm.nih.gov/pubmed/27762272
https://www.proquest.com/docview/1830349272
https://www.proquest.com/docview/1835505974
https://pubmed.ncbi.nlm.nih.gov/PMC5462001
https://doaj.org/article/ccbd77f2a15f42d1b15eff0f26622da7
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY91X3bXBg-5l4M2WLct5GCMNzUqgZWwL5M3ocyu09uqksP73u5Pt0LRhL7axZTjd6XR3Oul3AMeMF-QJuEjSFpostmmkOJdRnjputDa6kJTRPb_Iz2bZdM7nW9AX4-wYuNgY2lE9qVlz9fHvzd0XVPjP7ZHx4lOFsrleJFSCaRt20SQJKmVw3vn5fkpOhxjJZN35vAf_rFkkD9y_ydt8vGnyQebUG6TJc3jWeZLhqBX9HmzZ6gU8aWtL3uGT39upFy9h3B4BbGyE8TdK0oREFZW4IJiIEN1DTevlYe1CD1-Ns19YV6EibIMQNb65NPYVzCanP8dnUVc7IdJowpd4zVyG1pogD2MtjSyk1ioWRku08NY4VihurcPwaGiHLsm4pZSb5bFRLlM6fQ07VV3ZfQitFmkihUodhlZFkQ01y7lSQsYWn4wO4EPPv1J3wOJU3-Kq9AnutCjvMTuA41XjPy2exuZmJySIVRMCwfYv6uZX2elUiR0yQjgmE459NYlKuHUuduhzMGakCOCwF2PZD6wSpzCC5GGCBfBu9Rl1ihIlsrL1rW9DgRuGWgG8aaW-ooQJNB_-b7E2HtZIXf9SXf72uN08y2kHWwDv-5Fzj6zHPDj4P_lv4Sk6bznZURYfws6yubVH6CAt1QC2xVzgtZh8HcDuaDT9McX7yenFt-_4dpyPB37pYeCV5B-S-xsl
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChipvSBFTRw7zh4QgsKypY9TK_UW_IRKkJTdrVD_FL-RGSdZurTi1ksUJU40tsfz8Iy_AdjgsiJLIKSaUmhE5ovUSKnTsgjSWetspSmiu39QTo7E52N5vAK_h7MwlFY5yMQoqF1raY98C1mPoFS44m9Pf6ZUNYqiq0MJjY4tdv35L3TZZm92PuD8bnI-_ni4PUn7qgKpReU2x6sIAvUYgQFmVjtdaWtNppzVqPu8C7wy0vuAjsPIj0IupKdglJeZM0EYW-B_b8BNUaAmp5Pp40-LPR1CW6-E6I8BZkW11WAXfsxyqg61pPhifYCrjNrLuZn_BGij3hvfg7u9wcredRx2H1Z88wBudSUsz_EuppDa2UPY7k4aTn2Kbj4yjGNEFVXSIDQKhlaopW151gYWUbJRyLK2YYYgFBgKlumJ84_g6FoG8zGsNm3jnwDzVhW5VqYI6MFVlRhZXkpjlM483jmbwOth_Grb45dTGY3vdYyjF1V9YbAT2Fg0Pu1gO65u9p4mYtGEsLbjg3b6te6Xbo0dckoFrnOJfXW5yaUPIQto2nDutEpgfZjGuhcAs_ovuybwavEaly7FY3Tj27PYhvxD9OgSWOtmfUEJV6il4tdqiR-WSF1-05x8i_DgUpSUKJfA5sA5F8i6PAZP_0_-S7g9Odzfq_d2DnafwR20F0tS3Txbh9X59Mw_R5tsbl7EhcDgy3WvvD8JI1A-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKBeEG8MBRapvSBZsde7XueAEH1ELYWoQlTqzewTKhW7JKlQ_xq_jhk_QkMrbr1EVryJZnfnuTP7DcAGlwV5AiHWVEIjEp_FRkod51mQzlpnC00Z3U-TfO9IfDiWxyvwu78LQ2WVvU5sFLWrLZ2RD5H1CEqFKz4MXVnE4c743dnPmDpIUaa1b6fRssiBv_iF4dvs7f4O7vUm5-PdL9t7cddhILZo6Ob4KYJAm0bAgInVThfaWpMoZzXaQe8CL4z0PmAQMfKjkArpKTHlZeJMEMZm-L-3YFVRVDSA1a3dyeHnxQkPYa8XQnSXApOsGFY4oR-zlHpFLZnBplvAdS7u1UrNf9K1jRUc34O7nfvK3rf8dh9WfPUAbrcNLS_wqSkotbOHsN3eO5z6GIN-ZB_HiCrqq0HYFAx9UkuH9KwOrMHMRpXL6ooZAlRgqGamJ84_gqMbWc7HMKjqyj8F5q3KUq1MFjCeKwoxsjyXxiideHxyNoI3_fqVtkMzp6Yap2WTVc-K8tJiR7CxGHzWgnhcP2yLNmIxhJC3my_q6beyE-QSJ-SUClynEufqUpNKH0IS0NHh3GkVwXq_jWWnDmblX-aN4PXiNQoyZWd05evzZgxFixjfRfCk3fUFJVyhzWp-rZb4YYnU5TfVyfcGLFyKnMrmItjsOecSWVfX4Nn_yX8Fd1Dqyo_7k4PnsIbOY052nCfrMJhPz_0LdNDm5mUnCQy-3rTw_QHcNlXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure-induced+commensurate+stacking+of+graphene+on+boron+nitride&rft.jtitle=Nature+communications&rft.au=Yankowitz%2C+Matthew&rft.au=Watanabe%2C+K&rft.au=Taniguchi%2C+T&rft.au=San-jose%2C+Pablo&rft.date=2016-10-20&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=7&rft.spage=13168&rft_id=info:doi/10.1038%2Fncomms13168&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4220379591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon