Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle

1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for Molecular and Cell Biology University of Porto, Porto, Portugal Submitted 24 November 2004 ; accepted in final form 11 May 2005 ABSTRACT Severe high-...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 99; no. 4; pp. 1247 - 1253
Main Authors Magalhaes, Jose, Ascensao, Antonio, Soares, Jose M. C, Ferreira, Rita, Neuparth, Maria J, Marques, Franklim, Duarte, Jose A
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.10.2005
American Physiological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for Molecular and Cell Biology University of Porto, Porto, Portugal Submitted 24 November 2004 ; accepted in final form 11 May 2005 ABSTRACT Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m -chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia. high altitude; oxidative damage; antioxidants; heat shock proteins; vitamin E Address for reprint requests and other correspondence: J. Magalhães, Faculty of Sport Sciences, Dept. of Sport Biology, Univ. of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal (E-mail: jmaga{at}fcdef.up.pt )
AbstractList 1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for Molecular and Cell Biology University of Porto, Porto, Portugal Submitted 24 November 2004 ; accepted in final form 11 May 2005 ABSTRACT Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m -chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia. high altitude; oxidative damage; antioxidants; heat shock proteins; vitamin E Address for reprint requests and other correspondence: J. Magalhães, Faculty of Sport Sciences, Dept. of Sport Biology, Univ. of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal (E-mail: jmaga{at}fcdef.up.pt )
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.[PUBLICATION ABSTRACT]
Author Soares, Jose M. C
Duarte, Jose A
Ascensao, Antonio
Neuparth, Maria J
Marques, Franklim
Ferreira, Rita
Magalhaes, Jose
Author_xml – sequence: 1
  fullname: Magalhaes, Jose
– sequence: 2
  fullname: Ascensao, Antonio
– sequence: 3
  fullname: Soares, Jose M. C
– sequence: 4
  fullname: Ferreira, Rita
– sequence: 5
  fullname: Neuparth, Maria J
– sequence: 6
  fullname: Marques, Franklim
– sequence: 7
  fullname: Duarte, Jose A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17568170$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15905323$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCX4AVEohLwthrr5MDh6qigFSJSzlbs97ZxsH7ge0tzb_H-aCgSghfbGuexx7Ne8ZO-qEnxl5xWHCuxPsNjqMf19voBr8AXgq5EADyCZvlqpjzCvgJmy21grlWS33KzmLcAHApFX_GTrlagSpFOWPbCzslKrBvikh3FKhYb8ehxuDs_nTvsHC9DYSRYpGvDSZ3R0VMgWLce64b0YVYdC4Ndj30TXDoi3bqbXJDn-2iG6aYle_kKeVSN0Xr6Tl72qKP9OK4n7NvVx9vLj_Pr79--nJ5cT23ios0r1EKUQIuCZWwjW5LAtBNrWWDwtZKAFUAjZWCoOaksaxWLdQatcQK9Ko8Z28P745h-DFRTKZz0ZL32FPuy1RLpfOMZAZfPwI3wxT63JsReYEUoDP08ghNdUeNGYPrMGzN74lm4M0RwGjRtwF76-IfTqtqyTVk7sOBs2GIMVBrrEu4m1gK6LzhYHZJm7-TNvukzS7p7OtH_sMX_zXlwVy72_VPF8gcoeF2a64m72_oPu3s1cpIw4XUZmzarL37t5Zp84CXvwDzZ9YF
CODEN JAPHEV
CitedBy_id crossref_primary_10_1007_s11064_012_0826_x
crossref_primary_10_3389_fnins_2016_00546
crossref_primary_10_1093_jas_skac221
crossref_primary_10_7314_APJCP_2014_15_12_5043
crossref_primary_10_1016_j_mito_2009_08_005
crossref_primary_10_1002_tox_22510
crossref_primary_10_1371_journal_pone_0139121
crossref_primary_10_1038_ng_2007_62
crossref_primary_10_1016_j_mito_2023_07_003
crossref_primary_10_3389_fphys_2016_00303
crossref_primary_10_1016_j_niox_2019_11_007
crossref_primary_10_1098_rspb_2012_2758
crossref_primary_10_1093_gerona_gln048
crossref_primary_10_14814_phy2_15743
crossref_primary_10_1242_jeb_246549
crossref_primary_10_1093_gerona_glp066
crossref_primary_10_1152_japplphysiol_01298_2006
crossref_primary_10_1007_s00018_020_03658_w
crossref_primary_10_1007_s40279_017_0744_9
crossref_primary_10_3389_fphys_2019_00437
crossref_primary_10_1186_1471_2474_15_340
crossref_primary_10_1089_ham_2023_0084
crossref_primary_10_1089_ham_2018_0046
crossref_primary_10_3389_fped_2017_00016
crossref_primary_10_1089_ham_2018_0045
crossref_primary_10_1016_j_cbpa_2015_03_013
crossref_primary_10_1016_j_jinsphys_2012_08_006
crossref_primary_10_1111_head_12301
crossref_primary_10_1002_adbi_202300573
crossref_primary_10_1016_j_cbd_2017_11_002
crossref_primary_10_3390_nu8060377
crossref_primary_10_1016_j_bbagrm_2014_02_010
crossref_primary_10_1155_2016_9345970
crossref_primary_10_1016_j_fob_2012_08_001
crossref_primary_10_1039_D2FO03122A
crossref_primary_10_1097_BRS_0000000000000736
crossref_primary_10_1177_120347541201600404
crossref_primary_10_1007_s12576_014_0348_1
crossref_primary_10_1007_s00421_012_2414_9
crossref_primary_10_1155_2014_914853
crossref_primary_10_1371_journal_pone_0124727
crossref_primary_10_1371_journal_pone_0199056
crossref_primary_10_1016_j_freeradbiomed_2021_07_024
crossref_primary_10_1152_japplphysiol_00501_2016
crossref_primary_10_1016_j_lfs_2018_04_040
crossref_primary_10_1007_s00395_012_0268_2
crossref_primary_10_1111_head_12725
crossref_primary_10_1016_S1000_1948_09_60011_3
crossref_primary_10_1038_s41467_025_57754_1
crossref_primary_10_1080_15592294_2024_2408146
crossref_primary_10_1111_bph_12179
crossref_primary_10_1152_japplphysiol_00171_2015
crossref_primary_10_1007_s12192_017_0795_8
crossref_primary_10_1371_journal_pone_0138564
crossref_primary_10_1371_journal_pone_0181259
crossref_primary_10_1111_anu_12037
crossref_primary_10_1152_japplphysiol_00609_2005
crossref_primary_10_1093_ps_86_10_2210
crossref_primary_10_1016_j_mehy_2006_09_064
crossref_primary_10_1007_s00484_009_0224_5
crossref_primary_10_1007_s10522_019_09826_1
crossref_primary_10_1186_s40850_024_00206_y
crossref_primary_10_1016_j_cbpb_2021_110596
crossref_primary_10_1089_omi_2011_0023
crossref_primary_10_1152_japplphysiol_01076_2018
crossref_primary_10_1007_s12576_015_0381_8
crossref_primary_10_1371_journal_pone_0090150
crossref_primary_10_1152_ajplung_00354_2012
crossref_primary_10_1016_j_mito_2011_02_003
crossref_primary_10_1042_CS20070075
crossref_primary_10_1139_apnm_2012_0226
crossref_primary_10_3389_fphys_2017_00084
crossref_primary_10_3390_ijms22137220
crossref_primary_10_1074_jbc_M801236200
crossref_primary_10_1186_2046_7648_3_19
crossref_primary_10_1007_s13105_023_00965_1
crossref_primary_10_1186_s12929_015_0112_8
crossref_primary_10_1016_j_amjsurg_2007_09_048
crossref_primary_10_1155_2016_3406802
crossref_primary_10_1093_gerona_63_4_350
crossref_primary_10_3389_fphys_2016_00623
crossref_primary_10_3109_19401736_2011_632771
crossref_primary_10_1089_ham_2011_1097
crossref_primary_10_1016_j_abb_2024_110078
crossref_primary_10_1136_bmjgast_2016_000082
crossref_primary_10_1007_s42485_020_00037_8
crossref_primary_10_1093_clinchem_hvac097
crossref_primary_10_1089_ham_2020_0136
crossref_primary_10_1007_s00484_014_0799_3
crossref_primary_10_1111_joor_13724
crossref_primary_10_1089_ham_2015_0008
crossref_primary_10_1007_s42485_023_00109_5
crossref_primary_10_1016_j_surg_2008_07_002
crossref_primary_10_1002_jnr_23330
crossref_primary_10_1007_s12192_008_0048_y
crossref_primary_10_1016_j_biochi_2018_03_009
crossref_primary_10_1089_ham_2013_1143
crossref_primary_10_1007_s12031_019_01469_8
crossref_primary_10_1186_s13728_015_0026_9
crossref_primary_10_1089_ars_2007_1700
crossref_primary_10_1111_1744_7917_12763
crossref_primary_10_1007_s00424_011_1057_8
crossref_primary_10_1089_ham_2011_1083
crossref_primary_10_1016_j_mito_2008_07_005
crossref_primary_10_1152_japplphysiol_00966_2009
crossref_primary_10_1016_j_cbpa_2013_04_003
crossref_primary_10_1155_2018_4805493
crossref_primary_10_1007_s10863_011_9390_3
crossref_primary_10_1016_j_exger_2014_02_009
crossref_primary_10_1089_ham_2013_1092
crossref_primary_10_1089_ham_2023_0090
crossref_primary_10_1016_j_psj_2021_101167
crossref_primary_10_3109_10715762_2014_906593
crossref_primary_10_1089_ham_2021_0127
crossref_primary_10_1016_j_cbpb_2014_05_005
crossref_primary_10_1016_j_archoralbio_2018_09_002
crossref_primary_10_1007_s12094_014_1236_0
crossref_primary_10_1007_s12035_015_9627_y
crossref_primary_10_1179_1351000211Y_0000000012
crossref_primary_10_1016_j_biocel_2009_11_002
crossref_primary_10_3390_ijms23136974
crossref_primary_10_3389_fnut_2023_1147869
crossref_primary_10_15407_ubj93_03_068
crossref_primary_10_1089_ham_2006_7_6
crossref_primary_10_1152_ajpregu_00243_2011
crossref_primary_10_3354_meps11622
crossref_primary_10_1007_s12011_020_02278_6
crossref_primary_10_1016_j_bbadis_2015_10_002
crossref_primary_10_1016_j_mito_2012_11_003
crossref_primary_10_1186_2045_9912_2_6
crossref_primary_10_1016_j_febslet_2013_04_001
crossref_primary_10_1016_j_freeradbiomed_2009_09_025
crossref_primary_10_14336_AD_2022_0603
crossref_primary_10_1016_j_freeradbiomed_2020_04_026
crossref_primary_10_1017_S0029665124004877
crossref_primary_10_1016_j_cvsm_2007_11_001
Cites_doi 10.1016/S0014-5793(03)00861-5
10.1152/ajpcell.1993.264.4.C961
10.1096/fj.00-0703com
10.1046/j.1365-201X.1997.00222.x
10.1074/jbc.273.43.28510
10.1096/fj.02-1170com
10.1046/j.1365-201X.1997.00138.x
10.1111/j.1469-7793.2000.00379.x
10.1074/jbc.274.8.4924
10.1074/jbc.M302743200
10.1046/j.1432-1033.2003.03447.x
10.1007/s004210170010
10.1016/S0891-5849(99)00032-5
10.1006/taap.2001.9265
10.1016/S0378-1119(01)00814-9
10.1002/jcp.1041420316
10.1016/0076-6879(67)10010-4
10.1113/eph8802513
10.1016/S0021-9258(19)52451-6
10.1073/pnas.95.20.11715
10.1152/ajpcell.1988.255.1.C123
10.1007/s00421-003-0972-6
10.1073/pnas.91.25.12248
10.1073/pnas.96.3.846
10.1016/0003-2697(69)90064-5
10.1016/0891-5849(94)90008-6
10.1016/S0005-2728(00)00201-2
10.1172/JCI118909
10.1016/S0021-9258(18)43894-X
10.1073/pnas.80.19.5807
10.1080/10715760310001643311
10.1074/jbc.M100320200
10.1006/taap.2002.9532
10.1055/s-2007-972612
10.1016/S0891-5849(98)00148-8
10.1042/cs1010465
10.1016/S0002-9440(10)64138-7
10.1161/01.CIR.103.13.1787
10.1038/sj.cdd.4400722
10.1074/jbc.273.19.11619
10.1016/S0022-4804(02)00093-8
10.1152/jappl.1998.84.6.1960
10.1016/0304-3940(95)11692-P
10.1042/bj0520527
10.1016/j.bbadis.2003.12.013
10.1152/japplphysiol.00739.2001
10.1016/S0925-4439(98)00088-X
10.1016/S0014-5793(00)01082-6
10.1046/j.1471-4159.2001.00457.x
10.1016/S0014-5793(01)03206-9
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Physiological Society Oct 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Physiological Society Oct 2005
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.01324.2004
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1253
ExternalDocumentID 913284571
15905323
17568170
10_1152_japplphysiol_01324_2004
jap_99_4_1247
Genre Journal Article
Commentary
Editorial
GroupedDBID -
02
2WC
39C
3O-
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
18M
1CY
29J
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
ADXHL
AETEA
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
CITATION
EMOBN
ITBOX
J5H
MVM
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c512t-ba42230a8ea52cd7f3e007db74da2cb520e600dc42e0b1e7a369f0b7a74a60793
ISSN 8750-7587
IngestDate Fri Jul 11 13:46:42 EDT 2025
Mon Jun 30 08:32:05 EDT 2025
Wed Feb 19 01:40:09 EST 2025
Mon Jul 21 09:11:50 EDT 2025
Tue Jul 01 01:13:14 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Tue Jan 05 17:53:22 EST 2021
Mon May 06 11:51:24 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords High altitude
Oxidative stress
Oxygen
antioxidants
Acute
Rodentia
vitamin E
Environmental factor
oxidative damage
E-Vitamins
Antioxidant
Striated muscle
Vertebrata
Mitochondria
Mammalia
Mouse
Heat shock protein
Hypoxia
heat shock proteins
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-ba42230a8ea52cd7f3e007db74da2cb520e600dc42e0b1e7a369f0b7a74a60793
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 15905323
PQID 222204207
PQPubID 40905
PageCount 7
ParticipantIDs pubmed_primary_15905323
pascalfrancis_primary_17568170
crossref_citationtrail_10_1152_japplphysiol_01324_2004
highwire_physiology_jap_99_4_1247
proquest_miscellaneous_68577584
crossref_primary_10_1152_japplphysiol_01324_2004
proquest_journals_222204207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-10-01
PublicationDateYYYYMMDD 2005-10-01
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2005
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R31
  doi: 10.1016/S0014-5793(03)00861-5
– ident: R11
  doi: 10.1152/ajpcell.1993.264.4.C961
– ident: R34
  doi: 10.1096/fj.00-0703com
– ident: R48
  doi: 10.1046/j.1365-201X.1997.00222.x
– ident: R55
  doi: 10.1074/jbc.273.43.28510
– ident: R45
  doi: 10.1096/fj.02-1170com
– ident: R23
  doi: 10.1046/j.1365-201X.1997.00138.x
– ident: R49
  doi: 10.1111/j.1469-7793.2000.00379.x
– ident: R3
  doi: 10.1074/jbc.274.8.4924
– ident: R44
  doi: 10.1074/jbc.M302743200
– ident: R52
  doi: 10.1046/j.1432-1033.2003.03447.x
– ident: R46
  doi: 10.1007/s004210170010
– ident: R37
  doi: 10.1016/S0891-5849(99)00032-5
– ident: R6
  doi: 10.1006/taap.2001.9265
– ident: R39
  doi: 10.1016/S0378-1119(01)00814-9
– ident: R53
  doi: 10.1002/jcp.1041420316
– ident: R14
  doi: 10.1016/0076-6879(67)10010-4
– ident: R16
  doi: 10.1113/eph8802513
– ident: R26
  doi: 10.1016/S0021-9258(19)52451-6
– ident: R8
  doi: 10.1073/pnas.95.20.11715
– ident: R10
  doi: 10.1152/ajpcell.1988.255.1.C123
– ident: R29
  doi: 10.1007/s00421-003-0972-6
– ident: R15
  doi: 10.1073/pnas.91.25.12248
– ident: R32
  doi: 10.1073/pnas.96.3.846
– ident: R47
  doi: 10.1016/0003-2697(69)90064-5
– ident: R19
  doi: 10.1016/0891-5849(94)90008-6
– ident: R54
  doi: 10.1016/S0005-2728(00)00201-2
– ident: R56
  doi: 10.1172/JCI118909
– ident: R7
  doi: 10.1016/S0021-9258(18)43894-X
– ident: R21
  doi: 10.1073/pnas.80.19.5807
– ident: R41
  doi: 10.1080/10715760310001643311
– ident: R28
– ident: R35
  doi: 10.1074/jbc.M100320200
– ident: R43
  doi: 10.1006/taap.2002.9532
– ident: R2
  doi: 10.1055/s-2007-972612
– ident: R12
  doi: 10.1016/S0891-5849(98)00148-8
– ident: R4
  doi: 10.1042/cs1010465
– ident: R42
  doi: 10.1016/S0002-9440(10)64138-7
– ident: R25
  doi: 10.1161/01.CIR.103.13.1787
– ident: R20
  doi: 10.1038/sj.cdd.4400722
– ident: R18
– ident: R50
– ident: R13
  doi: 10.1074/jbc.273.19.11619
– ident: R5
  doi: 10.1016/S0022-4804(02)00093-8
– ident: R33
  doi: 10.1152/jappl.1998.84.6.1960
– ident: R9
  doi: 10.1016/0304-3940(95)11692-P
– ident: R27
– ident: R22
  doi: 10.1042/bj0520527
– ident: R51
  doi: 10.1016/j.bbadis.2003.12.013
– ident: R36
  doi: 10.1152/japplphysiol.00739.2001
– ident: R1
  doi: 10.1016/S0925-4439(98)00088-X
– ident: R38
  doi: 10.1016/S0014-5793(00)01082-6
– ident: R24
  doi: 10.1046/j.1471-4159.2001.00457.x
– ident: R30
– ident: R40
  doi: 10.1016/S0014-5793(01)03206-9
– ident: R17
SSID ssj0014451
Score 2.2564323
SecondaryResourceType review_article
Snippet 1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for...
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1247
SubjectTerms Acute Disease
Animals
Atmospheric Pressure
Biological and medical sciences
Carbonyl compounds
Fundamental and applied biological sciences. Psychology
Hypoxia
Hypoxia - etiology
Hypoxia - metabolism
Hypoxia - physiopathology
In Vitro Techniques
Male
Mice
Mice, Inbred Strains
Mitochondria, Muscle - metabolism
Mitochondrial DNA
Muscle, Skeletal - metabolism
Muscular system
Oxidation
Oxidative Stress
Oxygen Consumption - drug effects
Respiration
Respiratory function
Rodents
Severity of Illness Index
Superoxides - metabolism
Vitamin E - metabolism
Vitamin E - pharmacology
Title Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle
URI http://jap.physiology.org/cgi/content/abstract/99/4/1247
https://www.ncbi.nlm.nih.gov/pubmed/15905323
https://www.proquest.com/docview/222204207
https://www.proquest.com/docview/68577584
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYu3WAYCfFSpeTiJM1jmUATqAikTtqbZSeOFm1NqzaV1v1l_gTn2M6l0GmMlypNfSzX5_O5-fiYkPdBkuWpGGHCk8scMKmFA25z7oAylGCPMOnp42OT79HpGft6Hp73er86WUvrSg7Tm53nSv6Hq_AO-IqnZO_B2aZTeAHPwF_4BA7D5z_xeJziLr8OfSsYvBpcbBawPjE5Hp-uCzEoSjQLV1ha9rrITJVvez5EbxuANCiWq8EMFjYIwjLTl3igsquTIDE0ACSXoJ7w3ORsvaoH8bdJK6xJq8MlprgT1oFKRmEn4IAlra8u9AZ9oOpdCLNf36APS0yZd8HcljjAb5-C0qSN6ZjQHI9ObdEPJsPBybATIl-qYmms46ISWwGOsEmVa3NAXQfcGqOXlZXT4EN7kW1mBbm5ackClnWkMtgwcUfDg00X7NYeoa9vLYDJshM1xK0oHXpjrcKskwT-0KNNdqP2q0KfdzviuiO89JM9IA998GlQKH_72W55YaU4E4w2_9YmI0JHH28Z0bYpVZe3xuxesYIFnpubWW53nbQJNX1Knlig0LEB8jPSU-U-ORiXoprPNvQD_dHAZp88mtikjwOy0TCnAFdqYE4bmFMLc9rAnDYwpwbmms7CnG7BnNYwB2qqYU5rmFMD8-fk7Mvn6cmpY28McVIwXCtHCgbmritGSoR-msV5oMAGzmTMMuGnMvRdBQZ-ljJfudJTsQiiJHdlLGImIiwV-YLslfNSvSI0VZHMQyk96WYsyj0pUjD3lId1WAOZRX0S1ZPPU1tOH291ueJ3sL9P3IZwYSrK3E3i1Nzl7QrmGKSaAvSQLEk444hzvsjyPnm3qz004027Pjnegkk7lhhrEsZunxzVuOFW5q04eBM-qHkXyN82v4JCwl1GUSpgFY9GYQz4hUG_NGBrew4TvIcmOLz_DByRx61oeE32quVavQFvoJLHehX9BqAfD94
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+and+severe+hypobaric+hypoxia+increases+oxidative+stress+and+impairs+mitochondrial+function+in+mouse+skeletal+muscle&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Magalh%C3%A3es%2C+Jos%C3%A9&rft.au=Ascens%C3%A3o%2C+Ant%C3%B3nio&rft.au=Soares%2C+Jos%C3%A9+M.+C.&rft.au=Ferreira%2C+Rita&rft.date=2005-10-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=99&rft.issue=4&rft.spage=1247&rft.epage=1253&rft_id=info:doi/10.1152%2Fjapplphysiol.01324.2004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_01324_2004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon