Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle
1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for Molecular and Cell Biology University of Porto, Porto, Portugal Submitted 24 November 2004 ; accepted in final form 11 May 2005 ABSTRACT Severe high-...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 99; no. 4; pp. 1247 - 1253 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Am Physiological Soc
01.10.2005
American Physiological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for Molecular and Cell Biology University of Porto, Porto, Portugal
Submitted 24 November 2004
; accepted in final form 11 May 2005
ABSTRACT
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m -chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.
high altitude; oxidative damage; antioxidants; heat shock proteins; vitamin E
Address for reprint requests and other correspondence: J. Magalhães, Faculty of Sport Sciences, Dept. of Sport Biology, Univ. of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal (E-mail: jmaga{at}fcdef.up.pt ) |
---|---|
AbstractList | 1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for Molecular and Cell Biology University of Porto, Porto, Portugal
Submitted 24 November 2004
; accepted in final form 11 May 2005
ABSTRACT
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m -chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.
high altitude; oxidative damage; antioxidants; heat shock proteins; vitamin E
Address for reprint requests and other correspondence: J. Magalhães, Faculty of Sport Sciences, Dept. of Sport Biology, Univ. of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal (E-mail: jmaga{at}fcdef.up.pt ) Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia. Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia. Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.[PUBLICATION ABSTRACT] |
Author | Soares, Jose M. C Duarte, Jose A Ascensao, Antonio Neuparth, Maria J Marques, Franklim Ferreira, Rita Magalhaes, Jose |
Author_xml | – sequence: 1 fullname: Magalhaes, Jose – sequence: 2 fullname: Ascensao, Antonio – sequence: 3 fullname: Soares, Jose M. C – sequence: 4 fullname: Ferreira, Rita – sequence: 5 fullname: Neuparth, Maria J – sequence: 6 fullname: Marques, Franklim – sequence: 7 fullname: Duarte, Jose A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17568170$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15905323$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPCX4AVEohLwthrr5MDh6qigFSJSzlbs97ZxsH7ge0tzb_H-aCgSghfbGuexx7Ne8ZO-qEnxl5xWHCuxPsNjqMf19voBr8AXgq5EADyCZvlqpjzCvgJmy21grlWS33KzmLcAHApFX_GTrlagSpFOWPbCzslKrBvikh3FKhYb8ehxuDs_nTvsHC9DYSRYpGvDSZ3R0VMgWLce64b0YVYdC4Ndj30TXDoi3bqbXJDn-2iG6aYle_kKeVSN0Xr6Tl72qKP9OK4n7NvVx9vLj_Pr79--nJ5cT23ios0r1EKUQIuCZWwjW5LAtBNrWWDwtZKAFUAjZWCoOaksaxWLdQatcQK9Ko8Z28P745h-DFRTKZz0ZL32FPuy1RLpfOMZAZfPwI3wxT63JsReYEUoDP08ghNdUeNGYPrMGzN74lm4M0RwGjRtwF76-IfTqtqyTVk7sOBs2GIMVBrrEu4m1gK6LzhYHZJm7-TNvukzS7p7OtH_sMX_zXlwVy72_VPF8gcoeF2a64m72_oPu3s1cpIw4XUZmzarL37t5Zp84CXvwDzZ9YF |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1007_s11064_012_0826_x crossref_primary_10_3389_fnins_2016_00546 crossref_primary_10_1093_jas_skac221 crossref_primary_10_7314_APJCP_2014_15_12_5043 crossref_primary_10_1016_j_mito_2009_08_005 crossref_primary_10_1002_tox_22510 crossref_primary_10_1371_journal_pone_0139121 crossref_primary_10_1038_ng_2007_62 crossref_primary_10_1016_j_mito_2023_07_003 crossref_primary_10_3389_fphys_2016_00303 crossref_primary_10_1016_j_niox_2019_11_007 crossref_primary_10_1098_rspb_2012_2758 crossref_primary_10_1093_gerona_gln048 crossref_primary_10_14814_phy2_15743 crossref_primary_10_1242_jeb_246549 crossref_primary_10_1093_gerona_glp066 crossref_primary_10_1152_japplphysiol_01298_2006 crossref_primary_10_1007_s00018_020_03658_w crossref_primary_10_1007_s40279_017_0744_9 crossref_primary_10_3389_fphys_2019_00437 crossref_primary_10_1186_1471_2474_15_340 crossref_primary_10_1089_ham_2023_0084 crossref_primary_10_1089_ham_2018_0046 crossref_primary_10_3389_fped_2017_00016 crossref_primary_10_1089_ham_2018_0045 crossref_primary_10_1016_j_cbpa_2015_03_013 crossref_primary_10_1016_j_jinsphys_2012_08_006 crossref_primary_10_1111_head_12301 crossref_primary_10_1002_adbi_202300573 crossref_primary_10_1016_j_cbd_2017_11_002 crossref_primary_10_3390_nu8060377 crossref_primary_10_1016_j_bbagrm_2014_02_010 crossref_primary_10_1155_2016_9345970 crossref_primary_10_1016_j_fob_2012_08_001 crossref_primary_10_1039_D2FO03122A crossref_primary_10_1097_BRS_0000000000000736 crossref_primary_10_1177_120347541201600404 crossref_primary_10_1007_s12576_014_0348_1 crossref_primary_10_1007_s00421_012_2414_9 crossref_primary_10_1155_2014_914853 crossref_primary_10_1371_journal_pone_0124727 crossref_primary_10_1371_journal_pone_0199056 crossref_primary_10_1016_j_freeradbiomed_2021_07_024 crossref_primary_10_1152_japplphysiol_00501_2016 crossref_primary_10_1016_j_lfs_2018_04_040 crossref_primary_10_1007_s00395_012_0268_2 crossref_primary_10_1111_head_12725 crossref_primary_10_1016_S1000_1948_09_60011_3 crossref_primary_10_1038_s41467_025_57754_1 crossref_primary_10_1080_15592294_2024_2408146 crossref_primary_10_1111_bph_12179 crossref_primary_10_1152_japplphysiol_00171_2015 crossref_primary_10_1007_s12192_017_0795_8 crossref_primary_10_1371_journal_pone_0138564 crossref_primary_10_1371_journal_pone_0181259 crossref_primary_10_1111_anu_12037 crossref_primary_10_1152_japplphysiol_00609_2005 crossref_primary_10_1093_ps_86_10_2210 crossref_primary_10_1016_j_mehy_2006_09_064 crossref_primary_10_1007_s00484_009_0224_5 crossref_primary_10_1007_s10522_019_09826_1 crossref_primary_10_1186_s40850_024_00206_y crossref_primary_10_1016_j_cbpb_2021_110596 crossref_primary_10_1089_omi_2011_0023 crossref_primary_10_1152_japplphysiol_01076_2018 crossref_primary_10_1007_s12576_015_0381_8 crossref_primary_10_1371_journal_pone_0090150 crossref_primary_10_1152_ajplung_00354_2012 crossref_primary_10_1016_j_mito_2011_02_003 crossref_primary_10_1042_CS20070075 crossref_primary_10_1139_apnm_2012_0226 crossref_primary_10_3389_fphys_2017_00084 crossref_primary_10_3390_ijms22137220 crossref_primary_10_1074_jbc_M801236200 crossref_primary_10_1186_2046_7648_3_19 crossref_primary_10_1007_s13105_023_00965_1 crossref_primary_10_1186_s12929_015_0112_8 crossref_primary_10_1016_j_amjsurg_2007_09_048 crossref_primary_10_1155_2016_3406802 crossref_primary_10_1093_gerona_63_4_350 crossref_primary_10_3389_fphys_2016_00623 crossref_primary_10_3109_19401736_2011_632771 crossref_primary_10_1089_ham_2011_1097 crossref_primary_10_1016_j_abb_2024_110078 crossref_primary_10_1136_bmjgast_2016_000082 crossref_primary_10_1007_s42485_020_00037_8 crossref_primary_10_1093_clinchem_hvac097 crossref_primary_10_1089_ham_2020_0136 crossref_primary_10_1007_s00484_014_0799_3 crossref_primary_10_1111_joor_13724 crossref_primary_10_1089_ham_2015_0008 crossref_primary_10_1007_s42485_023_00109_5 crossref_primary_10_1016_j_surg_2008_07_002 crossref_primary_10_1002_jnr_23330 crossref_primary_10_1007_s12192_008_0048_y crossref_primary_10_1016_j_biochi_2018_03_009 crossref_primary_10_1089_ham_2013_1143 crossref_primary_10_1007_s12031_019_01469_8 crossref_primary_10_1186_s13728_015_0026_9 crossref_primary_10_1089_ars_2007_1700 crossref_primary_10_1111_1744_7917_12763 crossref_primary_10_1007_s00424_011_1057_8 crossref_primary_10_1089_ham_2011_1083 crossref_primary_10_1016_j_mito_2008_07_005 crossref_primary_10_1152_japplphysiol_00966_2009 crossref_primary_10_1016_j_cbpa_2013_04_003 crossref_primary_10_1155_2018_4805493 crossref_primary_10_1007_s10863_011_9390_3 crossref_primary_10_1016_j_exger_2014_02_009 crossref_primary_10_1089_ham_2013_1092 crossref_primary_10_1089_ham_2023_0090 crossref_primary_10_1016_j_psj_2021_101167 crossref_primary_10_3109_10715762_2014_906593 crossref_primary_10_1089_ham_2021_0127 crossref_primary_10_1016_j_cbpb_2014_05_005 crossref_primary_10_1016_j_archoralbio_2018_09_002 crossref_primary_10_1007_s12094_014_1236_0 crossref_primary_10_1007_s12035_015_9627_y crossref_primary_10_1179_1351000211Y_0000000012 crossref_primary_10_1016_j_biocel_2009_11_002 crossref_primary_10_3390_ijms23136974 crossref_primary_10_3389_fnut_2023_1147869 crossref_primary_10_15407_ubj93_03_068 crossref_primary_10_1089_ham_2006_7_6 crossref_primary_10_1152_ajpregu_00243_2011 crossref_primary_10_3354_meps11622 crossref_primary_10_1007_s12011_020_02278_6 crossref_primary_10_1016_j_bbadis_2015_10_002 crossref_primary_10_1016_j_mito_2012_11_003 crossref_primary_10_1186_2045_9912_2_6 crossref_primary_10_1016_j_febslet_2013_04_001 crossref_primary_10_1016_j_freeradbiomed_2009_09_025 crossref_primary_10_14336_AD_2022_0603 crossref_primary_10_1016_j_freeradbiomed_2020_04_026 crossref_primary_10_1017_S0029665124004877 crossref_primary_10_1016_j_cvsm_2007_11_001 |
Cites_doi | 10.1016/S0014-5793(03)00861-5 10.1152/ajpcell.1993.264.4.C961 10.1096/fj.00-0703com 10.1046/j.1365-201X.1997.00222.x 10.1074/jbc.273.43.28510 10.1096/fj.02-1170com 10.1046/j.1365-201X.1997.00138.x 10.1111/j.1469-7793.2000.00379.x 10.1074/jbc.274.8.4924 10.1074/jbc.M302743200 10.1046/j.1432-1033.2003.03447.x 10.1007/s004210170010 10.1016/S0891-5849(99)00032-5 10.1006/taap.2001.9265 10.1016/S0378-1119(01)00814-9 10.1002/jcp.1041420316 10.1016/0076-6879(67)10010-4 10.1113/eph8802513 10.1016/S0021-9258(19)52451-6 10.1073/pnas.95.20.11715 10.1152/ajpcell.1988.255.1.C123 10.1007/s00421-003-0972-6 10.1073/pnas.91.25.12248 10.1073/pnas.96.3.846 10.1016/0003-2697(69)90064-5 10.1016/0891-5849(94)90008-6 10.1016/S0005-2728(00)00201-2 10.1172/JCI118909 10.1016/S0021-9258(18)43894-X 10.1073/pnas.80.19.5807 10.1080/10715760310001643311 10.1074/jbc.M100320200 10.1006/taap.2002.9532 10.1055/s-2007-972612 10.1016/S0891-5849(98)00148-8 10.1042/cs1010465 10.1016/S0002-9440(10)64138-7 10.1161/01.CIR.103.13.1787 10.1038/sj.cdd.4400722 10.1074/jbc.273.19.11619 10.1016/S0022-4804(02)00093-8 10.1152/jappl.1998.84.6.1960 10.1016/0304-3940(95)11692-P 10.1042/bj0520527 10.1016/j.bbadis.2003.12.013 10.1152/japplphysiol.00739.2001 10.1016/S0925-4439(98)00088-X 10.1016/S0014-5793(00)01082-6 10.1046/j.1471-4159.2001.00457.x 10.1016/S0014-5793(01)03206-9 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright American Physiological Society Oct 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright American Physiological Society Oct 2005 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/japplphysiol.01324.2004 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1253 |
ExternalDocumentID | 913284571 15905323 17568170 10_1152_japplphysiol_01324_2004 jap_99_4_1247 |
Genre | Journal Article Commentary Editorial |
GroupedDBID | - 02 2WC 39C 3O- 4.4 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GJ GX1 H13 H~9 KQ8 L7B MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT WH7 WOQ X X7M YCJ --- -~X .55 .GJ 18M 1CY 29J 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ACKIV ACYGS ADFNX ADXHL AETEA AFOSN AGNAY AI. AIDAL AJUXI BKKCC BTFSW C2- CITATION EMOBN ITBOX J5H MVM P6G RPRKH TR2 VH1 W8F XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM VXZ 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c512t-ba42230a8ea52cd7f3e007db74da2cb520e600dc42e0b1e7a369f0b7a74a60793 |
ISSN | 8750-7587 |
IngestDate | Fri Jul 11 13:46:42 EDT 2025 Mon Jun 30 08:32:05 EDT 2025 Wed Feb 19 01:40:09 EST 2025 Mon Jul 21 09:11:50 EDT 2025 Tue Jul 01 01:13:14 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Tue Jan 05 17:53:22 EST 2021 Mon May 06 11:51:24 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | High altitude Oxidative stress Oxygen antioxidants Acute Rodentia vitamin E Environmental factor oxidative damage E-Vitamins Antioxidant Striated muscle Vertebrata Mitochondria Mammalia Mouse Heat shock protein Hypoxia heat shock proteins |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c512t-ba42230a8ea52cd7f3e007db74da2cb520e600dc42e0b1e7a369f0b7a74a60793 |
Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 15905323 |
PQID | 222204207 |
PQPubID | 40905 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_15905323 pascalfrancis_primary_17568170 crossref_citationtrail_10_1152_japplphysiol_01324_2004 highwire_physiology_jap_99_4_1247 proquest_miscellaneous_68577584 crossref_primary_10_1152_japplphysiol_01324_2004 proquest_journals_222204207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-10-01 |
PublicationDateYYYYMMDD | 2005-10-01 |
PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2005 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R13 R16 R15 R18 R17 R19 |
References_xml | – ident: R31 doi: 10.1016/S0014-5793(03)00861-5 – ident: R11 doi: 10.1152/ajpcell.1993.264.4.C961 – ident: R34 doi: 10.1096/fj.00-0703com – ident: R48 doi: 10.1046/j.1365-201X.1997.00222.x – ident: R55 doi: 10.1074/jbc.273.43.28510 – ident: R45 doi: 10.1096/fj.02-1170com – ident: R23 doi: 10.1046/j.1365-201X.1997.00138.x – ident: R49 doi: 10.1111/j.1469-7793.2000.00379.x – ident: R3 doi: 10.1074/jbc.274.8.4924 – ident: R44 doi: 10.1074/jbc.M302743200 – ident: R52 doi: 10.1046/j.1432-1033.2003.03447.x – ident: R46 doi: 10.1007/s004210170010 – ident: R37 doi: 10.1016/S0891-5849(99)00032-5 – ident: R6 doi: 10.1006/taap.2001.9265 – ident: R39 doi: 10.1016/S0378-1119(01)00814-9 – ident: R53 doi: 10.1002/jcp.1041420316 – ident: R14 doi: 10.1016/0076-6879(67)10010-4 – ident: R16 doi: 10.1113/eph8802513 – ident: R26 doi: 10.1016/S0021-9258(19)52451-6 – ident: R8 doi: 10.1073/pnas.95.20.11715 – ident: R10 doi: 10.1152/ajpcell.1988.255.1.C123 – ident: R29 doi: 10.1007/s00421-003-0972-6 – ident: R15 doi: 10.1073/pnas.91.25.12248 – ident: R32 doi: 10.1073/pnas.96.3.846 – ident: R47 doi: 10.1016/0003-2697(69)90064-5 – ident: R19 doi: 10.1016/0891-5849(94)90008-6 – ident: R54 doi: 10.1016/S0005-2728(00)00201-2 – ident: R56 doi: 10.1172/JCI118909 – ident: R7 doi: 10.1016/S0021-9258(18)43894-X – ident: R21 doi: 10.1073/pnas.80.19.5807 – ident: R41 doi: 10.1080/10715760310001643311 – ident: R28 – ident: R35 doi: 10.1074/jbc.M100320200 – ident: R43 doi: 10.1006/taap.2002.9532 – ident: R2 doi: 10.1055/s-2007-972612 – ident: R12 doi: 10.1016/S0891-5849(98)00148-8 – ident: R4 doi: 10.1042/cs1010465 – ident: R42 doi: 10.1016/S0002-9440(10)64138-7 – ident: R25 doi: 10.1161/01.CIR.103.13.1787 – ident: R20 doi: 10.1038/sj.cdd.4400722 – ident: R18 – ident: R50 – ident: R13 doi: 10.1074/jbc.273.19.11619 – ident: R5 doi: 10.1016/S0022-4804(02)00093-8 – ident: R33 doi: 10.1152/jappl.1998.84.6.1960 – ident: R9 doi: 10.1016/0304-3940(95)11692-P – ident: R27 – ident: R22 doi: 10.1042/bj0520527 – ident: R51 doi: 10.1016/j.bbadis.2003.12.013 – ident: R36 doi: 10.1152/japplphysiol.00739.2001 – ident: R1 doi: 10.1016/S0925-4439(98)00088-X – ident: R38 doi: 10.1016/S0014-5793(00)01082-6 – ident: R24 doi: 10.1046/j.1471-4159.2001.00457.x – ident: R30 – ident: R40 doi: 10.1016/S0014-5793(01)03206-9 – ident: R17 |
SSID | ssj0014451 |
Score | 2.2564323 |
SecondaryResourceType | review_article |
Snippet | 1 Department of Sport Biology, Faculty of Sport Science, and 2 Department of Clinical Analysis and of Biochemistry, Faculty of Pharmacy, Institute for... Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1247 |
SubjectTerms | Acute Disease Animals Atmospheric Pressure Biological and medical sciences Carbonyl compounds Fundamental and applied biological sciences. Psychology Hypoxia Hypoxia - etiology Hypoxia - metabolism Hypoxia - physiopathology In Vitro Techniques Male Mice Mice, Inbred Strains Mitochondria, Muscle - metabolism Mitochondrial DNA Muscle, Skeletal - metabolism Muscular system Oxidation Oxidative Stress Oxygen Consumption - drug effects Respiration Respiratory function Rodents Severity of Illness Index Superoxides - metabolism Vitamin E - metabolism Vitamin E - pharmacology |
Title | Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle |
URI | http://jap.physiology.org/cgi/content/abstract/99/4/1247 https://www.ncbi.nlm.nih.gov/pubmed/15905323 https://www.proquest.com/docview/222204207 https://www.proquest.com/docview/68577584 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYu3WAYCfFSpeTiJM1jmUATqAikTtqbZSeOFm1NqzaV1v1l_gTn2M6l0GmMlypNfSzX5_O5-fiYkPdBkuWpGGHCk8scMKmFA25z7oAylGCPMOnp42OT79HpGft6Hp73er86WUvrSg7Tm53nSv6Hq_AO-IqnZO_B2aZTeAHPwF_4BA7D5z_xeJziLr8OfSsYvBpcbBawPjE5Hp-uCzEoSjQLV1ha9rrITJVvez5EbxuANCiWq8EMFjYIwjLTl3igsquTIDE0ACSXoJ7w3ORsvaoH8bdJK6xJq8MlprgT1oFKRmEn4IAlra8u9AZ9oOpdCLNf36APS0yZd8HcljjAb5-C0qSN6ZjQHI9ObdEPJsPBybATIl-qYmms46ISWwGOsEmVa3NAXQfcGqOXlZXT4EN7kW1mBbm5ackClnWkMtgwcUfDg00X7NYeoa9vLYDJshM1xK0oHXpjrcKskwT-0KNNdqP2q0KfdzviuiO89JM9IA998GlQKH_72W55YaU4E4w2_9YmI0JHH28Z0bYpVZe3xuxesYIFnpubWW53nbQJNX1Knlig0LEB8jPSU-U-ORiXoprPNvQD_dHAZp88mtikjwOy0TCnAFdqYE4bmFMLc9rAnDYwpwbmms7CnG7BnNYwB2qqYU5rmFMD8-fk7Mvn6cmpY28McVIwXCtHCgbmritGSoR-msV5oMAGzmTMMuGnMvRdBQZ-ljJfudJTsQiiJHdlLGImIiwV-YLslfNSvSI0VZHMQyk96WYsyj0pUjD3lId1WAOZRX0S1ZPPU1tOH291ueJ3sL9P3IZwYSrK3E3i1Nzl7QrmGKSaAvSQLEk444hzvsjyPnm3qz004027Pjnegkk7lhhrEsZunxzVuOFW5q04eBM-qHkXyN82v4JCwl1GUSpgFY9GYQz4hUG_NGBrew4TvIcmOLz_DByRx61oeE32quVavQFvoJLHehX9BqAfD94 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+and+severe+hypobaric+hypoxia+increases+oxidative+stress+and+impairs+mitochondrial+function+in+mouse+skeletal+muscle&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Magalh%C3%A3es%2C+Jos%C3%A9&rft.au=Ascens%C3%A3o%2C+Ant%C3%B3nio&rft.au=Soares%2C+Jos%C3%A9+M.+C.&rft.au=Ferreira%2C+Rita&rft.date=2005-10-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=99&rft.issue=4&rft.spage=1247&rft.epage=1253&rft_id=info:doi/10.1152%2Fjapplphysiol.01324.2004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_01324_2004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |