Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-re...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 10137 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.12.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd
3
As
2
is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd
3
As
2
. Here we show a large negative magnetoresistance with magnitude of −63% at 60 K and −11% at 300 K in individual Cd
3
As
2
nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals.
Dirac semimetals possess an electronic dispersion relation which is linear in three dimensions, making them three-dimensional analogues of graphene. Here, the authors report large negative magnetoresistance in single-crystal Cd
3
As
2
nanowires, evidencing a sought-after chiral anomaly effect. |
---|---|
AbstractList | Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3As2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd3As2. Here we show a large negative magnetoresistance with magnitude of -63% at 60 K and -11% at 300 K in individual Cd3As2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals. Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd 3 As 2 . Here we show a large negative magnetoresistance with magnitude of −63% at 60 K and −11% at 300 K in individual Cd 3 As 2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals. Dirac semimetals possess an electronic dispersion relation which is linear in three dimensions, making them three-dimensional analogues of graphene. Here, the authors report large negative magnetoresistance in single-crystal Cd 3 As 2 nanowires, evidencing a sought-after chiral anomaly effect. Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3 As2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd3 As2 . Here we show a large negative magnetoresistance with magnitude of -63% at 60 K and -11% at 300 K in individual Cd3 As2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals. Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd 3 As 2 . Here we show a large negative magnetoresistance with magnitude of −63% at 60 K and −11% at 300 K in individual Cd 3 As 2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals. |
ArticleNumber | 10137 |
Author | Liao, Zhi-Min Wang, Jian Wang, Li-Xian Li, Cai-Zhen Liu, Haiwen Yu, Da-Peng |
Author_xml | – sequence: 1 givenname: Cai-Zhen surname: Li fullname: Li, Cai-Zhen organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University – sequence: 2 givenname: Li-Xian surname: Wang fullname: Wang, Li-Xian organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University – sequence: 3 givenname: Haiwen surname: Liu fullname: Liu, Haiwen organization: International Center for Quantum Materials, School of Physics, Peking University – sequence: 4 givenname: Jian surname: Wang fullname: Wang, Jian organization: International Center for Quantum Materials, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter – sequence: 5 givenname: Zhi-Min surname: Liao fullname: Liao, Zhi-Min email: liaozm@pku.edu.cn organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Collaborative Innovation Center of Quantum Matter – sequence: 6 givenname: Da-Peng surname: Yu fullname: Yu, Da-Peng organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Collaborative Innovation Center of Quantum Matter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26673625$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEURkVIycPNqvsykE0hdavXaEabgDFtWgh00y6D0Eh3bIUZKZE0Lv73lXEanNBqI6F7dPiu7jk69sEDQu8I_kQwaz97E8YxEUxYc4TOKOZkThrKjg_Op-gipXtcFpOk5fwEnVIhGiZofYbubpz2ufKw0tltoBr1ykMOEZJLWXsDlfN2MmCrblvlNVRm7aIeKu3DqIdtqe4At3F2KrdLyxaJVr5Uf7vieIve9HpIcPG0z9Cvr19-Lr_Nb3_cfF8ubuemJjTPO4xlb7Vtu1oSXgvDicAghTXMaqbBkp7QuhWNBAktwYaW1oXohOnaXvYNm6Hrvfdh6kawBnwuIdVDdKOOWxW0Uy8r3q3VKmwUb4qJ8yL48CSI4XGClNXokoFh0B7ClBRpasypJFgU9PIVeh-m6Et7heKyllQU6Qy9P0z0HOXvzxfgag-YGFKK0D8jBKvdaNXBaAtNXtHG5TKxsGvHDf9583H_JhWzX0E8CPoP_A9gCre- |
CitedBy_id | crossref_primary_10_7498_aps_72_20230672 crossref_primary_10_1063_5_0038804 crossref_primary_10_1103_PhysRevB_109_125111 crossref_primary_10_1103_PhysRevB_101_161201 crossref_primary_10_1021_acsnano_3c04835 crossref_primary_10_1103_RevModPhys_90_015001 crossref_primary_10_1103_PhysRevLett_120_156802 crossref_primary_10_1103_PhysRevB_94_241405 crossref_primary_10_1360_TB_2023_0307 crossref_primary_10_1103_PhysRevB_94_081408 crossref_primary_10_1103_PhysRevB_94_161402 crossref_primary_10_1088_1361_648X_aca30a crossref_primary_10_1103_PhysRevB_95_235136 crossref_primary_10_7498_aps_71_20220584 crossref_primary_10_1103_PhysRevB_101_125119 crossref_primary_10_1103_PhysRevB_96_121401 crossref_primary_10_1007_JHEP10_2017_133 crossref_primary_10_1002_adma_202109671 crossref_primary_10_1103_PhysRevB_97_195139 crossref_primary_10_1016_j_jcrysgro_2021_126230 crossref_primary_10_1103_PhysRevB_93_161110 crossref_primary_10_1088_1674_1056_acd9c5 crossref_primary_10_1038_srep43394 crossref_primary_10_1103_PhysRevB_98_184514 crossref_primary_10_1039_C7RA02847D crossref_primary_10_1103_PhysRevB_96_085112 crossref_primary_10_1103_PhysRevB_100_085424 crossref_primary_10_1088_2053_1583_ab8d82 crossref_primary_10_1038_s41467_019_09012_4 crossref_primary_10_1103_PhysRevC_105_034903 crossref_primary_10_1103_PhysRevB_99_075114 crossref_primary_10_1103_PhysRevLett_116_226801 crossref_primary_10_1007_s12598_024_03131_8 crossref_primary_10_1088_1361_648X_ab4466 crossref_primary_10_1103_PhysRevB_110_214507 crossref_primary_10_1007_s11467_019_0890_7 crossref_primary_10_1038_s41598_017_13610_x crossref_primary_10_1103_PhysRevB_96_085201 crossref_primary_10_1088_1361_648X_ab4464 crossref_primary_10_1103_PhysRevB_98_081202 crossref_primary_10_1103_PhysRevB_96_121407 crossref_primary_10_1103_PhysRevB_99_165146 crossref_primary_10_1038_s41598_017_06697_9 crossref_primary_10_1088_1361_648X_ac2fd4 crossref_primary_10_1103_PhysRevB_93_195119 crossref_primary_10_1038_s41598_018_33655_w crossref_primary_10_1103_PhysRevB_97_115446 crossref_primary_10_1038_s41598_017_10939_1 crossref_primary_10_1103_PhysRevB_95_201101 crossref_primary_10_1103_PhysRevB_101_174310 crossref_primary_10_1088_2053_1583_abc13f crossref_primary_10_1103_PhysRevB_111_035143 crossref_primary_10_1007_s12034_021_02485_4 crossref_primary_10_1103_PhysRevResearch_2_033346 crossref_primary_10_1016_j_jcrysgro_2019_125304 crossref_primary_10_1126_sciadv_aar5668 crossref_primary_10_1134_S0036023621140059 crossref_primary_10_1103_PhysRevB_98_205113 crossref_primary_10_1016_j_jmmm_2019_04_015 crossref_primary_10_1038_s42254_021_00344_z crossref_primary_10_1021_acs_jpcc_1c10132 crossref_primary_10_1007_JHEP04_2020_162 crossref_primary_10_1007_JHEP08_2017_103 crossref_primary_10_1103_PhysRevLett_120_257701 crossref_primary_10_1088_1674_1056_25_11_117204 crossref_primary_10_3390_sym12050814 crossref_primary_10_1021_acs_nanolett_0c01649 crossref_primary_10_1007_s11467_016_0609_y crossref_primary_10_1007_JHEP06_2017_054 crossref_primary_10_1103_PhysRevB_109_115123 crossref_primary_10_1209_0295_5075_130_47004 crossref_primary_10_1088_1361_648X_abdff5 crossref_primary_10_1038_s41535_017_0038_3 crossref_primary_10_1103_PhysRevLett_123_216601 crossref_primary_10_1073_pnas_1608881113 crossref_primary_10_1088_1361_648X_ac3b24 crossref_primary_10_1103_PhysRevB_98_045131 crossref_primary_10_1103_PhysRevB_102_235115 crossref_primary_10_3390_nano12040679 crossref_primary_10_1021_acsnano_9b07990 crossref_primary_10_1103_PhysRevB_98_161110 crossref_primary_10_1002_adma_202005897 crossref_primary_10_1063_5_0139561 crossref_primary_10_1063_5_0170167 crossref_primary_10_1103_PhysRevLett_119_136806 crossref_primary_10_7498_aps_68_20191501 crossref_primary_10_1103_PhysRevResearch_1_032040 crossref_primary_10_1016_j_jallcom_2024_174478 crossref_primary_10_1051_epjconf_201713701011 crossref_primary_10_1016_j_jallcom_2024_174359 crossref_primary_10_1103_PhysRevResearch_1_032044 crossref_primary_10_1038_ncomms13013 crossref_primary_10_1103_PhysRevB_93_085426 crossref_primary_10_1038_s41467_017_01438_y crossref_primary_10_1021_acsnano_6b01568 crossref_primary_10_1088_1367_2630_aa95e7 crossref_primary_10_1103_PhysRevLett_122_036601 crossref_primary_10_1103_PhysRevLett_122_036602 crossref_primary_10_1016_j_aop_2018_07_006 crossref_primary_10_1140_epjc_s10052_024_13570_3 crossref_primary_10_1016_j_spmi_2019_106213 crossref_primary_10_1021_acs_nanolett_7b05165 crossref_primary_10_1103_PhysRevB_95_041201 crossref_primary_10_1088_0256_307X_38_1_017201 crossref_primary_10_1088_2053_1591_ab35b9 crossref_primary_10_1038_srep34023 crossref_primary_10_1002_adma_202201597 crossref_primary_10_1103_PhysRevB_102_104404 crossref_primary_10_1103_PhysRevB_105_205126 crossref_primary_10_1063_5_0066252 crossref_primary_10_1038_ncomms13142 crossref_primary_10_1038_ncomms14111 crossref_primary_10_1103_PhysRevB_99_235123 crossref_primary_10_21468_SciPostPhysCore_3_2_013 crossref_primary_10_1103_PhysRevB_110_165203 crossref_primary_10_1016_j_flatc_2016_11_003 crossref_primary_10_1103_PhysRevB_96_235134 crossref_primary_10_1103_PhysRevB_104_205119 crossref_primary_10_1002_adfm_202008411 crossref_primary_10_1063_5_0096400 crossref_primary_10_1103_PhysRevResearch_1_032028 crossref_primary_10_1103_PhysRevB_96_035106 crossref_primary_10_1021_acsnano_4c05197 crossref_primary_10_1103_PhysRevB_97_201404 crossref_primary_10_1103_PhysRevLett_123_206601 crossref_primary_10_1103_PhysRevB_97_245103 crossref_primary_10_1103_PhysRevB_95_205201 crossref_primary_10_1103_PhysRevB_102_125104 crossref_primary_10_1103_PhysRevB_107_165423 crossref_primary_10_1103_PhysRevB_109_155154 crossref_primary_10_1103_PhysRevB_94_121115 crossref_primary_10_1021_acs_nanolett_3c01174 crossref_primary_10_1103_PhysRevB_96_081110 crossref_primary_10_1103_PhysRevB_100_245146 crossref_primary_10_1140_epjb_e2018_80418_1 crossref_primary_10_1103_PhysRevB_98_205139 crossref_primary_10_1103_PhysRevB_98_075110 crossref_primary_10_1038_s41535_021_00378_7 crossref_primary_10_1088_1361_6528_ad1941 crossref_primary_10_1103_PhysRevResearch_1_032002 crossref_primary_10_1103_PhysRevB_93_085107 crossref_primary_10_1103_PhysRevLett_131_186302 crossref_primary_10_1140_epjb_e2019_90514_3 crossref_primary_10_1103_PhysRevB_100_235105 crossref_primary_10_1103_PhysRevB_95_235436 crossref_primary_10_1103_PhysRevB_96_060201 crossref_primary_10_1103_PhysRevB_97_201301 crossref_primary_10_1088_1361_648X_ab680a crossref_primary_10_1103_PhysRevB_95_085308 crossref_primary_10_1103_PhysRevX_6_041021 crossref_primary_10_1103_PhysRevB_103_L161103 crossref_primary_10_1103_PhysRevB_103_L081402 crossref_primary_10_1088_1674_1056_ace157 crossref_primary_10_1038_srep22377 crossref_primary_10_1103_PhysRevD_102_054516 crossref_primary_10_1103_PhysRevB_95_165135 crossref_primary_10_1088_1674_1056_ac0a5e crossref_primary_10_1103_PhysRevB_104_075129 crossref_primary_10_1103_PhysRevLett_118_207701 crossref_primary_10_1038_s41598_017_12835_0 crossref_primary_10_1103_PhysRevLett_124_156601 crossref_primary_10_7498_aps_72_20230905 crossref_primary_10_59717_j_xinn_mater_2023_100011 crossref_primary_10_1080_23746149_2017_1327329 crossref_primary_10_1103_PhysRevB_98_115203 crossref_primary_10_1088_1367_2630_acb2e4 crossref_primary_10_7566_JPSJ_90_084702 crossref_primary_10_1088_1674_1056_27_10_107402 crossref_primary_10_1103_PhysRevB_108_195436 crossref_primary_10_1063_1_4954290 crossref_primary_10_3390_cryst9100486 crossref_primary_10_7566_JPSJ_87_041001 crossref_primary_10_1103_PhysRevX_9_011039 crossref_primary_10_1103_PhysRevB_98_104310 crossref_primary_10_1103_PhysRevB_106_165202 crossref_primary_10_1103_PhysRevB_110_205109 crossref_primary_10_1103_RevModPhys_93_025002 crossref_primary_10_1103_PhysRevB_102_115129 crossref_primary_10_1103_PhysRevB_103_115208 crossref_primary_10_1103_PhysRevLett_122_010501 crossref_primary_10_1021_acsami_1c18848 crossref_primary_10_1063_1_4948654 crossref_primary_10_1021_acs_chemmater_2c02147 crossref_primary_10_1021_acsnano_7b05743 crossref_primary_10_1103_PhysRevB_93_115414 crossref_primary_10_1103_PhysRevLett_120_026601 crossref_primary_10_1088_1674_1056_acb91a crossref_primary_10_1016_j_jqsrt_2021_107514 crossref_primary_10_1073_pnas_2200367119 crossref_primary_10_1103_PhysRevB_99_085124 crossref_primary_10_1103_PhysRevB_104_155140 crossref_primary_10_1103_PhysRevB_99_155152 crossref_primary_10_1103_PhysRevB_103_104434 crossref_primary_10_1103_PhysRevX_9_021053 crossref_primary_10_1063_1_4947434 crossref_primary_10_1038_s41427_022_00380_w crossref_primary_10_1103_PhysRevLett_119_166601 crossref_primary_10_1103_PhysRevB_93_075113 crossref_primary_10_1103_PhysRevApplied_21_034001 crossref_primary_10_1103_PhysRevLett_117_077201 crossref_primary_10_1007_s11664_022_09490_1 crossref_primary_10_1088_0256_307X_38_4_047201 crossref_primary_10_1063_5_0177343 crossref_primary_10_1103_PhysRevApplied_14_054044 crossref_primary_10_1103_PhysRevB_102_115147 crossref_primary_10_1103_PhysRevB_97_201110 crossref_primary_10_1088_1367_2630_acc122 crossref_primary_10_1088_1674_4926_41_7_072903 crossref_primary_10_1103_PhysRevB_101_155204 crossref_primary_10_1002_adma_202005909 crossref_primary_10_1103_PhysRevB_103_045116 crossref_primary_10_7566_JPSJ_89_073705 crossref_primary_10_1002_adfm_202104192 crossref_primary_10_1007_JHEP09_2016_131 crossref_primary_10_1016_j_scib_2018_04_007 crossref_primary_10_3390_nano13131979 crossref_primary_10_1103_PhysRevLett_124_116802 crossref_primary_10_1002_adma_201707547 crossref_primary_10_1103_PhysRevB_109_245135 crossref_primary_10_1038_srep40327 crossref_primary_10_1038_s41598_018_32104_y crossref_primary_10_1103_PhysRevLett_124_126602 crossref_primary_10_1002_pssr_202200365 crossref_primary_10_1088_1361_648X_ac4cee crossref_primary_10_1103_PhysRevB_99_115138 crossref_primary_10_1038_s41598_017_15962_w crossref_primary_10_1038_srep27487 crossref_primary_10_1063_5_0025396 crossref_primary_10_1063_1_5037551 crossref_primary_10_1080_02670836_2016_1198526 crossref_primary_10_1002_adpr_202100354 crossref_primary_10_1063_1_5128125 crossref_primary_10_1103_PhysRevB_97_235113 crossref_primary_10_1088_1367_2630_ab3dbb crossref_primary_10_1103_PhysRevB_107_195201 crossref_primary_10_1016_j_physletb_2020_135236 crossref_primary_10_1063_5_0055713 crossref_primary_10_1103_PhysRevB_107_L081113 crossref_primary_10_1103_PhysRevLett_120_206601 crossref_primary_10_1103_PhysRevD_106_096007 crossref_primary_10_1103_PhysRevB_95_205141 crossref_primary_10_1016_j_matdes_2019_108460 crossref_primary_10_1002_aelm_201600228 crossref_primary_10_1103_PhysRevApplied_14_054039 crossref_primary_10_1016_j_jmat_2021_11_005 crossref_primary_10_1103_PhysRevResearch_4_L022002 crossref_primary_10_1088_1367_2630_ac1af6 crossref_primary_10_1016_j_ppnp_2022_103989 crossref_primary_10_1016_j_apsusc_2017_12_235 crossref_primary_10_1088_1361_648X_29_4_044003 crossref_primary_10_1021_acs_nanolett_2c03574 crossref_primary_10_1021_acs_nanolett_3c00713 crossref_primary_10_1103_PhysRevB_93_165127 crossref_primary_10_1103_PhysRevB_95_024303 crossref_primary_10_1103_PhysRevB_96_125123 crossref_primary_10_1038_ncomms10769 crossref_primary_10_1002_pssr_201700271 crossref_primary_10_1103_PhysRevB_96_161202 crossref_primary_10_1088_1361_648X_aa6f91 crossref_primary_10_1103_PhysRevD_102_096023 crossref_primary_10_1088_1361_648X_aaebed crossref_primary_10_1038_s41535_020_0214_8 crossref_primary_10_1038_nphys3648 crossref_primary_10_1002_pssr_201800386 crossref_primary_10_3390_sym15091651 crossref_primary_10_1007_s11467_019_0887_2 crossref_primary_10_1063_5_0083154 crossref_primary_10_1016_j_actamat_2018_12_048 crossref_primary_10_1063_5_0164063 crossref_primary_10_1016_j_physleta_2022_128443 crossref_primary_10_1103_PhysRevMaterials_2_120302 crossref_primary_10_1021_acs_nanolett_6b04194 crossref_primary_10_1002_pssb_201800513 crossref_primary_10_1088_1367_2630_18_5_053039 crossref_primary_10_1063_5_0007528 crossref_primary_10_1103_PhysRevB_98_075430 crossref_primary_10_1016_j_mtphys_2023_101234 crossref_primary_10_1103_PhysRevB_101_041408 crossref_primary_10_1038_ncomms10301 crossref_primary_10_1021_acsami_1c06904 crossref_primary_10_1103_PhysRevX_6_041046 crossref_primary_10_1088_1402_4896_ad3387 crossref_primary_10_1021_acs_nanolett_6b04084 crossref_primary_10_1080_23746149_2017_1414631 crossref_primary_10_1038_s41467_020_14900_1 crossref_primary_10_1103_PhysRevB_107_125101 crossref_primary_10_1103_PhysRevB_108_094514 crossref_primary_10_1088_1367_2630_aa55a3 crossref_primary_10_1103_PhysRevB_96_045307 crossref_primary_10_1103_PhysRevB_108_205107 crossref_primary_10_1103_PhysRevB_94_214306 crossref_primary_10_1103_PhysRevB_108_054404 crossref_primary_10_1140_epjc_s10052_018_6503_8 crossref_primary_10_1103_PhysRevLett_121_237701 crossref_primary_10_1002_adma_202104645 crossref_primary_10_1063_5_0223869 crossref_primary_10_7498_aps_72_20230397 crossref_primary_10_1016_j_jssc_2024_124628 crossref_primary_10_1088_0256_307X_36_5_057102 crossref_primary_10_1103_PhysRevLett_126_027001 crossref_primary_10_1103_PhysRevB_95_195306 crossref_primary_10_1103_PhysRevD_110_026021 crossref_primary_10_1002_adom_201901192 crossref_primary_10_1103_PhysRevB_102_205105 crossref_primary_10_1134_S0020168522120111 crossref_primary_10_1063_5_0087141 crossref_primary_10_1103_PhysRevB_96_155138 crossref_primary_10_1088_1674_1056_ac720b crossref_primary_10_1103_PhysRevD_108_126010 crossref_primary_10_1103_PhysRevB_98_014305 crossref_primary_10_1103_PhysRevB_98_201104 crossref_primary_10_1051_epjconf_201817503001 crossref_primary_10_1038_s41598_018_27148_z crossref_primary_10_1088_1367_2630_aba98d crossref_primary_10_1016_j_cjph_2023_03_020 crossref_primary_10_1088_0256_307X_36_6_067201 crossref_primary_10_7498_aps_72_20221574 crossref_primary_10_1002_EXP_20210223 crossref_primary_10_1103_PhysRevB_98_121110 crossref_primary_10_1021_jacs_4c14891 crossref_primary_10_1103_PhysRevB_111_064101 crossref_primary_10_1103_PhysRevB_95_081410 crossref_primary_10_21869_2223_1528_2023_13_2_201_221 crossref_primary_10_1103_PhysRevLett_121_142301 crossref_primary_10_1038_s41467_020_20838_1 crossref_primary_10_1038_s41598_018_29545_w crossref_primary_10_1088_2053_1591_abc048 crossref_primary_10_1103_PhysRevB_95_115410 crossref_primary_10_1103_PhysRevB_93_245304 crossref_primary_10_1103_PhysRevB_96_241106 crossref_primary_10_1146_annurev_matsci_070218_010023 crossref_primary_10_1039_D1CP00963J crossref_primary_10_1063_1_5094192 crossref_primary_10_1088_1674_1056_25_11_117105 crossref_primary_10_1007_s11467_023_1259_5 crossref_primary_10_1103_PhysRevMaterials_2_021201 crossref_primary_10_1038_nmat4965 crossref_primary_10_1038_s41467_020_15010_8 crossref_primary_10_1103_PhysRevB_97_075202 crossref_primary_10_1039_D1NR05812F crossref_primary_10_1103_PhysRevB_110_045439 crossref_primary_10_1103_PhysRevB_100_115414 crossref_primary_10_1038_s41467_020_15854_0 crossref_primary_10_1103_PhysRevB_96_134201 crossref_primary_10_1002_adfm_202011011 crossref_primary_10_1038_s41598_018_29676_0 crossref_primary_10_1038_ncomms13741 crossref_primary_10_1088_1751_8121_abc221 crossref_primary_10_1038_srep46062 crossref_primary_10_1103_PhysRevB_94_195108 crossref_primary_10_1021_acs_nanolett_0c01010 crossref_primary_10_1038_s41598_021_87780_0 crossref_primary_10_1103_PhysRevB_102_064506 crossref_primary_10_1088_1674_1056_ab3a91 crossref_primary_10_1103_PhysRevB_104_L121117 crossref_primary_10_7498_aps_72_20230109 crossref_primary_10_7498_aps_72_20211961 crossref_primary_10_1016_j_jallcom_2020_158093 crossref_primary_10_1103_PhysRevB_109_235419 crossref_primary_10_1088_1674_1056_accd50 crossref_primary_10_1103_PhysRevMaterials_5_094201 crossref_primary_10_1103_PhysRevB_101_125201 crossref_primary_10_1103_PhysRevB_101_125203 crossref_primary_10_1088_1367_2630_18_8_083003 crossref_primary_10_7498_aps_70_20200914 crossref_primary_10_1002_andp_201900449 crossref_primary_10_1016_j_jmst_2020_11_023 crossref_primary_10_1126_sciadv_abq2479 crossref_primary_10_1063_1_5097295 crossref_primary_10_1016_j_physrep_2022_06_002 crossref_primary_10_1002_adfm_201900965 crossref_primary_10_1103_PhysRevB_102_085426 crossref_primary_10_7566_JPSJ_86_124714 crossref_primary_10_1088_1361_6528_ab6dfe crossref_primary_10_1103_PhysRevB_95_241113 crossref_primary_10_1088_0256_307X_41_10_107201 crossref_primary_10_1103_PhysRevB_95_161306 crossref_primary_10_1103_PhysRevB_99_045143 crossref_primary_10_1088_1361_6668_ac4c84 crossref_primary_10_1134_S0021364020140040 crossref_primary_10_1515_nanoph_2023_0598 crossref_primary_10_1103_PhysRevB_97_085303 crossref_primary_10_1103_PhysRevB_98_165441 crossref_primary_10_1103_PhysRevB_106_075139 crossref_primary_10_1103_PhysRevB_93_165420 crossref_primary_10_1103_PhysRevB_101_205137 crossref_primary_10_1126_sciadv_abn3837 crossref_primary_10_1088_1361_6463_ad93e2 crossref_primary_10_1063_1_4984262 crossref_primary_10_1103_PhysRevB_96_085130 |
Cites_doi | 10.1038/nmat1849 10.1016/j.ppnp.2014.01.002 10.1103/RevModPhys.82.3045 10.1103/PhysRevLett.113.246402 10.1038/nmat4143 10.1103/PhysRevB.88.104412 10.1038/nature04233 10.1103/PhysRevD.78.074033 10.1038/nmat4023 10.1103/PhysRevB.88.125427 10.1021/ic403163d 10.1103/PhysRevLett.111.246603 10.1126/science.1245085 10.1063/1.4890940 10.1063/1.4795149 10.1103/PhysRevB.92.081306 10.1103/PhysRevB.88.165105 10.1063/1.4908158 10.1038/ncomms4786 10.1038/nmat3990 10.1038/ncomms5898 10.1038/srep06106 10.1103/PhysRevLett.114.117201 10.1103/PhysRevLett.108.140405 10.1103/PhysRevB.85.195320 10.1038/ncomms10301 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Dec 2015 Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Dec 2015 – notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1038/ncomms10137 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10137 |
ExternalDocumentID | PMC4703844 3897142471 26673625 10_1038_ncomms10137 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c512t-b009fdad8b591456c4160e96dc3da3aed1f1258679e9e810c203866b6cb8f9f73 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 18:42:03 EDT 2025 Fri Jul 11 01:20:47 EDT 2025 Wed Aug 13 04:10:00 EDT 2025 Wed Feb 19 02:34:30 EST 2025 Tue Jul 01 02:31:10 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Fri Feb 21 02:39:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-b009fdad8b591456c4160e96dc3da3aed1f1258679e9e810c203866b6cb8f9f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms10137 |
PMID | 26673625 |
PQID | 1749592670 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4703844 proquest_miscellaneous_1750429106 proquest_journals_1749592670 pubmed_primary_26673625 crossref_primary_10_1038_ncomms10137 crossref_citationtrail_10_1038_ncomms10137 springer_journals_10_1038_ncomms10137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151217 |
PublicationDateYYYYMMDD | 2015-12-17 |
PublicationDate_xml | – month: 12 year: 2015 text: 20151217 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Liu (CR11) 2014; 13 Hasan, Kane (CR3) 2010; 82 Huang (CR28) 2015; 5 Neupane (CR12) 2014; 5 CR34 Yang, Nagaosa (CR5) 2014; 5 CR33 Burkov (CR23) 2015; 27 Kushwaha (CR9) 2015; 3 Kharzeev (CR22) 2014; 75 Wang (CR6) 2012; 85 Wang, Weng, Wu, Dai, Fang (CR10) 2013; 88 Geim, Novoselov (CR2) 2007; 6 Son, Spivak (CR21) 2013; 88 Zhao (CR17) 2015; 5 Parameswaran (CR30) 2014; 4 Zhang (CR8) 2014; 105 Ali (CR24) 2014; 53 CR29 Feng (CR16) 2015; 92 Jeon (CR18) 2014; 13 CR26 Young (CR4) 2012; 108 Liu (CR7) 2014; 343 He (CR15) 2014; 113 CR25 Zhou, Wu, Yu, Liao (CR32) 2013; 102 Liang (CR14) 2015; 14 Fukushima, Kharzeev, Warringa (CR20) 2008; 78 Narayanan (CR31) 2015; 114 Gorbar, Miransky, Shovkovy (CR19) 2013; 88 Novoselov (CR1) 2005; 438 Yi (CR13) 2014; 4 Kim (CR27) 2013; 111 Y Zhao (BFncomms10137_CR17) 2015; 5 BFncomms10137_CR25 BFncomms10137_CR26 X Huang (BFncomms10137_CR28) 2015; 5 A Narayanan (BFncomms10137_CR31) 2015; 114 Z Liu (BFncomms10137_CR7) 2014; 343 BFncomms10137_CR29 M-N Ali (BFncomms10137_CR24) 2014; 53 SA Parameswaran (BFncomms10137_CR30) 2014; 4 KS Novoselov (BFncomms10137_CR1) 2005; 438 SK Kushwaha (BFncomms10137_CR9) 2015; 3 K Fukushima (BFncomms10137_CR20) 2008; 78 DE Kharzeev (BFncomms10137_CR22) 2014; 75 Y Zhang (BFncomms10137_CR8) 2014; 105 AK Geim (BFncomms10137_CR2) 2007; 6 SM Young (BFncomms10137_CR4) 2012; 108 B-J Yang (BFncomms10137_CR5) 2014; 5 J Feng (BFncomms10137_CR16) 2015; 92 M Neupane (BFncomms10137_CR12) 2014; 5 H-J Kim (BFncomms10137_CR27) 2013; 111 A Burkov (BFncomms10137_CR23) 2015; 27 Y-B Zhou (BFncomms10137_CR32) 2013; 102 MZ Hasan (BFncomms10137_CR3) 2010; 82 S Jeon (BFncomms10137_CR18) 2014; 13 L He (BFncomms10137_CR15) 2014; 113 BFncomms10137_CR34 BFncomms10137_CR33 T Liang (BFncomms10137_CR14) 2015; 14 Z Wang (BFncomms10137_CR6) 2012; 85 D Son (BFncomms10137_CR21) 2013; 88 E Gorbar (BFncomms10137_CR19) 2013; 88 Z Wang (BFncomms10137_CR10) 2013; 88 H Yi (BFncomms10137_CR13) 2014; 4 Z Liu (BFncomms10137_CR11) 2014; 13 |
References_xml | – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: CR2 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 75 start-page: 133 year: 2014 end-page: 151 ident: CR22 article-title: The chiral magnetic effect and anomaly-induced transport publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2014.01.002 – volume: 82 start-page: 3045 year: 2010 end-page: 3067 ident: CR3 article-title: Colloquium: topological insulators publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 27 start-page: 113201 year: 2015 ident: CR23 article-title: Chiral anomaly and transport in Weyl metals publication-title: J. Phys.: Condens. Matter – volume: 113 start-page: 246402 year: 2014 ident: CR15 article-title: Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.246402 – volume: 14 start-page: 280 year: 2015 end-page: 284 ident: CR14 article-title: Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd As publication-title: Nat. Mater. doi: 10.1038/nmat4143 – volume: 88 start-page: 104412 year: 2013 ident: CR21 article-title: Chiral anomaly and classical negative magnetoresistance of Weyl metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.104412 – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR1 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 – ident: CR33 – volume: 78 start-page: 074033 year: 2008 ident: CR20 article-title: Chiral magnetic effect publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.074033 – volume: 13 start-page: 851 year: 2014 end-page: 856 ident: CR18 article-title: Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd As publication-title: Nat. Mater. doi: 10.1038/nmat4023 – ident: CR29 – volume: 5 start-page: 031023 year: 2015 ident: CR28 article-title: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs publication-title: Phys. Rev. X – ident: CR25 – volume: 88 start-page: 125427 year: 2013 ident: CR10 article-title: Three-dimensional Dirac semimetal and quantum transport in Cd As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.125427 – volume: 5 start-page: 031037 year: 2015 ident: CR17 article-title: Anisotropic fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd As publication-title: Phys. Rev. X – volume: 53 start-page: 4062 year: 2014 end-page: 4067 ident: CR24 article-title: The crystal and electronic structures of Cd As , the three-dimensional electronic analogue of graphene publication-title: Inorg. Chem. doi: 10.1021/ic403163d – volume: 111 start-page: 246603 year: 2013 ident: CR27 article-title: Dirac versus weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.246603 – volume: 343 start-page: 864 year: 2014 end-page: 867 ident: CR7 article-title: Discovery of a three-dimensional topological Dirac semimetal, Na Bi publication-title: Science doi: 10.1126/science.1245085 – volume: 105 start-page: 031901 year: 2014 ident: CR8 article-title: Molecular beam epitaxial growth of a three-dimensional topological Dirac semimetal Na Bi publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890940 – volume: 102 start-page: 093116 year: 2013 ident: CR32 article-title: Magnetoresistance in graphene under quantum limit regime publication-title: Appl. Phys. Lett. doi: 10.1063/1.4795149 – volume: 92 start-page: 081306 year: 2015 ident: CR16 article-title: Large linear magnetoresistance in Dirac semimetal Cd As with Fermi surfaces close to the Dirac points publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.081306 – volume: 88 start-page: 165105 year: 2013 ident: CR19 article-title: Engineering Weyl nodes in Dirac semimetals by a magnetic field publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.165105 – volume: 3 start-page: 041504 year: 2015 ident: CR9 article-title: Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na Bi publication-title: APL Mater. doi: 10.1063/1.4908158 – volume: 5 start-page: 3786 year: 2014 ident: CR12 article-title: Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd As publication-title: Nat. Commun. doi: 10.1038/ncomms4786 – volume: 13 start-page: 677 year: 2014 end-page: 681 ident: CR11 article-title: A stable three-dimensional topological Dirac semimetal Cd As publication-title: Nat. Mater. doi: 10.1038/nmat3990 – volume: 5 start-page: 4898 year: 2014 ident: CR5 article-title: Classification of stable three-dimensional Dirac semimetals with nontrivial topology publication-title: Nat. Commun. doi: 10.1038/ncomms5898 – ident: CR34 – volume: 4 start-page: 6106 year: 2014 ident: CR13 article-title: Evidence of topological surface state in three-dimensional Dirac semimetal Cd As publication-title: Sci. Rep. doi: 10.1038/srep06106 – volume: 114 start-page: 117201 year: 2015 ident: CR31 article-title: Linear magnetoresistance caused by mobility fluctuations in n-doped Cd As publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.117201 – volume: 4 start-page: 031035 year: 2014 ident: CR30 article-title: Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals publication-title: Phys. Rev. X – volume: 108 start-page: 140405 year: 2012 ident: CR4 article-title: Dirac semimetal in three dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.140405 – ident: CR26 – volume: 85 start-page: 195320 year: 2012 ident: CR6 article-title: Dirac semimetal and topological phase transitions in A Bi (A= Na, K, Rb) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.195320 – volume: 438 start-page: 197 year: 2005 ident: BFncomms10137_CR1 publication-title: Nature doi: 10.1038/nature04233 – volume: 5 start-page: 4898 year: 2014 ident: BFncomms10137_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms5898 – volume: 111 start-page: 246603 year: 2013 ident: BFncomms10137_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.246603 – volume: 78 start-page: 074033 year: 2008 ident: BFncomms10137_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.074033 – ident: BFncomms10137_CR29 – volume: 105 start-page: 031901 year: 2014 ident: BFncomms10137_CR8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890940 – volume: 113 start-page: 246402 year: 2014 ident: BFncomms10137_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.246402 – ident: BFncomms10137_CR25 – ident: BFncomms10137_CR34 doi: 10.1038/ncomms10301 – volume: 5 start-page: 031023 year: 2015 ident: BFncomms10137_CR28 publication-title: Phys. Rev. X – volume: 114 start-page: 117201 year: 2015 ident: BFncomms10137_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.117201 – volume: 108 start-page: 140405 year: 2012 ident: BFncomms10137_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.140405 – volume: 5 start-page: 031037 year: 2015 ident: BFncomms10137_CR17 publication-title: Phys. Rev. X – volume: 4 start-page: 6106 year: 2014 ident: BFncomms10137_CR13 publication-title: Sci. Rep. doi: 10.1038/srep06106 – volume: 82 start-page: 3045 year: 2010 ident: BFncomms10137_CR3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 27 start-page: 113201 year: 2015 ident: BFncomms10137_CR23 publication-title: J. Phys.: Condens. Matter – volume: 14 start-page: 280 year: 2015 ident: BFncomms10137_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat4143 – volume: 85 start-page: 195320 year: 2012 ident: BFncomms10137_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.195320 – volume: 3 start-page: 041504 year: 2015 ident: BFncomms10137_CR9 publication-title: APL Mater. doi: 10.1063/1.4908158 – volume: 343 start-page: 864 year: 2014 ident: BFncomms10137_CR7 publication-title: Science doi: 10.1126/science.1245085 – volume: 88 start-page: 165105 year: 2013 ident: BFncomms10137_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.165105 – ident: BFncomms10137_CR26 – volume: 6 start-page: 183 year: 2007 ident: BFncomms10137_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 4 start-page: 031035 year: 2014 ident: BFncomms10137_CR30 publication-title: Phys. Rev. X – volume: 13 start-page: 677 year: 2014 ident: BFncomms10137_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat3990 – volume: 5 start-page: 3786 year: 2014 ident: BFncomms10137_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms4786 – volume: 75 start-page: 133 year: 2014 ident: BFncomms10137_CR22 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2014.01.002 – volume: 102 start-page: 093116 year: 2013 ident: BFncomms10137_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4795149 – volume: 13 start-page: 851 year: 2014 ident: BFncomms10137_CR18 publication-title: Nat. Mater. doi: 10.1038/nmat4023 – volume: 92 start-page: 081306 year: 2015 ident: BFncomms10137_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.081306 – volume: 88 start-page: 104412 year: 2013 ident: BFncomms10137_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.104412 – volume: 88 start-page: 125427 year: 2013 ident: BFncomms10137_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.125427 – volume: 53 start-page: 4062 year: 2014 ident: BFncomms10137_CR24 publication-title: Inorg. Chem. doi: 10.1021/ic403163d – ident: BFncomms10137_CR33 |
SSID | ssj0000391844 |
Score | 2.6408002 |
Snippet | Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd
3
As
2
is a Dirac semimetal with... Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3As2 is a Dirac semimetal with linear... Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3 As2 is a Dirac semimetal with linear... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10137 |
SubjectTerms | 639/301/119/1000/1016 639/301/119/997 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1REFIvVVu-0m6RkeCCFJHETmKfKoTYRT1wAokLihzbASTWC81y2H_fmaw3ZVnE2ZPY8ow9z57xG4BDzq1E20hjVWgRiyazMTphEWe8zPOck4vqEmQvi4tr8ecmvwkXbm1Iq1zsid1GbSeG7shPEDmrXGVFmfx-eo6pahRFV0MJjU-wkaKnoZQuORz1dyzEfi6FCM_yEi5PPP5y3KbEs7fsiFbQ5WqS5JtIaeeAhl_hS0CO7HSu6m-w5vx32JzXkpxtwe0IFT1l3t11VN5srO-8wwO1awkhomoZnr5Rj5bVM4aoj5n7B-yQaT8Z68cZtpJAeJzFziw_bTPmsZXIjNttuB6eX51dxKF2QmzQhU-pro5qrLayzlWKIMkg8EqcKqzhVnPtbNogtCG2PaecTBOT4fQURV2YWjaqKfkOrPuJd3vATM1tU9Qixa-EUY1MyqzOtBTaIloyIoLjxURWJhCLU32Lx6oLcHNZvZr1CA574ac5n8b7YoOFRqqwqNrqvwlEcNA343KgGIf2bvJCMjm5WDzoRrA7V2DfT0YlTvG8F0G5pNpegKi2l1v8w31HuS1wY0RLiuBoYQSvhrU6_B8fD_8nfEbclVNWTFoOYH3698X9Qmwzrfc7A_4Hy1X8NA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IHgR39YXEfQiFNsmbZPjIj7YgxcVvEhJk1QFNyt297D_3kmbLbuuB49lJiRkpp1vmsk3AOeUao6-EYcikyxkVaJDDMIsTGiepil1IaopkH3I7p9Z_yV98TzbtS-rbCktm8_0tDrsyuLToI4dQd4yrDqOdnTq1V6v_9jvfqk4snPOmL-FF1E-O2o-7iyAycWayF8Ho028ud2EDQ8USa9d2hYsGbsNa23ryMkOvN6hXUfEmreGuZsM5Js1mD-b2gFCtCTBZBvNpkk5IQjyiHr_wAmJtMOB_Jyg1Cn4u1jkWtNenRCLUsddXO_C8-3N0_V96FslhAoj9si10RGVlpqXqYgREynEWZERmVZUSyqNjitEMo5czwjD40gluD1ZVmaq5JWocroHK3ZozQEQVVJdZSWLcRRTouJRnpSJ5ExqBEeKBXA53chCeR5x187is2jOsykvZnY9gPNO-aulz_hb7XhqkcK_Q3WBuZJIRZLlUQBnnRi93x1pSGuGY6eTuoiKeW0A-60Bu3kS19EU07sA8jnTdgqOWXteYj_eG4Ztht9B9KQALqZOMLOsxeUf_lPvCNYRb6WuGibOj2Fl9D02J4hpRuWp9-Ufplr6HQ priority: 102 providerName: Springer Nature |
Title | Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires |
URI | https://link.springer.com/article/10.1038/ncomms10137 https://www.ncbi.nlm.nih.gov/pubmed/26673625 https://www.proquest.com/docview/1749592670 https://www.proquest.com/docview/1750429106 https://pubmed.ncbi.nlm.nih.gov/PMC4703844 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY9911wUNupeBt9iS9fEwRhaalsDK2BbIyzCyJLeFRFnrFJb_fid_hKYpe7HBd0Li7qT7nSXdARxTaiXaRhIrrlnMytTG6IRZnFKRZRkNLqo-IHvOzyZsPM2mO9AV42wFWD0Y2oV6UpOb2ce_16svOOE_N1fG5SePuplXSUietwv76JJEKGXwrcX59ZJMFUYyrL2fd6_NpkfagpnbpyXvbZnWnmj0FJ60EJIMGp0_gx3nn8Ojpqjk6gX8PkWNL4l3F3VObzLXF95hZO2qABVRxwTDcFSoJcWKIPwj5vIKOyTaL-Z6tkJqYGhvaZGhpYMqJR6pIatx9RImo5Nfw7O4LaIQG_Tly1BgR5VWW1lkKkG0ZBCB9Z3i1lCrqXY2KRHjhLR7TjmZ9E2K4uG84KaQpSoFfQV7fuHdARBTUFvygiXYihlVyr5Ii1RLpi3CJsMi-NAJMjdthvFQ6GKW1zvdVOZ3pB7B8Zr5T5NY42G2o04jeWccOUZRKlMpF_0I3q3JOC_CZof2bnEbeLLgazHijeB1o8B1P2modYqBXwRiQ7VrhpBze5Piry7r3NsMV0i0pAjed0ZwZ1jbwz_8__DfwGMEYFk4HpOII9hb3ty6twhylkUPdsVU4FOOTnuwPxiMf47x_fXk_PsP_Drkw179-6BXG_o_wfIF4g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuUAkZqL0hRE9t5-IBQVdhuaemplXpBwbGdtlLXW5qt0P4pfiMzedFlEbeePUkc-7PnGz--AdgQwuaIjThUqZahrLgN0QnLkIssSRJBLqo5IHuYjo_ll5PkZAV-9Xdh6FhlPyc2E7WdGloj30LmrBLF0yz6ePkjpKxRtLvap9BoYbHv5j8xZKs_7H3C_t3kfPT5aGccdlkFQoPObUYZZ1Rltc3LRMVIHwxSksip1BphtdDOxhU6fdKhc8rlcWR4JPI0LVNT5pWqMoHvvQN3pUBPTjfTR7vDmg6predSdtcA8bEtj78wqWPS9Vt0fEtsdvlQ5l87s43DGz2Chx1TZdsttB7DivNP4F6bu3L-FL7tIrBmzLvTRjqcTfSpdxjAu5oYKUKJYbSPuLGsnDNkmcycneMHmfbTib6YYykZdJfB2I4V2zVnHktJPLl-Bse30qrPYdVPvXsJzJTCVmkpY3xKGlXlUcZLrnOpLbIzIwN43zdkYTohc8qncVE0G-oiL260egAbg_Flq9_xb7P1vkeKbhDXxR_IBfBuKMbhR3sq2rvpNdkk5NIxsA7gRduBw3c4pVTF-DKAbKFrBwOS9l4s8ednjcS3xIkYkRTAZg-CG9Varv7a_6v_Fu6Pj74eFAd7h_uv4AFyvoRO5MTZOqzOrq7da-RVs_JNA2YG32979PwGcLc5CQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKt6kFDBSe0GKNrGd1wGh0nZpKVpViEq9oNSxnbZS11vIVmj_Gr-Ombzosohbz55svPZnzzfx-BuATSFMitgI_SxW0pclNz46YelzkURRJMhF1Qmy43j_WH46iU5W4Fd3F4bSKrs9sd6ozVTTN_IhMucsynicBMOyTYs42h29v_ruUwUpOmntymk0EDm0858YvlXvDnZxrrc4H-193dn32woDvkZHN6PqM1lplEmLKAuRSmikJ4HNYqOFUUJZE5ZIAEiTzmY2DQPNA5HGcRHrIi2zMhH4u3dgNaGoaACrH_bGR1_6LzykvZ5K2V4KxAeHDv_QpApJ5W_RDS5x2-UUzb_OaWv3N3oAay1vZdsN0B7CinWP4G5TyXL-GL59RJjNmLNntZA4m6gzZzGctxXxUwQWw9gfUWRYMWfIOZk-v8AXMuWmE3U5x1YyaK-GsR0jtivOHLaSlHL1BI5vZVyfwsBNnX0OTBfClHEhQ3xK6qxMg4QXXKVSGeRqWnrwthvIXLey5lRd4zKvj9dFmt8YdQ82e-OrRs3j32Yb3Yzk7ZKu8j8A9OBN34yLkU5YlLPTa7KJyMFjmO3Bs2YC-_dwKrCK0aYHycLU9gYk9L3Y4i7Oa8FvidsyIsmDrQ4EN7q13P31_3f_NdzDlZN_PhgfvoD7SAAjSs8Jkw0YzH5c25dIsmbFqxbNDE5vewH9Bt2pPps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+negative+magnetoresistance+induced+by+the+chiral+anomaly+in+individual+Cd3As2+nanowires&rft.jtitle=Nature+communications&rft.au=Li%2C+Cai-zhen&rft.au=Wang%2C+Li-xian&rft.au=Liu%2C+Haiwen&rft.au=Wang%2C+Jian&rft.date=2015-12-17&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=6&rft.spage=10137&rft_id=info:doi/10.1038%2Fncomms10137&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3897142471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |