Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires

Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-re...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 10137
Main Authors Li, Cai-Zhen, Wang, Li-Xian, Liu, Haiwen, Wang, Jian, Liao, Zhi-Min, Yu, Da-Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.12.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd 3 As 2 . Here we show a large negative magnetoresistance with magnitude of −63% at 60 K and −11% at 300 K in individual Cd 3 As 2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals. Dirac semimetals possess an electronic dispersion relation which is linear in three dimensions, making them three-dimensional analogues of graphene. Here, the authors report large negative magnetoresistance in single-crystal Cd 3 As 2 nanowires, evidencing a sought-after chiral anomaly effect.
AbstractList Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3As2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd3As2. Here we show a large negative magnetoresistance with magnitude of -63% at 60 K and -11% at 300 K in individual Cd3As2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals.
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd 3 As 2 . Here we show a large negative magnetoresistance with magnitude of −63% at 60 K and −11% at 300 K in individual Cd 3 As 2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals. Dirac semimetals possess an electronic dispersion relation which is linear in three dimensions, making them three-dimensional analogues of graphene. Here, the authors report large negative magnetoresistance in single-crystal Cd 3 As 2 nanowires, evidencing a sought-after chiral anomaly effect.
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3 As2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd3 As2 . Here we show a large negative magnetoresistance with magnitude of -63% at 60 K and -11% at 300 K in individual Cd3 As2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals.
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a Weyl semimetal with an exotic chiral anomaly effect, however the experimental evidence of the chiral anomaly is still missing in Cd 3 As 2 . Here we show a large negative magnetoresistance with magnitude of −63% at 60 K and −11% at 300 K in individual Cd 3 As 2 nanowires. The negative magnetoresistance can be modulated by gate voltage and temperature through tuning the density of chiral states at the Fermi level and the inter-valley scatterings between Weyl nodes. The results give evidence of the chiral anomaly effect and are valuable for understanding the Weyl fermions in Dirac semimetals.
ArticleNumber 10137
Author Liao, Zhi-Min
Wang, Jian
Wang, Li-Xian
Li, Cai-Zhen
Liu, Haiwen
Yu, Da-Peng
Author_xml – sequence: 1
  givenname: Cai-Zhen
  surname: Li
  fullname: Li, Cai-Zhen
  organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University
– sequence: 2
  givenname: Li-Xian
  surname: Wang
  fullname: Wang, Li-Xian
  organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University
– sequence: 3
  givenname: Haiwen
  surname: Liu
  fullname: Liu, Haiwen
  organization: International Center for Quantum Materials, School of Physics, Peking University
– sequence: 4
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: International Center for Quantum Materials, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter
– sequence: 5
  givenname: Zhi-Min
  surname: Liao
  fullname: Liao, Zhi-Min
  email: liaozm@pku.edu.cn
  organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Collaborative Innovation Center of Quantum Matter
– sequence: 6
  givenname: Da-Peng
  surname: Yu
  fullname: Yu, Da-Peng
  organization: Department of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Collaborative Innovation Center of Quantum Matter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26673625$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEURkVIycPNqvsykE0hdavXaEabgDFtWgh00y6D0Eh3bIUZKZE0Lv73lXEanNBqI6F7dPiu7jk69sEDQu8I_kQwaz97E8YxEUxYc4TOKOZkThrKjg_Op-gipXtcFpOk5fwEnVIhGiZofYbubpz2ufKw0tltoBr1ykMOEZJLWXsDlfN2MmCrblvlNVRm7aIeKu3DqIdtqe4At3F2KrdLyxaJVr5Uf7vieIve9HpIcPG0z9Cvr19-Lr_Nb3_cfF8ubuemJjTPO4xlb7Vtu1oSXgvDicAghTXMaqbBkp7QuhWNBAktwYaW1oXohOnaXvYNm6Hrvfdh6kawBnwuIdVDdKOOWxW0Uy8r3q3VKmwUb4qJ8yL48CSI4XGClNXokoFh0B7ClBRpasypJFgU9PIVeh-m6Et7heKyllQU6Qy9P0z0HOXvzxfgag-YGFKK0D8jBKvdaNXBaAtNXtHG5TKxsGvHDf9583H_JhWzX0E8CPoP_A9gCre-
CitedBy_id crossref_primary_10_7498_aps_72_20230672
crossref_primary_10_1063_5_0038804
crossref_primary_10_1103_PhysRevB_109_125111
crossref_primary_10_1103_PhysRevB_101_161201
crossref_primary_10_1021_acsnano_3c04835
crossref_primary_10_1103_RevModPhys_90_015001
crossref_primary_10_1103_PhysRevLett_120_156802
crossref_primary_10_1103_PhysRevB_94_241405
crossref_primary_10_1360_TB_2023_0307
crossref_primary_10_1103_PhysRevB_94_081408
crossref_primary_10_1103_PhysRevB_94_161402
crossref_primary_10_1088_1361_648X_aca30a
crossref_primary_10_1103_PhysRevB_95_235136
crossref_primary_10_7498_aps_71_20220584
crossref_primary_10_1103_PhysRevB_101_125119
crossref_primary_10_1103_PhysRevB_96_121401
crossref_primary_10_1007_JHEP10_2017_133
crossref_primary_10_1002_adma_202109671
crossref_primary_10_1103_PhysRevB_97_195139
crossref_primary_10_1016_j_jcrysgro_2021_126230
crossref_primary_10_1103_PhysRevB_93_161110
crossref_primary_10_1088_1674_1056_acd9c5
crossref_primary_10_1038_srep43394
crossref_primary_10_1103_PhysRevB_98_184514
crossref_primary_10_1039_C7RA02847D
crossref_primary_10_1103_PhysRevB_96_085112
crossref_primary_10_1103_PhysRevB_100_085424
crossref_primary_10_1088_2053_1583_ab8d82
crossref_primary_10_1038_s41467_019_09012_4
crossref_primary_10_1103_PhysRevC_105_034903
crossref_primary_10_1103_PhysRevB_99_075114
crossref_primary_10_1103_PhysRevLett_116_226801
crossref_primary_10_1007_s12598_024_03131_8
crossref_primary_10_1088_1361_648X_ab4466
crossref_primary_10_1103_PhysRevB_110_214507
crossref_primary_10_1007_s11467_019_0890_7
crossref_primary_10_1038_s41598_017_13610_x
crossref_primary_10_1103_PhysRevB_96_085201
crossref_primary_10_1088_1361_648X_ab4464
crossref_primary_10_1103_PhysRevB_98_081202
crossref_primary_10_1103_PhysRevB_96_121407
crossref_primary_10_1103_PhysRevB_99_165146
crossref_primary_10_1038_s41598_017_06697_9
crossref_primary_10_1088_1361_648X_ac2fd4
crossref_primary_10_1103_PhysRevB_93_195119
crossref_primary_10_1038_s41598_018_33655_w
crossref_primary_10_1103_PhysRevB_97_115446
crossref_primary_10_1038_s41598_017_10939_1
crossref_primary_10_1103_PhysRevB_95_201101
crossref_primary_10_1103_PhysRevB_101_174310
crossref_primary_10_1088_2053_1583_abc13f
crossref_primary_10_1103_PhysRevB_111_035143
crossref_primary_10_1007_s12034_021_02485_4
crossref_primary_10_1103_PhysRevResearch_2_033346
crossref_primary_10_1016_j_jcrysgro_2019_125304
crossref_primary_10_1126_sciadv_aar5668
crossref_primary_10_1134_S0036023621140059
crossref_primary_10_1103_PhysRevB_98_205113
crossref_primary_10_1016_j_jmmm_2019_04_015
crossref_primary_10_1038_s42254_021_00344_z
crossref_primary_10_1021_acs_jpcc_1c10132
crossref_primary_10_1007_JHEP04_2020_162
crossref_primary_10_1007_JHEP08_2017_103
crossref_primary_10_1103_PhysRevLett_120_257701
crossref_primary_10_1088_1674_1056_25_11_117204
crossref_primary_10_3390_sym12050814
crossref_primary_10_1021_acs_nanolett_0c01649
crossref_primary_10_1007_s11467_016_0609_y
crossref_primary_10_1007_JHEP06_2017_054
crossref_primary_10_1103_PhysRevB_109_115123
crossref_primary_10_1209_0295_5075_130_47004
crossref_primary_10_1088_1361_648X_abdff5
crossref_primary_10_1038_s41535_017_0038_3
crossref_primary_10_1103_PhysRevLett_123_216601
crossref_primary_10_1073_pnas_1608881113
crossref_primary_10_1088_1361_648X_ac3b24
crossref_primary_10_1103_PhysRevB_98_045131
crossref_primary_10_1103_PhysRevB_102_235115
crossref_primary_10_3390_nano12040679
crossref_primary_10_1021_acsnano_9b07990
crossref_primary_10_1103_PhysRevB_98_161110
crossref_primary_10_1002_adma_202005897
crossref_primary_10_1063_5_0139561
crossref_primary_10_1063_5_0170167
crossref_primary_10_1103_PhysRevLett_119_136806
crossref_primary_10_7498_aps_68_20191501
crossref_primary_10_1103_PhysRevResearch_1_032040
crossref_primary_10_1016_j_jallcom_2024_174478
crossref_primary_10_1051_epjconf_201713701011
crossref_primary_10_1016_j_jallcom_2024_174359
crossref_primary_10_1103_PhysRevResearch_1_032044
crossref_primary_10_1038_ncomms13013
crossref_primary_10_1103_PhysRevB_93_085426
crossref_primary_10_1038_s41467_017_01438_y
crossref_primary_10_1021_acsnano_6b01568
crossref_primary_10_1088_1367_2630_aa95e7
crossref_primary_10_1103_PhysRevLett_122_036601
crossref_primary_10_1103_PhysRevLett_122_036602
crossref_primary_10_1016_j_aop_2018_07_006
crossref_primary_10_1140_epjc_s10052_024_13570_3
crossref_primary_10_1016_j_spmi_2019_106213
crossref_primary_10_1021_acs_nanolett_7b05165
crossref_primary_10_1103_PhysRevB_95_041201
crossref_primary_10_1088_0256_307X_38_1_017201
crossref_primary_10_1088_2053_1591_ab35b9
crossref_primary_10_1038_srep34023
crossref_primary_10_1002_adma_202201597
crossref_primary_10_1103_PhysRevB_102_104404
crossref_primary_10_1103_PhysRevB_105_205126
crossref_primary_10_1063_5_0066252
crossref_primary_10_1038_ncomms13142
crossref_primary_10_1038_ncomms14111
crossref_primary_10_1103_PhysRevB_99_235123
crossref_primary_10_21468_SciPostPhysCore_3_2_013
crossref_primary_10_1103_PhysRevB_110_165203
crossref_primary_10_1016_j_flatc_2016_11_003
crossref_primary_10_1103_PhysRevB_96_235134
crossref_primary_10_1103_PhysRevB_104_205119
crossref_primary_10_1002_adfm_202008411
crossref_primary_10_1063_5_0096400
crossref_primary_10_1103_PhysRevResearch_1_032028
crossref_primary_10_1103_PhysRevB_96_035106
crossref_primary_10_1021_acsnano_4c05197
crossref_primary_10_1103_PhysRevB_97_201404
crossref_primary_10_1103_PhysRevLett_123_206601
crossref_primary_10_1103_PhysRevB_97_245103
crossref_primary_10_1103_PhysRevB_95_205201
crossref_primary_10_1103_PhysRevB_102_125104
crossref_primary_10_1103_PhysRevB_107_165423
crossref_primary_10_1103_PhysRevB_109_155154
crossref_primary_10_1103_PhysRevB_94_121115
crossref_primary_10_1021_acs_nanolett_3c01174
crossref_primary_10_1103_PhysRevB_96_081110
crossref_primary_10_1103_PhysRevB_100_245146
crossref_primary_10_1140_epjb_e2018_80418_1
crossref_primary_10_1103_PhysRevB_98_205139
crossref_primary_10_1103_PhysRevB_98_075110
crossref_primary_10_1038_s41535_021_00378_7
crossref_primary_10_1088_1361_6528_ad1941
crossref_primary_10_1103_PhysRevResearch_1_032002
crossref_primary_10_1103_PhysRevB_93_085107
crossref_primary_10_1103_PhysRevLett_131_186302
crossref_primary_10_1140_epjb_e2019_90514_3
crossref_primary_10_1103_PhysRevB_100_235105
crossref_primary_10_1103_PhysRevB_95_235436
crossref_primary_10_1103_PhysRevB_96_060201
crossref_primary_10_1103_PhysRevB_97_201301
crossref_primary_10_1088_1361_648X_ab680a
crossref_primary_10_1103_PhysRevB_95_085308
crossref_primary_10_1103_PhysRevX_6_041021
crossref_primary_10_1103_PhysRevB_103_L161103
crossref_primary_10_1103_PhysRevB_103_L081402
crossref_primary_10_1088_1674_1056_ace157
crossref_primary_10_1038_srep22377
crossref_primary_10_1103_PhysRevD_102_054516
crossref_primary_10_1103_PhysRevB_95_165135
crossref_primary_10_1088_1674_1056_ac0a5e
crossref_primary_10_1103_PhysRevB_104_075129
crossref_primary_10_1103_PhysRevLett_118_207701
crossref_primary_10_1038_s41598_017_12835_0
crossref_primary_10_1103_PhysRevLett_124_156601
crossref_primary_10_7498_aps_72_20230905
crossref_primary_10_59717_j_xinn_mater_2023_100011
crossref_primary_10_1080_23746149_2017_1327329
crossref_primary_10_1103_PhysRevB_98_115203
crossref_primary_10_1088_1367_2630_acb2e4
crossref_primary_10_7566_JPSJ_90_084702
crossref_primary_10_1088_1674_1056_27_10_107402
crossref_primary_10_1103_PhysRevB_108_195436
crossref_primary_10_1063_1_4954290
crossref_primary_10_3390_cryst9100486
crossref_primary_10_7566_JPSJ_87_041001
crossref_primary_10_1103_PhysRevX_9_011039
crossref_primary_10_1103_PhysRevB_98_104310
crossref_primary_10_1103_PhysRevB_106_165202
crossref_primary_10_1103_PhysRevB_110_205109
crossref_primary_10_1103_RevModPhys_93_025002
crossref_primary_10_1103_PhysRevB_102_115129
crossref_primary_10_1103_PhysRevB_103_115208
crossref_primary_10_1103_PhysRevLett_122_010501
crossref_primary_10_1021_acsami_1c18848
crossref_primary_10_1063_1_4948654
crossref_primary_10_1021_acs_chemmater_2c02147
crossref_primary_10_1021_acsnano_7b05743
crossref_primary_10_1103_PhysRevB_93_115414
crossref_primary_10_1103_PhysRevLett_120_026601
crossref_primary_10_1088_1674_1056_acb91a
crossref_primary_10_1016_j_jqsrt_2021_107514
crossref_primary_10_1073_pnas_2200367119
crossref_primary_10_1103_PhysRevB_99_085124
crossref_primary_10_1103_PhysRevB_104_155140
crossref_primary_10_1103_PhysRevB_99_155152
crossref_primary_10_1103_PhysRevB_103_104434
crossref_primary_10_1103_PhysRevX_9_021053
crossref_primary_10_1063_1_4947434
crossref_primary_10_1038_s41427_022_00380_w
crossref_primary_10_1103_PhysRevLett_119_166601
crossref_primary_10_1103_PhysRevB_93_075113
crossref_primary_10_1103_PhysRevApplied_21_034001
crossref_primary_10_1103_PhysRevLett_117_077201
crossref_primary_10_1007_s11664_022_09490_1
crossref_primary_10_1088_0256_307X_38_4_047201
crossref_primary_10_1063_5_0177343
crossref_primary_10_1103_PhysRevApplied_14_054044
crossref_primary_10_1103_PhysRevB_102_115147
crossref_primary_10_1103_PhysRevB_97_201110
crossref_primary_10_1088_1367_2630_acc122
crossref_primary_10_1088_1674_4926_41_7_072903
crossref_primary_10_1103_PhysRevB_101_155204
crossref_primary_10_1002_adma_202005909
crossref_primary_10_1103_PhysRevB_103_045116
crossref_primary_10_7566_JPSJ_89_073705
crossref_primary_10_1002_adfm_202104192
crossref_primary_10_1007_JHEP09_2016_131
crossref_primary_10_1016_j_scib_2018_04_007
crossref_primary_10_3390_nano13131979
crossref_primary_10_1103_PhysRevLett_124_116802
crossref_primary_10_1002_adma_201707547
crossref_primary_10_1103_PhysRevB_109_245135
crossref_primary_10_1038_srep40327
crossref_primary_10_1038_s41598_018_32104_y
crossref_primary_10_1103_PhysRevLett_124_126602
crossref_primary_10_1002_pssr_202200365
crossref_primary_10_1088_1361_648X_ac4cee
crossref_primary_10_1103_PhysRevB_99_115138
crossref_primary_10_1038_s41598_017_15962_w
crossref_primary_10_1038_srep27487
crossref_primary_10_1063_5_0025396
crossref_primary_10_1063_1_5037551
crossref_primary_10_1080_02670836_2016_1198526
crossref_primary_10_1002_adpr_202100354
crossref_primary_10_1063_1_5128125
crossref_primary_10_1103_PhysRevB_97_235113
crossref_primary_10_1088_1367_2630_ab3dbb
crossref_primary_10_1103_PhysRevB_107_195201
crossref_primary_10_1016_j_physletb_2020_135236
crossref_primary_10_1063_5_0055713
crossref_primary_10_1103_PhysRevB_107_L081113
crossref_primary_10_1103_PhysRevLett_120_206601
crossref_primary_10_1103_PhysRevD_106_096007
crossref_primary_10_1103_PhysRevB_95_205141
crossref_primary_10_1016_j_matdes_2019_108460
crossref_primary_10_1002_aelm_201600228
crossref_primary_10_1103_PhysRevApplied_14_054039
crossref_primary_10_1016_j_jmat_2021_11_005
crossref_primary_10_1103_PhysRevResearch_4_L022002
crossref_primary_10_1088_1367_2630_ac1af6
crossref_primary_10_1016_j_ppnp_2022_103989
crossref_primary_10_1016_j_apsusc_2017_12_235
crossref_primary_10_1088_1361_648X_29_4_044003
crossref_primary_10_1021_acs_nanolett_2c03574
crossref_primary_10_1021_acs_nanolett_3c00713
crossref_primary_10_1103_PhysRevB_93_165127
crossref_primary_10_1103_PhysRevB_95_024303
crossref_primary_10_1103_PhysRevB_96_125123
crossref_primary_10_1038_ncomms10769
crossref_primary_10_1002_pssr_201700271
crossref_primary_10_1103_PhysRevB_96_161202
crossref_primary_10_1088_1361_648X_aa6f91
crossref_primary_10_1103_PhysRevD_102_096023
crossref_primary_10_1088_1361_648X_aaebed
crossref_primary_10_1038_s41535_020_0214_8
crossref_primary_10_1038_nphys3648
crossref_primary_10_1002_pssr_201800386
crossref_primary_10_3390_sym15091651
crossref_primary_10_1007_s11467_019_0887_2
crossref_primary_10_1063_5_0083154
crossref_primary_10_1016_j_actamat_2018_12_048
crossref_primary_10_1063_5_0164063
crossref_primary_10_1016_j_physleta_2022_128443
crossref_primary_10_1103_PhysRevMaterials_2_120302
crossref_primary_10_1021_acs_nanolett_6b04194
crossref_primary_10_1002_pssb_201800513
crossref_primary_10_1088_1367_2630_18_5_053039
crossref_primary_10_1063_5_0007528
crossref_primary_10_1103_PhysRevB_98_075430
crossref_primary_10_1016_j_mtphys_2023_101234
crossref_primary_10_1103_PhysRevB_101_041408
crossref_primary_10_1038_ncomms10301
crossref_primary_10_1021_acsami_1c06904
crossref_primary_10_1103_PhysRevX_6_041046
crossref_primary_10_1088_1402_4896_ad3387
crossref_primary_10_1021_acs_nanolett_6b04084
crossref_primary_10_1080_23746149_2017_1414631
crossref_primary_10_1038_s41467_020_14900_1
crossref_primary_10_1103_PhysRevB_107_125101
crossref_primary_10_1103_PhysRevB_108_094514
crossref_primary_10_1088_1367_2630_aa55a3
crossref_primary_10_1103_PhysRevB_96_045307
crossref_primary_10_1103_PhysRevB_108_205107
crossref_primary_10_1103_PhysRevB_94_214306
crossref_primary_10_1103_PhysRevB_108_054404
crossref_primary_10_1140_epjc_s10052_018_6503_8
crossref_primary_10_1103_PhysRevLett_121_237701
crossref_primary_10_1002_adma_202104645
crossref_primary_10_1063_5_0223869
crossref_primary_10_7498_aps_72_20230397
crossref_primary_10_1016_j_jssc_2024_124628
crossref_primary_10_1088_0256_307X_36_5_057102
crossref_primary_10_1103_PhysRevLett_126_027001
crossref_primary_10_1103_PhysRevB_95_195306
crossref_primary_10_1103_PhysRevD_110_026021
crossref_primary_10_1002_adom_201901192
crossref_primary_10_1103_PhysRevB_102_205105
crossref_primary_10_1134_S0020168522120111
crossref_primary_10_1063_5_0087141
crossref_primary_10_1103_PhysRevB_96_155138
crossref_primary_10_1088_1674_1056_ac720b
crossref_primary_10_1103_PhysRevD_108_126010
crossref_primary_10_1103_PhysRevB_98_014305
crossref_primary_10_1103_PhysRevB_98_201104
crossref_primary_10_1051_epjconf_201817503001
crossref_primary_10_1038_s41598_018_27148_z
crossref_primary_10_1088_1367_2630_aba98d
crossref_primary_10_1016_j_cjph_2023_03_020
crossref_primary_10_1088_0256_307X_36_6_067201
crossref_primary_10_7498_aps_72_20221574
crossref_primary_10_1002_EXP_20210223
crossref_primary_10_1103_PhysRevB_98_121110
crossref_primary_10_1021_jacs_4c14891
crossref_primary_10_1103_PhysRevB_111_064101
crossref_primary_10_1103_PhysRevB_95_081410
crossref_primary_10_21869_2223_1528_2023_13_2_201_221
crossref_primary_10_1103_PhysRevLett_121_142301
crossref_primary_10_1038_s41467_020_20838_1
crossref_primary_10_1038_s41598_018_29545_w
crossref_primary_10_1088_2053_1591_abc048
crossref_primary_10_1103_PhysRevB_95_115410
crossref_primary_10_1103_PhysRevB_93_245304
crossref_primary_10_1103_PhysRevB_96_241106
crossref_primary_10_1146_annurev_matsci_070218_010023
crossref_primary_10_1039_D1CP00963J
crossref_primary_10_1063_1_5094192
crossref_primary_10_1088_1674_1056_25_11_117105
crossref_primary_10_1007_s11467_023_1259_5
crossref_primary_10_1103_PhysRevMaterials_2_021201
crossref_primary_10_1038_nmat4965
crossref_primary_10_1038_s41467_020_15010_8
crossref_primary_10_1103_PhysRevB_97_075202
crossref_primary_10_1039_D1NR05812F
crossref_primary_10_1103_PhysRevB_110_045439
crossref_primary_10_1103_PhysRevB_100_115414
crossref_primary_10_1038_s41467_020_15854_0
crossref_primary_10_1103_PhysRevB_96_134201
crossref_primary_10_1002_adfm_202011011
crossref_primary_10_1038_s41598_018_29676_0
crossref_primary_10_1038_ncomms13741
crossref_primary_10_1088_1751_8121_abc221
crossref_primary_10_1038_srep46062
crossref_primary_10_1103_PhysRevB_94_195108
crossref_primary_10_1021_acs_nanolett_0c01010
crossref_primary_10_1038_s41598_021_87780_0
crossref_primary_10_1103_PhysRevB_102_064506
crossref_primary_10_1088_1674_1056_ab3a91
crossref_primary_10_1103_PhysRevB_104_L121117
crossref_primary_10_7498_aps_72_20230109
crossref_primary_10_7498_aps_72_20211961
crossref_primary_10_1016_j_jallcom_2020_158093
crossref_primary_10_1103_PhysRevB_109_235419
crossref_primary_10_1088_1674_1056_accd50
crossref_primary_10_1103_PhysRevMaterials_5_094201
crossref_primary_10_1103_PhysRevB_101_125201
crossref_primary_10_1103_PhysRevB_101_125203
crossref_primary_10_1088_1367_2630_18_8_083003
crossref_primary_10_7498_aps_70_20200914
crossref_primary_10_1002_andp_201900449
crossref_primary_10_1016_j_jmst_2020_11_023
crossref_primary_10_1126_sciadv_abq2479
crossref_primary_10_1063_1_5097295
crossref_primary_10_1016_j_physrep_2022_06_002
crossref_primary_10_1002_adfm_201900965
crossref_primary_10_1103_PhysRevB_102_085426
crossref_primary_10_7566_JPSJ_86_124714
crossref_primary_10_1088_1361_6528_ab6dfe
crossref_primary_10_1103_PhysRevB_95_241113
crossref_primary_10_1088_0256_307X_41_10_107201
crossref_primary_10_1103_PhysRevB_95_161306
crossref_primary_10_1103_PhysRevB_99_045143
crossref_primary_10_1088_1361_6668_ac4c84
crossref_primary_10_1134_S0021364020140040
crossref_primary_10_1515_nanoph_2023_0598
crossref_primary_10_1103_PhysRevB_97_085303
crossref_primary_10_1103_PhysRevB_98_165441
crossref_primary_10_1103_PhysRevB_106_075139
crossref_primary_10_1103_PhysRevB_93_165420
crossref_primary_10_1103_PhysRevB_101_205137
crossref_primary_10_1126_sciadv_abn3837
crossref_primary_10_1088_1361_6463_ad93e2
crossref_primary_10_1063_1_4984262
crossref_primary_10_1103_PhysRevB_96_085130
Cites_doi 10.1038/nmat1849
10.1016/j.ppnp.2014.01.002
10.1103/RevModPhys.82.3045
10.1103/PhysRevLett.113.246402
10.1038/nmat4143
10.1103/PhysRevB.88.104412
10.1038/nature04233
10.1103/PhysRevD.78.074033
10.1038/nmat4023
10.1103/PhysRevB.88.125427
10.1021/ic403163d
10.1103/PhysRevLett.111.246603
10.1126/science.1245085
10.1063/1.4890940
10.1063/1.4795149
10.1103/PhysRevB.92.081306
10.1103/PhysRevB.88.165105
10.1063/1.4908158
10.1038/ncomms4786
10.1038/nmat3990
10.1038/ncomms5898
10.1038/srep06106
10.1103/PhysRevLett.114.117201
10.1103/PhysRevLett.108.140405
10.1103/PhysRevB.85.195320
10.1038/ncomms10301
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Dec 2015
Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Dec 2015
– notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1038/ncomms10137
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10137
ExternalDocumentID PMC4703844
3897142471
26673625
10_1038_ncomms10137
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c512t-b009fdad8b591456c4160e96dc3da3aed1f1258679e9e810c203866b6cb8f9f73
IEDL.DBID M48
ISSN 2041-1723
IngestDate Thu Aug 21 18:42:03 EDT 2025
Fri Jul 11 01:20:47 EDT 2025
Wed Aug 13 04:10:00 EDT 2025
Wed Feb 19 02:34:30 EST 2025
Tue Jul 01 02:31:10 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-b009fdad8b591456c4160e96dc3da3aed1f1258679e9e810c203866b6cb8f9f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms10137
PMID 26673625
PQID 1749592670
PQPubID 546298
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4703844
proquest_miscellaneous_1750429106
proquest_journals_1749592670
pubmed_primary_26673625
crossref_primary_10_1038_ncomms10137
crossref_citationtrail_10_1038_ncomms10137
springer_journals_10_1038_ncomms10137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20151217
PublicationDateYYYYMMDD 2015-12-17
PublicationDate_xml – month: 12
  year: 2015
  text: 20151217
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Liu (CR11) 2014; 13
Hasan, Kane (CR3) 2010; 82
Huang (CR28) 2015; 5
Neupane (CR12) 2014; 5
CR34
Yang, Nagaosa (CR5) 2014; 5
CR33
Burkov (CR23) 2015; 27
Kushwaha (CR9) 2015; 3
Kharzeev (CR22) 2014; 75
Wang (CR6) 2012; 85
Wang, Weng, Wu, Dai, Fang (CR10) 2013; 88
Geim, Novoselov (CR2) 2007; 6
Son, Spivak (CR21) 2013; 88
Zhao (CR17) 2015; 5
Parameswaran (CR30) 2014; 4
Zhang (CR8) 2014; 105
Ali (CR24) 2014; 53
CR29
Feng (CR16) 2015; 92
Jeon (CR18) 2014; 13
CR26
Young (CR4) 2012; 108
Liu (CR7) 2014; 343
He (CR15) 2014; 113
CR25
Zhou, Wu, Yu, Liao (CR32) 2013; 102
Liang (CR14) 2015; 14
Fukushima, Kharzeev, Warringa (CR20) 2008; 78
Narayanan (CR31) 2015; 114
Gorbar, Miransky, Shovkovy (CR19) 2013; 88
Novoselov (CR1) 2005; 438
Yi (CR13) 2014; 4
Kim (CR27) 2013; 111
Y Zhao (BFncomms10137_CR17) 2015; 5
BFncomms10137_CR25
BFncomms10137_CR26
X Huang (BFncomms10137_CR28) 2015; 5
A Narayanan (BFncomms10137_CR31) 2015; 114
Z Liu (BFncomms10137_CR7) 2014; 343
BFncomms10137_CR29
M-N Ali (BFncomms10137_CR24) 2014; 53
SA Parameswaran (BFncomms10137_CR30) 2014; 4
KS Novoselov (BFncomms10137_CR1) 2005; 438
SK Kushwaha (BFncomms10137_CR9) 2015; 3
K Fukushima (BFncomms10137_CR20) 2008; 78
DE Kharzeev (BFncomms10137_CR22) 2014; 75
Y Zhang (BFncomms10137_CR8) 2014; 105
AK Geim (BFncomms10137_CR2) 2007; 6
SM Young (BFncomms10137_CR4) 2012; 108
B-J Yang (BFncomms10137_CR5) 2014; 5
J Feng (BFncomms10137_CR16) 2015; 92
M Neupane (BFncomms10137_CR12) 2014; 5
H-J Kim (BFncomms10137_CR27) 2013; 111
A Burkov (BFncomms10137_CR23) 2015; 27
Y-B Zhou (BFncomms10137_CR32) 2013; 102
MZ Hasan (BFncomms10137_CR3) 2010; 82
S Jeon (BFncomms10137_CR18) 2014; 13
L He (BFncomms10137_CR15) 2014; 113
BFncomms10137_CR34
BFncomms10137_CR33
T Liang (BFncomms10137_CR14) 2015; 14
Z Wang (BFncomms10137_CR6) 2012; 85
D Son (BFncomms10137_CR21) 2013; 88
E Gorbar (BFncomms10137_CR19) 2013; 88
Z Wang (BFncomms10137_CR10) 2013; 88
H Yi (BFncomms10137_CR13) 2014; 4
Z Liu (BFncomms10137_CR11) 2014; 13
References_xml – volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: CR2
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 75
  start-page: 133
  year: 2014
  end-page: 151
  ident: CR22
  article-title: The chiral magnetic effect and anomaly-induced transport
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2014.01.002
– volume: 82
  start-page: 3045
  year: 2010
  end-page: 3067
  ident: CR3
  article-title: Colloquium: topological insulators
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 27
  start-page: 113201
  year: 2015
  ident: CR23
  article-title: Chiral anomaly and transport in Weyl metals
  publication-title: J. Phys.: Condens. Matter
– volume: 113
  start-page: 246402
  year: 2014
  ident: CR15
  article-title: Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd As
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.246402
– volume: 14
  start-page: 280
  year: 2015
  end-page: 284
  ident: CR14
  article-title: Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd As
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4143
– volume: 88
  start-page: 104412
  year: 2013
  ident: CR21
  article-title: Chiral anomaly and classical negative magnetoresistance of Weyl metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.104412
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR1
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
  doi: 10.1038/nature04233
– ident: CR33
– volume: 78
  start-page: 074033
  year: 2008
  ident: CR20
  article-title: Chiral magnetic effect
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.074033
– volume: 13
  start-page: 851
  year: 2014
  end-page: 856
  ident: CR18
  article-title: Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd As
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4023
– ident: CR29
– volume: 5
  start-page: 031023
  year: 2015
  ident: CR28
  article-title: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs
  publication-title: Phys. Rev. X
– ident: CR25
– volume: 88
  start-page: 125427
  year: 2013
  ident: CR10
  article-title: Three-dimensional Dirac semimetal and quantum transport in Cd As
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.125427
– volume: 5
  start-page: 031037
  year: 2015
  ident: CR17
  article-title: Anisotropic fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd As
  publication-title: Phys. Rev. X
– volume: 53
  start-page: 4062
  year: 2014
  end-page: 4067
  ident: CR24
  article-title: The crystal and electronic structures of Cd As , the three-dimensional electronic analogue of graphene
  publication-title: Inorg. Chem.
  doi: 10.1021/ic403163d
– volume: 111
  start-page: 246603
  year: 2013
  ident: CR27
  article-title: Dirac versus weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246603
– volume: 343
  start-page: 864
  year: 2014
  end-page: 867
  ident: CR7
  article-title: Discovery of a three-dimensional topological Dirac semimetal, Na Bi
  publication-title: Science
  doi: 10.1126/science.1245085
– volume: 105
  start-page: 031901
  year: 2014
  ident: CR8
  article-title: Molecular beam epitaxial growth of a three-dimensional topological Dirac semimetal Na Bi
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890940
– volume: 102
  start-page: 093116
  year: 2013
  ident: CR32
  article-title: Magnetoresistance in graphene under quantum limit regime
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4795149
– volume: 92
  start-page: 081306
  year: 2015
  ident: CR16
  article-title: Large linear magnetoresistance in Dirac semimetal Cd As with Fermi surfaces close to the Dirac points
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.081306
– volume: 88
  start-page: 165105
  year: 2013
  ident: CR19
  article-title: Engineering Weyl nodes in Dirac semimetals by a magnetic field
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.165105
– volume: 3
  start-page: 041504
  year: 2015
  ident: CR9
  article-title: Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na Bi
  publication-title: APL Mater.
  doi: 10.1063/1.4908158
– volume: 5
  start-page: 3786
  year: 2014
  ident: CR12
  article-title: Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd As
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4786
– volume: 13
  start-page: 677
  year: 2014
  end-page: 681
  ident: CR11
  article-title: A stable three-dimensional topological Dirac semimetal Cd As
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3990
– volume: 5
  start-page: 4898
  year: 2014
  ident: CR5
  article-title: Classification of stable three-dimensional Dirac semimetals with nontrivial topology
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5898
– ident: CR34
– volume: 4
  start-page: 6106
  year: 2014
  ident: CR13
  article-title: Evidence of topological surface state in three-dimensional Dirac semimetal Cd As
  publication-title: Sci. Rep.
  doi: 10.1038/srep06106
– volume: 114
  start-page: 117201
  year: 2015
  ident: CR31
  article-title: Linear magnetoresistance caused by mobility fluctuations in n-doped Cd As
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.117201
– volume: 4
  start-page: 031035
  year: 2014
  ident: CR30
  article-title: Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals
  publication-title: Phys. Rev. X
– volume: 108
  start-page: 140405
  year: 2012
  ident: CR4
  article-title: Dirac semimetal in three dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.140405
– ident: CR26
– volume: 85
  start-page: 195320
  year: 2012
  ident: CR6
  article-title: Dirac semimetal and topological phase transitions in A Bi (A= Na, K, Rb)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.195320
– volume: 438
  start-page: 197
  year: 2005
  ident: BFncomms10137_CR1
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 5
  start-page: 4898
  year: 2014
  ident: BFncomms10137_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5898
– volume: 111
  start-page: 246603
  year: 2013
  ident: BFncomms10137_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246603
– volume: 78
  start-page: 074033
  year: 2008
  ident: BFncomms10137_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.074033
– ident: BFncomms10137_CR29
– volume: 105
  start-page: 031901
  year: 2014
  ident: BFncomms10137_CR8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890940
– volume: 113
  start-page: 246402
  year: 2014
  ident: BFncomms10137_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.246402
– ident: BFncomms10137_CR25
– ident: BFncomms10137_CR34
  doi: 10.1038/ncomms10301
– volume: 5
  start-page: 031023
  year: 2015
  ident: BFncomms10137_CR28
  publication-title: Phys. Rev. X
– volume: 114
  start-page: 117201
  year: 2015
  ident: BFncomms10137_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.117201
– volume: 108
  start-page: 140405
  year: 2012
  ident: BFncomms10137_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.140405
– volume: 5
  start-page: 031037
  year: 2015
  ident: BFncomms10137_CR17
  publication-title: Phys. Rev. X
– volume: 4
  start-page: 6106
  year: 2014
  ident: BFncomms10137_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/srep06106
– volume: 82
  start-page: 3045
  year: 2010
  ident: BFncomms10137_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 27
  start-page: 113201
  year: 2015
  ident: BFncomms10137_CR23
  publication-title: J. Phys.: Condens. Matter
– volume: 14
  start-page: 280
  year: 2015
  ident: BFncomms10137_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4143
– volume: 85
  start-page: 195320
  year: 2012
  ident: BFncomms10137_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.195320
– volume: 3
  start-page: 041504
  year: 2015
  ident: BFncomms10137_CR9
  publication-title: APL Mater.
  doi: 10.1063/1.4908158
– volume: 343
  start-page: 864
  year: 2014
  ident: BFncomms10137_CR7
  publication-title: Science
  doi: 10.1126/science.1245085
– volume: 88
  start-page: 165105
  year: 2013
  ident: BFncomms10137_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.165105
– ident: BFncomms10137_CR26
– volume: 6
  start-page: 183
  year: 2007
  ident: BFncomms10137_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 4
  start-page: 031035
  year: 2014
  ident: BFncomms10137_CR30
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 677
  year: 2014
  ident: BFncomms10137_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3990
– volume: 5
  start-page: 3786
  year: 2014
  ident: BFncomms10137_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4786
– volume: 75
  start-page: 133
  year: 2014
  ident: BFncomms10137_CR22
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2014.01.002
– volume: 102
  start-page: 093116
  year: 2013
  ident: BFncomms10137_CR32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4795149
– volume: 13
  start-page: 851
  year: 2014
  ident: BFncomms10137_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4023
– volume: 92
  start-page: 081306
  year: 2015
  ident: BFncomms10137_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.081306
– volume: 88
  start-page: 104412
  year: 2013
  ident: BFncomms10137_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.104412
– volume: 88
  start-page: 125427
  year: 2013
  ident: BFncomms10137_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.125427
– volume: 53
  start-page: 4062
  year: 2014
  ident: BFncomms10137_CR24
  publication-title: Inorg. Chem.
  doi: 10.1021/ic403163d
– ident: BFncomms10137_CR33
SSID ssj0000391844
Score 2.6408002
Snippet Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd 3 As 2 is a Dirac semimetal with...
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3As2 is a Dirac semimetal with linear...
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3 As2 is a Dirac semimetal with linear...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10137
SubjectTerms 639/301/119/1000/1016
639/301/119/997
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1REFIvVVu-0m6RkeCCFJHETmKfKoTYRT1wAokLihzbASTWC81y2H_fmaw3ZVnE2ZPY8ow9z57xG4BDzq1E20hjVWgRiyazMTphEWe8zPOck4vqEmQvi4tr8ecmvwkXbm1Iq1zsid1GbSeG7shPEDmrXGVFmfx-eo6pahRFV0MJjU-wkaKnoZQuORz1dyzEfi6FCM_yEi5PPP5y3KbEs7fsiFbQ5WqS5JtIaeeAhl_hS0CO7HSu6m-w5vx32JzXkpxtwe0IFT1l3t11VN5srO-8wwO1awkhomoZnr5Rj5bVM4aoj5n7B-yQaT8Z68cZtpJAeJzFziw_bTPmsZXIjNttuB6eX51dxKF2QmzQhU-pro5qrLayzlWKIMkg8EqcKqzhVnPtbNogtCG2PaecTBOT4fQURV2YWjaqKfkOrPuJd3vATM1tU9Qixa-EUY1MyqzOtBTaIloyIoLjxURWJhCLU32Lx6oLcHNZvZr1CA574ac5n8b7YoOFRqqwqNrqvwlEcNA343KgGIf2bvJCMjm5WDzoRrA7V2DfT0YlTvG8F0G5pNpegKi2l1v8w31HuS1wY0RLiuBoYQSvhrU6_B8fD_8nfEbclVNWTFoOYH3698X9Qmwzrfc7A_4Hy1X8NA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IHgR39YXEfQiFNsmbZPjIj7YgxcVvEhJk1QFNyt297D_3kmbLbuuB49lJiRkpp1vmsk3AOeUao6-EYcikyxkVaJDDMIsTGiepil1IaopkH3I7p9Z_yV98TzbtS-rbCktm8_0tDrsyuLToI4dQd4yrDqOdnTq1V6v_9jvfqk4snPOmL-FF1E-O2o-7iyAycWayF8Ho028ud2EDQ8USa9d2hYsGbsNa23ryMkOvN6hXUfEmreGuZsM5Js1mD-b2gFCtCTBZBvNpkk5IQjyiHr_wAmJtMOB_Jyg1Cn4u1jkWtNenRCLUsddXO_C8-3N0_V96FslhAoj9si10RGVlpqXqYgREynEWZERmVZUSyqNjitEMo5czwjD40gluD1ZVmaq5JWocroHK3ZozQEQVVJdZSWLcRRTouJRnpSJ5ExqBEeKBXA53chCeR5x187is2jOsykvZnY9gPNO-aulz_hb7XhqkcK_Q3WBuZJIRZLlUQBnnRi93x1pSGuGY6eTuoiKeW0A-60Bu3kS19EU07sA8jnTdgqOWXteYj_eG4Ztht9B9KQALqZOMLOsxeUf_lPvCNYRb6WuGibOj2Fl9D02J4hpRuWp9-Ufplr6HQ
  priority: 102
  providerName: Springer Nature
Title Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires
URI https://link.springer.com/article/10.1038/ncomms10137
https://www.ncbi.nlm.nih.gov/pubmed/26673625
https://www.proquest.com/docview/1749592670
https://www.proquest.com/docview/1750429106
https://pubmed.ncbi.nlm.nih.gov/PMC4703844
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY9911wUNupeBt9iS9fEwRhaalsDK2BbIyzCyJLeFRFnrFJb_fid_hKYpe7HBd0Li7qT7nSXdARxTaiXaRhIrrlnMytTG6IRZnFKRZRkNLqo-IHvOzyZsPM2mO9AV42wFWD0Y2oV6UpOb2ce_16svOOE_N1fG5SePuplXSUietwv76JJEKGXwrcX59ZJMFUYyrL2fd6_NpkfagpnbpyXvbZnWnmj0FJ60EJIMGp0_gx3nn8Ojpqjk6gX8PkWNL4l3F3VObzLXF95hZO2qABVRxwTDcFSoJcWKIPwj5vIKOyTaL-Z6tkJqYGhvaZGhpYMqJR6pIatx9RImo5Nfw7O4LaIQG_Tly1BgR5VWW1lkKkG0ZBCB9Z3i1lCrqXY2KRHjhLR7TjmZ9E2K4uG84KaQpSoFfQV7fuHdARBTUFvygiXYihlVyr5Ii1RLpi3CJsMi-NAJMjdthvFQ6GKW1zvdVOZ3pB7B8Zr5T5NY42G2o04jeWccOUZRKlMpF_0I3q3JOC_CZof2bnEbeLLgazHijeB1o8B1P2modYqBXwRiQ7VrhpBze5Piry7r3NsMV0i0pAjed0ZwZ1jbwz_8__DfwGMEYFk4HpOII9hb3ty6twhylkUPdsVU4FOOTnuwPxiMf47x_fXk_PsP_Drkw179-6BXG_o_wfIF4g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuUAkZqL0hRE9t5-IBQVdhuaemplXpBwbGdtlLXW5qt0P4pfiMzedFlEbeePUkc-7PnGz--AdgQwuaIjThUqZahrLgN0QnLkIssSRJBLqo5IHuYjo_ll5PkZAV-9Xdh6FhlPyc2E7WdGloj30LmrBLF0yz6ePkjpKxRtLvap9BoYbHv5j8xZKs_7H3C_t3kfPT5aGccdlkFQoPObUYZZ1Rltc3LRMVIHwxSksip1BphtdDOxhU6fdKhc8rlcWR4JPI0LVNT5pWqMoHvvQN3pUBPTjfTR7vDmg6predSdtcA8bEtj78wqWPS9Vt0fEtsdvlQ5l87s43DGz2Chx1TZdsttB7DivNP4F6bu3L-FL7tIrBmzLvTRjqcTfSpdxjAu5oYKUKJYbSPuLGsnDNkmcycneMHmfbTib6YYykZdJfB2I4V2zVnHktJPLl-Bse30qrPYdVPvXsJzJTCVmkpY3xKGlXlUcZLrnOpLbIzIwN43zdkYTohc8qncVE0G-oiL260egAbg_Flq9_xb7P1vkeKbhDXxR_IBfBuKMbhR3sq2rvpNdkk5NIxsA7gRduBw3c4pVTF-DKAbKFrBwOS9l4s8ednjcS3xIkYkRTAZg-CG9Varv7a_6v_Fu6Pj74eFAd7h_uv4AFyvoRO5MTZOqzOrq7da-RVs_JNA2YG32979PwGcLc5CQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKt6kFDBSe0GKNrGd1wGh0nZpKVpViEq9oNSxnbZS11vIVmj_Gr-Ombzosohbz55svPZnzzfx-BuATSFMitgI_SxW0pclNz46YelzkURRJMhF1Qmy43j_WH46iU5W4Fd3F4bSKrs9sd6ozVTTN_IhMucsynicBMOyTYs42h29v_ruUwUpOmntymk0EDm0858YvlXvDnZxrrc4H-193dn32woDvkZHN6PqM1lplEmLKAuRSmikJ4HNYqOFUUJZE5ZIAEiTzmY2DQPNA5HGcRHrIi2zMhH4u3dgNaGoaACrH_bGR1_6LzykvZ5K2V4KxAeHDv_QpApJ5W_RDS5x2-UUzb_OaWv3N3oAay1vZdsN0B7CinWP4G5TyXL-GL59RJjNmLNntZA4m6gzZzGctxXxUwQWw9gfUWRYMWfIOZk-v8AXMuWmE3U5x1YyaK-GsR0jtivOHLaSlHL1BI5vZVyfwsBNnX0OTBfClHEhQ3xK6qxMg4QXXKVSGeRqWnrwthvIXLey5lRd4zKvj9dFmt8YdQ82e-OrRs3j32Yb3Yzk7ZKu8j8A9OBN34yLkU5YlLPTa7KJyMFjmO3Bs2YC-_dwKrCK0aYHycLU9gYk9L3Y4i7Oa8FvidsyIsmDrQ4EN7q13P31_3f_NdzDlZN_PhgfvoD7SAAjSs8Jkw0YzH5c25dIsmbFqxbNDE5vewH9Bt2pPps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+negative+magnetoresistance+induced+by+the+chiral+anomaly+in+individual+Cd3As2+nanowires&rft.jtitle=Nature+communications&rft.au=Li%2C+Cai-zhen&rft.au=Wang%2C+Li-xian&rft.au=Liu%2C+Haiwen&rft.au=Wang%2C+Jian&rft.date=2015-12-17&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=6&rft.spage=10137&rft_id=info:doi/10.1038%2Fncomms10137&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3897142471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon