Multimodal Data Fusion Using Source Separation: Two Effective Models Based on ICA and IVA and Their Properties

Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the data sets, it is highly desirable t...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Vol. 103; no. 9; pp. 1478 - 1493
Main Authors AdalI, Tulay, Levin-Schwartz, Yuri, Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the data sets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA), generalizes ICA to multiple data sets by exploiting the statistical dependence across the data sets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple data sets along with ICA. In this paper, we focus on two multivariate solutions for multimodal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the joint ICA model that has found wide application in medical imaging, and the second one is the transposed IVA model introduced here as a generalization of an approach based on multiset canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, and present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods.
AbstractList Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the data sets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA), generalizes ICA to multiple data sets by exploiting the statistical dependence across the data sets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple data sets along with ICA. In this paper, we focus on two multivariate solutions for multimodal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the joint ICA model that has found wide application in medical imaging, and the second one is the transposed IVA model introduced here as a generalization of an approach based on multiset canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, and present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods.
Author AdalI, Tulay
Calhoun, Vince D.
Levin-Schwartz, Yuri
Author_xml – sequence: 1
  givenname: Tulay
  surname: AdalI
  fullname: AdalI, Tulay
  email: adali@umbc.edu
  organization: Dept. of Comput. Sci. & Electr. Eng., Univ. of Maryland Baltimore County, Baltimore, MD, USA
– sequence: 2
  givenname: Yuri
  surname: Levin-Schwartz
  fullname: Levin-Schwartz, Yuri
  organization: Dept. of Comput. Sci. & Electr. Eng., Univ. of Maryland Baltimore County, Baltimore, MD, USA
– sequence: 3
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Univ. of New Mexico, Albuquerque, NM, USA
BookMark eNp9kcFu1DAQhi1UJLaFF4CLJS5csszYsZNwg6WFolat6MI1Ms4YXGXjxXZa8fb1disOPfQ0I-v7Rp75D9nBFCZi7DXCEhG6998uv1-slgJQLUWtUYv6GVugUm0lhNIHbAGAbdUJ7F6ww5SuAUAqLRdsOp_H7DdhMCP_bLLhJ3PyYeI_kp9-86swR0v8irYmmlzeP_D1beDHzpHN_ob4eRhoTPyTSTTwop2uPnIzDfz0576u_5CP_DKGLcXsKb1kz50ZE716qEdsfXK8Xn2tzi6-FPessgpFroz7pZQobQ0W7eA664zuoHVamtoSdEo2hA1K4VqhjLC2bpUAKQblpNXyiL3bj93G8HemlPuNT5bG0UwU5tRjo6QCXbdQ0LeP0Ouy9FQ-VyjRgkKsd1S7p2wMKUVyvfX5_iI5Gj_2CP0uh_4-h36XQ_-QQ1HFI3Ub_cbEf09Lb_aSJ6L_QiNAK2zkHST3k_E
CODEN IEEPAD
CitedBy_id crossref_primary_10_1007_s11265_016_1151_4
crossref_primary_10_1016_j_jneumeth_2017_01_017
crossref_primary_10_1109_TSP_2019_2955829
crossref_primary_10_1109_TSP_2021_3109375
crossref_primary_10_1016_j_inffus_2020_07_006
crossref_primary_10_3390_app11188382
crossref_primary_10_1002_epi4_12838
crossref_primary_10_1186_s12940_020_00683_x
crossref_primary_10_1007_s12021_025_09716_7
crossref_primary_10_3390_s22197417
crossref_primary_10_3389_fnins_2019_00416
crossref_primary_10_3389_fnins_2018_00013
crossref_primary_10_1016_j_bspc_2021_102889
crossref_primary_10_1002_hbm_70037
crossref_primary_10_1109_LSENS_2018_2884775
crossref_primary_10_1109_ACCESS_2017_2695497
crossref_primary_10_1016_j_patcog_2023_109376
crossref_primary_10_1016_j_neuroimage_2016_03_058
crossref_primary_10_1063_1_5037882
crossref_primary_10_1016_j_envint_2021_106447
crossref_primary_10_1016_j_patter_2022_100602
crossref_primary_10_1093_psyrad_kkad026
crossref_primary_10_1109_JPROC_2015_2474704
crossref_primary_10_1109_TSP_2020_3022827
crossref_primary_10_1109_LSP_2016_2546687
crossref_primary_10_1109_JSEN_2022_3206225
crossref_primary_10_1109_MSP_2016_2521870
crossref_primary_10_1088_1742_6596_1345_3_032006
crossref_primary_10_1162_imag_a_00348
crossref_primary_10_1016_j_sigpro_2020_107957
crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun
crossref_primary_10_1093_scan_nsaa114
crossref_primary_10_1109_TMI_2017_2678483
crossref_primary_10_3390_s24165428
crossref_primary_10_1111_ejn_16674
crossref_primary_10_1002_nla_2291
crossref_primary_10_1109_JSYST_2020_2981366
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1016_j_neuroimage_2020_116872
crossref_primary_10_1016_j_bspc_2020_101948
crossref_primary_10_1111_epi_17538
crossref_primary_10_1109_TSP_2021_3068626
crossref_primary_10_1016_j_oceaneng_2023_116421
crossref_primary_10_1016_j_envres_2020_109148
crossref_primary_10_1016_j_bspc_2021_102698
crossref_primary_10_1016_j_jneumeth_2021_109214
crossref_primary_10_3389_fnins_2021_724391
crossref_primary_10_1016_j_envres_2021_111553
crossref_primary_10_1051_matecconf_20165701021
crossref_primary_10_1002_hbm_25717
Cites_doi 10.1109/RBME.2012.2211076
10.1162/neco.1995.7.6.1129
10.1109/CISS.2015.7086864
10.1073/pnas.0903525106
10.1016/j.neuroimage.2009.06.011
10.1109/CISS.2015.7086842
10.1109/31.76486
10.1371/journal.pone.0028072
10.1109/72.761722
10.1109/TASSP.1985.1164557
10.1016/j.jneumeth.2015.03.019
10.1016/j.jneumeth.2011.10.031
10.1109/MSP.2014.2298045
10.1016/j.neuroimage.2013.12.063
10.1016/j.neuroimage.2011.10.010
10.1109/ACSSC.2004.1399288
10.1109/78.599941
10.3389/fnsys.2014.00106
10.1109/EMBC.2014.6944891
10.1109/ISBI.2011.5872574
10.1109/TSP.2009.2021636
10.1109/78.553476
10.1109/TBME.2015.2404300
10.1109/78.212737
10.1002/9781118579749
10.1002/hbm.20359
10.1109/TITB.2008.923773
10.2307/2334380
10.1109/TAC.1974.1100705
10.1109/97.847367
10.1016/j.neuroimage.2008.10.057
10.1109/TSP.2011.2181836
10.1109/JPROC.2015.2461601
10.2307/2333955
10.1002/0471221317
10.1016/j.neuroimage.2012.10.051
10.1109/CISS.2015.7086828
10.1109/TNN.2006.875991
10.1109/TNN.2003.820667
10.1002/hbm.1048
10.1016/j.sigpro.2011.04.016
10.1109/TSP.2012.2199985
10.1109/ICASSP.2013.6638257
10.1109/ACSSC.2006.354986
10.1109/TSP.2014.2333551
10.1109/TSP.2011.2162954
10.1109/ICASSP.1998.681443
10.1109/78.554307
10.1109/ICASSP.2012.6288271
10.1162/089976601750264992
10.1016/0165-1684(94)90029-9
10.1016/j.neuroimage.2005.08.060
10.1016/j.neuroimage.2014.12.040
10.1109/TMI.2014.2340816
10.1016/j.neuroimage.2013.11.032
10.1016/j.neuroimage.2007.11.019
10.1016/j.neuroimage.2011.05.055
10.1214/aos/1176344136
10.1371/journal.pone.0073309
10.1109/JSTSP.2008.2008265
10.1109/83.988962
10.1016/j.ijpsycho.2007.04.010
10.1007/978-3-642-15995-4_25
10.1109/TSP.2008.926104
10.1016/j.neuroimage.2012.01.063
10.1109/ICASSP.2010.5495311
10.1109/MSP.2014.2300511
10.1016/j.neuroimage.2010.09.073
10.1109/ICASSP.2015.7178612
10.1109/MSP.2010.936725
10.1016/j.neuroimage.2012.02.030
10.1002/9780470575758
10.1049/ip-f-2.1993.0054
10.1016/0005-1098(78)90005-5
10.1109/TSP.2010.2053362
10.1109/TSP.2014.2333563
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
7U5
F28
FR3
DOI 10.1109/JPROC.2015.2461624
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Solid State and Superconductivity Abstracts
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 1493
ExternalDocumentID 3850641571
10_1109_JPROC_2015_2461624
7206517
Genre orig-research
GrantInformation_xml – fundername: NIH COBRE under Grant P20GM103472
– fundername: NSF-IIS
  grantid: 1017718
– fundername: NSF-CCF
  grantid: 1117056
– fundername: National Institutes of Health
  grantid: 2R01EB000840
  funderid: 10.13039/100000002
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
7U5
F28
FR3
ID FETCH-LOGICAL-c512t-afb55251240c1cdf9cfa6908f63a4ce09537e17132f825a2cc4852032d5f3c63
IEDL.DBID RIE
ISSN 0018-9219
IngestDate Fri Jul 11 04:37:32 EDT 2025
Mon Jun 30 10:25:10 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 01:56:39 EDT 2025
Wed Aug 27 02:43:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Data fusion
multimodality
independent component analysis (ICA)
independent vector analysis (IVA)
(joint) blind source separation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-afb55251240c1cdf9cfa6908f63a4ce09537e17132f825a2cc4852032d5f3c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4624202
PQID 1728051140
PQPubID 85453
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_JPROC_2015_2461624
ieee_primary_7206517
proquest_miscellaneous_1753506480
crossref_primary_10_1109_JPROC_2015_2461624
proquest_journals_1728051140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref16
ref19
comon (ref4) 2010
ref51
ref46
ref45
ref48
ref47
ref42
borga (ref50) 2001
ref44
ref43
ref49
ref8
ref7
swinnen (ref17) 0
ref9
ref3
ref6
ref5
tichavský (ref75) 2006
ref82
ref81
ref40
ref84
ref83
anderson (ref41) 2013
ref79
ref35
ref78
ref34
ref37
ref36
ref31
ref74
ref30
ref77
ref33
ref32
ref2
amari (ref80) 1996; 8
ref1
ref39
ref38
(ref76) 0
ref71
ref70
ref73
ref72
ref68
ref24
ramezani (ref18) 2014
ref67
ref23
ref26
silva (ref85) 0
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref33
  doi: 10.1109/RBME.2012.2211076
– ident: ref34
  doi: 10.1162/neco.1995.7.6.1129
– ident: ref58
  doi: 10.1109/CISS.2015.7086864
– ident: ref77
  doi: 10.1073/pnas.0903525106
– ident: ref13
  doi: 10.1016/j.neuroimage.2009.06.011
– ident: ref48
  doi: 10.1109/CISS.2015.7086842
– ident: ref38
  doi: 10.1109/31.76486
– start-page: 2864
  year: 0
  ident: ref85
  article-title: Multidata set independent subspace analysis extends independent vector analysis
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref70
  doi: 10.1371/journal.pone.0028072
– ident: ref35
  doi: 10.1109/72.761722
– ident: ref62
  doi: 10.1109/TASSP.1985.1164557
– year: 2001
  ident: ref50
  publication-title: Canonical correlation A tutorial
– ident: ref55
  doi: 10.1016/j.jneumeth.2015.03.019
– ident: ref5
  doi: 10.1016/j.jneumeth.2011.10.031
– ident: ref29
  doi: 10.1109/MSP.2014.2298045
– year: 2013
  ident: ref41
  publication-title: Independent vector analysis Theory algorithms applications
– ident: ref57
  doi: 10.1016/j.neuroimage.2013.12.063
– ident: ref52
  doi: 10.1016/j.neuroimage.2011.10.010
– ident: ref71
  doi: 10.1109/ACSSC.2004.1399288
– ident: ref37
  doi: 10.1109/78.599941
– ident: ref56
  doi: 10.3389/fnsys.2014.00106
– ident: ref16
  doi: 10.1109/EMBC.2014.6944891
– ident: ref67
  doi: 10.1109/ISBI.2011.5872574
– ident: ref23
  doi: 10.1109/TSP.2009.2021636
– ident: ref81
  doi: 10.1109/78.553476
– ident: ref19
  doi: 10.1109/TBME.2015.2404300
– ident: ref69
  doi: 10.1109/78.212737
– ident: ref26
  doi: 10.1002/9781118579749
– year: 2010
  ident: ref4
  publication-title: Handbook of Blind Source Separation Independent Component Analysis and Applications
– ident: ref66
  doi: 10.1002/hbm.20359
– ident: ref1
  doi: 10.1109/TITB.2008.923773
– ident: ref22
  doi: 10.2307/2334380
– ident: ref63
  doi: 10.1109/TAC.1974.1100705
– ident: ref40
  doi: 10.1109/97.847367
– ident: ref11
  doi: 10.1016/j.neuroimage.2008.10.057
– year: 0
  ident: ref76
  publication-title: Fusion ICA Toolbox
– ident: ref9
  doi: 10.1109/TSP.2011.2181836
– ident: ref21
  doi: 10.1109/JPROC.2015.2461601
– ident: ref49
  doi: 10.2307/2333955
– ident: ref7
  doi: 10.1002/0471221317
– ident: ref60
  doi: 10.1016/j.neuroimage.2012.10.051
– ident: ref47
  doi: 10.1109/CISS.2015.7086828
– ident: ref42
  doi: 10.1109/TNN.2006.875991
– ident: ref36
  doi: 10.1109/TNN.2003.820667
– ident: ref51
  doi: 10.1002/hbm.1048
– ident: ref28
  doi: 10.1016/j.sigpro.2011.04.016
– ident: ref82
  doi: 10.1109/TSP.2012.2199985
– year: 2006
  ident: ref75
  article-title: Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI
  publication-title: Eur Signal Process Conf
– ident: ref46
  doi: 10.1109/ICASSP.2013.6638257
– ident: ref8
  doi: 10.1109/ACSSC.2006.354986
– ident: ref68
  doi: 10.1109/TSP.2014.2333551
– ident: ref32
  doi: 10.1109/TSP.2011.2162954
– ident: ref84
  doi: 10.1109/ICASSP.1998.681443
– ident: ref39
  doi: 10.1109/78.554307
– ident: ref61
  doi: 10.1109/ICASSP.2012.6288271
– ident: ref83
  doi: 10.1162/089976601750264992
– ident: ref3
  doi: 10.1016/0165-1684(94)90029-9
– ident: ref2
  doi: 10.1016/j.neuroimage.2005.08.060
– ident: ref73
  doi: 10.1016/j.neuroimage.2014.12.040
– ident: ref79
  doi: 10.1109/TMI.2014.2340816
– ident: ref53
  doi: 10.1016/j.neuroimage.2013.11.032
– ident: ref54
  doi: 10.1016/j.neuroimage.2007.11.019
– ident: ref74
  doi: 10.1016/j.neuroimage.2011.05.055
– ident: ref64
  doi: 10.1214/aos/1176344136
– ident: ref78
  doi: 10.1371/journal.pone.0073309
– ident: ref20
  doi: 10.1109/JSTSP.2008.2008265
– ident: ref25
  doi: 10.1109/83.988962
– start-page: 121
  year: 0
  ident: ref17
  article-title: Incorporating higher dimensionality in joint decomposition of EEG and fMRI
  publication-title: Proc Eur Signal Process Conf
– ident: ref12
  doi: 10.1016/j.ijpsycho.2007.04.010
– ident: ref30
  doi: 10.1007/978-3-642-15995-4_25
– ident: ref31
  doi: 10.1109/TSP.2008.926104
– ident: ref15
  doi: 10.1016/j.neuroimage.2012.01.063
– ident: ref43
  doi: 10.1109/ICASSP.2010.5495311
– ident: ref10
  doi: 10.1109/MSP.2014.2300511
– start-page: 1
  year: 2014
  ident: ref18
  article-title: Fusion analysis of functional MRI data for classification of individuals based on patterns of activation
  publication-title: Brain Imag Behav
– ident: ref59
  doi: 10.1016/j.neuroimage.2010.09.073
– ident: ref72
  doi: 10.1109/ICASSP.2015.7178612
– volume: 8
  start-page: 757
  year: 1996
  ident: ref80
  article-title: A new learning algorithm for blind signal separation
  publication-title: Advances in neural information processing systems
– ident: ref24
  doi: 10.1109/MSP.2010.936725
– ident: ref14
  doi: 10.1016/j.neuroimage.2012.02.030
– ident: ref6
  doi: 10.1002/9780470575758
– ident: ref27
  doi: 10.1049/ip-f-2.1993.0054
– ident: ref65
  doi: 10.1016/0005-1098(78)90005-5
– ident: ref45
  doi: 10.1109/TSP.2010.2053362
– ident: ref44
  doi: 10.1109/TSP.2014.2333563
SSID ssj0003563
Score 2.450323
Snippet Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1478
SubjectTerms (joint) blind source separation
Brain models
Computer simulation
Correlation
Data fusion
Data integration
Data models
Datasets
Decomposition
Feature extraction
independent component analysis (ICA)
independent vector analysis (IVA)
Joints
Mathematical models
multimodality
Source separation
Tasks
Vector analysis
Title Multimodal Data Fusion Using Source Separation: Two Effective Models Based on ICA and IVA and Their Properties
URI https://ieeexplore.ieee.org/document/7206517
https://www.proquest.com/docview/1728051140
https://www.proquest.com/docview/1753506480
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooBVp1gSIjcWuzxImdR2-w7QqQoKhsK26RX7mUJggSVeqv74ydjehDFadEyiSx9HnsmfHMNwCHunBSaCcRAesiYWIdlYrrSHOjbKyTMiB9cZmdfhHnN_JmBd6NtTDOOZ985qZ068_ybWt6CpUd5QlumDxfhVV03EKt1rjqpnLomsZRgVENlwUycXl0fvX504yyuOSU2NOyRPy2CfmuKn8txX5_mW_AxXJkIa3k27Tv9NT8_IO08alDfwHPB0OTHYeZsQkrrtmCZ4_oB7eh8dW331uLch9Up9i8p9gZ82kE7NqH9dm1C-zgbfOeLX60LNAd4xrJqI3a7QM7wX3QMnztbHbMVGPZ2ddwXdAZBLuiaP890ba-hMX842J2Gg39FyKDZkAXqVpLSfaPiA03ti5NrdCZLuosVcI4YqrLHUcvN6nRz1SJMaKQ1JHdyjo1WfoK1pq2ca-B8cTZIi0KrnQu6sRoXJ5VJjLl4sTkNp4AX-JRmYGbnFpk3FbeR4nLymNYEYbVgOEE3o7v3AVmjv9KbxMoo-SAxwT2lrBXg_I-VL5lFxqiAsd1MD5GtaOzFNW4ticZmRLXXxHv_PvLu7BO_w_paHuw1t337g3aL53e9xP3F_3s6l8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvApioYCR4ISyTRw7DyQO0LLa7YuKBtRb5FculAR1E1XwV_gr_DhmnGzES9wqcUqkjK3YM57xeMbfADzVmZNCO4kcsC4QJtRBriId6MgoG2qe95w-OEzm78XuiTxZg2_jXRjnnE8-c1N69bF825iOjsq2Uo4GM0qHFMo99-UcHbTly8UOcvMZ57M3xfY8GGoIBAZNWRuoSktJNlyEJjK2yk2l0CHMqiRWwjhCW0tdhJ4ar9BXUtwYkUmqKm5lFZskxm4vwWXcZkjeXw4b1XwshzJtEWoMXPerGzlhvrV79O7tNqWNySnBtSVc_GL1fBmXP3S_N2izG_B9NRV9HsvHadfqqfn6G0rkfzpXN-H6sJFmr3rJvwVrrr4N136CV9yA2t8u_tRYpNtRrWKzjs4GmU-TYMc-bMGOXY9-3tQvWHHesB7OGW0AozJxp0v2Gu28ZdgMx8BUbdniQ_8sKMbCjiiacUawtHeguIjx3oX1uqndPWARdzaLsyxSOhUVNxrNj0pEolzITWrDCUQr9pdmwF6nEiCnpffBwrz0IlOSyJSDyEzg-djmc4888k_qDZKBkXJg_wQ2V1JWDsppWfqSZLjRFvhfT8bPqFYoVqRq13REI2PCMszC-3_v-TFcmRcH--X-4nDvAVylf-lT7zZhvT3r3EPcq7X6kV8zDMoLlrsfTMNFpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Data+Fusion+Using+Source+Separation%3A+Two+Effective+Models+Based+on+ICA+and+IVA+and+Their+Properties&rft.jtitle=Proceedings+of+the+IEEE&rft.au=AdalI%2C+Tulay&rft.au=Levin-Schwartz%2C+Yuri&rft.au=Calhoun%2C+Vince+D.&rft.date=2015-09-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=103&rft.issue=9&rft.spage=1478&rft.epage=1493&rft_id=info:doi/10.1109%2FJPROC.2015.2461624&rft.externalDocID=7206517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon