Polarized MIMO channels in 3-D: models, measurements and mutual information
Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 24; no. 3; pp. 514 - 527 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored. |
---|---|
AbstractList | Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information va- lues and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored. Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many Journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored. Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information va- [...] this approach is also receiving considerable attention in MIMO systems. |
Author | Min Zhang Smith, P.J. Shafi, M. Tufvesson, F. Molisch, A.F. Simon, S.H. Moustakas, A.L. |
Author_xml | – sequence: 1 givenname: M. surname: Shafi fullname: Shafi, M. organization: Telecom New Zealand Ltd., Wellington, New Zealand – sequence: 2 surname: Min Zhang fullname: Min Zhang – sequence: 3 givenname: A.L. surname: Moustakas fullname: Moustakas, A.L. – sequence: 4 givenname: P.J. surname: Smith fullname: Smith, P.J. – sequence: 5 givenname: A.F. surname: Molisch fullname: Molisch, A.F. – sequence: 6 givenname: F. surname: Tufvesson fullname: Tufvesson, F. – sequence: 7 givenname: S.H. surname: Simon fullname: Simon, S.H. |
BackLink | https://lup.lub.lu.se/record/415185$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/d2227bcb-0224-4c57-89fa-b12c5f830968$$DView record from Swedish Publication Index |
BookMark | eNqNks1rFTEUxQep4Gt1L7gZXOjGeeZj8jHuyvOr-koFdR2SzB2akkmmyQyif715nYpQsLgIl8DvnHs5nOPqKMQAVfUUoy3GqHv96evpbksQYlvJCe3kg2qDGZMNQkgeVRskKG2kwPxRdZzzFUK4bSXZVJ-_RK-T-wV9fX52flHbSx0C-Fy7UNPm7Zt6jH35vqpH0HlJMEKYc61DX4_LvGhfuCGmUc8uhsfVw0H7DE9u50n1_f27b7uPzf7iw9nudN9Yhsnc6KHVPTEYW1oubQ3upGGoZWDBCo6EBISIZWCY7mCgA-NGgBTQ9yANlZaeVHr1zT9gWoyakht1-qmidmqKadZeJcigk71UflEZVKG8szdHZtUTQoSxRiFCWtVaJpTsBq0MLlsHSVHHZdmx_-cOv0zlmVvv_7R7udpNKV4vkGc1umzBex0gLrkoOO6opKyQL-4liUQtbjEt4PM74FVcUijBK8kZJ4JiUiC-QjbFnBMMyrr5Joc5aecVRurQHnVojzq0R63tKUJ0R_gngXskz1aJA4C_OEdUlPb9BqPB0RY |
CODEN | ISACEM |
CitedBy_id | crossref_primary_10_1109_TAP_2007_915417 crossref_primary_10_1109_TVT_2011_2163094 crossref_primary_10_1109_TWC_2017_2782690 crossref_primary_10_1109_TAP_2017_2673765 crossref_primary_10_3169_mta_1_60 crossref_primary_10_1007_s11277_013_1390_7 crossref_primary_10_1109_TVT_2013_2262691 crossref_primary_10_1109_ACCESS_2016_2612248 crossref_primary_10_1109_COMST_2016_2606639 crossref_primary_10_1109_TVT_2011_2159035 crossref_primary_10_1587_transcom_E92_B_1300 crossref_primary_10_1109_TSP_2015_2430841 crossref_primary_10_1109_TAP_2013_2288633 crossref_primary_10_1109_TWC_2010_01_090034 crossref_primary_10_1155_2014_619304 crossref_primary_10_1002_ett_2914 crossref_primary_10_1109_TAP_2012_2214017 crossref_primary_10_1109_T_WC_2008_070540 crossref_primary_10_1109_TAP_2014_2310220 crossref_primary_10_1109_TWC_2014_2314118 crossref_primary_10_1155_2010_307265 crossref_primary_10_1155_2012_756508 crossref_primary_10_1109_JPROC_2009_2015704 crossref_primary_10_3390_electronics11030330 crossref_primary_10_1109_TVT_2014_2305713 crossref_primary_10_1109_TWC_2009_070662 crossref_primary_10_1109_LWC_2018_2808346 crossref_primary_10_1109_TWC_2011_110811_111061 crossref_primary_10_1002_ett_4351 crossref_primary_10_1587_transcom_E94_B_139 crossref_primary_10_1016_S1005_8885_14_60261_2 crossref_primary_10_1007_s11432_011_4264_1 crossref_primary_10_7498_aps_61_180101 crossref_primary_10_1109_ACCESS_2017_2678602 crossref_primary_10_1109_TAP_2015_2486798 crossref_primary_10_1007_s11277_012_0839_4 crossref_primary_10_1002_mop_22865 crossref_primary_10_1109_TAP_2012_2194635 crossref_primary_10_1109_TVT_2020_3046121 crossref_primary_10_1109_TVT_2018_2801825 crossref_primary_10_1016_S1005_8885_15_60634_3 crossref_primary_10_1109_ACCESS_2019_2897565 crossref_primary_10_1109_TCOMM_2017_2762689 crossref_primary_10_1109_TCOMM_2020_2979455 crossref_primary_10_1109_TIT_2007_907468 crossref_primary_10_1109_TCOMM_2017_2762685 crossref_primary_10_1109_TAP_2019_2925157 crossref_primary_10_1109_TAP_2009_2027042 crossref_primary_10_1109_COMST_2019_2930621 crossref_primary_10_1109_TAP_2008_2005542 crossref_primary_10_1109_TAP_2009_2024481 crossref_primary_10_1109_TVT_2020_3031872 crossref_primary_10_1109_TVT_2010_2045775 crossref_primary_10_7498_aps_62_238402 crossref_primary_10_1109_TCOMM_2007_910700 crossref_primary_10_1109_ACCESS_2022_3228043 crossref_primary_10_1109_TWC_2022_3205471 crossref_primary_10_1109_ACCESS_2017_2693375 crossref_primary_10_1109_TAP_2019_2925128 crossref_primary_10_1155_2010_387625 crossref_primary_10_1016_j_phycom_2013_04_002 crossref_primary_10_1155_2012_920624 crossref_primary_10_1098_rsos_150322 crossref_primary_10_1109_TVT_2024_3466568 crossref_primary_10_1109_TAP_2017_2759842 crossref_primary_10_1109_TSP_2013_2294598 crossref_primary_10_1109_TCOMM_2023_3247725 crossref_primary_10_1016_j_phycom_2012_04_008 crossref_primary_10_1109_ACCESS_2018_2840151 crossref_primary_10_1002_ett_3042 crossref_primary_10_1007_s10776_018_0401_8 crossref_primary_10_1109_ACCESS_2019_2919377 crossref_primary_10_1016_j_phycom_2012_02_002 crossref_primary_10_1155_2009_715403 crossref_primary_10_3390_s18041186 crossref_primary_10_1007_s11277_017_4132_4 crossref_primary_10_1109_TWC_2022_3197515 crossref_primary_10_3724_SP_J_1146_2006_01858 crossref_primary_10_1109_LCOMM_2016_2636295 crossref_primary_10_1109_LAWP_2009_2019733 crossref_primary_10_1109_TAP_2011_2152319 crossref_primary_10_1016_j_aeue_2009_04_008 crossref_primary_10_1002_sat_986 crossref_primary_10_1109_TCOMM_2018_2824817 crossref_primary_10_1109_TWC_2021_3131612 crossref_primary_10_1007_s11277_011_0498_x crossref_primary_10_1109_OJCOMS_2024_3462689 crossref_primary_10_1109_JSYST_2020_2999920 crossref_primary_10_1109_LWC_2019_2908648 crossref_primary_10_1007_s11277_008_9657_0 crossref_primary_10_2528_PIERC08121405 crossref_primary_10_2528_PIERM16072801 |
Cites_doi | 10.1109/49.995514 10.1109/ICC.2004.1312614 10.1109/VETECF.1999.801485 10.1109/TIT.2003.817437 10.1109/26.129185 10.1109/JSAC.2002.801218 10.1109/TIT.2006.885519 10.1109/ICC.2002.996859 10.1109/25.130998 10.1002/ett.4460100604 10.1109/49.995513 10.1109/25.54228 10.1126/science.287.5451.287 10.1023/B:WIRE.0000003825.20103.5f 10.1038/35053015 10.1049/el:20040417 10.1109/VETEC.1999.780497 10.1109/IMOC.2003.1244853 10.1109/TVT.2002.800639 10.1109/T-VT.1984.24022 10.1109/VETEC.1999.778083 10.1103/PhysRevE.69.065101 10.1109/TIT.2003.817472 10.1109/JSAC.2002.801225 10.1109/49.233217 10.1109/JSAC.2002.801216 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
CorporateAuthor | Institutioner vid LTH Departments at LTH Lunds universitet Institutionen för elektro- och informationsteknik Faculty of Engineering, LTH Lunds Tekniska Högskola Lund University Department of Electrical and Information Technology |
CorporateAuthor_xml | – name: Faculty of Engineering, LTH – name: Lund University – name: Institutioner vid LTH – name: Lunds Tekniska Högskola – name: Departments at LTH – name: Lunds universitet – name: Department of Electrical and Information Technology – name: Institutionen för elektro- och informationsteknik |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 ADTPV AOWAS D95 |
DOI | 10.1109/JSAC.2005.862398 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0008 |
EndPage | 527 |
ExternalDocumentID | oai_portal_research_lu_se_publications_d2227bcb_0224_4c57_89fa_b12c5f830968 oai_lup_lub_lu_se_d2227bcb_0224_4c57_89fa_b12c5f830968 2342188581 10_1109_JSAC_2005_862398 1603707 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M F28 FR3 ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c512t-af4ad2b11c36234b198b5045ecec76078e002c5eb5a9ef3f56b7e87edde8b38c3 |
IEDL.DBID | RIE |
ISSN | 0733-8716 1558-0008 |
IngestDate | Mon Sep 01 03:31:54 EDT 2025 Thu Jul 03 04:55:50 EDT 2025 Fri Jul 11 16:40:11 EDT 2025 Fri Jul 11 12:14:20 EDT 2025 Mon Jun 30 10:14:50 EDT 2025 Tue Jul 01 03:27:58 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Wed Aug 27 02:47:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-af4ad2b11c36234b198b5045ecec76078e002c5eb5a9ef3f56b7e87edde8b38c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 865627312 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_28041413 proquest_journals_865627312 crossref_citationtrail_10_1109_JSAC_2005_862398 swepub_primary_oai_lup_lub_lu_se_d2227bcb_0224_4c57_89fa_b12c5f830968 proquest_miscellaneous_896193835 swepub_primary_oai_portal_research_lu_se_publications_d2227bcb_0224_4c57_89fa_b12c5f830968 ieee_primary_1603707 crossref_primary_10_1109_JSAC_2005_862398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-03-01 |
PublicationDateYYYYMMDD | 2006-03-01 |
PublicationDate_xml | – month: 03 year: 2006 text: 2006-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal on selected areas in communications |
PublicationTitleAbbrev | J-SAC |
PublicationYear | 2006 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 correia (ref8) 2001 zhang (ref25) 2005 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 smith (ref26) 2004 balanis (ref9) 1982 simon (ref33) 2004; 69 gradshteyn (ref28) 1980 moustakas (ref7) 2000; 287 ref24 (ref5) 2003 smith (ref37) 2002; 1 ref20 ref22 ref21 ref29 ref4 zhang (ref27) 2005 ref3 ref6 moustakas (ref36) 0 kara (ref17) 2001 karedal (ref23) 2005 |
References_xml | – year: 0 ident: ref36 article-title: on the outage capacity of correlated multipath mimo channels publication-title: IEEE Trans Inf Theory – ident: ref6 doi: 10.1109/49.995514 – ident: ref35 doi: 10.1109/ICC.2004.1312614 – ident: ref18 doi: 10.1109/VETECF.1999.801485 – ident: ref32 doi: 10.1109/TIT.2003.817437 – ident: ref13 doi: 10.1109/26.129185 – volume: 1 start-page: 406 year: 2002 ident: ref37 article-title: on a gaussian approximation to the capacity of wireless mimo systems publication-title: IEEE ICC – ident: ref10 doi: 10.1109/JSAC.2002.801218 – ident: ref34 doi: 10.1109/TIT.2006.885519 – ident: ref15 doi: 10.1109/ICC.2002.996859 – ident: ref2 doi: 10.1109/25.130998 – ident: ref30 doi: 10.1002/ett.4460100604 – year: 2005 ident: ref27 publication-title: A novel spatial-temporal MIMO channel model – ident: ref22 doi: 10.1109/49.995513 – ident: ref3 doi: 10.1109/25.54228 – year: 2005 ident: ref23 publication-title: Measurements of polarization effects in indoor office environments – volume: 287 start-page: 287 year: 2000 ident: ref7 article-title: communication through a diffusive medium: coherence and capacity publication-title: Science doi: 10.1126/science.287.5451.287 – ident: ref14 doi: 10.1023/B:WIRE.0000003825.20103.5f – year: 2003 ident: ref5 publication-title: Spatial channel model for multiple input multiple output MIMO simulations – ident: ref29 doi: 10.1038/35053015 – ident: ref24 doi: 10.1049/el:20040417 – ident: ref19 doi: 10.1109/VETEC.1999.780497 – start-page: 280 year: 2005 ident: ref25 article-title: a new space time mimo channel model publication-title: Proc AusCTW – ident: ref16 doi: 10.1109/IMOC.2003.1244853 – start-page: 133 year: 2004 ident: ref26 article-title: the use of cross-polarized antennas for mimo systems publication-title: Proc AusCTW – ident: ref4 doi: 10.1109/TVT.2002.800639 – ident: ref1 doi: 10.1109/T-VT.1984.24022 – ident: ref20 doi: 10.1109/VETEC.1999.778083 – volume: 69 year: 2004 ident: ref33 article-title: eigenvalue density of correlated random wishart matrices publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.065101 – ident: ref31 doi: 10.1109/TIT.2003.817472 – ident: ref12 doi: 10.1109/JSAC.2002.801225 – ident: ref21 doi: 10.1109/49.233217 – ident: ref11 doi: 10.1109/JSAC.2002.801216 – year: 1980 ident: ref28 publication-title: Table of Integrals Series and Products – year: 2001 ident: ref8 publication-title: Wireless Flexible Personalised Communications COST 259 European Co-operation in Mobile Radio Research – year: 1982 ident: ref9 publication-title: Antenna Theory Analysis and Design – start-page: 376 year: 2001 ident: ref17 article-title: blockage/shadowing and polarization measurements at 2.45 ghz for interference evaluation between bluetooth and ieee 802.11 wlan publication-title: Proc Int Symp Antennas Propagat |
SSID | ssj0014482 |
Score | 2.3267379 |
Snippet | Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary... [...] this approach is also receiving considerable attention in MIMO systems. |
SourceID | swepub proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 514 |
SubjectTerms | Antennas Azimuth Capacity Channels cross-polarized channels Delay Electrical Engineering, Electronic Engineering, Information Engineering Elektroteknik och elektronik Elevation Engineering and Technology Impulse response Loaded antennas Mathematical analysis MIMO multiple-input-multiple-output multiple-input-multiple-output (MIMO) Mutual information Payloads Physical layer Polarization Poles and towers Receivers Studies Teknik |
Title | Polarized MIMO channels in 3-D: models, measurements and mutual information |
URI | https://ieeexplore.ieee.org/document/1603707 https://www.proquest.com/docview/865627312 https://www.proquest.com/docview/28041413 https://www.proquest.com/docview/896193835 https://lup.lub.lu.se/record/415185 oai:portal.research.lu.se:publications/d2227bcb-0224-4c57-89fa-b12c5f830968 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTu2hL1o1pS0-9FKJ7JI43iS9IQqiVNtWapFQL5YfE4EK2VWzufDrOxNnw4IAcYi0UmxnMxN7vs_jmQH4aAkjG59hXCnpiaDYLLbeZHHmMC092cTEc7zz9Pvk8Dg7OlEna7A9xMIgYnf4DEf8s_Pl-5lreatszCWRcw4df0TELcRqDR4DohmdxyCXMmYSsHRJ7pTjo1-7e2H3hOC7LItrJqirqXIdXq6mDO3MzMEzmC7_YDhd8nfULuzIXd7I3fjQN3gOT3u8KXbDB_IC1rB-CU9WshBuwLefTG_PLtGL6dfpD8GxwDWZTHFWCxl_-Sy6ajnNtri42k9shKm9uGg5-kT0yVdZxa_g-GD_995h3NdYiB2Z-kVsqsz41CaJI0smM5uUhVUE89ChyyeEH5CWTKfQKlNiJSs1sTkWOdKqWFhZOPka1utZjW9AkLE3pfLOSFJG6aVl6GLSqnAVrbg-j2C8FLt2fQJyroNxrjsislNqVhTXxVQ6KCqCT0OPeUi-cU_bDRb3Vbsg6Qg2l5rV_exsqAehvlwmaQRbw12aVuwrMTXO2kannJeJDHwE4o4WRUnck_i9imA_fDHDszll93k7p8vSpRvUnkOOrbOaIZPOnMqpf2W0TUi4VSGJSNIb_LllnMDCdJ_66bQfb76yp_ugwd_eLp5NeBz2lPhQ3TtYX_xr8T2hrIX90E2v_9TgJMI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ90AetCLTgQy-VyC6J403SG-Kh5RFaqSChXiy_oqJCdtVsLvx6ZuJsWCpacYgUKbYTz8Seb2Y8MwCfNWJkZRMXloJbVFB0EmqrkjAxLs4tysTIUrxzcT4aXyYnV-JqCXb6WBjnXHv4zA3otvXl24lpyFQ2pJLIKYWOr6DcF5GP1up9BqhotD6DlPOQ1IC5U3I3H5782Nv39hME8DzPHgmhtqrKY4C5mDS0FTRHr6GYf6I_X_J70Mz0wNz9lb3xuXN4A6sd4mR7_hd5C0uuegevFvIQrsHpd1Jwr--cZcVx8Y1RNHCFQpNdV4yHB19ZWy-n3mG3DxbFmqnKstuG4k9Yl36VmPweLo8OL_bHYVdlITQo7GehKhNlYx1FBmUZT3SUZ1og0HPGmXSECMLhpmmE00LlruSlGOnUZanDfTHTPDP8AyxXk8qtA0Nxr3JhjeLIjNxyTeBFxWVmStxzbRrAcE52aboU5FQJ40a2qshuLolRVBlTSM-oAL70PaY-_cZ_2q4RuR_aeUoHsDnnrOzWZ409EPelPIoD2O6f4sIib4mq3KSpZUyZmVDEB8D-0SLLUftEDV8EcOj_mP7dlLT7ppnipfGStZOWgo610ZJAk0yMSLF_qaSOkLhlxlGVxBn8fGIcr4fJLvnTr2686YJV91mDbzxNnm14Mb4ozuTZ8fnpJrz0FiY6YvcRlmd_GvcJMddMb7VL7R4wzSgL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarized+MIMO+channels+in+3-D%3A+models%2C+measurements+and+mutual+information&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Shafi%2C+M&rft.au=Zhang%2C+Min&rft.au=Moustakas%2C+AL&rft.au=Smith%2C+P+J&rft.date=2006-03-01&rft.issn=0733-8716&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1109%2FJSAC.2005.862398&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |