Polarized MIMO channels in 3-D: models, measurements and mutual information

Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 24; no. 3; pp. 514 - 527
Main Authors Shafi, M., Min Zhang, Moustakas, A.L., Smith, P.J., Molisch, A.F., Tufvesson, F., Simon, S.H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored.
AbstractList Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information va- lues and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored.
Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many Journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored.
Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information va-
[...] this approach is also receiving considerable attention in MIMO systems.
Author Min Zhang
Smith, P.J.
Shafi, M.
Tufvesson, F.
Molisch, A.F.
Simon, S.H.
Moustakas, A.L.
Author_xml – sequence: 1
  givenname: M.
  surname: Shafi
  fullname: Shafi, M.
  organization: Telecom New Zealand Ltd., Wellington, New Zealand
– sequence: 2
  surname: Min Zhang
  fullname: Min Zhang
– sequence: 3
  givenname: A.L.
  surname: Moustakas
  fullname: Moustakas, A.L.
– sequence: 4
  givenname: P.J.
  surname: Smith
  fullname: Smith, P.J.
– sequence: 5
  givenname: A.F.
  surname: Molisch
  fullname: Molisch, A.F.
– sequence: 6
  givenname: F.
  surname: Tufvesson
  fullname: Tufvesson, F.
– sequence: 7
  givenname: S.H.
  surname: Simon
  fullname: Simon, S.H.
BackLink https://lup.lub.lu.se/record/415185$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/d2227bcb-0224-4c57-89fa-b12c5f830968$$DView record from Swedish Publication Index
BookMark eNqNks1rFTEUxQep4Gt1L7gZXOjGeeZj8jHuyvOr-koFdR2SzB2akkmmyQyif715nYpQsLgIl8DvnHs5nOPqKMQAVfUUoy3GqHv96evpbksQYlvJCe3kg2qDGZMNQkgeVRskKG2kwPxRdZzzFUK4bSXZVJ-_RK-T-wV9fX52flHbSx0C-Fy7UNPm7Zt6jH35vqpH0HlJMEKYc61DX4_LvGhfuCGmUc8uhsfVw0H7DE9u50n1_f27b7uPzf7iw9nudN9Yhsnc6KHVPTEYW1oubQ3upGGoZWDBCo6EBISIZWCY7mCgA-NGgBTQ9yANlZaeVHr1zT9gWoyakht1-qmidmqKadZeJcigk71UflEZVKG8szdHZtUTQoSxRiFCWtVaJpTsBq0MLlsHSVHHZdmx_-cOv0zlmVvv_7R7udpNKV4vkGc1umzBex0gLrkoOO6opKyQL-4liUQtbjEt4PM74FVcUijBK8kZJ4JiUiC-QjbFnBMMyrr5Joc5aecVRurQHnVojzq0R63tKUJ0R_gngXskz1aJA4C_OEdUlPb9BqPB0RY
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_TAP_2007_915417
crossref_primary_10_1109_TVT_2011_2163094
crossref_primary_10_1109_TWC_2017_2782690
crossref_primary_10_1109_TAP_2017_2673765
crossref_primary_10_3169_mta_1_60
crossref_primary_10_1007_s11277_013_1390_7
crossref_primary_10_1109_TVT_2013_2262691
crossref_primary_10_1109_ACCESS_2016_2612248
crossref_primary_10_1109_COMST_2016_2606639
crossref_primary_10_1109_TVT_2011_2159035
crossref_primary_10_1587_transcom_E92_B_1300
crossref_primary_10_1109_TSP_2015_2430841
crossref_primary_10_1109_TAP_2013_2288633
crossref_primary_10_1109_TWC_2010_01_090034
crossref_primary_10_1155_2014_619304
crossref_primary_10_1002_ett_2914
crossref_primary_10_1109_TAP_2012_2214017
crossref_primary_10_1109_T_WC_2008_070540
crossref_primary_10_1109_TAP_2014_2310220
crossref_primary_10_1109_TWC_2014_2314118
crossref_primary_10_1155_2010_307265
crossref_primary_10_1155_2012_756508
crossref_primary_10_1109_JPROC_2009_2015704
crossref_primary_10_3390_electronics11030330
crossref_primary_10_1109_TVT_2014_2305713
crossref_primary_10_1109_TWC_2009_070662
crossref_primary_10_1109_LWC_2018_2808346
crossref_primary_10_1109_TWC_2011_110811_111061
crossref_primary_10_1002_ett_4351
crossref_primary_10_1587_transcom_E94_B_139
crossref_primary_10_1016_S1005_8885_14_60261_2
crossref_primary_10_1007_s11432_011_4264_1
crossref_primary_10_7498_aps_61_180101
crossref_primary_10_1109_ACCESS_2017_2678602
crossref_primary_10_1109_TAP_2015_2486798
crossref_primary_10_1007_s11277_012_0839_4
crossref_primary_10_1002_mop_22865
crossref_primary_10_1109_TAP_2012_2194635
crossref_primary_10_1109_TVT_2020_3046121
crossref_primary_10_1109_TVT_2018_2801825
crossref_primary_10_1016_S1005_8885_15_60634_3
crossref_primary_10_1109_ACCESS_2019_2897565
crossref_primary_10_1109_TCOMM_2017_2762689
crossref_primary_10_1109_TCOMM_2020_2979455
crossref_primary_10_1109_TIT_2007_907468
crossref_primary_10_1109_TCOMM_2017_2762685
crossref_primary_10_1109_TAP_2019_2925157
crossref_primary_10_1109_TAP_2009_2027042
crossref_primary_10_1109_COMST_2019_2930621
crossref_primary_10_1109_TAP_2008_2005542
crossref_primary_10_1109_TAP_2009_2024481
crossref_primary_10_1109_TVT_2020_3031872
crossref_primary_10_1109_TVT_2010_2045775
crossref_primary_10_7498_aps_62_238402
crossref_primary_10_1109_TCOMM_2007_910700
crossref_primary_10_1109_ACCESS_2022_3228043
crossref_primary_10_1109_TWC_2022_3205471
crossref_primary_10_1109_ACCESS_2017_2693375
crossref_primary_10_1109_TAP_2019_2925128
crossref_primary_10_1155_2010_387625
crossref_primary_10_1016_j_phycom_2013_04_002
crossref_primary_10_1155_2012_920624
crossref_primary_10_1098_rsos_150322
crossref_primary_10_1109_TVT_2024_3466568
crossref_primary_10_1109_TAP_2017_2759842
crossref_primary_10_1109_TSP_2013_2294598
crossref_primary_10_1109_TCOMM_2023_3247725
crossref_primary_10_1016_j_phycom_2012_04_008
crossref_primary_10_1109_ACCESS_2018_2840151
crossref_primary_10_1002_ett_3042
crossref_primary_10_1007_s10776_018_0401_8
crossref_primary_10_1109_ACCESS_2019_2919377
crossref_primary_10_1016_j_phycom_2012_02_002
crossref_primary_10_1155_2009_715403
crossref_primary_10_3390_s18041186
crossref_primary_10_1007_s11277_017_4132_4
crossref_primary_10_1109_TWC_2022_3197515
crossref_primary_10_3724_SP_J_1146_2006_01858
crossref_primary_10_1109_LCOMM_2016_2636295
crossref_primary_10_1109_LAWP_2009_2019733
crossref_primary_10_1109_TAP_2011_2152319
crossref_primary_10_1016_j_aeue_2009_04_008
crossref_primary_10_1002_sat_986
crossref_primary_10_1109_TCOMM_2018_2824817
crossref_primary_10_1109_TWC_2021_3131612
crossref_primary_10_1007_s11277_011_0498_x
crossref_primary_10_1109_OJCOMS_2024_3462689
crossref_primary_10_1109_JSYST_2020_2999920
crossref_primary_10_1109_LWC_2019_2908648
crossref_primary_10_1007_s11277_008_9657_0
crossref_primary_10_2528_PIERC08121405
crossref_primary_10_2528_PIERM16072801
Cites_doi 10.1109/49.995514
10.1109/ICC.2004.1312614
10.1109/VETECF.1999.801485
10.1109/TIT.2003.817437
10.1109/26.129185
10.1109/JSAC.2002.801218
10.1109/TIT.2006.885519
10.1109/ICC.2002.996859
10.1109/25.130998
10.1002/ett.4460100604
10.1109/49.995513
10.1109/25.54228
10.1126/science.287.5451.287
10.1023/B:WIRE.0000003825.20103.5f
10.1038/35053015
10.1049/el:20040417
10.1109/VETEC.1999.780497
10.1109/IMOC.2003.1244853
10.1109/TVT.2002.800639
10.1109/T-VT.1984.24022
10.1109/VETEC.1999.778083
10.1103/PhysRevE.69.065101
10.1109/TIT.2003.817472
10.1109/JSAC.2002.801225
10.1109/49.233217
10.1109/JSAC.2002.801216
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
CorporateAuthor Institutioner vid LTH
Departments at LTH
Lunds universitet
Institutionen för elektro- och informationsteknik
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Lund University
Department of Electrical and Information Technology
CorporateAuthor_xml – name: Faculty of Engineering, LTH
– name: Lund University
– name: Institutioner vid LTH
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
– name: Department of Electrical and Information Technology
– name: Institutionen för elektro- och informationsteknik
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
ADTPV
AOWAS
D95
DOI 10.1109/JSAC.2005.862398
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Technology Research Database
Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 527
ExternalDocumentID oai_portal_research_lu_se_publications_d2227bcb_0224_4c57_89fa_b12c5f830968
oai_lup_lub_lu_se_d2227bcb_0224_4c57_89fa_b12c5f830968
2342188581
10_1109_JSAC_2005_862398
1603707
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
F28
FR3
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c512t-af4ad2b11c36234b198b5045ecec76078e002c5eb5a9ef3f56b7e87edde8b38c3
IEDL.DBID RIE
ISSN 0733-8716
1558-0008
IngestDate Mon Sep 01 03:31:54 EDT 2025
Thu Jul 03 04:55:50 EDT 2025
Fri Jul 11 16:40:11 EDT 2025
Fri Jul 11 12:14:20 EDT 2025
Mon Jun 30 10:14:50 EDT 2025
Tue Jul 01 03:27:58 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Aug 27 02:47:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-af4ad2b11c36234b198b5045ecec76078e002c5eb5a9ef3f56b7e87edde8b38c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 865627312
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_28041413
proquest_journals_865627312
crossref_citationtrail_10_1109_JSAC_2005_862398
swepub_primary_oai_lup_lub_lu_se_d2227bcb_0224_4c57_89fa_b12c5f830968
proquest_miscellaneous_896193835
swepub_primary_oai_portal_research_lu_se_publications_d2227bcb_0224_4c57_89fa_b12c5f830968
ieee_primary_1603707
crossref_primary_10_1109_JSAC_2005_862398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-03-01
PublicationDateYYYYMMDD 2006-03-01
PublicationDate_xml – month: 03
  year: 2006
  text: 2006-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
correia (ref8) 2001
zhang (ref25) 2005
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
smith (ref26) 2004
balanis (ref9) 1982
simon (ref33) 2004; 69
gradshteyn (ref28) 1980
moustakas (ref7) 2000; 287
ref24
(ref5) 2003
smith (ref37) 2002; 1
ref20
ref22
ref21
ref29
ref4
zhang (ref27) 2005
ref3
ref6
moustakas (ref36) 0
kara (ref17) 2001
karedal (ref23) 2005
References_xml – year: 0
  ident: ref36
  article-title: on the outage capacity of correlated multipath mimo channels
  publication-title: IEEE Trans Inf Theory
– ident: ref6
  doi: 10.1109/49.995514
– ident: ref35
  doi: 10.1109/ICC.2004.1312614
– ident: ref18
  doi: 10.1109/VETECF.1999.801485
– ident: ref32
  doi: 10.1109/TIT.2003.817437
– ident: ref13
  doi: 10.1109/26.129185
– volume: 1
  start-page: 406
  year: 2002
  ident: ref37
  article-title: on a gaussian approximation to the capacity of wireless mimo systems
  publication-title: IEEE ICC
– ident: ref10
  doi: 10.1109/JSAC.2002.801218
– ident: ref34
  doi: 10.1109/TIT.2006.885519
– ident: ref15
  doi: 10.1109/ICC.2002.996859
– ident: ref2
  doi: 10.1109/25.130998
– ident: ref30
  doi: 10.1002/ett.4460100604
– year: 2005
  ident: ref27
  publication-title: A novel spatial-temporal MIMO channel model
– ident: ref22
  doi: 10.1109/49.995513
– ident: ref3
  doi: 10.1109/25.54228
– year: 2005
  ident: ref23
  publication-title: Measurements of polarization effects in indoor office environments
– volume: 287
  start-page: 287
  year: 2000
  ident: ref7
  article-title: communication through a diffusive medium: coherence and capacity
  publication-title: Science
  doi: 10.1126/science.287.5451.287
– ident: ref14
  doi: 10.1023/B:WIRE.0000003825.20103.5f
– year: 2003
  ident: ref5
  publication-title: Spatial channel model for multiple input multiple output MIMO simulations
– ident: ref29
  doi: 10.1038/35053015
– ident: ref24
  doi: 10.1049/el:20040417
– ident: ref19
  doi: 10.1109/VETEC.1999.780497
– start-page: 280
  year: 2005
  ident: ref25
  article-title: a new space time mimo channel model
  publication-title: Proc AusCTW
– ident: ref16
  doi: 10.1109/IMOC.2003.1244853
– start-page: 133
  year: 2004
  ident: ref26
  article-title: the use of cross-polarized antennas for mimo systems
  publication-title: Proc AusCTW
– ident: ref4
  doi: 10.1109/TVT.2002.800639
– ident: ref1
  doi: 10.1109/T-VT.1984.24022
– ident: ref20
  doi: 10.1109/VETEC.1999.778083
– volume: 69
  year: 2004
  ident: ref33
  article-title: eigenvalue density of correlated random wishart matrices
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.065101
– ident: ref31
  doi: 10.1109/TIT.2003.817472
– ident: ref12
  doi: 10.1109/JSAC.2002.801225
– ident: ref21
  doi: 10.1109/49.233217
– ident: ref11
  doi: 10.1109/JSAC.2002.801216
– year: 1980
  ident: ref28
  publication-title: Table of Integrals Series and Products
– year: 2001
  ident: ref8
  publication-title: Wireless Flexible Personalised Communications COST 259 European Co-operation in Mobile Radio Research
– year: 1982
  ident: ref9
  publication-title: Antenna Theory Analysis and Design
– start-page: 376
  year: 2001
  ident: ref17
  article-title: blockage/shadowing and polarization measurements at 2.45 ghz for interference evaluation between bluetooth and ieee 802.11 wlan
  publication-title: Proc Int Symp Antennas Propagat
SSID ssj0014482
Score 2.3267379
Snippet Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary...
[...] this approach is also receiving considerable attention in MIMO systems.
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 514
SubjectTerms Antennas
Azimuth
Capacity
Channels
cross-polarized channels
Delay
Electrical Engineering, Electronic Engineering, Information Engineering
Elektroteknik och elektronik
Elevation
Engineering and Technology
Impulse response
Loaded antennas
Mathematical analysis
MIMO
multiple-input-multiple-output
multiple-input-multiple-output (MIMO)
Mutual information
Payloads
Physical layer
Polarization
Poles and towers
Receivers
Studies
Teknik
Title Polarized MIMO channels in 3-D: models, measurements and mutual information
URI https://ieeexplore.ieee.org/document/1603707
https://www.proquest.com/docview/865627312
https://www.proquest.com/docview/28041413
https://www.proquest.com/docview/896193835
https://lup.lub.lu.se/record/415185
oai:portal.research.lu.se:publications/d2227bcb-0224-4c57-89fa-b12c5f830968
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTu2hL1o1pS0-9FKJ7JI43iS9IQqiVNtWapFQL5YfE4EK2VWzufDrOxNnw4IAcYi0UmxnMxN7vs_jmQH4aAkjG59hXCnpiaDYLLbeZHHmMC092cTEc7zz9Pvk8Dg7OlEna7A9xMIgYnf4DEf8s_Pl-5lreatszCWRcw4df0TELcRqDR4DohmdxyCXMmYSsHRJ7pTjo1-7e2H3hOC7LItrJqirqXIdXq6mDO3MzMEzmC7_YDhd8nfULuzIXd7I3fjQN3gOT3u8KXbDB_IC1rB-CU9WshBuwLefTG_PLtGL6dfpD8GxwDWZTHFWCxl_-Sy6ajnNtri42k9shKm9uGg5-kT0yVdZxa_g-GD_995h3NdYiB2Z-kVsqsz41CaJI0smM5uUhVUE89ChyyeEH5CWTKfQKlNiJSs1sTkWOdKqWFhZOPka1utZjW9AkLE3pfLOSFJG6aVl6GLSqnAVrbg-j2C8FLt2fQJyroNxrjsislNqVhTXxVQ6KCqCT0OPeUi-cU_bDRb3Vbsg6Qg2l5rV_exsqAehvlwmaQRbw12aVuwrMTXO2kannJeJDHwE4o4WRUnck_i9imA_fDHDszll93k7p8vSpRvUnkOOrbOaIZPOnMqpf2W0TUi4VSGJSNIb_LllnMDCdJ_66bQfb76yp_ugwd_eLp5NeBz2lPhQ3TtYX_xr8T2hrIX90E2v_9TgJMI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ90AetCLTgQy-VyC6J403SG-Kh5RFaqSChXiy_oqJCdtVsLvx6ZuJsWCpacYgUKbYTz8Seb2Y8MwCfNWJkZRMXloJbVFB0EmqrkjAxLs4tysTIUrxzcT4aXyYnV-JqCXb6WBjnXHv4zA3otvXl24lpyFQ2pJLIKYWOr6DcF5GP1up9BqhotD6DlPOQ1IC5U3I3H5782Nv39hME8DzPHgmhtqrKY4C5mDS0FTRHr6GYf6I_X_J70Mz0wNz9lb3xuXN4A6sd4mR7_hd5C0uuegevFvIQrsHpd1Jwr--cZcVx8Y1RNHCFQpNdV4yHB19ZWy-n3mG3DxbFmqnKstuG4k9Yl36VmPweLo8OL_bHYVdlITQo7GehKhNlYx1FBmUZT3SUZ1og0HPGmXSECMLhpmmE00LlruSlGOnUZanDfTHTPDP8AyxXk8qtA0Nxr3JhjeLIjNxyTeBFxWVmStxzbRrAcE52aboU5FQJ40a2qshuLolRVBlTSM-oAL70PaY-_cZ_2q4RuR_aeUoHsDnnrOzWZ409EPelPIoD2O6f4sIib4mq3KSpZUyZmVDEB8D-0SLLUftEDV8EcOj_mP7dlLT7ppnipfGStZOWgo610ZJAk0yMSLF_qaSOkLhlxlGVxBn8fGIcr4fJLvnTr2686YJV91mDbzxNnm14Mb4ozuTZ8fnpJrz0FiY6YvcRlmd_GvcJMddMb7VL7R4wzSgL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarized+MIMO+channels+in+3-D%3A+models%2C+measurements+and+mutual+information&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Shafi%2C+M&rft.au=Zhang%2C+Min&rft.au=Moustakas%2C+AL&rft.au=Smith%2C+P+J&rft.date=2006-03-01&rft.issn=0733-8716&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1109%2FJSAC.2005.862398&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon