Emerging concepts of miRNA therapeutics: from cells to clinic

MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are alt...

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 38; no. 6; pp. 613 - 626
Main Authors Diener, Caroline, Keller, Andreas, Meese, Eckart
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies. Single microRNAs (miRNAs) regulate large subsets of mRNA targets. Although this property makes miRNAs potentially a powerful therapeutic tool, it also represents a major challenge in terms of controlling adverse effects that have been observed in clinical trials.Besides systemic applications via injection and infusion, advanced strategies emerge for miRNA-based drug administration via implantable 3D matrices, inhalation schemes, and intake via food.A combination of miRNA therapeutics with chemical modifications, biomolecule conjugation, or the use of carriers improves a site-directed and efficient cell targeting.A comprehensive risk assessment of miRNA therapeutics is required before any in vivo targeting to minimize off-target effects and to avoid overdosing of miRNAs.
AbstractList MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies.
MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies. Single microRNAs (miRNAs) regulate large subsets of mRNA targets. Although this property makes miRNAs potentially a powerful therapeutic tool, it also represents a major challenge in terms of controlling adverse effects that have been observed in clinical trials.Besides systemic applications via injection and infusion, advanced strategies emerge for miRNA-based drug administration via implantable 3D matrices, inhalation schemes, and intake via food.A combination of miRNA therapeutics with chemical modifications, biomolecule conjugation, or the use of carriers improves a site-directed and efficient cell targeting.A comprehensive risk assessment of miRNA therapeutics is required before any in vivo targeting to minimize off-target effects and to avoid overdosing of miRNAs.
MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies.MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies.
Author Keller, Andreas
Diener, Caroline
Meese, Eckart
Author_xml – sequence: 1
  givenname: Caroline
  surname: Diener
  fullname: Diener, Caroline
  organization: Institute of Human Genetics, Medical Faculty, Saarland University, 66421 Homburg, Germany
– sequence: 2
  givenname: Andreas
  surname: Keller
  fullname: Keller, Andreas
  email: andreas.keller@ccb.uni-saarland.de
  organization: Center for Bioinformatics, Medical Faculty, Saarland University, 66123 Saarbrücken, Germany
– sequence: 3
  givenname: Eckart
  surname: Meese
  fullname: Meese, Eckart
  organization: Institute of Human Genetics, Medical Faculty, Saarland University, 66421 Homburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35303998$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEQhnNQtK3-AC-yRy-tSXY3u1E8lFI_oCiInkM2O6mpu5uaZIX-e1NqLz0oDASG95mZPEN01NkOELogeEIwYderSTDLCcWUTnAszI7QIPbLMc9pfoqG3q8wxnmR5ifoNM1TnHJeDtDdvAW3NN0yUbZTsA4-sTppzevzNAkf4OQa-mCUv0m0s22ioGl8EmyiGtMZdYaOtWw8nP--I_R-P3-bPY4XLw9Ps-lirHJCw5inulIaU1XKSscbskxVUFPOJK1YWfFKM0KAqjQtWMFoyYFpnRVZTeq6JDpPR-hqN3ft7FcPPojW-O0tsgPbe0FZhjmPu3iMXv5G-6qFWqydaaXbiP2XY6DYBZSz3jvQQpkgg7FdcNI0gmCxFSpWIgoVW6ECx8IskuSA3A__i7ndMRD1fBtwwisD0XRtHKggamv-pPkBvfMum0_Y_MP-AGG-ods
CitedBy_id crossref_primary_10_1021_acsomega_5c01877
crossref_primary_10_1016_j_cca_2024_117829
crossref_primary_10_1111_1756_185X_15090
crossref_primary_10_2174_2211550112666230417100541
crossref_primary_10_1016_j_tranon_2022_101613
crossref_primary_10_2174_0113816128303695240512141729
crossref_primary_10_1080_13813455_2024_2375981
crossref_primary_10_1016_j_fsi_2024_109478
crossref_primary_10_3724_zdxbyxb_2023_0324
crossref_primary_10_1016_j_jddst_2024_105767
crossref_primary_10_1007_s13105_024_01065_4
crossref_primary_10_1002_jbt_23818
crossref_primary_10_1016_j_ncrna_2024_11_006
crossref_primary_10_1016_j_biomaterials_2024_122604
crossref_primary_10_3389_fpls_2024_1512047
crossref_primary_10_2174_0122115501261640231017061158
crossref_primary_10_3390_biomedicines12061360
crossref_primary_10_1038_s41598_024_66614_9
crossref_primary_10_1016_j_neulet_2024_137887
crossref_primary_10_3390_cancers15204954
crossref_primary_10_1038_s41598_024_82488_3
crossref_primary_10_1021_acsnano_4c05475
crossref_primary_10_3389_fneur_2024_1406977
crossref_primary_10_3389_fbioe_2023_1268454
crossref_primary_10_1186_s13019_024_02992_5
crossref_primary_10_1016_j_trac_2025_118214
crossref_primary_10_1186_s12951_024_02561_x
crossref_primary_10_1016_j_drup_2024_101058
crossref_primary_10_1016_j_mce_2024_112252
crossref_primary_10_3390_ijms25158412
crossref_primary_10_1155_2024_9436238
crossref_primary_10_1016_j_bios_2023_115776
crossref_primary_10_1186_s12882_024_03688_7
crossref_primary_10_1007_s10142_024_01489_7
crossref_primary_10_1007_s00210_025_03893_7
crossref_primary_10_1016_j_trim_2025_102222
crossref_primary_10_3892_etm_2025_12835
crossref_primary_10_1038_s41598_024_64775_1
crossref_primary_10_3390_ani14172590
crossref_primary_10_1210_endocr_bqad115
crossref_primary_10_1021_acs_analchem_4c07111
crossref_primary_10_1016_j_jid_2023_05_026
crossref_primary_10_1210_endocr_bqad111
crossref_primary_10_1155_2024_4481452
crossref_primary_10_1007_s13577_024_01162_y
crossref_primary_10_1152_ajpgi_00258_2023
crossref_primary_10_1038_s41467_025_57308_5
crossref_primary_10_1186_s12951_023_01951_x
crossref_primary_10_1152_ajprenal_00251_2022
crossref_primary_10_1111_cpr_70018
crossref_primary_10_1089_ars_2023_0471
crossref_primary_10_3390_cancers16050957
crossref_primary_10_1016_j_xcrm_2024_101665
crossref_primary_10_1016_j_bcp_2024_116318
crossref_primary_10_1016_j_phrs_2023_106870
crossref_primary_10_1186_s11658_023_00421_4
crossref_primary_10_3390_ijms242216259
crossref_primary_10_1186_s40543_023_00390_5
crossref_primary_10_3390_ijms24129984
crossref_primary_10_1016_j_prp_2024_155156
crossref_primary_10_1007_s40618_024_02326_1
crossref_primary_10_1002_wrna_70002
crossref_primary_10_1007_s11224_025_02462_1
crossref_primary_10_1002_mog2_93
crossref_primary_10_1007_s40005_024_00669_8
crossref_primary_10_3390_molecules29184405
crossref_primary_10_3389_fimmu_2024_1423263
crossref_primary_10_3389_fonc_2024_1485802
crossref_primary_10_1002_ijch_202200088
crossref_primary_10_3892_or_2024_8709
crossref_primary_10_1111_evj_14434
crossref_primary_10_2174_0109298673255220231010073215
crossref_primary_10_1007_s13577_024_01119_1
crossref_primary_10_3390_biom15010035
crossref_primary_10_1021_acs_analchem_3c02051
crossref_primary_10_3390_antiox14010017
crossref_primary_10_34133_research_0601
crossref_primary_10_3390_cancers14092280
crossref_primary_10_1016_j_dld_2024_01_209
crossref_primary_10_1016_j_intimp_2024_112548
crossref_primary_10_1002_ange_202309135
crossref_primary_10_1038_s41598_024_65096_z
crossref_primary_10_1016_j_prp_2022_153952
crossref_primary_10_1096_fj_202401480R
crossref_primary_10_1016_j_canlet_2023_216189
crossref_primary_10_1016_j_urolonc_2023_10_012
crossref_primary_10_1002_ctd2_70011
crossref_primary_10_2147_JIR_S496185
crossref_primary_10_1002_ptr_8287
crossref_primary_10_1016_j_crphar_2022_100131
crossref_primary_10_1007_s12035_024_04319_w
crossref_primary_10_1042_CS20220795
crossref_primary_10_1080_16078454_2024_2428482
crossref_primary_10_1002_ame2_12358
crossref_primary_10_1016_j_trim_2024_102101
crossref_primary_10_1007_s10072_025_08044_7
crossref_primary_10_1002_sstr_202400255
crossref_primary_10_1016_j_bios_2024_116975
crossref_primary_10_1016_j_genrep_2022_101676
crossref_primary_10_1186_s12964_023_01357_0
crossref_primary_10_7717_peerj_17662
crossref_primary_10_1038_s41598_024_62733_5
crossref_primary_10_1186_s12951_024_02486_5
crossref_primary_10_3389_fimmu_2024_1498781
crossref_primary_10_1038_s41419_023_05563_z
crossref_primary_10_1007_s00210_024_03675_7
crossref_primary_10_1007_s10072_023_07175_z
crossref_primary_10_1002_advs_202305622
crossref_primary_10_3389_fimmu_2024_1402571
crossref_primary_10_1007_s00210_024_03153_0
crossref_primary_10_1016_j_imlet_2023_08_005
crossref_primary_10_1021_acsanm_5c01054
crossref_primary_10_3390_insects13110968
crossref_primary_10_1016_j_crphar_2022_100129
crossref_primary_10_1093_burnst_tkad064
crossref_primary_10_3390_pharmaceutics16111347
crossref_primary_10_1021_acsomega_4c11505
crossref_primary_10_3390_ncrna11010003
crossref_primary_10_1016_j_acthis_2025_152233
crossref_primary_10_3390_biom14111364
crossref_primary_10_1007_s11033_024_09576_5
crossref_primary_10_62347_YGPG5971
crossref_primary_10_3390_metabo14080403
crossref_primary_10_1021_cbmi_4c00085
crossref_primary_10_26508_lsa_202302180
crossref_primary_10_1016_j_bbrep_2024_101906
crossref_primary_10_1016_j_yexcr_2024_114168
crossref_primary_10_3390_cells14020104
crossref_primary_10_3390_ijms241512471
crossref_primary_10_1016_j_semcdb_2022_11_006
crossref_primary_10_3390_pharmaceutics15082061
crossref_primary_10_20517_cdr_2024_59
crossref_primary_10_3390_biom14111354
crossref_primary_10_1016_j_ncrna_2024_01_017
crossref_primary_10_3892_etm_2024_12388
crossref_primary_10_1093_nar_gkad1142
crossref_primary_10_3389_fonc_2023_1256537
crossref_primary_10_1007_s13346_025_01788_x
crossref_primary_10_3724_abbs_2024090
crossref_primary_10_1016_j_drudis_2023_103649
crossref_primary_10_1016_j_tig_2024_12_009
crossref_primary_10_1016_j_tcb_2025_02_010
crossref_primary_10_3390_cells12141917
crossref_primary_10_1016_j_phrs_2024_107500
crossref_primary_10_3389_fonc_2022_911613
crossref_primary_10_3390_biomedicines13030560
crossref_primary_10_1089_nat_2024_0069
crossref_primary_10_3390_ijms251910325
crossref_primary_10_1038_s42003_024_06735_z
crossref_primary_10_3389_fendo_2025_1515910
crossref_primary_10_1080_15476286_2022_2154470
crossref_primary_10_3390_cimb46070423
crossref_primary_10_7717_peerj_18324
crossref_primary_10_1016_j_angen_2023_200162
crossref_primary_10_1002_jha2_849
crossref_primary_10_1016_j_molbiopara_2024_111636
crossref_primary_10_3390_pharmaceutics15082035
crossref_primary_10_3389_fgene_2022_1058668
crossref_primary_10_3390_ncrna11020023
crossref_primary_10_1039_D3AY00578J
crossref_primary_10_1186_s12967_024_05070_5
crossref_primary_10_1016_j_mce_2023_112042
crossref_primary_10_1038_s41435_024_00283_6
crossref_primary_10_1007_s00408_023_00607_9
crossref_primary_10_1186_s12951_024_02697_w
crossref_primary_10_1186_s12967_024_05554_4
crossref_primary_10_3390_ijms251810051
crossref_primary_10_1186_s13578_024_01211_x
crossref_primary_10_1007_s00403_024_03669_8
crossref_primary_10_3390_ma17215184
crossref_primary_10_3389_fncel_2024_1429977
crossref_primary_10_1111_bph_16488
crossref_primary_10_1007_s10528_024_10975_3
crossref_primary_10_3390_ijms26072828
crossref_primary_10_3389_fphar_2022_1036498
crossref_primary_10_3389_fcvm_2025_1546515
crossref_primary_10_3389_fonc_2024_1410656
crossref_primary_10_1016_j_talanta_2023_124805
crossref_primary_10_1210_endrev_bnae002
crossref_primary_10_3389_fncel_2023_1173086
crossref_primary_10_1016_j_chembiol_2023_08_010
crossref_primary_10_1007_s10528_024_10985_1
crossref_primary_10_3390_jmse11020361
crossref_primary_10_1186_s13578_023_01190_5
crossref_primary_10_1038_s41598_025_94595_w
crossref_primary_10_1186_s40662_023_00370_1
crossref_primary_10_1016_j_ejps_2024_106888
crossref_primary_10_1016_j_exer_2025_110306
crossref_primary_10_1016_j_biopha_2025_117842
crossref_primary_10_1111_jcmm_70443
crossref_primary_10_1124_dmd_122_001008
crossref_primary_10_1186_s13287_024_03998_5
crossref_primary_10_3389_fonc_2024_1374743
crossref_primary_10_3389_fgene_2023_1152110
crossref_primary_10_1080_15384047_2024_2373497
crossref_primary_10_1016_j_prp_2023_154848
crossref_primary_10_3390_microorganisms12030440
crossref_primary_10_1016_j_bbcan_2024_189234
crossref_primary_10_3390_ijms241713302
crossref_primary_10_1021_acs_chemrev_4c00417
crossref_primary_10_1039_D4CS00799A
crossref_primary_10_1093_nar_gkae505
crossref_primary_10_1007_s00221_024_06972_y
crossref_primary_10_1016_j_ijbiomac_2024_132025
crossref_primary_10_1016_j_ejpb_2023_08_019
crossref_primary_10_1186_s12872_025_04530_0
crossref_primary_10_3389_fphar_2024_1451695
crossref_primary_10_1007_s00432_024_05671_z
crossref_primary_10_3390_cells12192421
crossref_primary_10_1016_j_micpath_2024_107082
crossref_primary_10_1093_nar_gkae1036
crossref_primary_10_3389_fmolb_2024_1419093
crossref_primary_10_1038_s41416_023_02191_4
crossref_primary_10_3390_biom12081072
crossref_primary_10_3724_abbs_2025038
crossref_primary_10_1038_s41420_023_01660_2
crossref_primary_10_3390_jnt4020009
crossref_primary_10_1016_j_tig_2024_05_007
crossref_primary_10_1016_j_biopha_2024_117566
crossref_primary_10_2147_JHC_S408542
crossref_primary_10_3390_jcm13247560
crossref_primary_10_3390_pharmaceutics15082121
crossref_primary_10_2478_acm_2024_0019
crossref_primary_10_1186_s13019_024_02995_2
crossref_primary_10_1016_j_ymthe_2024_01_033
crossref_primary_10_1016_j_ijpharm_2024_125140
crossref_primary_10_3390_cancers14235748
crossref_primary_10_1038_s41598_024_77416_4
crossref_primary_10_1016_j_jep_2023_117530
crossref_primary_10_1016_j_phrs_2024_107245
crossref_primary_10_1371_journal_pone_0310315
crossref_primary_10_1016_j_metabol_2023_155657
crossref_primary_10_3390_cells12202458
crossref_primary_10_1016_j_ajps_2024_100909
crossref_primary_10_2147_JIR_S403531
crossref_primary_10_3390_ijerph20136288
crossref_primary_10_3390_ijms26020626
crossref_primary_10_1097_MOH_0000000000000803
crossref_primary_10_1186_s12885_025_13672_5
crossref_primary_10_1016_j_heliyon_2024_e30646
crossref_primary_10_2174_0113862073279344240215050056
crossref_primary_10_1016_j_ejcb_2024_151458
crossref_primary_10_1016_j_ncrna_2022_11_005
crossref_primary_10_1186_s12951_024_02533_1
crossref_primary_10_1002_alz_14230
crossref_primary_10_3892_ol_2024_14798
crossref_primary_10_1016_j_prp_2023_154652
crossref_primary_10_1002_brb3_70132
crossref_primary_10_1371_journal_pone_0311419
crossref_primary_10_1186_s12872_024_03966_0
crossref_primary_10_1016_j_mocell_2024_100145
crossref_primary_10_3390_ijms25052812
crossref_primary_10_1186_s12951_024_02797_7
crossref_primary_10_3390_macromol4020009
crossref_primary_10_1016_j_tim_2024_10_007
crossref_primary_10_1161_CIRCRESAHA_124_325447
crossref_primary_10_1016_j_gene_2025_149434
crossref_primary_10_1016_j_exer_2025_110236
crossref_primary_10_1186_s12951_024_02918_2
crossref_primary_10_1186_s12872_024_03954_4
crossref_primary_10_1096_fj_202302028R
crossref_primary_10_1016_j_plipres_2022_101197
crossref_primary_10_3390_ncrna10020017
crossref_primary_10_1002_mc_23879
crossref_primary_10_1002_mc_23752
crossref_primary_10_3389_fphar_2022_934396
crossref_primary_10_1038_s41598_024_76210_6
crossref_primary_10_1080_17460441_2023_2251385
crossref_primary_10_3390_cells12030389
crossref_primary_10_1016_j_humgen_2024_201312
crossref_primary_10_1007_s10528_023_10433_6
crossref_primary_10_3390_genes16030262
crossref_primary_10_1007_s11033_024_09439_z
crossref_primary_10_1021_acsnano_4c02736
crossref_primary_10_1002_osi2_1277
crossref_primary_10_1111_andr_13417
crossref_primary_10_1186_s12964_022_01017_9
crossref_primary_10_1002_advs_202414625
crossref_primary_10_1016_j_heliyon_2024_e30517
crossref_primary_10_1016_j_bcp_2023_115722
crossref_primary_10_1016_j_ijbiomac_2023_126561
crossref_primary_10_3390_ncrna9040037
crossref_primary_10_1007_s12672_024_01017_w
crossref_primary_10_3892_ol_2024_14758
crossref_primary_10_1016_j_biopha_2024_116880
crossref_primary_10_3390_genes15050574
crossref_primary_10_1016_j_yjmcc_2024_11_005
crossref_primary_10_1002_eji_202149735
crossref_primary_10_1016_j_lmd_2025_100060
crossref_primary_10_1016_j_scitotenv_2023_167825
crossref_primary_10_1016_j_heliyon_2024_e31778
crossref_primary_10_1186_s12967_023_04553_1
crossref_primary_10_1016_j_neuroscience_2025_01_029
crossref_primary_10_3390_cells12192369
crossref_primary_10_1152_ajplung_00138_2024
crossref_primary_10_1186_s13059_024_03420_6
crossref_primary_10_1016_j_metabol_2025_156153
crossref_primary_10_1016_j_atherosclerosis_2024_118527
crossref_primary_10_1016_j_bbrc_2024_149790
crossref_primary_10_3390_ijms241310859
crossref_primary_10_1186_s40364_024_00618_5
crossref_primary_10_1007_s12192_023_01371_8
crossref_primary_10_1016_j_prp_2023_154690
crossref_primary_10_3390_ijms231911502
crossref_primary_10_1111_bph_16424
crossref_primary_10_1155_2023_4397829
crossref_primary_10_1007_s11033_023_08932_1
crossref_primary_10_1016_j_bbrc_2024_150568
crossref_primary_10_1002_pdi3_16
crossref_primary_10_3390_genes15040403
crossref_primary_10_1016_j_reth_2023_12_005
crossref_primary_10_1016_j_gene_2024_149129
crossref_primary_10_20935_AcadBiol7599
crossref_primary_10_1016_j_ecoenv_2024_116215
crossref_primary_10_1016_j_ijbiomac_2024_130361
crossref_primary_10_3390_ijms25052866
crossref_primary_10_1016_j_prp_2023_154320
crossref_primary_10_3390_ijms252312883
crossref_primary_10_1111_cas_15830
crossref_primary_10_1111_bph_17302
crossref_primary_10_1016_j_csbj_2024_07_024
crossref_primary_10_1038_s12276_024_01202_5
crossref_primary_10_1186_s13045_023_01468_8
crossref_primary_10_3390_nano14100894
crossref_primary_10_1016_j_preme_2025_100023
crossref_primary_10_4103_bbrj_bbrj_142_24
crossref_primary_10_3389_fonc_2023_1204030
crossref_primary_10_3390_cells11192967
crossref_primary_10_1210_clinem_dgae879
crossref_primary_10_1124_molpharm_124_000895
crossref_primary_10_1016_j_bbadis_2024_167642
crossref_primary_10_1016_j_heliyon_2024_e28127
crossref_primary_10_3389_fphar_2024_1467298
crossref_primary_10_1016_j_omtn_2023_08_014
crossref_primary_10_1002_ehf2_14523
crossref_primary_10_1016_j_humimm_2024_111173
crossref_primary_10_1016_j_pt_2023_07_001
crossref_primary_10_3389_fbioe_2024_1484151
crossref_primary_10_1016_j_xcrm_2023_101200
crossref_primary_10_1016_j_jgg_2024_03_016
crossref_primary_10_1088_1748_605X_ace39d
crossref_primary_10_1016_j_jbc_2025_108276
crossref_primary_10_1016_j_micinf_2024_105379
crossref_primary_10_1016_j_tplants_2023_03_004
crossref_primary_10_1016_j_chembiol_2024_05_006
crossref_primary_10_1186_s12935_023_03133_z
crossref_primary_10_3390_ijms26010415
crossref_primary_10_1096_fj_202402443R
crossref_primary_10_1002_anie_202309135
crossref_primary_10_1016_j_colsurfa_2024_134749
crossref_primary_10_1016_j_intimp_2024_111708
crossref_primary_10_3390_cancers15030824
crossref_primary_10_3389_fcell_2024_1390704
crossref_primary_10_3390_biology13030144
crossref_primary_10_2174_1570159X21666230407124146
crossref_primary_10_3389_fimmu_2024_1419660
crossref_primary_10_1007_s12033_024_01315_2
crossref_primary_10_14814_phy2_70137
crossref_primary_10_1007_s11060_023_04264_z
crossref_primary_10_1002_hsr2_2079
crossref_primary_10_1016_j_bioadv_2023_213354
crossref_primary_10_1016_j_jconrel_2024_06_023
crossref_primary_10_1007_s11596_024_2891_1
crossref_primary_10_1016_j_ijbiomac_2025_141400
crossref_primary_10_1016_j_placenta_2024_10_023
crossref_primary_10_1186_s12967_023_04106_6
crossref_primary_10_1016_j_neubiorev_2024_105685
crossref_primary_10_1167_tvst_12_12_5
crossref_primary_10_3389_fgeed_2023_1034720
crossref_primary_10_1016_j_omtn_2024_102355
crossref_primary_10_1093_stmcls_sxae057
crossref_primary_10_3390_jpm13081263
crossref_primary_10_3390_diseases13010006
crossref_primary_10_1016_j_bbrc_2022_06_054
crossref_primary_10_1111_jocd_16644
crossref_primary_10_1007_s00441_023_03780_8
crossref_primary_10_3390_biology12070984
crossref_primary_10_3389_fimmu_2024_1460431
crossref_primary_10_3389_adar_2022_10807
crossref_primary_10_1186_s13071_025_06689_z
crossref_primary_10_1093_brain_awad025
crossref_primary_10_1186_s12885_023_11703_7
crossref_primary_10_1016_j_omtn_2024_102353
crossref_primary_10_3390_biomedicines12010193
crossref_primary_10_1016_j_omtn_2024_102228
crossref_primary_10_1007_s00068_023_02350_5
crossref_primary_10_1016_j_intimp_2025_114497
crossref_primary_10_1038_s42003_024_06080_1
crossref_primary_10_2174_0113816128310724240730072626
crossref_primary_10_1016_j_atherosclerosis_2022_12_003
crossref_primary_10_3389_fonc_2024_1483521
crossref_primary_10_7717_peerj_19082
crossref_primary_10_31083_j_jin2202031
crossref_primary_10_1038_s41598_024_76415_9
crossref_primary_10_1080_15476286_2022_2152978
crossref_primary_10_3389_fonc_2024_1491099
crossref_primary_10_1016_j_cyto_2025_156858
crossref_primary_10_3892_ijo_2024_5703
crossref_primary_10_1007_s10126_023_10260_1
crossref_primary_10_3390_v16050666
crossref_primary_10_1016_j_prp_2023_155037
crossref_primary_10_1093_postmj_qgae201
crossref_primary_10_3389_fnmol_2023_1166943
crossref_primary_10_1136_gutjnl_2023_331742
crossref_primary_10_1002_wrna_1768
crossref_primary_10_1111_dme_15319
crossref_primary_10_3390_ijms25031469
crossref_primary_10_1016_j_jtumed_2023_06_003
crossref_primary_10_1016_j_bcp_2024_116621
crossref_primary_10_1002_adtp_202400247
crossref_primary_10_3390_genes14020314
crossref_primary_10_3390_diagnostics13193072
crossref_primary_10_1038_s41417_024_00844_x
crossref_primary_10_3390_biomedicines12061322
crossref_primary_10_1002_eji_202350756
crossref_primary_10_1016_j_prp_2023_155022
crossref_primary_10_1021_acsami_2c22505
crossref_primary_10_3390_ijms241914477
crossref_primary_10_3390_pr11020538
crossref_primary_10_1080_16078454_2023_2196857
crossref_primary_10_3389_fendo_2025_1525373
crossref_primary_10_1111_crj_13707
crossref_primary_10_1038_s42003_022_03987_5
crossref_primary_10_1080_03008207_2025_2472935
crossref_primary_10_1080_08820139_2024_2438339
crossref_primary_10_1016_j_ebiom_2025_105605
crossref_primary_10_1016_j_placenta_2024_10_009
crossref_primary_10_1016_j_bj_2025_100832
crossref_primary_10_1016_j_exer_2024_109827
crossref_primary_10_1038_s41598_024_67819_8
crossref_primary_10_1016_j_mcp_2024_101999
crossref_primary_10_1089_dna_2024_0181
crossref_primary_10_1016_j_snb_2024_136919
crossref_primary_10_3390_v14061118
crossref_primary_10_2174_0118715257265947231129074526
crossref_primary_10_1016_j_virol_2024_110117
crossref_primary_10_1002_jcp_30969
crossref_primary_10_1016_j_ejpb_2025_114660
crossref_primary_10_1016_j_microc_2024_110088
crossref_primary_10_3390_pharmaceutics16080986
crossref_primary_10_1007_s11626_024_00970_8
crossref_primary_10_3389_fddsv_2022_983030
crossref_primary_10_1002_1878_0261_13546
crossref_primary_10_1016_j_trim_2024_102066
crossref_primary_10_1016_j_clinsp_2024_100496
crossref_primary_10_1093_biolre_ioad112
crossref_primary_10_1038_s41584_023_01067_4
crossref_primary_10_3390_cells11223699
crossref_primary_10_1016_j_omtn_2023_06_012
crossref_primary_10_3390_cancers16061126
crossref_primary_10_1016_j_joca_2024_02_656
crossref_primary_10_1016_j_trre_2024_100831
crossref_primary_10_3390_ijms25115865
crossref_primary_10_3390_ijms23169348
crossref_primary_10_1016_j_heliyon_2023_e17218
crossref_primary_10_61958_NDJD5552
crossref_primary_10_1016_j_jconrel_2024_11_009
crossref_primary_10_1007_s11239_024_02947_6
Cites_doi 10.1016/j.ymthe.2020.04.006
10.15252/emmm.201100899
10.1186/s40425-019-0670-5
10.1007/s00467-020-04892-x
10.1038/s41416-020-0802-1
10.1038/s41580-018-0045-7
10.3390/mps4010010
10.4161/rna.21998
10.1158/1535-7163.MCT-14-0209
10.1038/ncb0309-228
10.2147/IDR.S315727
10.1182/blood-2016-05-714535
10.1111/wrr.12660
10.1038/leu.2016.279
10.1111/bjh.15547
10.1007/978-1-0716-1170-8_2
10.1038/nrd.2016.246
10.1080/13543784.2020.1839888
10.2174/1381612824666171129203506
10.1038/s41573-020-0075-7
10.1093/nar/gkz1022
10.1136/jitc-2020-001617
10.1093/nar/gkaa788
10.1080/15476286.2018.1551693
10.1186/1471-2105-13-36
10.1093/nar/gkx1144
10.2165/00063030-200721040-00004
10.1016/j.molcel.2021.11.026
10.1093/eurheartj/ehaa791
10.1016/S0040-4020(98)00094-5
10.1007/s10637-016-0407-y
10.1016/j.omtn.2018.09.016
10.1016/j.omtm.2019.09.010
10.1016/j.omtn.2016.12.003
10.1093/bib/bbz111
10.1007/s12015-021-10120-2
10.1093/nar/gky1141
10.1186/1758-907X-2-8
10.3390/cells8121560
10.1093/nar/gkaa306
10.1186/s12943-018-0765-5
10.1186/s13058-021-01497-6
10.1172/JCI75852
10.1089/nat.2017.0709
10.1089/hgtb.2017.036
10.1126/science.1178178
10.3390/cells9010029
10.1038/gt.2017.14
10.1038/cr.2011.158
10.1093/eurheartj/ehaa898
10.1371/journal.pbio.0020363
10.1016/j.smim.2015.11.006
10.1101/gr.082701.108
10.1093/annonc/mdt412
10.1038/nrd.2016.199
10.1089/nat.2018.0725
10.1261/rna.044263.114
10.1016/j.jid.2018.11.007
10.1186/s12859-019-3105-x
10.1126/science.aav1741
10.1016/j.addr.2020.04.004
10.1038/nbt.3330
10.1002/jcp.21993
10.1016/j.jnutbio.2018.07.019
10.1038/ncomms10376
10.1093/nar/gkaa576
10.1089/nat.2020.0871
10.1073/pnas.2012217117
10.1038/mt.2008.103
10.1093/nar/gkab297
10.1038/nrm3838
10.1056/NEJMoa1209026
10.1016/j.bioactmat.2019.10.005
10.1021/acschembio.6b00001
10.1016/j.tig.2021.08.006
10.1093/nar/gkaa309
10.3390/ijms18010009
10.1007/978-1-4939-2727-2_8
10.1016/S0140-6736(16)31715-9
10.1093/nar/gku531
10.1038/nbt0713-577
10.3390/mps4010001
10.1128/AAC.04220-14
10.1007/s00467-020-04819-6
10.1002/wrna.1640
10.1186/s12951-019-0526-7
10.1038/s41467-020-16199-4
10.3390/genes10060457
10.1007/s40265-021-01582-2
10.3390/jcm10112471
10.1038/s41419-018-1050-7
10.3390/jcm4111951
10.2217/epi-2016-0035
10.1093/advances/nmaa095
10.1016/j.lfs.2021.119553
10.1038/mtna.2015.23
10.1038/nbt.1543
10.1002/cmdc.201000156
10.3389/fgene.2015.00340
10.1093/nar/gkz638
10.3390/pharmaceutics12070620
10.1038/nbt.2737
10.1093/nar/gkaa1161
10.1002/jcp.29584
10.1038/nature06783
10.1038/s41467-019-09882-8
10.1002/gcc.22698
10.1007/s00253-019-09934-5
10.1016/S1470-2045(17)30621-6
10.1371/journal.pone.0151771
10.1093/bioinformatics/btw189
10.2147/DDDT.S288859
10.1038/gt.2011.100
10.1038/ki.1995.205
10.1007/978-1-4939-7046-9_4
10.1042/bj3400783
10.1093/nar/gkaa259
10.1089/omi.2021.0087
10.1080/15476286.2019.1593094
10.1016/j.nano.2016.06.004
10.18632/oncotarget.11723
10.1093/nar/gkt852
10.1093/nar/gkz097
10.1093/nar/gkw116
10.1093/nar/gkaa467
10.1182/blood.V128.22.1829.1829
10.1016/j.tips.2020.08.002
10.1002/hep.29148
10.1002/hon.10_2632
10.1038/mtna.2016.7
10.3390/pharmaceutics13060817
10.1021/ac403044t
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.tig.2022.02.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 626
ExternalDocumentID 35303998
10_1016_j_tig_2022_02_006
S016895252200018X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
6I.
AACTN
AAFTH
AAIAV
ABYKQ
AFCTW
AFKWA
AFMIJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
RIG
XFK
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c512t-93fbcf02c8abf05744cbed296a2b68b9bf611e2c337676289e6ff474d1dd81f53
IEDL.DBID .~1
ISSN 0168-9525
IngestDate Fri Jul 11 15:21:07 EDT 2025
Thu Apr 03 07:00:09 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Tue Jul 01 01:43:37 EDT 2025
Fri Feb 23 02:41:02 EST 2024
Tue Aug 26 19:13:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords cell functional manipulations
microRNA
therapeutics
clinical trials
preclinical studies
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-93fbcf02c8abf05744cbed296a2b68b9bf611e2c337676289e6ff474d1dd81f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S016895252200018X
PMID 35303998
PQID 2640995129
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2640995129
pubmed_primary_35303998
crossref_citationtrail_10_1016_j_tig_2022_02_006
crossref_primary_10_1016_j_tig_2022_02_006
elsevier_sciencedirect_doi_10_1016_j_tig_2022_02_006
elsevier_clinicalkey_doi_10_1016_j_tig_2022_02_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in genetics
PublicationTitleAlternate Trends Genet
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Samad (bb0210) 2021; 12
Fan (bb0045) 2019; 16
Abplanalp (bb0625) 2020; 30
James (bb0675) 2019; 37
Shende, Trivedi (bb0205) 2021; 17
Grunweller, Hartmann (bb0325) 2007; 21
Seto (bb0670) 2018; 183
Samaranch (bb0125) 2017; 24
Tosar (bb0230) 2014; 20
Beg (bb0145) 2017; 35
Reid (bb0280) 2016; 8
John (bb0545) 2004; 2
Saito (bb0150) 2015; 4
Zhang (bb0215) 2012; 22
Janssen (bb0660) 2013; 368
Drenth, Schattenberg (bb0385) 2020; 29
Winter (bb0525) 2009; 11
Petrek (bb0105) 2019; 103
Saatci (bb0090) 2020; 11
Kern (bb0450) 2021; 49
Gebert, MacRae (bb0030) 2019; 20
Miniarikova (bb0120) 2016; 5
Yaylak, Akgul (bb0435) 2022; 2257
Huang (bb0025) 2017; 1617
Narayan (bb0480) 2017; 31
Kotowska-Zimmer (bb0110) 2021; 12
Liu (bb0535) 2018; 17
Gallant-Behm (bb0365) 2019; 139
Seo (bb0070) 2019; 9
Herrera-Carrillo (bb0310) 2017; 28
Lu (bb0255) 2016; 128
Lavenniah (bb0130) 2020; 28
Nikolova, Chavali (bb0200) 2019; 4
Iwakawa, Tomari (bb0470) 2022; 82
Monahan (bb0315) 2021; 10
Dickinson (bb0220) 2013; 31
Gallant-Behm (bb0620) 2018; 26
Jung (bb0555) 2015
Lennox, Behlke (bb0320) 2011; 18
Zhou, Rossi (bb0405) 2017; 16
van der Ree (bb0395) 2017; 389
Friedman (bb0530) 2009; 19
Jin (bb0510) 2015; 6
Olena, Patton (bb0515) 2010; 222
Batkai (bb0640) 2021; 42
Kehl (bb0590) 2020; 48
Chow (bb0180) 2020; 41
Suresh (bb0055) 2020; 117
McGeary (bb0540) 2019; 366
Dasgupta, Chatterjee (bb0260) 2021; 4
Russo (bb0410) 2018; 13
Diener (bb0170) 2018; 9
Roberts (bb0265) 2020; 19
Gong (bb0085) 2019; 17
Mascellino (bb0300) 2021; 14
Preusse (bb0575) 2016; 11
Meng (bb0135) 2022; 24
Schultz, Chamberlain (bb0305) 2008; 16
Winkler (bb0355) 2010; 5
Norouzi (bb0065) 2018; 24
Diener (bb0455) 2020; 48
Alles (bb0005) 2019; 47
Deprey (bb0335) 2020; 48
Aguilar-de-Leyva (bb0195) 2020; 12
Lam (bb0095) 2015; 4
Zhang, Zhu (bb0425) 2021; 81
Kozomara (bb0010) 2019; 47
Biessen (bb0375) 1999; 340
Baldari (bb0295) 2019; 8
Rupaimoole, Slack (bb0485) 2017; 16
Huang (bb0665) 2020; 48
Hart (bb0035) 2019; 7
Stelma (bb0400) 2017; 66
van Zandwijk (bb0285) 2017; 18
Kelnar, Bader (bb0165) 2015; 1317
Hong (bb0140) 2020; 122
Lukasik (bb0445) 2016; 32
Ji (bb0250) 2019; 10
Zhang (bb0100) 2021; 15
Ottosen (bb0080) 2015; 59
Kardani (bb0420) 2020; 235
Elsharkasy (bb0290) 2020; 159
Jivrajani, Nivsarkar (bb0270) 2016; 12
Subramanian, Steer (bb0020) 2019; 10
Blanco (bb0275) 2015; 33
Giroux (bb0565) 2020; 48
Zhang (bb0185) 2016; 7
Khan (bb0500) 2009; 27
Hart (bb0175) 2020; 8
Koshkin (bb0330) 1998; 54
Ludwig (bb0015) 2016; 44
Gebert (bb0645) 2014; 42
Gomez (bb0350) 2015; 125
Kern (bb0605) 2020; 48
Disney (bb0050) 2016; 11
Kern (bb0585) 2021; 49
Lai (bb0490) 2019; 47
Miller (bb0340) 2018; 28
Chang (bb0570) 2020; 48
Sindhu (bb0460) 2021; 25
Jacquet (bb0465) 2021; 37
Prakash (bb0370) 2014; 42
Katoh (bb0190) 2021; 278
Gerstner (bb0600) 2020; 48
Kashtan, Gross (bb0615) 2021; 36
Fromm (bb0225) 2019; 65
Sanchita (bb0235) 2018; 15
Michaille (bb0505) 2019; 58
Grimm (bb0495) 2011; 2
van Rooij, Kauppinen (bb0040) 2014; 6
Lukasik, Zielenkiewicz (bb0240) 2016; 18
Kern (bb0440) 2020; 21
Bouchie (bb0155) 2013; 31
Laczny (bb0580) 2012; 13
Yamamoto (bb0415) 2021; 13
Alnuqaydan (bb0060) 2020; 12
Taubel (bb0635) 2021; 42
Kelnar (bb0380) 2014; 86
Shu (bb0475) 2012; 9
Licursi (bb0560) 2019; 20
Rappaport (bb0345) 1995; 47
Keskin (bb0115) 2019; 15
Reid (bb0630) 2013; 24
Riolo (bb0430) 2020; 4
Ji (bb0245) 2016; 28
Querfeld (bb0680) 2016; 128
Tokar (bb0595) 2018; 46
Panigrahi (bb0075) 2021; 96
Daige (bb0160) 2014; 13
Lanford (bb0655) 2010; 327
Osborn, Khvorova (bb0360) 2018; 28
Ha, Kim (bb0520) 2014; 15
Backes (bb0550) 2016; 7
Kashtan, Gross (bb0610) 2021; 36
Elmen (bb0650) 2008; 452
Huang (bb0390) 2017; 6
Diener (10.1016/j.tig.2022.02.006_bb0455) 2020; 48
Backes (10.1016/j.tig.2022.02.006_bb0550) 2016; 7
Huang (10.1016/j.tig.2022.02.006_bb0665) 2020; 48
Elsharkasy (10.1016/j.tig.2022.02.006_bb0290) 2020; 159
Panigrahi (10.1016/j.tig.2022.02.006_bb0075) 2021; 96
Meng (10.1016/j.tig.2022.02.006_bb0135) 2022; 24
Herrera-Carrillo (10.1016/j.tig.2022.02.006_bb0310) 2017; 28
Russo (10.1016/j.tig.2022.02.006_bb0410) 2018; 13
Miniarikova (10.1016/j.tig.2022.02.006_bb0120) 2016; 5
Norouzi (10.1016/j.tig.2022.02.006_bb0065) 2018; 24
Chang (10.1016/j.tig.2022.02.006_bb0570) 2020; 48
Hart (10.1016/j.tig.2022.02.006_bb0035) 2019; 7
Deprey (10.1016/j.tig.2022.02.006_bb0335) 2020; 48
Lukasik (10.1016/j.tig.2022.02.006_bb0240) 2016; 18
Kern (10.1016/j.tig.2022.02.006_bb0440) 2020; 21
Olena (10.1016/j.tig.2022.02.006_bb0515) 2010; 222
Friedman (10.1016/j.tig.2022.02.006_bb0530) 2009; 19
Alnuqaydan (10.1016/j.tig.2022.02.006_bb0060) 2020; 12
Zhou (10.1016/j.tig.2022.02.006_bb0405) 2017; 16
Gallant-Behm (10.1016/j.tig.2022.02.006_bb0620) 2018; 26
Huang (10.1016/j.tig.2022.02.006_bb0025) 2017; 1617
McGeary (10.1016/j.tig.2022.02.006_bb0540) 2019; 366
Zhang (10.1016/j.tig.2022.02.006_bb0100) 2021; 15
Gomez (10.1016/j.tig.2022.02.006_bb0350) 2015; 125
Winter (10.1016/j.tig.2022.02.006_bb0525) 2009; 11
Diener (10.1016/j.tig.2022.02.006_bb0170) 2018; 9
Chow (10.1016/j.tig.2022.02.006_bb0180) 2020; 41
Dickinson (10.1016/j.tig.2022.02.006_bb0220) 2013; 31
van Rooij (10.1016/j.tig.2022.02.006_bb0040) 2014; 6
Hong (10.1016/j.tig.2022.02.006_bb0140) 2020; 122
Kern (10.1016/j.tig.2022.02.006_bb0605) 2020; 48
Bouchie (10.1016/j.tig.2022.02.006_bb0155) 2013; 31
Kashtan (10.1016/j.tig.2022.02.006_bb0610) 2021; 36
Querfeld (10.1016/j.tig.2022.02.006_bb0680) 2016; 128
Tosar (10.1016/j.tig.2022.02.006_bb0230) 2014; 20
Laczny (10.1016/j.tig.2022.02.006_bb0580) 2012; 13
Janssen (10.1016/j.tig.2022.02.006_bb0660) 2013; 368
Gong (10.1016/j.tig.2022.02.006_bb0085) 2019; 17
John (10.1016/j.tig.2022.02.006_bb0545) 2004; 2
Nikolova (10.1016/j.tig.2022.02.006_bb0200) 2019; 4
Ji (10.1016/j.tig.2022.02.006_bb0250) 2019; 10
Reid (10.1016/j.tig.2022.02.006_bb0630) 2013; 24
Mascellino (10.1016/j.tig.2022.02.006_bb0300) 2021; 14
Fan (10.1016/j.tig.2022.02.006_bb0045) 2019; 16
Schultz (10.1016/j.tig.2022.02.006_bb0305) 2008; 16
Aguilar-de-Leyva (10.1016/j.tig.2022.02.006_bb0195) 2020; 12
Kern (10.1016/j.tig.2022.02.006_bb0585) 2021; 49
Jung (10.1016/j.tig.2022.02.006_bb0555) 2015
Blanco (10.1016/j.tig.2022.02.006_bb0275) 2015; 33
Ludwig (10.1016/j.tig.2022.02.006_bb0015) 2016; 44
Subramanian (10.1016/j.tig.2022.02.006_bb0020) 2019; 10
Gebert (10.1016/j.tig.2022.02.006_bb0030) 2019; 20
Daige (10.1016/j.tig.2022.02.006_bb0160) 2014; 13
Kotowska-Zimmer (10.1016/j.tig.2022.02.006_bb0110) 2021; 12
Saatci (10.1016/j.tig.2022.02.006_bb0090) 2020; 11
Dasgupta (10.1016/j.tig.2022.02.006_bb0260) 2021; 4
Jacquet (10.1016/j.tig.2022.02.006_bb0465) 2021; 37
Roberts (10.1016/j.tig.2022.02.006_bb0265) 2020; 19
Gerstner (10.1016/j.tig.2022.02.006_bb0600) 2020; 48
Kashtan (10.1016/j.tig.2022.02.006_bb0615) 2021; 36
Grunweller (10.1016/j.tig.2022.02.006_bb0325) 2007; 21
Ottosen (10.1016/j.tig.2022.02.006_bb0080) 2015; 59
Lennox (10.1016/j.tig.2022.02.006_bb0320) 2011; 18
Winkler (10.1016/j.tig.2022.02.006_bb0355) 2010; 5
Koshkin (10.1016/j.tig.2022.02.006_bb0330) 1998; 54
Biessen (10.1016/j.tig.2022.02.006_bb0375) 1999; 340
Lai (10.1016/j.tig.2022.02.006_bb0490) 2019; 47
Michaille (10.1016/j.tig.2022.02.006_bb0505) 2019; 58
Shende (10.1016/j.tig.2022.02.006_bb0205) 2021; 17
Keskin (10.1016/j.tig.2022.02.006_bb0115) 2019; 15
Licursi (10.1016/j.tig.2022.02.006_bb0560) 2019; 20
Preusse (10.1016/j.tig.2022.02.006_bb0575) 2016; 11
Zhang (10.1016/j.tig.2022.02.006_bb0425) 2021; 81
Sindhu (10.1016/j.tig.2022.02.006_bb0460) 2021; 25
Shu (10.1016/j.tig.2022.02.006_bb0475) 2012; 9
Katoh (10.1016/j.tig.2022.02.006_bb0190) 2021; 278
Lu (10.1016/j.tig.2022.02.006_bb0255) 2016; 128
Fromm (10.1016/j.tig.2022.02.006_bb0225) 2019; 65
van der Ree (10.1016/j.tig.2022.02.006_bb0395) 2017; 389
Rupaimoole (10.1016/j.tig.2022.02.006_bb0485) 2017; 16
James (10.1016/j.tig.2022.02.006_bb0675) 2019; 37
Beg (10.1016/j.tig.2022.02.006_bb0145) 2017; 35
Monahan (10.1016/j.tig.2022.02.006_bb0315) 2021; 10
Osborn (10.1016/j.tig.2022.02.006_bb0360) 2018; 28
Seo (10.1016/j.tig.2022.02.006_bb0070) 2019; 9
Drenth (10.1016/j.tig.2022.02.006_bb0385) 2020; 29
Lanford (10.1016/j.tig.2022.02.006_bb0655) 2010; 327
Miller (10.1016/j.tig.2022.02.006_bb0340) 2018; 28
Petrek (10.1016/j.tig.2022.02.006_bb0105) 2019; 103
Seto (10.1016/j.tig.2022.02.006_bb0670) 2018; 183
Lukasik (10.1016/j.tig.2022.02.006_bb0445) 2016; 32
Kelnar (10.1016/j.tig.2022.02.006_bb0380) 2014; 86
Kehl (10.1016/j.tig.2022.02.006_bb0590) 2020; 48
Baldari (10.1016/j.tig.2022.02.006_bb0295) 2019; 8
Disney (10.1016/j.tig.2022.02.006_bb0050) 2016; 11
Gallant-Behm (10.1016/j.tig.2022.02.006_bb0365) 2019; 139
Huang (10.1016/j.tig.2022.02.006_bb0390) 2017; 6
Stelma (10.1016/j.tig.2022.02.006_bb0400) 2017; 66
Giroux (10.1016/j.tig.2022.02.006_bb0565) 2020; 48
Suresh (10.1016/j.tig.2022.02.006_bb0055) 2020; 117
Lavenniah (10.1016/j.tig.2022.02.006_bb0130) 2020; 28
Kern (10.1016/j.tig.2022.02.006_bb0450) 2021; 49
Lam (10.1016/j.tig.2022.02.006_bb0095) 2015; 4
Khan (10.1016/j.tig.2022.02.006_bb0500) 2009; 27
Liu (10.1016/j.tig.2022.02.006_bb0535) 2018; 17
Saito (10.1016/j.tig.2022.02.006_bb0150) 2015; 4
Zhang (10.1016/j.tig.2022.02.006_bb0215) 2012; 22
Tokar (10.1016/j.tig.2022.02.006_bb0595) 2018; 46
Kelnar (10.1016/j.tig.2022.02.006_bb0165) 2015; 1317
Samaranch (10.1016/j.tig.2022.02.006_bb0125) 2017; 24
Elmen (10.1016/j.tig.2022.02.006_bb0650) 2008; 452
Ji (10.1016/j.tig.2022.02.006_bb0245) 2016; 28
Abplanalp (10.1016/j.tig.2022.02.006_bb0625) 2020; 30
Iwakawa (10.1016/j.tig.2022.02.006_bb0470) 2022; 82
Yaylak (10.1016/j.tig.2022.02.006_bb0435) 2022; 2257
Gebert (10.1016/j.tig.2022.02.006_bb0645) 2014; 42
Sanchita (10.1016/j.tig.2022.02.006_bb0235) 2018; 15
Yamamoto (10.1016/j.tig.2022.02.006_bb0415) 2021; 13
Samad (10.1016/j.tig.2022.02.006_bb0210) 2021; 12
Kardani (10.1016/j.tig.2022.02.006_bb0420) 2020; 235
Batkai (10.1016/j.tig.2022.02.006_bb0640) 2021; 42
Reid (10.1016/j.tig.2022.02.006_bb0280) 2016; 8
Ha (10.1016/j.tig.2022.02.006_bb0520) 2014; 15
Grimm (10.1016/j.tig.2022.02.006_bb0495) 2011; 2
Taubel (10.1016/j.tig.2022.02.006_bb0635) 2021; 42
van Zandwijk (10.1016/j.tig.2022.02.006_bb0285) 2017; 18
Jivrajani (10.1016/j.tig.2022.02.006_bb0270) 2016; 12
Prakash (10.1016/j.tig.2022.02.006_bb0370) 2014; 42
Riolo (10.1016/j.tig.2022.02.006_bb0430) 2020; 4
Narayan (10.1016/j.tig.2022.02.006_bb0480) 2017; 31
Alles (10.1016/j.tig.2022.02.006_bb0005) 2019; 47
Jin (10.1016/j.tig.2022.02.006_bb0510) 2015; 6
Hart (10.1016/j.tig.2022.02.006_bb0175) 2020; 8
Rappaport (10.1016/j.tig.2022.02.006_bb0345) 1995; 47
Kozomara (10.1016/j.tig.2022.02.006_bb0010) 2019; 47
Zhang (10.1016/j.tig.2022.02.006_bb0185) 2016; 7
References_xml – volume: 20
  start-page: 21
  year: 2019
  end-page: 37
  ident: bb0030
  article-title: Regulation of microRNA function in animals
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 9
  start-page: 29
  year: 2019
  ident: bb0070
  article-title: MicroRNA-based combinatorial cancer therapy: Effects of microRNAs on the efficacy of anti-cancer therapies
  publication-title: Cells
– volume: 48
  start-page: 7623
  year: 2020
  end-page: 7639
  ident: bb0335
  article-title: A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 1239
  year: 2021
  end-page: 1250
  ident: bb0205
  article-title: 3D printed bioconstructs: Regenerative modulation for genetic expression
  publication-title: Stem Cell Rev. Rep.
– volume: 278
  year: 2021
  ident: bb0190
  article-title: Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix
  publication-title: Life Sci.
– volume: 17
  start-page: 64
  year: 2018
  ident: bb0535
  article-title: Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer
  publication-title: Mol. Cancer
– volume: 16
  start-page: 707
  year: 2019
  end-page: 718
  ident: bb0045
  article-title: Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics
  publication-title: RNA Biol.
– volume: 28
  start-page: 177
  year: 2017
  end-page: 190
  ident: bb0310
  article-title: Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors
  publication-title: Hum. Gene Ther. Methods
– volume: 7
  start-page: 187
  year: 2019
  ident: bb0035
  article-title: miR-34a as hub of T cell regulation networks
  publication-title: J. Immunother. Cancer
– volume: 42
  start-page: 192
  year: 2021
  end-page: 201
  ident: bb0640
  article-title: CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure
  publication-title: Eur. Heart J.
– volume: 183
  start-page: 428
  year: 2018
  end-page: 444
  ident: bb0670
  article-title: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma
  publication-title: Br. J. Haematol.
– volume: 33
  start-page: 941
  year: 2015
  end-page: 951
  ident: bb0275
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
– volume: 28
  start-page: 128
  year: 2018
  end-page: 136
  ident: bb0360
  article-title: Improving siRNA delivery in vivo through lipid conjugation
  publication-title: Nucleic Acid Ther.
– volume: 10
  year: 2019
  ident: bb0020
  article-title: Special issue: MicroRNA regulation in health and disease
  publication-title: Genes (Basel)
– volume: 8
  start-page: 1560
  year: 2019
  ident: bb0295
  article-title: Extracellular vesicles – encapsulated microRNA-125b produced in genetically modified mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation
  publication-title: Cells
– volume: 48
  start-page: 10164
  year: 2020
  end-page: 10183
  ident: bb0455
  article-title: Quantitative and time-resolved miRNA pattern of early human T cell activation
  publication-title: Nucleic Acids Res.
– volume: 66
  start-page: 57
  year: 2017
  end-page: 68
  ident: bb0400
  article-title: Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-microRNA-122, RG-101
  publication-title: Hepatology
– volume: 86
  start-page: 1534
  year: 2014
  end-page: 1542
  ident: bb0380
  article-title: Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates
  publication-title: Anal. Chem.
– volume: 11
  start-page: 228
  year: 2009
  end-page: 234
  ident: bb0525
  article-title: Many roads to maturity: MicroRNA biogenesis pathways and their regulation
  publication-title: Nat. Cell Biol.
– volume: 340
  start-page: 783
  year: 1999
  end-page: 792
  ident: bb0375
  article-title: Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo
  publication-title: Biochem. J.
– volume: 42
  start-page: 178
  year: 2021
  end-page: 188
  ident: bb0635
  article-title: Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study
  publication-title: Eur. Heart J.
– volume: 36
  start-page: 711
  year: 2021
  end-page: 719
  ident: bb0610
  article-title: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults – an update for 2020
  publication-title: Pediatr. Nephrol.
– volume: 128
  start-page: 1829
  year: 2016
  ident: bb0680
  article-title: Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL
  publication-title: Blood
– volume: 18
  start-page: 1111
  year: 2011
  end-page: 1120
  ident: bb0320
  article-title: Chemical modification and design of anti-miRNA oligonucleotides
  publication-title: Gene Ther.
– volume: 366
  start-page: eaav1741
  year: 2019
  ident: bb0540
  article-title: The biochemical basis of microRNA targeting efficacy
  publication-title: Science
– volume: 117
  start-page: 33197
  year: 2020
  end-page: 33203
  ident: bb0055
  article-title: A general fragment-based approach to identify and optimize bioactive ligands targeting RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 16
  start-page: 203
  year: 2017
  end-page: 222
  ident: bb0485
  article-title: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases
  publication-title: Nat. Rev. Drug Discov.
– volume: 4
  start-page: 10
  year: 2021
  ident: bb0260
  article-title: Recent advances in miRNA delivery systems
  publication-title: Methods Protoc.
– volume: 96
  year: 2021
  ident: bb0075
  article-title: miR-122 affects both the initiation and maintenance of hepatitis C virus infections
  publication-title: J. Virol.
– volume: 31
  start-page: 965
  year: 2013
  end-page: 967
  ident: bb0220
  article-title: Lack of detectable oral bioavailability of plant microRNAs after feeding in mice
  publication-title: Nat. Biotechnol.
– volume: 2257
  start-page: 33
  year: 2022
  end-page: 55
  ident: bb0435
  article-title: Experimental microRNA detection methods
  publication-title: Methods Mol. Biol.
– volume: 6
  start-page: 851
  year: 2014
  end-page: 864
  ident: bb0040
  article-title: Development of microRNA therapeutics is coming of age
  publication-title: EMBO Mol. Med.
– volume: 13
  start-page: 2352
  year: 2014
  end-page: 2360
  ident: bb0160
  article-title: Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer
  publication-title: Mol. Cancer Ther.
– volume: 5
  year: 2016
  ident: bb0120
  article-title: Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington’s disease
  publication-title: Mol. Ther. Nucleic Acids
– volume: 18
  start-page: 1386
  year: 2017
  end-page: 1396
  ident: bb0285
  article-title: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study
  publication-title: Lancet Oncol.
– volume: 49
  start-page: W409
  year: 2021
  end-page: W416
  ident: bb0585
  article-title: miRTargetLink 2.0 – interactive miRNA target gene and target pathway networks
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 817
  year: 2021
  ident: bb0415
  article-title: Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides
  publication-title: Pharmaceutics
– volume: 11
  start-page: 2416
  year: 2020
  ident: bb0090
  article-title: Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer
  publication-title: Nat. Commun.
– volume: 59
  start-page: 599
  year: 2015
  end-page: 608
  ident: bb0080
  article-title: In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122
  publication-title: Antimicrob. Agents Chemother.
– volume: 139
  start-page: 1073
  year: 2019
  end-page: 1081
  ident: bb0365
  article-title: A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin
  publication-title: J. Invest. Dermatol.
– volume: 20
  start-page: 545
  year: 2019
  ident: bb0560
  article-title: MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis
  publication-title: BMC Bioinformatics
– volume: 122
  start-page: 1630
  year: 2020
  end-page: 1637
  ident: bb0140
  article-title: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours
  publication-title: Br. J. Cancer
– volume: 24
  start-page: 171
  year: 2018
  end-page: 177
  ident: bb0065
  article-title: Curcumin as an adjunct therapy and microRNA modulator in breast cancer
  publication-title: Curr. Pharm. Des.
– volume: 7
  start-page: 10376
  year: 2016
  ident: bb0185
  article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects
  publication-title: Nat. Commun.
– volume: 82
  start-page: 30
  year: 2022
  end-page: 43
  ident: bb0470
  article-title: Life of RISC: Formation, action, and degradation of RNA-induced silencing complex
  publication-title: Mol. Cell
– volume: 36
  start-page: 731
  year: 2021
  ident: bb0615
  article-title: Correction to: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020
  publication-title: Pediatr. Nephrol.
– volume: 4
  start-page: 1
  year: 2020
  ident: bb0430
  article-title: miRNA targets: From prediction tools to experimental validation
  publication-title: Methods Protoc.
– volume: 47
  start-page: 7753
  year: 2019
  end-page: 7766
  ident: bb0490
  article-title: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 609
  year: 2014
  end-page: 621
  ident: bb0645
  article-title: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122
  publication-title: Nucleic Acids Res.
– volume: 58
  start-page: 208
  year: 2019
  end-page: 218
  ident: bb0505
  article-title: miR-155 expression in antitumor immunity: The higher the better?
  publication-title: Genes Chromosom. Cancer
– volume: 4
  start-page: 271
  year: 2019
  end-page: 292
  ident: bb0200
  article-title: Recent advances in biomaterials for 3D scaffolds: A review
  publication-title: Bioact. Mater.
– volume: 12
  year: 2021
  ident: bb0110
  article-title: Artificial miRNAs as therapeutic tools: Challenges and opportunities
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 12
  start-page: 3531
  year: 2020
  end-page: 3556
  ident: bb0060
  article-title: Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer
  publication-title: Am. J. Transl. Res.
– volume: 29
  start-page: 1365
  year: 2020
  end-page: 1375
  ident: bb0385
  article-title: The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success
  publication-title: Expert Opin. Investig. Drugs
– volume: 25
  start-page: 545
  year: 2021
  end-page: 566
  ident: bb0460
  article-title: MicroRNA interactome multiomics characterization for cancer research and personalized medicine: An expert review
  publication-title: OMICS
– volume: 19
  start-page: 92
  year: 2009
  end-page: 105
  ident: bb0530
  article-title: Most mammalian mRNAs are conserved targets of microRNAs
  publication-title: Genome Res.
– volume: 389
  start-page: 709
  year: 2017
  end-page: 717
  ident: bb0395
  article-title: Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial
  publication-title: Lancet
– volume: 48
  start-page: D148
  year: 2020
  end-page: D154
  ident: bb0665
  article-title: miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 253
  year: 2017
  end-page: 261
  ident: bb0125
  article-title: MR-guided parenchymal delivery of adeno-associated viral vector serotype 5 in non-human primate brain
  publication-title: Gene Ther.
– volume: 31
  start-page: 808
  year: 2017
  end-page: 820
  ident: bb0480
  article-title: Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia
  publication-title: Leukemia
– volume: 17
  start-page: 93
  year: 2019
  ident: bb0085
  article-title: Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy
  publication-title: J. Nanobiotechnol.
– volume: 41
  start-page: 715
  year: 2020
  end-page: 729
  ident: bb0180
  article-title: Inhaled RNA therapy: From promise to reality
  publication-title: Trends Pharmacol. Sci.
– volume: 12
  start-page: 197
  year: 2021
  end-page: 211
  ident: bb0210
  article-title: Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation
  publication-title: Adv. Nutr.
– volume: 47
  start-page: 3353
  year: 2019
  end-page: 3364
  ident: bb0005
  article-title: An estimate of the total number of true human miRNAs
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 1189
  year: 2008
  end-page: 1199
  ident: bb0305
  article-title: Recombinant adeno-associated virus transduction and integration
  publication-title: Mol. Ther.
– volume: 21
  start-page: 1999
  year: 2020
  end-page: 2010
  ident: bb0440
  article-title: What’s the target: Understanding two decades of in silico microRNA-target prediction
  publication-title: Brief. Bioinform.
– volume: 11
  year: 2016
  ident: bb0575
  article-title: miTALOS v2: Analyzing tissue specific microRNA function
  publication-title: PLoS One
– volume: 19
  start-page: 673
  year: 2020
  end-page: 694
  ident: bb0265
  article-title: Advances in oligonucleotide drug delivery
  publication-title: Nat. Rev. Drug Discov.
– volume: 8
  start-page: 1079
  year: 2016
  end-page: 1085
  ident: bb0280
  article-title: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer
  publication-title: Epigenomics
– volume: 2
  year: 2004
  ident: bb0545
  article-title: Human microRNA targets
  publication-title: PLoS Biol.
– volume: 48
  start-page: D142
  year: 2020
  end-page: D147
  ident: bb0590
  article-title: miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database
  publication-title: Nucleic Acids Res.
– volume: 47
  start-page: D155
  year: 2019
  end-page: D162
  ident: bb0010
  article-title: miRBase: From microRNA sequences to function
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: 1060
  year: 2021
  end-page: 1063
  ident: bb0465
  article-title: New technologies for improved relevance in miRNA research
  publication-title: Trends Genet.
– volume: 48
  start-page: W244
  year: 2020
  end-page: W251
  ident: bb0570
  article-title: miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology
  publication-title: Nucleic Acids Res.
– volume: 128
  start-page: 1424
  year: 2016
  end-page: 1435
  ident: bb0255
  article-title: miR-146b antagomir-treated human Tregs acquire increased GVHD inhibitory potency
  publication-title: Blood
– volume: 159
  start-page: 332
  year: 2020
  end-page: 343
  ident: bb0290
  article-title: Extracellular vesicles as drug delivery systems: Why and how?
  publication-title: Adv. Drug Deliv. Rev.
– volume: 4
  year: 2015
  ident: bb0095
  article-title: siRNA versus miRNA as therapeutics for gene silencing
  publication-title: Mol. Ther. Nucleic Acids
– volume: 47
  start-page: 1462
  year: 1995
  end-page: 1469
  ident: bb0345
  article-title: Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy
  publication-title: Kidney Int.
– volume: 2
  start-page: 8
  year: 2011
  ident: bb0495
  article-title: The dose can make the poison: Lessons learned from adverse in vivo toxicities caused by RNAi overexpression
  publication-title: Silence
– volume: 7
  start-page: 71514
  year: 2016
  end-page: 71525
  ident: bb0550
  article-title: Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades
  publication-title: Oncotarget
– volume: 235
  start-page: 6887
  year: 2020
  end-page: 6895
  ident: bb0420
  article-title: Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer
  publication-title: J. Cell. Physiol.
– volume: 15
  start-page: 1433
  year: 2018
  end-page: 1439
  ident: bb0235
  article-title: Dietary plant miRNAs as an augmented therapy: Cross-kingdom gene regulation
  publication-title: RNA Biol.
– volume: 13
  start-page: 334
  year: 2018
  end-page: 346
  ident: bb0410
  article-title: Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells
  publication-title: Mol. Ther. Nucleic Acids
– volume: 9
  start-page: 1008
  year: 2018
  ident: bb0170
  article-title: Modulation of intracellular calcium signaling by microRNA-34a-5p
  publication-title: Cell Death Dis.
– volume: 54
  start-page: 3607
  year: 1998
  end-page: 3630
  ident: bb0330
  article-title: LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition
  publication-title: Tetrahedron
– volume: 31
  start-page: 577
  year: 2013
  ident: bb0155
  article-title: First microRNA mimic enters clinic
  publication-title: Nat. Biotechnol.
– volume: 18
  start-page: 9
  year: 2016
  ident: bb0240
  article-title: Plant microRNAs – novel players in natural medicine?
  publication-title: Int. J. Mol. Sci.
– volume: 20
  start-page: 754
  year: 2014
  end-page: 757
  ident: bb0230
  article-title: Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: Underestimated effects of contamination in NGS
  publication-title: RNA
– volume: 48
  start-page: W252
  year: 2020
  end-page: W261
  ident: bb0565
  article-title: miRViz: A novel webserver application to visualize and interpret microRNA datasets
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 509
  year: 2014
  end-page: 524
  ident: bb0520
  article-title: Regulation of microRNA biogenesis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 65
  start-page: 139
  year: 2019
  end-page: 140
  ident: bb0225
  article-title: Plant microRNAs in human sera are likely contaminants
  publication-title: J. Nutr. Biochem.
– volume: 15
  start-page: 275
  year: 2019
  end-page: 284
  ident: bb0115
  article-title: AAV5-miHTT lowers huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 27
  start-page: 549
  year: 2009
  end-page: 555
  ident: bb0500
  article-title: Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 1720
  year: 2016
  end-page: 1728
  ident: bb0050
  article-title: Inforna 2.0: A platform for the sequence-based design of small molecules targeting structured RNAs
  publication-title: ACS Chem. Biol.
– volume: 452
  start-page: 896
  year: 2008
  end-page: 899
  ident: bb0650
  article-title: LNA-mediated microRNA silencing in non-human primates
  publication-title: Nature
– volume: 327
  start-page: 198
  year: 2010
  end-page: 201
  ident: bb0655
  article-title: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection
  publication-title: Science
– volume: 368
  start-page: 1685
  year: 2013
  end-page: 1694
  ident: bb0660
  article-title: Treatment of HCV infection by targeting microRNA
  publication-title: N. Engl. J. Med.
– volume: 48
  start-page: W521
  year: 2020
  end-page: W528
  ident: bb0605
  article-title: miEAA 2.0: Integrating multi-species microRNA enrichment analysis and workflow management systems
  publication-title: Nucleic Acids Res.
– volume: 48
  start-page: W515
  year: 2020
  end-page: W520
  ident: bb0600
  article-title: GeneTrail 3: Advanced high-throughput enrichment analysis
  publication-title: Nucleic Acids Res.
– volume: 28
  start-page: 1506
  year: 2020
  end-page: 1517
  ident: bb0130
  article-title: Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy
  publication-title: Mol. Ther.
– volume: 28
  start-page: 45
  year: 2016
  end-page: 53
  ident: bb0245
  article-title: Enhancing adoptive T cell immunotherapy with microRNA therapeutics
  publication-title: Semin. Immunol.
– year: 2015
  ident: bb0555
  article-title: miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data
  publication-title: BMC Proc. 9 (Suppl 6 Proceedings of the 5th Symposium on Biological Data), S2
– volume: 24
  start-page: 1
  year: 2022
  ident: bb0135
  article-title: Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression
  publication-title: Breast Cancer Res.
– volume: 21
  start-page: 235
  year: 2007
  end-page: 243
  ident: bb0325
  article-title: Locked nucleic acid oligonucleotides: The next generation of antisense agents?
  publication-title: BioDrugs
– volume: 44
  start-page: 3865
  year: 2016
  end-page: 3877
  ident: bb0015
  article-title: Distribution of miRNA expression across human tissues
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 1951
  year: 2015
  end-page: 1959
  ident: bb0150
  article-title: microRNA-34a as a therapeutic agent against human cancer
  publication-title: J. Clin. Med.
– volume: 42
  start-page: 8796
  year: 2014
  end-page: 8807
  ident: bb0370
  article-title: Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 340
  year: 2015
  ident: bb0510
  article-title: Transfection of microRNA mimics should be used with caution
  publication-title: Front. Genet.
– volume: 32
  start-page: 2722
  year: 2016
  end-page: 2724
  ident: bb0445
  article-title: Tools4miRs – one place to gather all the tools for miRNA analysis
  publication-title: Bioinformatics
– volume: 5
  start-page: 1344
  year: 2010
  end-page: 1352
  ident: bb0355
  article-title: Off-target effects related to the phosphorothioate modification of nucleic acids
  publication-title: ChemMedChem
– volume: 35
  start-page: 180
  year: 2017
  end-page: 188
  ident: bb0145
  article-title: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors
  publication-title: Investig. New Drugs
– volume: 1617
  start-page: 57
  year: 2017
  end-page: 67
  ident: bb0025
  article-title: MicroRNAs: Biomarkers, diagnostics, and therapeutics
  publication-title: Methods Mol. Biol.
– volume: 24
  start-page: 3128
  year: 2013
  end-page: 3135
  ident: bb0630
  article-title: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma
  publication-title: Ann. Oncol.
– volume: 1317
  start-page: 125
  year: 2015
  end-page: 133
  ident: bb0165
  article-title: A qRT-PCR method for determining the biodistribution profile of a miR-34a mimic
  publication-title: Methods Mol. Biol.
– volume: 46
  start-page: D360
  year: 2018
  end-page: D370
  ident: bb0595
  article-title: mirDIP 4.1 – integrative database of human microRNA target predictions
  publication-title: Nucleic Acids Res.
– volume: 26
  start-page: 311
  year: 2018
  end-page: 323
  ident: bb0620
  article-title: A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds
  publication-title: Wound Repair Regen.
– volume: 6
  start-page: 116
  year: 2017
  end-page: 132
  ident: bb0390
  article-title: Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics
  publication-title: Mol. Ther. Nucleic Acids
– volume: 22
  start-page: 107
  year: 2012
  end-page: 126
  ident: bb0215
  article-title: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA
  publication-title: Cell Res.
– volume: 13
  start-page: 36
  year: 2012
  ident: bb0580
  article-title: miRTrail – a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases
  publication-title: BMC Bioinformatics
– volume: 12
  start-page: 620
  year: 2020
  ident: bb0195
  article-title: 3D printed drug delivery systems based on natural products
  publication-title: Pharmaceutics
– volume: 81
  start-page: 1691
  year: 2021
  end-page: 1692
  ident: bb0425
  article-title: Comment on: ‘MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19’
  publication-title: Drugs
– volume: 125
  start-page: 141
  year: 2015
  end-page: 156
  ident: bb0350
  article-title: Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways
  publication-title: J. Clin. Invest.
– volume: 9
  start-page: 1275
  year: 2012
  end-page: 1287
  ident: bb0475
  article-title: Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs
  publication-title: RNA Biol.
– volume: 222
  start-page: 540
  year: 2010
  end-page: 545
  ident: bb0515
  article-title: Genomic organization of microRNAs
  publication-title: J. Cell. Physiol.
– volume: 15
  start-page: 721
  year: 2021
  end-page: 733
  ident: bb0100
  article-title: The risks of miRNA therapeutics: In a drug target perspective
  publication-title: Drug Des. Devel. Ther.
– volume: 14
  start-page: 3459
  year: 2021
  end-page: 3476
  ident: bb0300
  article-title: Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety
  publication-title: Infect. Drug Resist.
– volume: 37
  start-page: 562
  year: 2019
  end-page: 563
  ident: bb0675
  article-title: SOLAR: A phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with mycosis fungoides (MF) [abstract]
  publication-title: Hematol. Oncol.
– volume: 8
  year: 2020
  ident: bb0175
  article-title: Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4
  publication-title: J. Immunother. Cancer
– volume: 12
  start-page: 2485
  year: 2016
  end-page: 2498
  ident: bb0270
  article-title: Ligand-targeted bacterial minicells: Futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells
  publication-title: Nanomedicine
– volume: 16
  start-page: 181
  year: 2017
  end-page: 202
  ident: bb0405
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat. Rev. Drug Discov.
– volume: 10
  start-page: 2471
  year: 2021
  ident: bb0315
  article-title: Emerging immunogenicity and genotoxicity considerations of adeno-associated virus vector gene therapy for hemophilia
  publication-title: J. Clin. Med.
– volume: 49
  start-page: 127
  year: 2021
  end-page: 144
  ident: bb0450
  article-title: Validation of human microRNA target pathways enables evaluation of target prediction tools
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 2157
  year: 2019
  ident: bb0250
  article-title: miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8
  publication-title: Nat. Commun.
– volume: 103
  start-page: 6107
  year: 2019
  end-page: 6117
  ident: bb0105
  article-title: Bioengineering of a single long noncoding RNA molecule that carries multiple small RNAs
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 28
  start-page: 119
  year: 2018
  end-page: 127
  ident: bb0340
  article-title: Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver
  publication-title: Nucleic Acid Ther.
– volume: 30
  start-page: 335
  year: 2020
  end-page: 345
  ident: bb0625
  article-title: Efficiency and target derepression of anti-miR-92a: Results of a first in human study
  publication-title: Nucleic Acid Ther.
– volume: 28
  start-page: 1506
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0130
  article-title: Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.04.006
– volume: 6
  start-page: 851
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0040
  article-title: Development of microRNA therapeutics is coming of age
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201100899
– volume: 48
  start-page: D148
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0665
  article-title: miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 187
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0035
  article-title: miR-34a as hub of T cell regulation networks
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0670-5
– volume: 36
  start-page: 731
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0615
  article-title: Correction to: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-020-04892-x
– volume: 122
  start-page: 1630
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0140
  article-title: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-020-0802-1
– volume: 20
  start-page: 21
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0030
  article-title: Regulation of microRNA function in animals
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0045-7
– volume: 4
  start-page: 10
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0260
  article-title: Recent advances in miRNA delivery systems
  publication-title: Methods Protoc.
  doi: 10.3390/mps4010010
– volume: 9
  start-page: 1275
  year: 2012
  ident: 10.1016/j.tig.2022.02.006_bb0475
  article-title: Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs
  publication-title: RNA Biol.
  doi: 10.4161/rna.21998
– volume: 13
  start-page: 2352
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0160
  article-title: Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-14-0209
– volume: 11
  start-page: 228
  year: 2009
  ident: 10.1016/j.tig.2022.02.006_bb0525
  article-title: Many roads to maturity: MicroRNA biogenesis pathways and their regulation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb0309-228
– volume: 14
  start-page: 3459
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0300
  article-title: Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S315727
– volume: 128
  start-page: 1424
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0255
  article-title: miR-146b antagomir-treated human Tregs acquire increased GVHD inhibitory potency
  publication-title: Blood
  doi: 10.1182/blood-2016-05-714535
– volume: 26
  start-page: 311
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0620
  article-title: A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12660
– volume: 31
  start-page: 808
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0480
  article-title: Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia
  publication-title: Leukemia
  doi: 10.1038/leu.2016.279
– volume: 183
  start-page: 428
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0670
  article-title: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.15547
– volume: 2257
  start-page: 33
  year: 2022
  ident: 10.1016/j.tig.2022.02.006_bb0435
  article-title: Experimental microRNA detection methods
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-1170-8_2
– volume: 16
  start-page: 203
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0485
  article-title: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.246
– volume: 29
  start-page: 1365
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0385
  article-title: The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success
  publication-title: Expert Opin. Investig. Drugs
  doi: 10.1080/13543784.2020.1839888
– volume: 24
  start-page: 171
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0065
  article-title: Curcumin as an adjunct therapy and microRNA modulator in breast cancer
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612824666171129203506
– volume: 19
  start-page: 673
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0265
  article-title: Advances in oligonucleotide drug delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-020-0075-7
– volume: 48
  start-page: D142
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0590
  article-title: miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1022
– volume: 8
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0175
  article-title: Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4+, CD8+ T cells, and M1 macrophages
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2020-001617
– volume: 48
  start-page: 10164
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0455
  article-title: Quantitative and time-resolved miRNA pattern of early human T cell activation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa788
– volume: 15
  start-page: 1433
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0235
  article-title: Dietary plant miRNAs as an augmented therapy: Cross-kingdom gene regulation
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2018.1551693
– volume: 13
  start-page: 36
  year: 2012
  ident: 10.1016/j.tig.2022.02.006_bb0580
  article-title: miRTrail – a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-36
– volume: 46
  start-page: D360
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0595
  article-title: mirDIP 4.1 – integrative database of human microRNA target predictions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1144
– volume: 21
  start-page: 235
  year: 2007
  ident: 10.1016/j.tig.2022.02.006_bb0325
  article-title: Locked nucleic acid oligonucleotides: The next generation of antisense agents?
  publication-title: BioDrugs
  doi: 10.2165/00063030-200721040-00004
– volume: 82
  start-page: 30
  year: 2022
  ident: 10.1016/j.tig.2022.02.006_bb0470
  article-title: Life of RISC: Formation, action, and degradation of RNA-induced silencing complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.11.026
– volume: 42
  start-page: 192
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0640
  article-title: CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa791
– volume: 54
  start-page: 3607
  year: 1998
  ident: 10.1016/j.tig.2022.02.006_bb0330
  article-title: LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(98)00094-5
– volume: 35
  start-page: 180
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0145
  article-title: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors
  publication-title: Investig. New Drugs
  doi: 10.1007/s10637-016-0407-y
– volume: 13
  start-page: 334
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0410
  article-title: Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.09.016
– volume: 15
  start-page: 275
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0115
  article-title: AAV5-miHTT lowers huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2019.09.010
– volume: 6
  start-page: 116
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0390
  article-title: Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2016.12.003
– volume: 21
  start-page: 1999
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0440
  article-title: What’s the target: Understanding two decades of in silico microRNA-target prediction
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz111
– volume: 17
  start-page: 1239
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0205
  article-title: 3D printed bioconstructs: Regenerative modulation for genetic expression
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-021-10120-2
– volume: 47
  start-page: D155
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0010
  article-title: miRBase: From microRNA sequences to function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1141
– volume: 2
  start-page: 8
  year: 2011
  ident: 10.1016/j.tig.2022.02.006_bb0495
  article-title: The dose can make the poison: Lessons learned from adverse in vivo toxicities caused by RNAi overexpression
  publication-title: Silence
  doi: 10.1186/1758-907X-2-8
– volume: 8
  start-page: 1560
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0295
  article-title: Extracellular vesicles – encapsulated microRNA-125b produced in genetically modified mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation
  publication-title: Cells
  doi: 10.3390/cells8121560
– volume: 48
  start-page: W515
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0600
  article-title: GeneTrail 3: Advanced high-throughput enrichment analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa306
– volume: 17
  start-page: 64
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0535
  article-title: Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-018-0765-5
– volume: 24
  start-page: 1
  year: 2022
  ident: 10.1016/j.tig.2022.02.006_bb0135
  article-title: Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-021-01497-6
– volume: 125
  start-page: 141
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0350
  article-title: Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI75852
– volume: 28
  start-page: 119
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0340
  article-title: Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2017.0709
– volume: 28
  start-page: 177
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0310
  article-title: Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors
  publication-title: Hum. Gene Ther. Methods
  doi: 10.1089/hgtb.2017.036
– volume: 12
  start-page: 3531
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0060
  article-title: Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer
  publication-title: Am. J. Transl. Res.
– volume: 327
  start-page: 198
  year: 2010
  ident: 10.1016/j.tig.2022.02.006_bb0655
  article-title: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection
  publication-title: Science
  doi: 10.1126/science.1178178
– volume: 9
  start-page: 29
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0070
  article-title: MicroRNA-based combinatorial cancer therapy: Effects of microRNAs on the efficacy of anti-cancer therapies
  publication-title: Cells
  doi: 10.3390/cells9010029
– volume: 24
  start-page: 253
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0125
  article-title: MR-guided parenchymal delivery of adeno-associated viral vector serotype 5 in non-human primate brain
  publication-title: Gene Ther.
  doi: 10.1038/gt.2017.14
– volume: 22
  start-page: 107
  year: 2012
  ident: 10.1016/j.tig.2022.02.006_bb0215
  article-title: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.158
– volume: 42
  start-page: 178
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0635
  article-title: Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa898
– volume: 2
  year: 2004
  ident: 10.1016/j.tig.2022.02.006_bb0545
  article-title: Human microRNA targets
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020363
– volume: 28
  start-page: 45
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0245
  article-title: Enhancing adoptive T cell immunotherapy with microRNA therapeutics
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2015.11.006
– volume: 19
  start-page: 92
  year: 2009
  ident: 10.1016/j.tig.2022.02.006_bb0530
  article-title: Most mammalian mRNAs are conserved targets of microRNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.082701.108
– volume: 24
  start-page: 3128
  year: 2013
  ident: 10.1016/j.tig.2022.02.006_bb0630
  article-title: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdt412
– volume: 16
  start-page: 181
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0405
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.199
– volume: 28
  start-page: 128
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0360
  article-title: Improving siRNA delivery in vivo through lipid conjugation
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2018.0725
– volume: 20
  start-page: 754
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0230
  article-title: Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: Underestimated effects of contamination in NGS
  publication-title: RNA
  doi: 10.1261/rna.044263.114
– volume: 139
  start-page: 1073
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0365
  article-title: A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2018.11.007
– volume: 96
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0075
  article-title: miR-122 affects both the initiation and maintenance of hepatitis C virus infections
  publication-title: J. Virol.
– volume: 20
  start-page: 545
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0560
  article-title: MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3105-x
– volume: 366
  start-page: eaav1741
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0540
  article-title: The biochemical basis of microRNA targeting efficacy
  publication-title: Science
  doi: 10.1126/science.aav1741
– volume: 159
  start-page: 332
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0290
  article-title: Extracellular vesicles as drug delivery systems: Why and how?
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.04.004
– volume: 33
  start-page: 941
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0275
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 222
  start-page: 540
  year: 2010
  ident: 10.1016/j.tig.2022.02.006_bb0515
  article-title: Genomic organization of microRNAs
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21993
– volume: 65
  start-page: 139
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0225
  article-title: Plant microRNAs in human sera are likely contaminants
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2018.07.019
– volume: 7
  start-page: 10376
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0185
  article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10376
– volume: 48
  start-page: 7623
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0335
  article-title: A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa576
– volume: 30
  start-page: 335
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0625
  article-title: Efficiency and target derepression of anti-miR-92a: Results of a first in human study
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2020.0871
– volume: 117
  start-page: 33197
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0055
  article-title: A general fragment-based approach to identify and optimize bioactive ligands targeting RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2012217117
– volume: 16
  start-page: 1189
  year: 2008
  ident: 10.1016/j.tig.2022.02.006_bb0305
  article-title: Recombinant adeno-associated virus transduction and integration
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.103
– volume: 49
  start-page: W409
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0585
  article-title: miRTargetLink 2.0 – interactive miRNA target gene and target pathway networks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab297
– volume: 15
  start-page: 509
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0520
  article-title: Regulation of microRNA biogenesis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3838
– volume: 368
  start-page: 1685
  year: 2013
  ident: 10.1016/j.tig.2022.02.006_bb0660
  article-title: Treatment of HCV infection by targeting microRNA
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1209026
– volume: 4
  start-page: 271
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0200
  article-title: Recent advances in biomaterials for 3D scaffolds: A review
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2019.10.005
– volume: 11
  start-page: 1720
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0050
  article-title: Inforna 2.0: A platform for the sequence-based design of small molecules targeting structured RNAs
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00001
– volume: 37
  start-page: 1060
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0465
  article-title: New technologies for improved relevance in miRNA research
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2021.08.006
– volume: 48
  start-page: W521
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0605
  article-title: miEAA 2.0: Integrating multi-species microRNA enrichment analysis and workflow management systems
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa309
– volume: 18
  start-page: 9
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0240
  article-title: Plant microRNAs – novel players in natural medicine?
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18010009
– volume: 1317
  start-page: 125
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0165
  article-title: A qRT-PCR method for determining the biodistribution profile of a miR-34a mimic
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2727-2_8
– volume: 389
  start-page: 709
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0395
  article-title: Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31715-9
– volume: 42
  start-page: 8796
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0370
  article-title: Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku531
– volume: 31
  start-page: 577
  year: 2013
  ident: 10.1016/j.tig.2022.02.006_bb0155
  article-title: First microRNA mimic enters clinic
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0713-577
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0430
  article-title: miRNA targets: From prediction tools to experimental validation
  publication-title: Methods Protoc.
  doi: 10.3390/mps4010001
– volume: 59
  start-page: 599
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0080
  article-title: In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.04220-14
– volume: 36
  start-page: 711
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0610
  article-title: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults – an update for 2020
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-020-04819-6
– volume: 12
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0110
  article-title: Artificial miRNAs as therapeutic tools: Challenges and opportunities
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1640
– volume: 17
  start-page: 93
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0085
  article-title: Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0526-7
– volume: 11
  start-page: 2416
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0090
  article-title: Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16199-4
– volume: 10
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0020
  article-title: Special issue: MicroRNA regulation in health and disease
  publication-title: Genes (Basel)
  doi: 10.3390/genes10060457
– volume: 81
  start-page: 1691
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0425
  article-title: Comment on: ‘MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19’
  publication-title: Drugs
  doi: 10.1007/s40265-021-01582-2
– volume: 10
  start-page: 2471
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0315
  article-title: Emerging immunogenicity and genotoxicity considerations of adeno-associated virus vector gene therapy for hemophilia
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm10112471
– volume: 9
  start-page: 1008
  year: 2018
  ident: 10.1016/j.tig.2022.02.006_bb0170
  article-title: Modulation of intracellular calcium signaling by microRNA-34a-5p
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1050-7
– volume: 4
  start-page: 1951
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0150
  article-title: microRNA-34a as a therapeutic agent against human cancer
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm4111951
– volume: 8
  start-page: 1079
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0280
  article-title: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer
  publication-title: Epigenomics
  doi: 10.2217/epi-2016-0035
– volume: 12
  start-page: 197
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0210
  article-title: Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation
  publication-title: Adv. Nutr.
  doi: 10.1093/advances/nmaa095
– volume: 278
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0190
  article-title: Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.119553
– volume: 4
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0095
  article-title: siRNA versus miRNA as therapeutics for gene silencing
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2015.23
– volume: 27
  start-page: 549
  year: 2009
  ident: 10.1016/j.tig.2022.02.006_bb0500
  article-title: Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1543
– volume: 5
  start-page: 1344
  year: 2010
  ident: 10.1016/j.tig.2022.02.006_bb0355
  article-title: Off-target effects related to the phosphorothioate modification of nucleic acids
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201000156
– volume: 6
  start-page: 340
  year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0510
  article-title: Transfection of microRNA mimics should be used with caution
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2015.00340
– volume: 47
  start-page: 7753
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0490
  article-title: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz638
– volume: 12
  start-page: 620
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0195
  article-title: 3D printed drug delivery systems based on natural products
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12070620
– volume: 31
  start-page: 965
  year: 2013
  ident: 10.1016/j.tig.2022.02.006_bb0220
  article-title: Lack of detectable oral bioavailability of plant microRNAs after feeding in mice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2737
– volume: 49
  start-page: 127
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0450
  article-title: Validation of human microRNA target pathways enables evaluation of target prediction tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1161
– volume: 235
  start-page: 6887
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0420
  article-title: Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29584
– volume: 452
  start-page: 896
  year: 2008
  ident: 10.1016/j.tig.2022.02.006_bb0650
  article-title: LNA-mediated microRNA silencing in non-human primates
  publication-title: Nature
  doi: 10.1038/nature06783
– volume: 10
  start-page: 2157
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0250
  article-title: miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09882-8
– volume: 58
  start-page: 208
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0505
  article-title: miR-155 expression in antitumor immunity: The higher the better?
  publication-title: Genes Chromosom. Cancer
  doi: 10.1002/gcc.22698
– volume: 103
  start-page: 6107
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0105
  article-title: Bioengineering of a single long noncoding RNA molecule that carries multiple small RNAs
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09934-5
– volume: 18
  start-page: 1386
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0285
  article-title: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30621-6
– volume: 11
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0575
  article-title: miTALOS v2: Analyzing tissue specific microRNA function
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151771
– volume: 32
  start-page: 2722
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0445
  article-title: Tools4miRs – one place to gather all the tools for miRNA analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw189
– volume: 15
  start-page: 721
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0100
  article-title: The risks of miRNA therapeutics: In a drug target perspective
  publication-title: Drug Des. Devel. Ther.
  doi: 10.2147/DDDT.S288859
– volume: 18
  start-page: 1111
  year: 2011
  ident: 10.1016/j.tig.2022.02.006_bb0320
  article-title: Chemical modification and design of anti-miRNA oligonucleotides
  publication-title: Gene Ther.
  doi: 10.1038/gt.2011.100
– volume: 47
  start-page: 1462
  year: 1995
  ident: 10.1016/j.tig.2022.02.006_bb0345
  article-title: Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy
  publication-title: Kidney Int.
  doi: 10.1038/ki.1995.205
– volume: 1617
  start-page: 57
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0025
  article-title: MicroRNAs: Biomarkers, diagnostics, and therapeutics
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7046-9_4
– volume: 340
  start-page: 783
  year: 1999
  ident: 10.1016/j.tig.2022.02.006_bb0375
  article-title: Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo
  publication-title: Biochem. J.
  doi: 10.1042/bj3400783
– volume: 48
  start-page: W252
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0565
  article-title: miRViz: A novel webserver application to visualize and interpret microRNA datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa259
– volume: 25
  start-page: 545
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0460
  article-title: MicroRNA interactome multiomics characterization for cancer research and personalized medicine: An expert review
  publication-title: OMICS
  doi: 10.1089/omi.2021.0087
– volume: 16
  start-page: 707
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0045
  article-title: Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2019.1593094
– volume: 12
  start-page: 2485
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0270
  article-title: Ligand-targeted bacterial minicells: Futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2016.06.004
– volume: 7
  start-page: 71514
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0550
  article-title: Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11723
– volume: 42
  start-page: 609
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0645
  article-title: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt852
– volume: 47
  start-page: 3353
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0005
  article-title: An estimate of the total number of true human miRNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz097
– volume: 44
  start-page: 3865
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0015
  article-title: Distribution of miRNA expression across human tissues
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw116
– year: 2015
  ident: 10.1016/j.tig.2022.02.006_bb0555
  article-title: miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data
– volume: 48
  start-page: W244
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0570
  article-title: miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa467
– volume: 128
  start-page: 1829
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0680
  article-title: Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL
  publication-title: Blood
  doi: 10.1182/blood.V128.22.1829.1829
– volume: 41
  start-page: 715
  year: 2020
  ident: 10.1016/j.tig.2022.02.006_bb0180
  article-title: Inhaled RNA therapy: From promise to reality
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2020.08.002
– volume: 66
  start-page: 57
  year: 2017
  ident: 10.1016/j.tig.2022.02.006_bb0400
  article-title: Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-microRNA-122, RG-101
  publication-title: Hepatology
  doi: 10.1002/hep.29148
– volume: 37
  start-page: 562
  year: 2019
  ident: 10.1016/j.tig.2022.02.006_bb0675
  article-title: SOLAR: A phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with mycosis fungoides (MF) [abstract]
  publication-title: Hematol. Oncol.
  doi: 10.1002/hon.10_2632
– volume: 5
  year: 2016
  ident: 10.1016/j.tig.2022.02.006_bb0120
  article-title: Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington’s disease
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.7
– volume: 13
  start-page: 817
  year: 2021
  ident: 10.1016/j.tig.2022.02.006_bb0415
  article-title: Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13060817
– volume: 86
  start-page: 1534
  year: 2014
  ident: 10.1016/j.tig.2022.02.006_bb0380
  article-title: Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates
  publication-title: Anal. Chem.
  doi: 10.1021/ac403044t
SSID ssj0005735
Score 2.732923
SecondaryResourceType review_article
Snippet MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 613
SubjectTerms cell functional manipulations
clinical trials
Humans
microRNA
MicroRNAs - genetics
Neoplasms - genetics
preclinical studies
therapeutics
Title Emerging concepts of miRNA therapeutics: from cells to clinic
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016895252200018X
https://dx.doi.org/10.1016/j.tig.2022.02.006
https://www.ncbi.nlm.nih.gov/pubmed/35303998
https://www.proquest.com/docview/2640995129
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRfEiWl_1xQqehNhku9kk3oooVbEHH9Dbkn1JRVux8eDF3-5sNil6qIKQS8IO2cxuZr7ZeQEcIaKwMtHOra7CgPFUBllsWaApR7SRJSYus9JuBrz_wK6G8bABZ3UujAurrGS_l-mltK6edCpudl5Ho84dgpU0iykCCAdU0qHLYGeJ2-Unn9_CPBLfZBMHB2507dksY7yK0SOaiJT6sp18nm6ahz1LHXSxCisVeCQ9P781aJhxCxZ9O8mPFizdVI7ydSgPm1z_IaJ8XuKUTCx5Gd0OeuRbytX0lLj8EuKO76ekmBCfKLkBDxfn92f9oOqUEChU2EWQda1UNqQqzaXFT2ZMSaNpxnMqkf2ZtDyKDFVdV7uFo41luLUsYTrSOo1s3N2E5ngyNttAGDMGTQzJaSaZzmmOEDFyvkmVG61Z3Iaw5pFQVRlx183iWdTxYk8C2SocW0WIV8jbcDwjefU1NH4bTGvGizo5FMWZQAn_GxGbEf3YPX-RHdYrK_CvcrzOx2byPhUIExE6OzDUhi2_5LOpd2NU-2il7vzvpbuw7O58uNkeNIu3d7OPwKaQB-XOPYCF3uV1f_AFviHzyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VEMsFsVNWI3FCCk1cx024IQQqS3tgkXqz4g0VQYtoOHDh2xnHSVUOgISUU-JRkrE988azARwiorCypZ1bXYUB44kM0tiyQFOOaCNtmbjISut0efuBXfXiXg3OqlwYF1ZZyn4v0wtpXd5plNxsvPb7jTsEK0kaUwQQDqgkvSmYYbh9XRuD48-JOI-W77KJowM3vHJtFkFeef8RbURKfd1O_pNy-gl8FkroYgkWS_RITv0HLkPNDFZg1veT_FiBuU7pKV-F4rTJNSAiyicmjsjQkpf-bfeUTORcjU6ISzAh7vx-RPIh8ZmSa_BwcX5_1g7KVgmBQo2dB2nTSmVDqpJMWvxlxpQ0mqY8oxL5n0rLo8hQ1XTFWzgaWYZby1pMR1onkY2b6zA9GA7MJhDGjEEbQ3KaSqYzmiFGjJxzUmVGaxbXIax4JFRZR9y1s3gWVcDYk0C2CsdWEeIV8jocjUlefRGN3wbTivGiyg5FeSZQxP9GxMZE35bPX2QH1cwK3FaO19nADN9HAnEiYmeHhuqw4ad8_OnNGPU-mqlb_3vpPsy37zs34uaye70NC-6Jjz3bgen87d3sIsrJ5V6xir8AUqf1Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+concepts+of+miRNA+therapeutics%3A+from+cells+to+clinic&rft.jtitle=Trends+in+genetics&rft.au=Diener%2C+Caroline&rft.au=Keller%2C+Andreas&rft.au=Meese%2C+Eckart&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0168-9525&rft.volume=38&rft.issue=6&rft.spage=613&rft.epage=626&rft_id=info:doi/10.1016%2Fj.tig.2022.02.006&rft.externalDocID=S016895252200018X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon