Emerging concepts of miRNA therapeutics: from cells to clinic
MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are alt...
Saved in:
Published in | Trends in genetics Vol. 38; no. 6; pp. 613 - 626 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies.
Single microRNAs (miRNAs) regulate large subsets of mRNA targets. Although this property makes miRNAs potentially a powerful therapeutic tool, it also represents a major challenge in terms of controlling adverse effects that have been observed in clinical trials.Besides systemic applications via injection and infusion, advanced strategies emerge for miRNA-based drug administration via implantable 3D matrices, inhalation schemes, and intake via food.A combination of miRNA therapeutics with chemical modifications, biomolecule conjugation, or the use of carriers improves a site-directed and efficient cell targeting.A comprehensive risk assessment of miRNA therapeutics is required before any in vivo targeting to minimize off-target effects and to avoid overdosing of miRNAs. |
---|---|
AbstractList | MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies. MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies. Single microRNAs (miRNAs) regulate large subsets of mRNA targets. Although this property makes miRNAs potentially a powerful therapeutic tool, it also represents a major challenge in terms of controlling adverse effects that have been observed in clinical trials.Besides systemic applications via injection and infusion, advanced strategies emerge for miRNA-based drug administration via implantable 3D matrices, inhalation schemes, and intake via food.A combination of miRNA therapeutics with chemical modifications, biomolecule conjugation, or the use of carriers improves a site-directed and efficient cell targeting.A comprehensive risk assessment of miRNA therapeutics is required before any in vivo targeting to minimize off-target effects and to avoid overdosing of miRNAs. MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies.MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies. |
Author | Keller, Andreas Diener, Caroline Meese, Eckart |
Author_xml | – sequence: 1 givenname: Caroline surname: Diener fullname: Diener, Caroline organization: Institute of Human Genetics, Medical Faculty, Saarland University, 66421 Homburg, Germany – sequence: 2 givenname: Andreas surname: Keller fullname: Keller, Andreas email: andreas.keller@ccb.uni-saarland.de organization: Center for Bioinformatics, Medical Faculty, Saarland University, 66123 Saarbrücken, Germany – sequence: 3 givenname: Eckart surname: Meese fullname: Meese, Eckart organization: Institute of Human Genetics, Medical Faculty, Saarland University, 66421 Homburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35303998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LAzEQhnNQtK3-AC-yRy-tSXY3u1E8lFI_oCiInkM2O6mpu5uaZIX-e1NqLz0oDASG95mZPEN01NkOELogeEIwYderSTDLCcWUTnAszI7QIPbLMc9pfoqG3q8wxnmR5ifoNM1TnHJeDtDdvAW3NN0yUbZTsA4-sTppzevzNAkf4OQa-mCUv0m0s22ioGl8EmyiGtMZdYaOtWw8nP--I_R-P3-bPY4XLw9Ps-lirHJCw5inulIaU1XKSscbskxVUFPOJK1YWfFKM0KAqjQtWMFoyYFpnRVZTeq6JDpPR-hqN3ft7FcPPojW-O0tsgPbe0FZhjmPu3iMXv5G-6qFWqydaaXbiP2XY6DYBZSz3jvQQpkgg7FdcNI0gmCxFSpWIgoVW6ECx8IskuSA3A__i7ndMRD1fBtwwisD0XRtHKggamv-pPkBvfMum0_Y_MP-AGG-ods |
CitedBy_id | crossref_primary_10_1021_acsomega_5c01877 crossref_primary_10_1016_j_cca_2024_117829 crossref_primary_10_1111_1756_185X_15090 crossref_primary_10_2174_2211550112666230417100541 crossref_primary_10_1016_j_tranon_2022_101613 crossref_primary_10_2174_0113816128303695240512141729 crossref_primary_10_1080_13813455_2024_2375981 crossref_primary_10_1016_j_fsi_2024_109478 crossref_primary_10_3724_zdxbyxb_2023_0324 crossref_primary_10_1016_j_jddst_2024_105767 crossref_primary_10_1007_s13105_024_01065_4 crossref_primary_10_1002_jbt_23818 crossref_primary_10_1016_j_ncrna_2024_11_006 crossref_primary_10_1016_j_biomaterials_2024_122604 crossref_primary_10_3389_fpls_2024_1512047 crossref_primary_10_2174_0122115501261640231017061158 crossref_primary_10_3390_biomedicines12061360 crossref_primary_10_1038_s41598_024_66614_9 crossref_primary_10_1016_j_neulet_2024_137887 crossref_primary_10_3390_cancers15204954 crossref_primary_10_1038_s41598_024_82488_3 crossref_primary_10_1021_acsnano_4c05475 crossref_primary_10_3389_fneur_2024_1406977 crossref_primary_10_3389_fbioe_2023_1268454 crossref_primary_10_1186_s13019_024_02992_5 crossref_primary_10_1016_j_trac_2025_118214 crossref_primary_10_1186_s12951_024_02561_x crossref_primary_10_1016_j_drup_2024_101058 crossref_primary_10_1016_j_mce_2024_112252 crossref_primary_10_3390_ijms25158412 crossref_primary_10_1155_2024_9436238 crossref_primary_10_1016_j_bios_2023_115776 crossref_primary_10_1186_s12882_024_03688_7 crossref_primary_10_1007_s10142_024_01489_7 crossref_primary_10_1007_s00210_025_03893_7 crossref_primary_10_1016_j_trim_2025_102222 crossref_primary_10_3892_etm_2025_12835 crossref_primary_10_1038_s41598_024_64775_1 crossref_primary_10_3390_ani14172590 crossref_primary_10_1210_endocr_bqad115 crossref_primary_10_1021_acs_analchem_4c07111 crossref_primary_10_1016_j_jid_2023_05_026 crossref_primary_10_1210_endocr_bqad111 crossref_primary_10_1155_2024_4481452 crossref_primary_10_1007_s13577_024_01162_y crossref_primary_10_1152_ajpgi_00258_2023 crossref_primary_10_1038_s41467_025_57308_5 crossref_primary_10_1186_s12951_023_01951_x crossref_primary_10_1152_ajprenal_00251_2022 crossref_primary_10_1111_cpr_70018 crossref_primary_10_1089_ars_2023_0471 crossref_primary_10_3390_cancers16050957 crossref_primary_10_1016_j_xcrm_2024_101665 crossref_primary_10_1016_j_bcp_2024_116318 crossref_primary_10_1016_j_phrs_2023_106870 crossref_primary_10_1186_s11658_023_00421_4 crossref_primary_10_3390_ijms242216259 crossref_primary_10_1186_s40543_023_00390_5 crossref_primary_10_3390_ijms24129984 crossref_primary_10_1016_j_prp_2024_155156 crossref_primary_10_1007_s40618_024_02326_1 crossref_primary_10_1002_wrna_70002 crossref_primary_10_1007_s11224_025_02462_1 crossref_primary_10_1002_mog2_93 crossref_primary_10_1007_s40005_024_00669_8 crossref_primary_10_3390_molecules29184405 crossref_primary_10_3389_fimmu_2024_1423263 crossref_primary_10_3389_fonc_2024_1485802 crossref_primary_10_1002_ijch_202200088 crossref_primary_10_3892_or_2024_8709 crossref_primary_10_1111_evj_14434 crossref_primary_10_2174_0109298673255220231010073215 crossref_primary_10_1007_s13577_024_01119_1 crossref_primary_10_3390_biom15010035 crossref_primary_10_1021_acs_analchem_3c02051 crossref_primary_10_3390_antiox14010017 crossref_primary_10_34133_research_0601 crossref_primary_10_3390_cancers14092280 crossref_primary_10_1016_j_dld_2024_01_209 crossref_primary_10_1016_j_intimp_2024_112548 crossref_primary_10_1002_ange_202309135 crossref_primary_10_1038_s41598_024_65096_z crossref_primary_10_1016_j_prp_2022_153952 crossref_primary_10_1096_fj_202401480R crossref_primary_10_1016_j_canlet_2023_216189 crossref_primary_10_1016_j_urolonc_2023_10_012 crossref_primary_10_1002_ctd2_70011 crossref_primary_10_2147_JIR_S496185 crossref_primary_10_1002_ptr_8287 crossref_primary_10_1016_j_crphar_2022_100131 crossref_primary_10_1007_s12035_024_04319_w crossref_primary_10_1042_CS20220795 crossref_primary_10_1080_16078454_2024_2428482 crossref_primary_10_1002_ame2_12358 crossref_primary_10_1016_j_trim_2024_102101 crossref_primary_10_1007_s10072_025_08044_7 crossref_primary_10_1002_sstr_202400255 crossref_primary_10_1016_j_bios_2024_116975 crossref_primary_10_1016_j_genrep_2022_101676 crossref_primary_10_1186_s12964_023_01357_0 crossref_primary_10_7717_peerj_17662 crossref_primary_10_1038_s41598_024_62733_5 crossref_primary_10_1186_s12951_024_02486_5 crossref_primary_10_3389_fimmu_2024_1498781 crossref_primary_10_1038_s41419_023_05563_z crossref_primary_10_1007_s00210_024_03675_7 crossref_primary_10_1007_s10072_023_07175_z crossref_primary_10_1002_advs_202305622 crossref_primary_10_3389_fimmu_2024_1402571 crossref_primary_10_1007_s00210_024_03153_0 crossref_primary_10_1016_j_imlet_2023_08_005 crossref_primary_10_1021_acsanm_5c01054 crossref_primary_10_3390_insects13110968 crossref_primary_10_1016_j_crphar_2022_100129 crossref_primary_10_1093_burnst_tkad064 crossref_primary_10_3390_pharmaceutics16111347 crossref_primary_10_1021_acsomega_4c11505 crossref_primary_10_3390_ncrna11010003 crossref_primary_10_1016_j_acthis_2025_152233 crossref_primary_10_3390_biom14111364 crossref_primary_10_1007_s11033_024_09576_5 crossref_primary_10_62347_YGPG5971 crossref_primary_10_3390_metabo14080403 crossref_primary_10_1021_cbmi_4c00085 crossref_primary_10_26508_lsa_202302180 crossref_primary_10_1016_j_bbrep_2024_101906 crossref_primary_10_1016_j_yexcr_2024_114168 crossref_primary_10_3390_cells14020104 crossref_primary_10_3390_ijms241512471 crossref_primary_10_1016_j_semcdb_2022_11_006 crossref_primary_10_3390_pharmaceutics15082061 crossref_primary_10_20517_cdr_2024_59 crossref_primary_10_3390_biom14111354 crossref_primary_10_1016_j_ncrna_2024_01_017 crossref_primary_10_3892_etm_2024_12388 crossref_primary_10_1093_nar_gkad1142 crossref_primary_10_3389_fonc_2023_1256537 crossref_primary_10_1007_s13346_025_01788_x crossref_primary_10_3724_abbs_2024090 crossref_primary_10_1016_j_drudis_2023_103649 crossref_primary_10_1016_j_tig_2024_12_009 crossref_primary_10_1016_j_tcb_2025_02_010 crossref_primary_10_3390_cells12141917 crossref_primary_10_1016_j_phrs_2024_107500 crossref_primary_10_3389_fonc_2022_911613 crossref_primary_10_3390_biomedicines13030560 crossref_primary_10_1089_nat_2024_0069 crossref_primary_10_3390_ijms251910325 crossref_primary_10_1038_s42003_024_06735_z crossref_primary_10_3389_fendo_2025_1515910 crossref_primary_10_1080_15476286_2022_2154470 crossref_primary_10_3390_cimb46070423 crossref_primary_10_7717_peerj_18324 crossref_primary_10_1016_j_angen_2023_200162 crossref_primary_10_1002_jha2_849 crossref_primary_10_1016_j_molbiopara_2024_111636 crossref_primary_10_3390_pharmaceutics15082035 crossref_primary_10_3389_fgene_2022_1058668 crossref_primary_10_3390_ncrna11020023 crossref_primary_10_1039_D3AY00578J crossref_primary_10_1186_s12967_024_05070_5 crossref_primary_10_1016_j_mce_2023_112042 crossref_primary_10_1038_s41435_024_00283_6 crossref_primary_10_1007_s00408_023_00607_9 crossref_primary_10_1186_s12951_024_02697_w crossref_primary_10_1186_s12967_024_05554_4 crossref_primary_10_3390_ijms251810051 crossref_primary_10_1186_s13578_024_01211_x crossref_primary_10_1007_s00403_024_03669_8 crossref_primary_10_3390_ma17215184 crossref_primary_10_3389_fncel_2024_1429977 crossref_primary_10_1111_bph_16488 crossref_primary_10_1007_s10528_024_10975_3 crossref_primary_10_3390_ijms26072828 crossref_primary_10_3389_fphar_2022_1036498 crossref_primary_10_3389_fcvm_2025_1546515 crossref_primary_10_3389_fonc_2024_1410656 crossref_primary_10_1016_j_talanta_2023_124805 crossref_primary_10_1210_endrev_bnae002 crossref_primary_10_3389_fncel_2023_1173086 crossref_primary_10_1016_j_chembiol_2023_08_010 crossref_primary_10_1007_s10528_024_10985_1 crossref_primary_10_3390_jmse11020361 crossref_primary_10_1186_s13578_023_01190_5 crossref_primary_10_1038_s41598_025_94595_w crossref_primary_10_1186_s40662_023_00370_1 crossref_primary_10_1016_j_ejps_2024_106888 crossref_primary_10_1016_j_exer_2025_110306 crossref_primary_10_1016_j_biopha_2025_117842 crossref_primary_10_1111_jcmm_70443 crossref_primary_10_1124_dmd_122_001008 crossref_primary_10_1186_s13287_024_03998_5 crossref_primary_10_3389_fonc_2024_1374743 crossref_primary_10_3389_fgene_2023_1152110 crossref_primary_10_1080_15384047_2024_2373497 crossref_primary_10_1016_j_prp_2023_154848 crossref_primary_10_3390_microorganisms12030440 crossref_primary_10_1016_j_bbcan_2024_189234 crossref_primary_10_3390_ijms241713302 crossref_primary_10_1021_acs_chemrev_4c00417 crossref_primary_10_1039_D4CS00799A crossref_primary_10_1093_nar_gkae505 crossref_primary_10_1007_s00221_024_06972_y crossref_primary_10_1016_j_ijbiomac_2024_132025 crossref_primary_10_1016_j_ejpb_2023_08_019 crossref_primary_10_1186_s12872_025_04530_0 crossref_primary_10_3389_fphar_2024_1451695 crossref_primary_10_1007_s00432_024_05671_z crossref_primary_10_3390_cells12192421 crossref_primary_10_1016_j_micpath_2024_107082 crossref_primary_10_1093_nar_gkae1036 crossref_primary_10_3389_fmolb_2024_1419093 crossref_primary_10_1038_s41416_023_02191_4 crossref_primary_10_3390_biom12081072 crossref_primary_10_3724_abbs_2025038 crossref_primary_10_1038_s41420_023_01660_2 crossref_primary_10_3390_jnt4020009 crossref_primary_10_1016_j_tig_2024_05_007 crossref_primary_10_1016_j_biopha_2024_117566 crossref_primary_10_2147_JHC_S408542 crossref_primary_10_3390_jcm13247560 crossref_primary_10_3390_pharmaceutics15082121 crossref_primary_10_2478_acm_2024_0019 crossref_primary_10_1186_s13019_024_02995_2 crossref_primary_10_1016_j_ymthe_2024_01_033 crossref_primary_10_1016_j_ijpharm_2024_125140 crossref_primary_10_3390_cancers14235748 crossref_primary_10_1038_s41598_024_77416_4 crossref_primary_10_1016_j_jep_2023_117530 crossref_primary_10_1016_j_phrs_2024_107245 crossref_primary_10_1371_journal_pone_0310315 crossref_primary_10_1016_j_metabol_2023_155657 crossref_primary_10_3390_cells12202458 crossref_primary_10_1016_j_ajps_2024_100909 crossref_primary_10_2147_JIR_S403531 crossref_primary_10_3390_ijerph20136288 crossref_primary_10_3390_ijms26020626 crossref_primary_10_1097_MOH_0000000000000803 crossref_primary_10_1186_s12885_025_13672_5 crossref_primary_10_1016_j_heliyon_2024_e30646 crossref_primary_10_2174_0113862073279344240215050056 crossref_primary_10_1016_j_ejcb_2024_151458 crossref_primary_10_1016_j_ncrna_2022_11_005 crossref_primary_10_1186_s12951_024_02533_1 crossref_primary_10_1002_alz_14230 crossref_primary_10_3892_ol_2024_14798 crossref_primary_10_1016_j_prp_2023_154652 crossref_primary_10_1002_brb3_70132 crossref_primary_10_1371_journal_pone_0311419 crossref_primary_10_1186_s12872_024_03966_0 crossref_primary_10_1016_j_mocell_2024_100145 crossref_primary_10_3390_ijms25052812 crossref_primary_10_1186_s12951_024_02797_7 crossref_primary_10_3390_macromol4020009 crossref_primary_10_1016_j_tim_2024_10_007 crossref_primary_10_1161_CIRCRESAHA_124_325447 crossref_primary_10_1016_j_gene_2025_149434 crossref_primary_10_1016_j_exer_2025_110236 crossref_primary_10_1186_s12951_024_02918_2 crossref_primary_10_1186_s12872_024_03954_4 crossref_primary_10_1096_fj_202302028R crossref_primary_10_1016_j_plipres_2022_101197 crossref_primary_10_3390_ncrna10020017 crossref_primary_10_1002_mc_23879 crossref_primary_10_1002_mc_23752 crossref_primary_10_3389_fphar_2022_934396 crossref_primary_10_1038_s41598_024_76210_6 crossref_primary_10_1080_17460441_2023_2251385 crossref_primary_10_3390_cells12030389 crossref_primary_10_1016_j_humgen_2024_201312 crossref_primary_10_1007_s10528_023_10433_6 crossref_primary_10_3390_genes16030262 crossref_primary_10_1007_s11033_024_09439_z crossref_primary_10_1021_acsnano_4c02736 crossref_primary_10_1002_osi2_1277 crossref_primary_10_1111_andr_13417 crossref_primary_10_1186_s12964_022_01017_9 crossref_primary_10_1002_advs_202414625 crossref_primary_10_1016_j_heliyon_2024_e30517 crossref_primary_10_1016_j_bcp_2023_115722 crossref_primary_10_1016_j_ijbiomac_2023_126561 crossref_primary_10_3390_ncrna9040037 crossref_primary_10_1007_s12672_024_01017_w crossref_primary_10_3892_ol_2024_14758 crossref_primary_10_1016_j_biopha_2024_116880 crossref_primary_10_3390_genes15050574 crossref_primary_10_1016_j_yjmcc_2024_11_005 crossref_primary_10_1002_eji_202149735 crossref_primary_10_1016_j_lmd_2025_100060 crossref_primary_10_1016_j_scitotenv_2023_167825 crossref_primary_10_1016_j_heliyon_2024_e31778 crossref_primary_10_1186_s12967_023_04553_1 crossref_primary_10_1016_j_neuroscience_2025_01_029 crossref_primary_10_3390_cells12192369 crossref_primary_10_1152_ajplung_00138_2024 crossref_primary_10_1186_s13059_024_03420_6 crossref_primary_10_1016_j_metabol_2025_156153 crossref_primary_10_1016_j_atherosclerosis_2024_118527 crossref_primary_10_1016_j_bbrc_2024_149790 crossref_primary_10_3390_ijms241310859 crossref_primary_10_1186_s40364_024_00618_5 crossref_primary_10_1007_s12192_023_01371_8 crossref_primary_10_1016_j_prp_2023_154690 crossref_primary_10_3390_ijms231911502 crossref_primary_10_1111_bph_16424 crossref_primary_10_1155_2023_4397829 crossref_primary_10_1007_s11033_023_08932_1 crossref_primary_10_1016_j_bbrc_2024_150568 crossref_primary_10_1002_pdi3_16 crossref_primary_10_3390_genes15040403 crossref_primary_10_1016_j_reth_2023_12_005 crossref_primary_10_1016_j_gene_2024_149129 crossref_primary_10_20935_AcadBiol7599 crossref_primary_10_1016_j_ecoenv_2024_116215 crossref_primary_10_1016_j_ijbiomac_2024_130361 crossref_primary_10_3390_ijms25052866 crossref_primary_10_1016_j_prp_2023_154320 crossref_primary_10_3390_ijms252312883 crossref_primary_10_1111_cas_15830 crossref_primary_10_1111_bph_17302 crossref_primary_10_1016_j_csbj_2024_07_024 crossref_primary_10_1038_s12276_024_01202_5 crossref_primary_10_1186_s13045_023_01468_8 crossref_primary_10_3390_nano14100894 crossref_primary_10_1016_j_preme_2025_100023 crossref_primary_10_4103_bbrj_bbrj_142_24 crossref_primary_10_3389_fonc_2023_1204030 crossref_primary_10_3390_cells11192967 crossref_primary_10_1210_clinem_dgae879 crossref_primary_10_1124_molpharm_124_000895 crossref_primary_10_1016_j_bbadis_2024_167642 crossref_primary_10_1016_j_heliyon_2024_e28127 crossref_primary_10_3389_fphar_2024_1467298 crossref_primary_10_1016_j_omtn_2023_08_014 crossref_primary_10_1002_ehf2_14523 crossref_primary_10_1016_j_humimm_2024_111173 crossref_primary_10_1016_j_pt_2023_07_001 crossref_primary_10_3389_fbioe_2024_1484151 crossref_primary_10_1016_j_xcrm_2023_101200 crossref_primary_10_1016_j_jgg_2024_03_016 crossref_primary_10_1088_1748_605X_ace39d crossref_primary_10_1016_j_jbc_2025_108276 crossref_primary_10_1016_j_micinf_2024_105379 crossref_primary_10_1016_j_tplants_2023_03_004 crossref_primary_10_1016_j_chembiol_2024_05_006 crossref_primary_10_1186_s12935_023_03133_z crossref_primary_10_3390_ijms26010415 crossref_primary_10_1096_fj_202402443R crossref_primary_10_1002_anie_202309135 crossref_primary_10_1016_j_colsurfa_2024_134749 crossref_primary_10_1016_j_intimp_2024_111708 crossref_primary_10_3390_cancers15030824 crossref_primary_10_3389_fcell_2024_1390704 crossref_primary_10_3390_biology13030144 crossref_primary_10_2174_1570159X21666230407124146 crossref_primary_10_3389_fimmu_2024_1419660 crossref_primary_10_1007_s12033_024_01315_2 crossref_primary_10_14814_phy2_70137 crossref_primary_10_1007_s11060_023_04264_z crossref_primary_10_1002_hsr2_2079 crossref_primary_10_1016_j_bioadv_2023_213354 crossref_primary_10_1016_j_jconrel_2024_06_023 crossref_primary_10_1007_s11596_024_2891_1 crossref_primary_10_1016_j_ijbiomac_2025_141400 crossref_primary_10_1016_j_placenta_2024_10_023 crossref_primary_10_1186_s12967_023_04106_6 crossref_primary_10_1016_j_neubiorev_2024_105685 crossref_primary_10_1167_tvst_12_12_5 crossref_primary_10_3389_fgeed_2023_1034720 crossref_primary_10_1016_j_omtn_2024_102355 crossref_primary_10_1093_stmcls_sxae057 crossref_primary_10_3390_jpm13081263 crossref_primary_10_3390_diseases13010006 crossref_primary_10_1016_j_bbrc_2022_06_054 crossref_primary_10_1111_jocd_16644 crossref_primary_10_1007_s00441_023_03780_8 crossref_primary_10_3390_biology12070984 crossref_primary_10_3389_fimmu_2024_1460431 crossref_primary_10_3389_adar_2022_10807 crossref_primary_10_1186_s13071_025_06689_z crossref_primary_10_1093_brain_awad025 crossref_primary_10_1186_s12885_023_11703_7 crossref_primary_10_1016_j_omtn_2024_102353 crossref_primary_10_3390_biomedicines12010193 crossref_primary_10_1016_j_omtn_2024_102228 crossref_primary_10_1007_s00068_023_02350_5 crossref_primary_10_1016_j_intimp_2025_114497 crossref_primary_10_1038_s42003_024_06080_1 crossref_primary_10_2174_0113816128310724240730072626 crossref_primary_10_1016_j_atherosclerosis_2022_12_003 crossref_primary_10_3389_fonc_2024_1483521 crossref_primary_10_7717_peerj_19082 crossref_primary_10_31083_j_jin2202031 crossref_primary_10_1038_s41598_024_76415_9 crossref_primary_10_1080_15476286_2022_2152978 crossref_primary_10_3389_fonc_2024_1491099 crossref_primary_10_1016_j_cyto_2025_156858 crossref_primary_10_3892_ijo_2024_5703 crossref_primary_10_1007_s10126_023_10260_1 crossref_primary_10_3390_v16050666 crossref_primary_10_1016_j_prp_2023_155037 crossref_primary_10_1093_postmj_qgae201 crossref_primary_10_3389_fnmol_2023_1166943 crossref_primary_10_1136_gutjnl_2023_331742 crossref_primary_10_1002_wrna_1768 crossref_primary_10_1111_dme_15319 crossref_primary_10_3390_ijms25031469 crossref_primary_10_1016_j_jtumed_2023_06_003 crossref_primary_10_1016_j_bcp_2024_116621 crossref_primary_10_1002_adtp_202400247 crossref_primary_10_3390_genes14020314 crossref_primary_10_3390_diagnostics13193072 crossref_primary_10_1038_s41417_024_00844_x crossref_primary_10_3390_biomedicines12061322 crossref_primary_10_1002_eji_202350756 crossref_primary_10_1016_j_prp_2023_155022 crossref_primary_10_1021_acsami_2c22505 crossref_primary_10_3390_ijms241914477 crossref_primary_10_3390_pr11020538 crossref_primary_10_1080_16078454_2023_2196857 crossref_primary_10_3389_fendo_2025_1525373 crossref_primary_10_1111_crj_13707 crossref_primary_10_1038_s42003_022_03987_5 crossref_primary_10_1080_03008207_2025_2472935 crossref_primary_10_1080_08820139_2024_2438339 crossref_primary_10_1016_j_ebiom_2025_105605 crossref_primary_10_1016_j_placenta_2024_10_009 crossref_primary_10_1016_j_bj_2025_100832 crossref_primary_10_1016_j_exer_2024_109827 crossref_primary_10_1038_s41598_024_67819_8 crossref_primary_10_1016_j_mcp_2024_101999 crossref_primary_10_1089_dna_2024_0181 crossref_primary_10_1016_j_snb_2024_136919 crossref_primary_10_3390_v14061118 crossref_primary_10_2174_0118715257265947231129074526 crossref_primary_10_1016_j_virol_2024_110117 crossref_primary_10_1002_jcp_30969 crossref_primary_10_1016_j_ejpb_2025_114660 crossref_primary_10_1016_j_microc_2024_110088 crossref_primary_10_3390_pharmaceutics16080986 crossref_primary_10_1007_s11626_024_00970_8 crossref_primary_10_3389_fddsv_2022_983030 crossref_primary_10_1002_1878_0261_13546 crossref_primary_10_1016_j_trim_2024_102066 crossref_primary_10_1016_j_clinsp_2024_100496 crossref_primary_10_1093_biolre_ioad112 crossref_primary_10_1038_s41584_023_01067_4 crossref_primary_10_3390_cells11223699 crossref_primary_10_1016_j_omtn_2023_06_012 crossref_primary_10_3390_cancers16061126 crossref_primary_10_1016_j_joca_2024_02_656 crossref_primary_10_1016_j_trre_2024_100831 crossref_primary_10_3390_ijms25115865 crossref_primary_10_3390_ijms23169348 crossref_primary_10_1016_j_heliyon_2023_e17218 crossref_primary_10_61958_NDJD5552 crossref_primary_10_1016_j_jconrel_2024_11_009 crossref_primary_10_1007_s11239_024_02947_6 |
Cites_doi | 10.1016/j.ymthe.2020.04.006 10.15252/emmm.201100899 10.1186/s40425-019-0670-5 10.1007/s00467-020-04892-x 10.1038/s41416-020-0802-1 10.1038/s41580-018-0045-7 10.3390/mps4010010 10.4161/rna.21998 10.1158/1535-7163.MCT-14-0209 10.1038/ncb0309-228 10.2147/IDR.S315727 10.1182/blood-2016-05-714535 10.1111/wrr.12660 10.1038/leu.2016.279 10.1111/bjh.15547 10.1007/978-1-0716-1170-8_2 10.1038/nrd.2016.246 10.1080/13543784.2020.1839888 10.2174/1381612824666171129203506 10.1038/s41573-020-0075-7 10.1093/nar/gkz1022 10.1136/jitc-2020-001617 10.1093/nar/gkaa788 10.1080/15476286.2018.1551693 10.1186/1471-2105-13-36 10.1093/nar/gkx1144 10.2165/00063030-200721040-00004 10.1016/j.molcel.2021.11.026 10.1093/eurheartj/ehaa791 10.1016/S0040-4020(98)00094-5 10.1007/s10637-016-0407-y 10.1016/j.omtn.2018.09.016 10.1016/j.omtm.2019.09.010 10.1016/j.omtn.2016.12.003 10.1093/bib/bbz111 10.1007/s12015-021-10120-2 10.1093/nar/gky1141 10.1186/1758-907X-2-8 10.3390/cells8121560 10.1093/nar/gkaa306 10.1186/s12943-018-0765-5 10.1186/s13058-021-01497-6 10.1172/JCI75852 10.1089/nat.2017.0709 10.1089/hgtb.2017.036 10.1126/science.1178178 10.3390/cells9010029 10.1038/gt.2017.14 10.1038/cr.2011.158 10.1093/eurheartj/ehaa898 10.1371/journal.pbio.0020363 10.1016/j.smim.2015.11.006 10.1101/gr.082701.108 10.1093/annonc/mdt412 10.1038/nrd.2016.199 10.1089/nat.2018.0725 10.1261/rna.044263.114 10.1016/j.jid.2018.11.007 10.1186/s12859-019-3105-x 10.1126/science.aav1741 10.1016/j.addr.2020.04.004 10.1038/nbt.3330 10.1002/jcp.21993 10.1016/j.jnutbio.2018.07.019 10.1038/ncomms10376 10.1093/nar/gkaa576 10.1089/nat.2020.0871 10.1073/pnas.2012217117 10.1038/mt.2008.103 10.1093/nar/gkab297 10.1038/nrm3838 10.1056/NEJMoa1209026 10.1016/j.bioactmat.2019.10.005 10.1021/acschembio.6b00001 10.1016/j.tig.2021.08.006 10.1093/nar/gkaa309 10.3390/ijms18010009 10.1007/978-1-4939-2727-2_8 10.1016/S0140-6736(16)31715-9 10.1093/nar/gku531 10.1038/nbt0713-577 10.3390/mps4010001 10.1128/AAC.04220-14 10.1007/s00467-020-04819-6 10.1002/wrna.1640 10.1186/s12951-019-0526-7 10.1038/s41467-020-16199-4 10.3390/genes10060457 10.1007/s40265-021-01582-2 10.3390/jcm10112471 10.1038/s41419-018-1050-7 10.3390/jcm4111951 10.2217/epi-2016-0035 10.1093/advances/nmaa095 10.1016/j.lfs.2021.119553 10.1038/mtna.2015.23 10.1038/nbt.1543 10.1002/cmdc.201000156 10.3389/fgene.2015.00340 10.1093/nar/gkz638 10.3390/pharmaceutics12070620 10.1038/nbt.2737 10.1093/nar/gkaa1161 10.1002/jcp.29584 10.1038/nature06783 10.1038/s41467-019-09882-8 10.1002/gcc.22698 10.1007/s00253-019-09934-5 10.1016/S1470-2045(17)30621-6 10.1371/journal.pone.0151771 10.1093/bioinformatics/btw189 10.2147/DDDT.S288859 10.1038/gt.2011.100 10.1038/ki.1995.205 10.1007/978-1-4939-7046-9_4 10.1042/bj3400783 10.1093/nar/gkaa259 10.1089/omi.2021.0087 10.1080/15476286.2019.1593094 10.1016/j.nano.2016.06.004 10.18632/oncotarget.11723 10.1093/nar/gkt852 10.1093/nar/gkz097 10.1093/nar/gkw116 10.1093/nar/gkaa467 10.1182/blood.V128.22.1829.1829 10.1016/j.tips.2020.08.002 10.1002/hep.29148 10.1002/hon.10_2632 10.1038/mtna.2016.7 10.3390/pharmaceutics13060817 10.1021/ac403044t |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.tig.2022.02.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 626 |
ExternalDocumentID | 35303998 10_1016_j_tig_2022_02_006 S016895252200018X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM 1RT 6I. AACTN AAFTH AAIAV ABYKQ AFCTW AFKWA AFMIJ AJBFU AJOXV AMFUW DOVZS EFLBG G8K RIG XFK ZA5 AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c512t-93fbcf02c8abf05744cbed296a2b68b9bf611e2c337676289e6ff474d1dd81f53 |
IEDL.DBID | .~1 |
ISSN | 0168-9525 |
IngestDate | Fri Jul 11 15:21:07 EDT 2025 Thu Apr 03 07:00:09 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Tue Jul 01 01:43:37 EDT 2025 Fri Feb 23 02:41:02 EST 2024 Tue Aug 26 19:13:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | cell functional manipulations microRNA therapeutics clinical trials preclinical studies |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-93fbcf02c8abf05744cbed296a2b68b9bf611e2c337676289e6ff474d1dd81f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S016895252200018X |
PMID | 35303998 |
PQID | 2640995129 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2640995129 pubmed_primary_35303998 crossref_citationtrail_10_1016_j_tig_2022_02_006 crossref_primary_10_1016_j_tig_2022_02_006 elsevier_sciencedirect_doi_10_1016_j_tig_2022_02_006 elsevier_clinicalkey_doi_10_1016_j_tig_2022_02_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 2022-Jun 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in genetics |
PublicationTitleAlternate | Trends Genet |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Samad (bb0210) 2021; 12 Fan (bb0045) 2019; 16 Abplanalp (bb0625) 2020; 30 James (bb0675) 2019; 37 Shende, Trivedi (bb0205) 2021; 17 Grunweller, Hartmann (bb0325) 2007; 21 Seto (bb0670) 2018; 183 Samaranch (bb0125) 2017; 24 Tosar (bb0230) 2014; 20 Beg (bb0145) 2017; 35 Reid (bb0280) 2016; 8 John (bb0545) 2004; 2 Saito (bb0150) 2015; 4 Zhang (bb0215) 2012; 22 Janssen (bb0660) 2013; 368 Drenth, Schattenberg (bb0385) 2020; 29 Winter (bb0525) 2009; 11 Petrek (bb0105) 2019; 103 Saatci (bb0090) 2020; 11 Kern (bb0450) 2021; 49 Gebert, MacRae (bb0030) 2019; 20 Miniarikova (bb0120) 2016; 5 Yaylak, Akgul (bb0435) 2022; 2257 Huang (bb0025) 2017; 1617 Narayan (bb0480) 2017; 31 Kotowska-Zimmer (bb0110) 2021; 12 Liu (bb0535) 2018; 17 Gallant-Behm (bb0365) 2019; 139 Seo (bb0070) 2019; 9 Herrera-Carrillo (bb0310) 2017; 28 Lu (bb0255) 2016; 128 Lavenniah (bb0130) 2020; 28 Nikolova, Chavali (bb0200) 2019; 4 Iwakawa, Tomari (bb0470) 2022; 82 Monahan (bb0315) 2021; 10 Dickinson (bb0220) 2013; 31 Gallant-Behm (bb0620) 2018; 26 Jung (bb0555) 2015 Lennox, Behlke (bb0320) 2011; 18 Zhou, Rossi (bb0405) 2017; 16 van der Ree (bb0395) 2017; 389 Friedman (bb0530) 2009; 19 Jin (bb0510) 2015; 6 Olena, Patton (bb0515) 2010; 222 Batkai (bb0640) 2021; 42 Kehl (bb0590) 2020; 48 Chow (bb0180) 2020; 41 Suresh (bb0055) 2020; 117 McGeary (bb0540) 2019; 366 Dasgupta, Chatterjee (bb0260) 2021; 4 Russo (bb0410) 2018; 13 Diener (bb0170) 2018; 9 Roberts (bb0265) 2020; 19 Gong (bb0085) 2019; 17 Mascellino (bb0300) 2021; 14 Preusse (bb0575) 2016; 11 Meng (bb0135) 2022; 24 Schultz, Chamberlain (bb0305) 2008; 16 Winkler (bb0355) 2010; 5 Norouzi (bb0065) 2018; 24 Diener (bb0455) 2020; 48 Alles (bb0005) 2019; 47 Deprey (bb0335) 2020; 48 Aguilar-de-Leyva (bb0195) 2020; 12 Lam (bb0095) 2015; 4 Zhang, Zhu (bb0425) 2021; 81 Kozomara (bb0010) 2019; 47 Biessen (bb0375) 1999; 340 Baldari (bb0295) 2019; 8 Rupaimoole, Slack (bb0485) 2017; 16 Huang (bb0665) 2020; 48 Hart (bb0035) 2019; 7 Stelma (bb0400) 2017; 66 van Zandwijk (bb0285) 2017; 18 Kelnar, Bader (bb0165) 2015; 1317 Hong (bb0140) 2020; 122 Lukasik (bb0445) 2016; 32 Ji (bb0250) 2019; 10 Zhang (bb0100) 2021; 15 Ottosen (bb0080) 2015; 59 Kardani (bb0420) 2020; 235 Elsharkasy (bb0290) 2020; 159 Jivrajani, Nivsarkar (bb0270) 2016; 12 Subramanian, Steer (bb0020) 2019; 10 Blanco (bb0275) 2015; 33 Giroux (bb0565) 2020; 48 Zhang (bb0185) 2016; 7 Khan (bb0500) 2009; 27 Hart (bb0175) 2020; 8 Koshkin (bb0330) 1998; 54 Ludwig (bb0015) 2016; 44 Gebert (bb0645) 2014; 42 Gomez (bb0350) 2015; 125 Kern (bb0605) 2020; 48 Disney (bb0050) 2016; 11 Kern (bb0585) 2021; 49 Lai (bb0490) 2019; 47 Miller (bb0340) 2018; 28 Chang (bb0570) 2020; 48 Sindhu (bb0460) 2021; 25 Jacquet (bb0465) 2021; 37 Prakash (bb0370) 2014; 42 Katoh (bb0190) 2021; 278 Gerstner (bb0600) 2020; 48 Kashtan, Gross (bb0615) 2021; 36 Fromm (bb0225) 2019; 65 Sanchita (bb0235) 2018; 15 Michaille (bb0505) 2019; 58 Grimm (bb0495) 2011; 2 van Rooij, Kauppinen (bb0040) 2014; 6 Lukasik, Zielenkiewicz (bb0240) 2016; 18 Kern (bb0440) 2020; 21 Bouchie (bb0155) 2013; 31 Laczny (bb0580) 2012; 13 Yamamoto (bb0415) 2021; 13 Alnuqaydan (bb0060) 2020; 12 Taubel (bb0635) 2021; 42 Kelnar (bb0380) 2014; 86 Shu (bb0475) 2012; 9 Licursi (bb0560) 2019; 20 Rappaport (bb0345) 1995; 47 Keskin (bb0115) 2019; 15 Reid (bb0630) 2013; 24 Riolo (bb0430) 2020; 4 Ji (bb0245) 2016; 28 Querfeld (bb0680) 2016; 128 Tokar (bb0595) 2018; 46 Panigrahi (bb0075) 2021; 96 Daige (bb0160) 2014; 13 Lanford (bb0655) 2010; 327 Osborn, Khvorova (bb0360) 2018; 28 Ha, Kim (bb0520) 2014; 15 Backes (bb0550) 2016; 7 Kashtan, Gross (bb0610) 2021; 36 Elmen (bb0650) 2008; 452 Huang (bb0390) 2017; 6 Diener (10.1016/j.tig.2022.02.006_bb0455) 2020; 48 Backes (10.1016/j.tig.2022.02.006_bb0550) 2016; 7 Huang (10.1016/j.tig.2022.02.006_bb0665) 2020; 48 Elsharkasy (10.1016/j.tig.2022.02.006_bb0290) 2020; 159 Panigrahi (10.1016/j.tig.2022.02.006_bb0075) 2021; 96 Meng (10.1016/j.tig.2022.02.006_bb0135) 2022; 24 Herrera-Carrillo (10.1016/j.tig.2022.02.006_bb0310) 2017; 28 Russo (10.1016/j.tig.2022.02.006_bb0410) 2018; 13 Miniarikova (10.1016/j.tig.2022.02.006_bb0120) 2016; 5 Norouzi (10.1016/j.tig.2022.02.006_bb0065) 2018; 24 Chang (10.1016/j.tig.2022.02.006_bb0570) 2020; 48 Hart (10.1016/j.tig.2022.02.006_bb0035) 2019; 7 Deprey (10.1016/j.tig.2022.02.006_bb0335) 2020; 48 Lukasik (10.1016/j.tig.2022.02.006_bb0240) 2016; 18 Kern (10.1016/j.tig.2022.02.006_bb0440) 2020; 21 Olena (10.1016/j.tig.2022.02.006_bb0515) 2010; 222 Friedman (10.1016/j.tig.2022.02.006_bb0530) 2009; 19 Alnuqaydan (10.1016/j.tig.2022.02.006_bb0060) 2020; 12 Zhou (10.1016/j.tig.2022.02.006_bb0405) 2017; 16 Gallant-Behm (10.1016/j.tig.2022.02.006_bb0620) 2018; 26 Huang (10.1016/j.tig.2022.02.006_bb0025) 2017; 1617 McGeary (10.1016/j.tig.2022.02.006_bb0540) 2019; 366 Zhang (10.1016/j.tig.2022.02.006_bb0100) 2021; 15 Gomez (10.1016/j.tig.2022.02.006_bb0350) 2015; 125 Winter (10.1016/j.tig.2022.02.006_bb0525) 2009; 11 Diener (10.1016/j.tig.2022.02.006_bb0170) 2018; 9 Chow (10.1016/j.tig.2022.02.006_bb0180) 2020; 41 Dickinson (10.1016/j.tig.2022.02.006_bb0220) 2013; 31 van Rooij (10.1016/j.tig.2022.02.006_bb0040) 2014; 6 Hong (10.1016/j.tig.2022.02.006_bb0140) 2020; 122 Kern (10.1016/j.tig.2022.02.006_bb0605) 2020; 48 Bouchie (10.1016/j.tig.2022.02.006_bb0155) 2013; 31 Kashtan (10.1016/j.tig.2022.02.006_bb0610) 2021; 36 Querfeld (10.1016/j.tig.2022.02.006_bb0680) 2016; 128 Tosar (10.1016/j.tig.2022.02.006_bb0230) 2014; 20 Laczny (10.1016/j.tig.2022.02.006_bb0580) 2012; 13 Janssen (10.1016/j.tig.2022.02.006_bb0660) 2013; 368 Gong (10.1016/j.tig.2022.02.006_bb0085) 2019; 17 John (10.1016/j.tig.2022.02.006_bb0545) 2004; 2 Nikolova (10.1016/j.tig.2022.02.006_bb0200) 2019; 4 Ji (10.1016/j.tig.2022.02.006_bb0250) 2019; 10 Reid (10.1016/j.tig.2022.02.006_bb0630) 2013; 24 Mascellino (10.1016/j.tig.2022.02.006_bb0300) 2021; 14 Fan (10.1016/j.tig.2022.02.006_bb0045) 2019; 16 Schultz (10.1016/j.tig.2022.02.006_bb0305) 2008; 16 Aguilar-de-Leyva (10.1016/j.tig.2022.02.006_bb0195) 2020; 12 Kern (10.1016/j.tig.2022.02.006_bb0585) 2021; 49 Jung (10.1016/j.tig.2022.02.006_bb0555) 2015 Blanco (10.1016/j.tig.2022.02.006_bb0275) 2015; 33 Ludwig (10.1016/j.tig.2022.02.006_bb0015) 2016; 44 Subramanian (10.1016/j.tig.2022.02.006_bb0020) 2019; 10 Gebert (10.1016/j.tig.2022.02.006_bb0030) 2019; 20 Daige (10.1016/j.tig.2022.02.006_bb0160) 2014; 13 Kotowska-Zimmer (10.1016/j.tig.2022.02.006_bb0110) 2021; 12 Saatci (10.1016/j.tig.2022.02.006_bb0090) 2020; 11 Dasgupta (10.1016/j.tig.2022.02.006_bb0260) 2021; 4 Jacquet (10.1016/j.tig.2022.02.006_bb0465) 2021; 37 Roberts (10.1016/j.tig.2022.02.006_bb0265) 2020; 19 Gerstner (10.1016/j.tig.2022.02.006_bb0600) 2020; 48 Kashtan (10.1016/j.tig.2022.02.006_bb0615) 2021; 36 Grunweller (10.1016/j.tig.2022.02.006_bb0325) 2007; 21 Ottosen (10.1016/j.tig.2022.02.006_bb0080) 2015; 59 Lennox (10.1016/j.tig.2022.02.006_bb0320) 2011; 18 Winkler (10.1016/j.tig.2022.02.006_bb0355) 2010; 5 Koshkin (10.1016/j.tig.2022.02.006_bb0330) 1998; 54 Biessen (10.1016/j.tig.2022.02.006_bb0375) 1999; 340 Lai (10.1016/j.tig.2022.02.006_bb0490) 2019; 47 Michaille (10.1016/j.tig.2022.02.006_bb0505) 2019; 58 Shende (10.1016/j.tig.2022.02.006_bb0205) 2021; 17 Keskin (10.1016/j.tig.2022.02.006_bb0115) 2019; 15 Licursi (10.1016/j.tig.2022.02.006_bb0560) 2019; 20 Preusse (10.1016/j.tig.2022.02.006_bb0575) 2016; 11 Zhang (10.1016/j.tig.2022.02.006_bb0425) 2021; 81 Sindhu (10.1016/j.tig.2022.02.006_bb0460) 2021; 25 Shu (10.1016/j.tig.2022.02.006_bb0475) 2012; 9 Katoh (10.1016/j.tig.2022.02.006_bb0190) 2021; 278 Lu (10.1016/j.tig.2022.02.006_bb0255) 2016; 128 Fromm (10.1016/j.tig.2022.02.006_bb0225) 2019; 65 van der Ree (10.1016/j.tig.2022.02.006_bb0395) 2017; 389 Rupaimoole (10.1016/j.tig.2022.02.006_bb0485) 2017; 16 James (10.1016/j.tig.2022.02.006_bb0675) 2019; 37 Beg (10.1016/j.tig.2022.02.006_bb0145) 2017; 35 Monahan (10.1016/j.tig.2022.02.006_bb0315) 2021; 10 Osborn (10.1016/j.tig.2022.02.006_bb0360) 2018; 28 Seo (10.1016/j.tig.2022.02.006_bb0070) 2019; 9 Drenth (10.1016/j.tig.2022.02.006_bb0385) 2020; 29 Lanford (10.1016/j.tig.2022.02.006_bb0655) 2010; 327 Miller (10.1016/j.tig.2022.02.006_bb0340) 2018; 28 Petrek (10.1016/j.tig.2022.02.006_bb0105) 2019; 103 Seto (10.1016/j.tig.2022.02.006_bb0670) 2018; 183 Lukasik (10.1016/j.tig.2022.02.006_bb0445) 2016; 32 Kelnar (10.1016/j.tig.2022.02.006_bb0380) 2014; 86 Kehl (10.1016/j.tig.2022.02.006_bb0590) 2020; 48 Baldari (10.1016/j.tig.2022.02.006_bb0295) 2019; 8 Disney (10.1016/j.tig.2022.02.006_bb0050) 2016; 11 Gallant-Behm (10.1016/j.tig.2022.02.006_bb0365) 2019; 139 Huang (10.1016/j.tig.2022.02.006_bb0390) 2017; 6 Stelma (10.1016/j.tig.2022.02.006_bb0400) 2017; 66 Giroux (10.1016/j.tig.2022.02.006_bb0565) 2020; 48 Suresh (10.1016/j.tig.2022.02.006_bb0055) 2020; 117 Lavenniah (10.1016/j.tig.2022.02.006_bb0130) 2020; 28 Kern (10.1016/j.tig.2022.02.006_bb0450) 2021; 49 Lam (10.1016/j.tig.2022.02.006_bb0095) 2015; 4 Khan (10.1016/j.tig.2022.02.006_bb0500) 2009; 27 Liu (10.1016/j.tig.2022.02.006_bb0535) 2018; 17 Saito (10.1016/j.tig.2022.02.006_bb0150) 2015; 4 Zhang (10.1016/j.tig.2022.02.006_bb0215) 2012; 22 Tokar (10.1016/j.tig.2022.02.006_bb0595) 2018; 46 Kelnar (10.1016/j.tig.2022.02.006_bb0165) 2015; 1317 Samaranch (10.1016/j.tig.2022.02.006_bb0125) 2017; 24 Elmen (10.1016/j.tig.2022.02.006_bb0650) 2008; 452 Ji (10.1016/j.tig.2022.02.006_bb0245) 2016; 28 Abplanalp (10.1016/j.tig.2022.02.006_bb0625) 2020; 30 Iwakawa (10.1016/j.tig.2022.02.006_bb0470) 2022; 82 Yaylak (10.1016/j.tig.2022.02.006_bb0435) 2022; 2257 Gebert (10.1016/j.tig.2022.02.006_bb0645) 2014; 42 Sanchita (10.1016/j.tig.2022.02.006_bb0235) 2018; 15 Yamamoto (10.1016/j.tig.2022.02.006_bb0415) 2021; 13 Samad (10.1016/j.tig.2022.02.006_bb0210) 2021; 12 Kardani (10.1016/j.tig.2022.02.006_bb0420) 2020; 235 Batkai (10.1016/j.tig.2022.02.006_bb0640) 2021; 42 Reid (10.1016/j.tig.2022.02.006_bb0280) 2016; 8 Ha (10.1016/j.tig.2022.02.006_bb0520) 2014; 15 Grimm (10.1016/j.tig.2022.02.006_bb0495) 2011; 2 Taubel (10.1016/j.tig.2022.02.006_bb0635) 2021; 42 van Zandwijk (10.1016/j.tig.2022.02.006_bb0285) 2017; 18 Jivrajani (10.1016/j.tig.2022.02.006_bb0270) 2016; 12 Prakash (10.1016/j.tig.2022.02.006_bb0370) 2014; 42 Riolo (10.1016/j.tig.2022.02.006_bb0430) 2020; 4 Narayan (10.1016/j.tig.2022.02.006_bb0480) 2017; 31 Alles (10.1016/j.tig.2022.02.006_bb0005) 2019; 47 Jin (10.1016/j.tig.2022.02.006_bb0510) 2015; 6 Hart (10.1016/j.tig.2022.02.006_bb0175) 2020; 8 Rappaport (10.1016/j.tig.2022.02.006_bb0345) 1995; 47 Kozomara (10.1016/j.tig.2022.02.006_bb0010) 2019; 47 Zhang (10.1016/j.tig.2022.02.006_bb0185) 2016; 7 |
References_xml | – volume: 20 start-page: 21 year: 2019 end-page: 37 ident: bb0030 article-title: Regulation of microRNA function in animals publication-title: Nat. Rev. Mol. Cell Biol. – volume: 9 start-page: 29 year: 2019 ident: bb0070 article-title: MicroRNA-based combinatorial cancer therapy: Effects of microRNAs on the efficacy of anti-cancer therapies publication-title: Cells – volume: 48 start-page: 7623 year: 2020 end-page: 7639 ident: bb0335 article-title: A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics publication-title: Nucleic Acids Res. – volume: 17 start-page: 1239 year: 2021 end-page: 1250 ident: bb0205 article-title: 3D printed bioconstructs: Regenerative modulation for genetic expression publication-title: Stem Cell Rev. Rep. – volume: 278 year: 2021 ident: bb0190 article-title: Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix publication-title: Life Sci. – volume: 17 start-page: 64 year: 2018 ident: bb0535 article-title: Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer publication-title: Mol. Cancer – volume: 16 start-page: 707 year: 2019 end-page: 718 ident: bb0045 article-title: Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics publication-title: RNA Biol. – volume: 28 start-page: 177 year: 2017 end-page: 190 ident: bb0310 article-title: Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors publication-title: Hum. Gene Ther. Methods – volume: 7 start-page: 187 year: 2019 ident: bb0035 article-title: miR-34a as hub of T cell regulation networks publication-title: J. Immunother. Cancer – volume: 42 start-page: 192 year: 2021 end-page: 201 ident: bb0640 article-title: CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure publication-title: Eur. Heart J. – volume: 183 start-page: 428 year: 2018 end-page: 444 ident: bb0670 article-title: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma publication-title: Br. J. Haematol. – volume: 33 start-page: 941 year: 2015 end-page: 951 ident: bb0275 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. – volume: 28 start-page: 128 year: 2018 end-page: 136 ident: bb0360 article-title: Improving siRNA delivery in vivo through lipid conjugation publication-title: Nucleic Acid Ther. – volume: 10 year: 2019 ident: bb0020 article-title: Special issue: MicroRNA regulation in health and disease publication-title: Genes (Basel) – volume: 8 start-page: 1560 year: 2019 ident: bb0295 article-title: Extracellular vesicles – encapsulated microRNA-125b produced in genetically modified mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation publication-title: Cells – volume: 48 start-page: 10164 year: 2020 end-page: 10183 ident: bb0455 article-title: Quantitative and time-resolved miRNA pattern of early human T cell activation publication-title: Nucleic Acids Res. – volume: 66 start-page: 57 year: 2017 end-page: 68 ident: bb0400 article-title: Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-microRNA-122, RG-101 publication-title: Hepatology – volume: 86 start-page: 1534 year: 2014 end-page: 1542 ident: bb0380 article-title: Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates publication-title: Anal. Chem. – volume: 11 start-page: 228 year: 2009 end-page: 234 ident: bb0525 article-title: Many roads to maturity: MicroRNA biogenesis pathways and their regulation publication-title: Nat. Cell Biol. – volume: 340 start-page: 783 year: 1999 end-page: 792 ident: bb0375 article-title: Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo publication-title: Biochem. J. – volume: 42 start-page: 178 year: 2021 end-page: 188 ident: bb0635 article-title: Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study publication-title: Eur. Heart J. – volume: 36 start-page: 711 year: 2021 end-page: 719 ident: bb0610 article-title: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults – an update for 2020 publication-title: Pediatr. Nephrol. – volume: 128 start-page: 1829 year: 2016 ident: bb0680 article-title: Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL publication-title: Blood – volume: 18 start-page: 1111 year: 2011 end-page: 1120 ident: bb0320 article-title: Chemical modification and design of anti-miRNA oligonucleotides publication-title: Gene Ther. – volume: 366 start-page: eaav1741 year: 2019 ident: bb0540 article-title: The biochemical basis of microRNA targeting efficacy publication-title: Science – volume: 117 start-page: 33197 year: 2020 end-page: 33203 ident: bb0055 article-title: A general fragment-based approach to identify and optimize bioactive ligands targeting RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 203 year: 2017 end-page: 222 ident: bb0485 article-title: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases publication-title: Nat. Rev. Drug Discov. – volume: 4 start-page: 10 year: 2021 ident: bb0260 article-title: Recent advances in miRNA delivery systems publication-title: Methods Protoc. – volume: 96 year: 2021 ident: bb0075 article-title: miR-122 affects both the initiation and maintenance of hepatitis C virus infections publication-title: J. Virol. – volume: 31 start-page: 965 year: 2013 end-page: 967 ident: bb0220 article-title: Lack of detectable oral bioavailability of plant microRNAs after feeding in mice publication-title: Nat. Biotechnol. – volume: 2257 start-page: 33 year: 2022 end-page: 55 ident: bb0435 article-title: Experimental microRNA detection methods publication-title: Methods Mol. Biol. – volume: 6 start-page: 851 year: 2014 end-page: 864 ident: bb0040 article-title: Development of microRNA therapeutics is coming of age publication-title: EMBO Mol. Med. – volume: 13 start-page: 2352 year: 2014 end-page: 2360 ident: bb0160 article-title: Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer publication-title: Mol. Cancer Ther. – volume: 5 year: 2016 ident: bb0120 article-title: Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington’s disease publication-title: Mol. Ther. Nucleic Acids – volume: 18 start-page: 1386 year: 2017 end-page: 1396 ident: bb0285 article-title: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study publication-title: Lancet Oncol. – volume: 49 start-page: W409 year: 2021 end-page: W416 ident: bb0585 article-title: miRTargetLink 2.0 – interactive miRNA target gene and target pathway networks publication-title: Nucleic Acids Res. – volume: 13 start-page: 817 year: 2021 ident: bb0415 article-title: Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides publication-title: Pharmaceutics – volume: 11 start-page: 2416 year: 2020 ident: bb0090 article-title: Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer publication-title: Nat. Commun. – volume: 59 start-page: 599 year: 2015 end-page: 608 ident: bb0080 article-title: In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122 publication-title: Antimicrob. Agents Chemother. – volume: 139 start-page: 1073 year: 2019 end-page: 1081 ident: bb0365 article-title: A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin publication-title: J. Invest. Dermatol. – volume: 20 start-page: 545 year: 2019 ident: bb0560 article-title: MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis publication-title: BMC Bioinformatics – volume: 122 start-page: 1630 year: 2020 end-page: 1637 ident: bb0140 article-title: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours publication-title: Br. J. Cancer – volume: 24 start-page: 171 year: 2018 end-page: 177 ident: bb0065 article-title: Curcumin as an adjunct therapy and microRNA modulator in breast cancer publication-title: Curr. Pharm. Des. – volume: 7 start-page: 10376 year: 2016 ident: bb0185 article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects publication-title: Nat. Commun. – volume: 82 start-page: 30 year: 2022 end-page: 43 ident: bb0470 article-title: Life of RISC: Formation, action, and degradation of RNA-induced silencing complex publication-title: Mol. Cell – volume: 36 start-page: 731 year: 2021 ident: bb0615 article-title: Correction to: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020 publication-title: Pediatr. Nephrol. – volume: 4 start-page: 1 year: 2020 ident: bb0430 article-title: miRNA targets: From prediction tools to experimental validation publication-title: Methods Protoc. – volume: 47 start-page: 7753 year: 2019 end-page: 7766 ident: bb0490 article-title: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer publication-title: Nucleic Acids Res. – volume: 42 start-page: 609 year: 2014 end-page: 621 ident: bb0645 article-title: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122 publication-title: Nucleic Acids Res. – volume: 58 start-page: 208 year: 2019 end-page: 218 ident: bb0505 article-title: miR-155 expression in antitumor immunity: The higher the better? publication-title: Genes Chromosom. Cancer – volume: 4 start-page: 271 year: 2019 end-page: 292 ident: bb0200 article-title: Recent advances in biomaterials for 3D scaffolds: A review publication-title: Bioact. Mater. – volume: 12 year: 2021 ident: bb0110 article-title: Artificial miRNAs as therapeutic tools: Challenges and opportunities publication-title: Wiley Interdiscip. Rev. RNA – volume: 12 start-page: 3531 year: 2020 end-page: 3556 ident: bb0060 article-title: Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer publication-title: Am. J. Transl. Res. – volume: 29 start-page: 1365 year: 2020 end-page: 1375 ident: bb0385 article-title: The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success publication-title: Expert Opin. Investig. Drugs – volume: 25 start-page: 545 year: 2021 end-page: 566 ident: bb0460 article-title: MicroRNA interactome multiomics characterization for cancer research and personalized medicine: An expert review publication-title: OMICS – volume: 19 start-page: 92 year: 2009 end-page: 105 ident: bb0530 article-title: Most mammalian mRNAs are conserved targets of microRNAs publication-title: Genome Res. – volume: 389 start-page: 709 year: 2017 end-page: 717 ident: bb0395 article-title: Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial publication-title: Lancet – volume: 48 start-page: D148 year: 2020 end-page: D154 ident: bb0665 article-title: miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database publication-title: Nucleic Acids Res. – volume: 24 start-page: 253 year: 2017 end-page: 261 ident: bb0125 article-title: MR-guided parenchymal delivery of adeno-associated viral vector serotype 5 in non-human primate brain publication-title: Gene Ther. – volume: 31 start-page: 808 year: 2017 end-page: 820 ident: bb0480 article-title: Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia publication-title: Leukemia – volume: 17 start-page: 93 year: 2019 ident: bb0085 article-title: Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy publication-title: J. Nanobiotechnol. – volume: 41 start-page: 715 year: 2020 end-page: 729 ident: bb0180 article-title: Inhaled RNA therapy: From promise to reality publication-title: Trends Pharmacol. Sci. – volume: 12 start-page: 197 year: 2021 end-page: 211 ident: bb0210 article-title: Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation publication-title: Adv. Nutr. – volume: 47 start-page: 3353 year: 2019 end-page: 3364 ident: bb0005 article-title: An estimate of the total number of true human miRNAs publication-title: Nucleic Acids Res. – volume: 16 start-page: 1189 year: 2008 end-page: 1199 ident: bb0305 article-title: Recombinant adeno-associated virus transduction and integration publication-title: Mol. Ther. – volume: 21 start-page: 1999 year: 2020 end-page: 2010 ident: bb0440 article-title: What’s the target: Understanding two decades of in silico microRNA-target prediction publication-title: Brief. Bioinform. – volume: 11 year: 2016 ident: bb0575 article-title: miTALOS v2: Analyzing tissue specific microRNA function publication-title: PLoS One – volume: 19 start-page: 673 year: 2020 end-page: 694 ident: bb0265 article-title: Advances in oligonucleotide drug delivery publication-title: Nat. Rev. Drug Discov. – volume: 8 start-page: 1079 year: 2016 end-page: 1085 ident: bb0280 article-title: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer publication-title: Epigenomics – volume: 2 year: 2004 ident: bb0545 article-title: Human microRNA targets publication-title: PLoS Biol. – volume: 48 start-page: D142 year: 2020 end-page: D147 ident: bb0590 article-title: miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database publication-title: Nucleic Acids Res. – volume: 47 start-page: D155 year: 2019 end-page: D162 ident: bb0010 article-title: miRBase: From microRNA sequences to function publication-title: Nucleic Acids Res. – volume: 37 start-page: 1060 year: 2021 end-page: 1063 ident: bb0465 article-title: New technologies for improved relevance in miRNA research publication-title: Trends Genet. – volume: 48 start-page: W244 year: 2020 end-page: W251 ident: bb0570 article-title: miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology publication-title: Nucleic Acids Res. – volume: 128 start-page: 1424 year: 2016 end-page: 1435 ident: bb0255 article-title: miR-146b antagomir-treated human Tregs acquire increased GVHD inhibitory potency publication-title: Blood – volume: 159 start-page: 332 year: 2020 end-page: 343 ident: bb0290 article-title: Extracellular vesicles as drug delivery systems: Why and how? publication-title: Adv. Drug Deliv. Rev. – volume: 4 year: 2015 ident: bb0095 article-title: siRNA versus miRNA as therapeutics for gene silencing publication-title: Mol. Ther. Nucleic Acids – volume: 47 start-page: 1462 year: 1995 end-page: 1469 ident: bb0345 article-title: Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy publication-title: Kidney Int. – volume: 2 start-page: 8 year: 2011 ident: bb0495 article-title: The dose can make the poison: Lessons learned from adverse in vivo toxicities caused by RNAi overexpression publication-title: Silence – volume: 7 start-page: 71514 year: 2016 end-page: 71525 ident: bb0550 article-title: Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades publication-title: Oncotarget – volume: 235 start-page: 6887 year: 2020 end-page: 6895 ident: bb0420 article-title: Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer publication-title: J. Cell. Physiol. – volume: 15 start-page: 1433 year: 2018 end-page: 1439 ident: bb0235 article-title: Dietary plant miRNAs as an augmented therapy: Cross-kingdom gene regulation publication-title: RNA Biol. – volume: 13 start-page: 334 year: 2018 end-page: 346 ident: bb0410 article-title: Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells publication-title: Mol. Ther. Nucleic Acids – volume: 9 start-page: 1008 year: 2018 ident: bb0170 article-title: Modulation of intracellular calcium signaling by microRNA-34a-5p publication-title: Cell Death Dis. – volume: 54 start-page: 3607 year: 1998 end-page: 3630 ident: bb0330 article-title: LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition publication-title: Tetrahedron – volume: 31 start-page: 577 year: 2013 ident: bb0155 article-title: First microRNA mimic enters clinic publication-title: Nat. Biotechnol. – volume: 18 start-page: 9 year: 2016 ident: bb0240 article-title: Plant microRNAs – novel players in natural medicine? publication-title: Int. J. Mol. Sci. – volume: 20 start-page: 754 year: 2014 end-page: 757 ident: bb0230 article-title: Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: Underestimated effects of contamination in NGS publication-title: RNA – volume: 48 start-page: W252 year: 2020 end-page: W261 ident: bb0565 article-title: miRViz: A novel webserver application to visualize and interpret microRNA datasets publication-title: Nucleic Acids Res. – volume: 15 start-page: 509 year: 2014 end-page: 524 ident: bb0520 article-title: Regulation of microRNA biogenesis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 65 start-page: 139 year: 2019 end-page: 140 ident: bb0225 article-title: Plant microRNAs in human sera are likely contaminants publication-title: J. Nutr. Biochem. – volume: 15 start-page: 275 year: 2019 end-page: 284 ident: bb0115 article-title: AAV5-miHTT lowers huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes publication-title: Mol. Ther. Methods Clin. Dev. – volume: 27 start-page: 549 year: 2009 end-page: 555 ident: bb0500 article-title: Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs publication-title: Nat. Biotechnol. – volume: 11 start-page: 1720 year: 2016 end-page: 1728 ident: bb0050 article-title: Inforna 2.0: A platform for the sequence-based design of small molecules targeting structured RNAs publication-title: ACS Chem. Biol. – volume: 452 start-page: 896 year: 2008 end-page: 899 ident: bb0650 article-title: LNA-mediated microRNA silencing in non-human primates publication-title: Nature – volume: 327 start-page: 198 year: 2010 end-page: 201 ident: bb0655 article-title: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection publication-title: Science – volume: 368 start-page: 1685 year: 2013 end-page: 1694 ident: bb0660 article-title: Treatment of HCV infection by targeting microRNA publication-title: N. Engl. J. Med. – volume: 48 start-page: W521 year: 2020 end-page: W528 ident: bb0605 article-title: miEAA 2.0: Integrating multi-species microRNA enrichment analysis and workflow management systems publication-title: Nucleic Acids Res. – volume: 48 start-page: W515 year: 2020 end-page: W520 ident: bb0600 article-title: GeneTrail 3: Advanced high-throughput enrichment analysis publication-title: Nucleic Acids Res. – volume: 28 start-page: 1506 year: 2020 end-page: 1517 ident: bb0130 article-title: Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy publication-title: Mol. Ther. – volume: 28 start-page: 45 year: 2016 end-page: 53 ident: bb0245 article-title: Enhancing adoptive T cell immunotherapy with microRNA therapeutics publication-title: Semin. Immunol. – year: 2015 ident: bb0555 article-title: miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data publication-title: BMC Proc. 9 (Suppl 6 Proceedings of the 5th Symposium on Biological Data), S2 – volume: 24 start-page: 1 year: 2022 ident: bb0135 article-title: Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression publication-title: Breast Cancer Res. – volume: 21 start-page: 235 year: 2007 end-page: 243 ident: bb0325 article-title: Locked nucleic acid oligonucleotides: The next generation of antisense agents? publication-title: BioDrugs – volume: 44 start-page: 3865 year: 2016 end-page: 3877 ident: bb0015 article-title: Distribution of miRNA expression across human tissues publication-title: Nucleic Acids Res. – volume: 4 start-page: 1951 year: 2015 end-page: 1959 ident: bb0150 article-title: microRNA-34a as a therapeutic agent against human cancer publication-title: J. Clin. Med. – volume: 42 start-page: 8796 year: 2014 end-page: 8807 ident: bb0370 article-title: Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice publication-title: Nucleic Acids Res. – volume: 6 start-page: 340 year: 2015 ident: bb0510 article-title: Transfection of microRNA mimics should be used with caution publication-title: Front. Genet. – volume: 32 start-page: 2722 year: 2016 end-page: 2724 ident: bb0445 article-title: Tools4miRs – one place to gather all the tools for miRNA analysis publication-title: Bioinformatics – volume: 5 start-page: 1344 year: 2010 end-page: 1352 ident: bb0355 article-title: Off-target effects related to the phosphorothioate modification of nucleic acids publication-title: ChemMedChem – volume: 35 start-page: 180 year: 2017 end-page: 188 ident: bb0145 article-title: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors publication-title: Investig. New Drugs – volume: 1617 start-page: 57 year: 2017 end-page: 67 ident: bb0025 article-title: MicroRNAs: Biomarkers, diagnostics, and therapeutics publication-title: Methods Mol. Biol. – volume: 24 start-page: 3128 year: 2013 end-page: 3135 ident: bb0630 article-title: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma publication-title: Ann. Oncol. – volume: 1317 start-page: 125 year: 2015 end-page: 133 ident: bb0165 article-title: A qRT-PCR method for determining the biodistribution profile of a miR-34a mimic publication-title: Methods Mol. Biol. – volume: 46 start-page: D360 year: 2018 end-page: D370 ident: bb0595 article-title: mirDIP 4.1 – integrative database of human microRNA target predictions publication-title: Nucleic Acids Res. – volume: 26 start-page: 311 year: 2018 end-page: 323 ident: bb0620 article-title: A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds publication-title: Wound Repair Regen. – volume: 6 start-page: 116 year: 2017 end-page: 132 ident: bb0390 article-title: Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics publication-title: Mol. Ther. Nucleic Acids – volume: 22 start-page: 107 year: 2012 end-page: 126 ident: bb0215 article-title: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA publication-title: Cell Res. – volume: 13 start-page: 36 year: 2012 ident: bb0580 article-title: miRTrail – a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases publication-title: BMC Bioinformatics – volume: 12 start-page: 620 year: 2020 ident: bb0195 article-title: 3D printed drug delivery systems based on natural products publication-title: Pharmaceutics – volume: 81 start-page: 1691 year: 2021 end-page: 1692 ident: bb0425 article-title: Comment on: ‘MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19’ publication-title: Drugs – volume: 125 start-page: 141 year: 2015 end-page: 156 ident: bb0350 article-title: Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways publication-title: J. Clin. Invest. – volume: 9 start-page: 1275 year: 2012 end-page: 1287 ident: bb0475 article-title: Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs publication-title: RNA Biol. – volume: 222 start-page: 540 year: 2010 end-page: 545 ident: bb0515 article-title: Genomic organization of microRNAs publication-title: J. Cell. Physiol. – volume: 15 start-page: 721 year: 2021 end-page: 733 ident: bb0100 article-title: The risks of miRNA therapeutics: In a drug target perspective publication-title: Drug Des. Devel. Ther. – volume: 14 start-page: 3459 year: 2021 end-page: 3476 ident: bb0300 article-title: Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety publication-title: Infect. Drug Resist. – volume: 37 start-page: 562 year: 2019 end-page: 563 ident: bb0675 article-title: SOLAR: A phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with mycosis fungoides (MF) [abstract] publication-title: Hematol. Oncol. – volume: 8 year: 2020 ident: bb0175 article-title: Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4 publication-title: J. Immunother. Cancer – volume: 12 start-page: 2485 year: 2016 end-page: 2498 ident: bb0270 article-title: Ligand-targeted bacterial minicells: Futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells publication-title: Nanomedicine – volume: 16 start-page: 181 year: 2017 end-page: 202 ident: bb0405 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat. Rev. Drug Discov. – volume: 10 start-page: 2471 year: 2021 ident: bb0315 article-title: Emerging immunogenicity and genotoxicity considerations of adeno-associated virus vector gene therapy for hemophilia publication-title: J. Clin. Med. – volume: 49 start-page: 127 year: 2021 end-page: 144 ident: bb0450 article-title: Validation of human microRNA target pathways enables evaluation of target prediction tools publication-title: Nucleic Acids Res. – volume: 10 start-page: 2157 year: 2019 ident: bb0250 article-title: miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8 publication-title: Nat. Commun. – volume: 103 start-page: 6107 year: 2019 end-page: 6117 ident: bb0105 article-title: Bioengineering of a single long noncoding RNA molecule that carries multiple small RNAs publication-title: Appl. Microbiol. Biotechnol. – volume: 28 start-page: 119 year: 2018 end-page: 127 ident: bb0340 article-title: Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver publication-title: Nucleic Acid Ther. – volume: 30 start-page: 335 year: 2020 end-page: 345 ident: bb0625 article-title: Efficiency and target derepression of anti-miR-92a: Results of a first in human study publication-title: Nucleic Acid Ther. – volume: 28 start-page: 1506 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0130 article-title: Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.04.006 – volume: 6 start-page: 851 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0040 article-title: Development of microRNA therapeutics is coming of age publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201100899 – volume: 48 start-page: D148 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0665 article-title: miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database publication-title: Nucleic Acids Res. – volume: 7 start-page: 187 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0035 article-title: miR-34a as hub of T cell regulation networks publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0670-5 – volume: 36 start-page: 731 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0615 article-title: Correction to: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020 publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-020-04892-x – volume: 122 start-page: 1630 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0140 article-title: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours publication-title: Br. J. Cancer doi: 10.1038/s41416-020-0802-1 – volume: 20 start-page: 21 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0030 article-title: Regulation of microRNA function in animals publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0045-7 – volume: 4 start-page: 10 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0260 article-title: Recent advances in miRNA delivery systems publication-title: Methods Protoc. doi: 10.3390/mps4010010 – volume: 9 start-page: 1275 year: 2012 ident: 10.1016/j.tig.2022.02.006_bb0475 article-title: Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs publication-title: RNA Biol. doi: 10.4161/rna.21998 – volume: 13 start-page: 2352 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0160 article-title: Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-14-0209 – volume: 11 start-page: 228 year: 2009 ident: 10.1016/j.tig.2022.02.006_bb0525 article-title: Many roads to maturity: MicroRNA biogenesis pathways and their regulation publication-title: Nat. Cell Biol. doi: 10.1038/ncb0309-228 – volume: 14 start-page: 3459 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0300 article-title: Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S315727 – volume: 128 start-page: 1424 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0255 article-title: miR-146b antagomir-treated human Tregs acquire increased GVHD inhibitory potency publication-title: Blood doi: 10.1182/blood-2016-05-714535 – volume: 26 start-page: 311 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0620 article-title: A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds publication-title: Wound Repair Regen. doi: 10.1111/wrr.12660 – volume: 31 start-page: 808 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0480 article-title: Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia publication-title: Leukemia doi: 10.1038/leu.2016.279 – volume: 183 start-page: 428 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0670 article-title: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma publication-title: Br. J. Haematol. doi: 10.1111/bjh.15547 – volume: 2257 start-page: 33 year: 2022 ident: 10.1016/j.tig.2022.02.006_bb0435 article-title: Experimental microRNA detection methods publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-1170-8_2 – volume: 16 start-page: 203 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0485 article-title: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.246 – volume: 29 start-page: 1365 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0385 article-title: The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success publication-title: Expert Opin. Investig. Drugs doi: 10.1080/13543784.2020.1839888 – volume: 24 start-page: 171 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0065 article-title: Curcumin as an adjunct therapy and microRNA modulator in breast cancer publication-title: Curr. Pharm. Des. doi: 10.2174/1381612824666171129203506 – volume: 19 start-page: 673 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0265 article-title: Advances in oligonucleotide drug delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0075-7 – volume: 48 start-page: D142 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0590 article-title: miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1022 – volume: 8 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0175 article-title: Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4+, CD8+ T cells, and M1 macrophages publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-001617 – volume: 48 start-page: 10164 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0455 article-title: Quantitative and time-resolved miRNA pattern of early human T cell activation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa788 – volume: 15 start-page: 1433 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0235 article-title: Dietary plant miRNAs as an augmented therapy: Cross-kingdom gene regulation publication-title: RNA Biol. doi: 10.1080/15476286.2018.1551693 – volume: 13 start-page: 36 year: 2012 ident: 10.1016/j.tig.2022.02.006_bb0580 article-title: miRTrail – a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-36 – volume: 46 start-page: D360 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0595 article-title: mirDIP 4.1 – integrative database of human microRNA target predictions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1144 – volume: 21 start-page: 235 year: 2007 ident: 10.1016/j.tig.2022.02.006_bb0325 article-title: Locked nucleic acid oligonucleotides: The next generation of antisense agents? publication-title: BioDrugs doi: 10.2165/00063030-200721040-00004 – volume: 82 start-page: 30 year: 2022 ident: 10.1016/j.tig.2022.02.006_bb0470 article-title: Life of RISC: Formation, action, and degradation of RNA-induced silencing complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.11.026 – volume: 42 start-page: 192 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0640 article-title: CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa791 – volume: 54 start-page: 3607 year: 1998 ident: 10.1016/j.tig.2022.02.006_bb0330 article-title: LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition publication-title: Tetrahedron doi: 10.1016/S0040-4020(98)00094-5 – volume: 35 start-page: 180 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0145 article-title: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors publication-title: Investig. New Drugs doi: 10.1007/s10637-016-0407-y – volume: 13 start-page: 334 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0410 article-title: Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.09.016 – volume: 15 start-page: 275 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0115 article-title: AAV5-miHTT lowers huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2019.09.010 – volume: 6 start-page: 116 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0390 article-title: Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2016.12.003 – volume: 21 start-page: 1999 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0440 article-title: What’s the target: Understanding two decades of in silico microRNA-target prediction publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz111 – volume: 17 start-page: 1239 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0205 article-title: 3D printed bioconstructs: Regenerative modulation for genetic expression publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-021-10120-2 – volume: 47 start-page: D155 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0010 article-title: miRBase: From microRNA sequences to function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1141 – volume: 2 start-page: 8 year: 2011 ident: 10.1016/j.tig.2022.02.006_bb0495 article-title: The dose can make the poison: Lessons learned from adverse in vivo toxicities caused by RNAi overexpression publication-title: Silence doi: 10.1186/1758-907X-2-8 – volume: 8 start-page: 1560 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0295 article-title: Extracellular vesicles – encapsulated microRNA-125b produced in genetically modified mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation publication-title: Cells doi: 10.3390/cells8121560 – volume: 48 start-page: W515 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0600 article-title: GeneTrail 3: Advanced high-throughput enrichment analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa306 – volume: 17 start-page: 64 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0535 article-title: Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer publication-title: Mol. Cancer doi: 10.1186/s12943-018-0765-5 – volume: 24 start-page: 1 year: 2022 ident: 10.1016/j.tig.2022.02.006_bb0135 article-title: Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression publication-title: Breast Cancer Res. doi: 10.1186/s13058-021-01497-6 – volume: 125 start-page: 141 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0350 article-title: Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways publication-title: J. Clin. Invest. doi: 10.1172/JCI75852 – volume: 28 start-page: 119 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0340 article-title: Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2017.0709 – volume: 28 start-page: 177 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0310 article-title: Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors publication-title: Hum. Gene Ther. Methods doi: 10.1089/hgtb.2017.036 – volume: 12 start-page: 3531 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0060 article-title: Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer publication-title: Am. J. Transl. Res. – volume: 327 start-page: 198 year: 2010 ident: 10.1016/j.tig.2022.02.006_bb0655 article-title: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection publication-title: Science doi: 10.1126/science.1178178 – volume: 9 start-page: 29 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0070 article-title: MicroRNA-based combinatorial cancer therapy: Effects of microRNAs on the efficacy of anti-cancer therapies publication-title: Cells doi: 10.3390/cells9010029 – volume: 24 start-page: 253 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0125 article-title: MR-guided parenchymal delivery of adeno-associated viral vector serotype 5 in non-human primate brain publication-title: Gene Ther. doi: 10.1038/gt.2017.14 – volume: 22 start-page: 107 year: 2012 ident: 10.1016/j.tig.2022.02.006_bb0215 article-title: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA publication-title: Cell Res. doi: 10.1038/cr.2011.158 – volume: 42 start-page: 178 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0635 article-title: Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa898 – volume: 2 year: 2004 ident: 10.1016/j.tig.2022.02.006_bb0545 article-title: Human microRNA targets publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020363 – volume: 28 start-page: 45 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0245 article-title: Enhancing adoptive T cell immunotherapy with microRNA therapeutics publication-title: Semin. Immunol. doi: 10.1016/j.smim.2015.11.006 – volume: 19 start-page: 92 year: 2009 ident: 10.1016/j.tig.2022.02.006_bb0530 article-title: Most mammalian mRNAs are conserved targets of microRNAs publication-title: Genome Res. doi: 10.1101/gr.082701.108 – volume: 24 start-page: 3128 year: 2013 ident: 10.1016/j.tig.2022.02.006_bb0630 article-title: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma publication-title: Ann. Oncol. doi: 10.1093/annonc/mdt412 – volume: 16 start-page: 181 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0405 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.199 – volume: 28 start-page: 128 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0360 article-title: Improving siRNA delivery in vivo through lipid conjugation publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2018.0725 – volume: 20 start-page: 754 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0230 article-title: Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: Underestimated effects of contamination in NGS publication-title: RNA doi: 10.1261/rna.044263.114 – volume: 139 start-page: 1073 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0365 article-title: A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2018.11.007 – volume: 96 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0075 article-title: miR-122 affects both the initiation and maintenance of hepatitis C virus infections publication-title: J. Virol. – volume: 20 start-page: 545 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0560 article-title: MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3105-x – volume: 366 start-page: eaav1741 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0540 article-title: The biochemical basis of microRNA targeting efficacy publication-title: Science doi: 10.1126/science.aav1741 – volume: 159 start-page: 332 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0290 article-title: Extracellular vesicles as drug delivery systems: Why and how? publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.04.004 – volume: 33 start-page: 941 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0275 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 222 start-page: 540 year: 2010 ident: 10.1016/j.tig.2022.02.006_bb0515 article-title: Genomic organization of microRNAs publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21993 – volume: 65 start-page: 139 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0225 article-title: Plant microRNAs in human sera are likely contaminants publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2018.07.019 – volume: 7 start-page: 10376 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0185 article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects publication-title: Nat. Commun. doi: 10.1038/ncomms10376 – volume: 48 start-page: 7623 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0335 article-title: A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa576 – volume: 30 start-page: 335 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0625 article-title: Efficiency and target derepression of anti-miR-92a: Results of a first in human study publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2020.0871 – volume: 117 start-page: 33197 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0055 article-title: A general fragment-based approach to identify and optimize bioactive ligands targeting RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2012217117 – volume: 16 start-page: 1189 year: 2008 ident: 10.1016/j.tig.2022.02.006_bb0305 article-title: Recombinant adeno-associated virus transduction and integration publication-title: Mol. Ther. doi: 10.1038/mt.2008.103 – volume: 49 start-page: W409 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0585 article-title: miRTargetLink 2.0 – interactive miRNA target gene and target pathway networks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab297 – volume: 15 start-page: 509 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0520 article-title: Regulation of microRNA biogenesis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3838 – volume: 368 start-page: 1685 year: 2013 ident: 10.1016/j.tig.2022.02.006_bb0660 article-title: Treatment of HCV infection by targeting microRNA publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1209026 – volume: 4 start-page: 271 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0200 article-title: Recent advances in biomaterials for 3D scaffolds: A review publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2019.10.005 – volume: 11 start-page: 1720 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0050 article-title: Inforna 2.0: A platform for the sequence-based design of small molecules targeting structured RNAs publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00001 – volume: 37 start-page: 1060 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0465 article-title: New technologies for improved relevance in miRNA research publication-title: Trends Genet. doi: 10.1016/j.tig.2021.08.006 – volume: 48 start-page: W521 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0605 article-title: miEAA 2.0: Integrating multi-species microRNA enrichment analysis and workflow management systems publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa309 – volume: 18 start-page: 9 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0240 article-title: Plant microRNAs – novel players in natural medicine? publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18010009 – volume: 1317 start-page: 125 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0165 article-title: A qRT-PCR method for determining the biodistribution profile of a miR-34a mimic publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2727-2_8 – volume: 389 start-page: 709 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0395 article-title: Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(16)31715-9 – volume: 42 start-page: 8796 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0370 article-title: Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku531 – volume: 31 start-page: 577 year: 2013 ident: 10.1016/j.tig.2022.02.006_bb0155 article-title: First microRNA mimic enters clinic publication-title: Nat. Biotechnol. doi: 10.1038/nbt0713-577 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0430 article-title: miRNA targets: From prediction tools to experimental validation publication-title: Methods Protoc. doi: 10.3390/mps4010001 – volume: 59 start-page: 599 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0080 article-title: In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.04220-14 – volume: 36 start-page: 711 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0610 article-title: Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults – an update for 2020 publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-020-04819-6 – volume: 12 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0110 article-title: Artificial miRNAs as therapeutic tools: Challenges and opportunities publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1640 – volume: 17 start-page: 93 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0085 article-title: Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0526-7 – volume: 11 start-page: 2416 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0090 article-title: Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer publication-title: Nat. Commun. doi: 10.1038/s41467-020-16199-4 – volume: 10 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0020 article-title: Special issue: MicroRNA regulation in health and disease publication-title: Genes (Basel) doi: 10.3390/genes10060457 – volume: 81 start-page: 1691 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0425 article-title: Comment on: ‘MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19’ publication-title: Drugs doi: 10.1007/s40265-021-01582-2 – volume: 10 start-page: 2471 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0315 article-title: Emerging immunogenicity and genotoxicity considerations of adeno-associated virus vector gene therapy for hemophilia publication-title: J. Clin. Med. doi: 10.3390/jcm10112471 – volume: 9 start-page: 1008 year: 2018 ident: 10.1016/j.tig.2022.02.006_bb0170 article-title: Modulation of intracellular calcium signaling by microRNA-34a-5p publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1050-7 – volume: 4 start-page: 1951 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0150 article-title: microRNA-34a as a therapeutic agent against human cancer publication-title: J. Clin. Med. doi: 10.3390/jcm4111951 – volume: 8 start-page: 1079 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0280 article-title: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer publication-title: Epigenomics doi: 10.2217/epi-2016-0035 – volume: 12 start-page: 197 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0210 article-title: Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation publication-title: Adv. Nutr. doi: 10.1093/advances/nmaa095 – volume: 278 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0190 article-title: Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119553 – volume: 4 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0095 article-title: siRNA versus miRNA as therapeutics for gene silencing publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2015.23 – volume: 27 start-page: 549 year: 2009 ident: 10.1016/j.tig.2022.02.006_bb0500 article-title: Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1543 – volume: 5 start-page: 1344 year: 2010 ident: 10.1016/j.tig.2022.02.006_bb0355 article-title: Off-target effects related to the phosphorothioate modification of nucleic acids publication-title: ChemMedChem doi: 10.1002/cmdc.201000156 – volume: 6 start-page: 340 year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0510 article-title: Transfection of microRNA mimics should be used with caution publication-title: Front. Genet. doi: 10.3389/fgene.2015.00340 – volume: 47 start-page: 7753 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0490 article-title: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz638 – volume: 12 start-page: 620 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0195 article-title: 3D printed drug delivery systems based on natural products publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12070620 – volume: 31 start-page: 965 year: 2013 ident: 10.1016/j.tig.2022.02.006_bb0220 article-title: Lack of detectable oral bioavailability of plant microRNAs after feeding in mice publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2737 – volume: 49 start-page: 127 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0450 article-title: Validation of human microRNA target pathways enables evaluation of target prediction tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1161 – volume: 235 start-page: 6887 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0420 article-title: Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29584 – volume: 452 start-page: 896 year: 2008 ident: 10.1016/j.tig.2022.02.006_bb0650 article-title: LNA-mediated microRNA silencing in non-human primates publication-title: Nature doi: 10.1038/nature06783 – volume: 10 start-page: 2157 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0250 article-title: miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate publication-title: Nat. Commun. doi: 10.1038/s41467-019-09882-8 – volume: 58 start-page: 208 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0505 article-title: miR-155 expression in antitumor immunity: The higher the better? publication-title: Genes Chromosom. Cancer doi: 10.1002/gcc.22698 – volume: 103 start-page: 6107 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0105 article-title: Bioengineering of a single long noncoding RNA molecule that carries multiple small RNAs publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09934-5 – volume: 18 start-page: 1386 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0285 article-title: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30621-6 – volume: 11 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0575 article-title: miTALOS v2: Analyzing tissue specific microRNA function publication-title: PLoS One doi: 10.1371/journal.pone.0151771 – volume: 32 start-page: 2722 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0445 article-title: Tools4miRs – one place to gather all the tools for miRNA analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw189 – volume: 15 start-page: 721 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0100 article-title: The risks of miRNA therapeutics: In a drug target perspective publication-title: Drug Des. Devel. Ther. doi: 10.2147/DDDT.S288859 – volume: 18 start-page: 1111 year: 2011 ident: 10.1016/j.tig.2022.02.006_bb0320 article-title: Chemical modification and design of anti-miRNA oligonucleotides publication-title: Gene Ther. doi: 10.1038/gt.2011.100 – volume: 47 start-page: 1462 year: 1995 ident: 10.1016/j.tig.2022.02.006_bb0345 article-title: Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy publication-title: Kidney Int. doi: 10.1038/ki.1995.205 – volume: 1617 start-page: 57 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0025 article-title: MicroRNAs: Biomarkers, diagnostics, and therapeutics publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7046-9_4 – volume: 340 start-page: 783 year: 1999 ident: 10.1016/j.tig.2022.02.006_bb0375 article-title: Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo publication-title: Biochem. J. doi: 10.1042/bj3400783 – volume: 48 start-page: W252 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0565 article-title: miRViz: A novel webserver application to visualize and interpret microRNA datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa259 – volume: 25 start-page: 545 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0460 article-title: MicroRNA interactome multiomics characterization for cancer research and personalized medicine: An expert review publication-title: OMICS doi: 10.1089/omi.2021.0087 – volume: 16 start-page: 707 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0045 article-title: Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics publication-title: RNA Biol. doi: 10.1080/15476286.2019.1593094 – volume: 12 start-page: 2485 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0270 article-title: Ligand-targeted bacterial minicells: Futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells publication-title: Nanomedicine doi: 10.1016/j.nano.2016.06.004 – volume: 7 start-page: 71514 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0550 article-title: Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades publication-title: Oncotarget doi: 10.18632/oncotarget.11723 – volume: 42 start-page: 609 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0645 article-title: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt852 – volume: 47 start-page: 3353 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0005 article-title: An estimate of the total number of true human miRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz097 – volume: 44 start-page: 3865 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0015 article-title: Distribution of miRNA expression across human tissues publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw116 – year: 2015 ident: 10.1016/j.tig.2022.02.006_bb0555 article-title: miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data – volume: 48 start-page: W244 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0570 article-title: miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa467 – volume: 128 start-page: 1829 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0680 article-title: Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL publication-title: Blood doi: 10.1182/blood.V128.22.1829.1829 – volume: 41 start-page: 715 year: 2020 ident: 10.1016/j.tig.2022.02.006_bb0180 article-title: Inhaled RNA therapy: From promise to reality publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2020.08.002 – volume: 66 start-page: 57 year: 2017 ident: 10.1016/j.tig.2022.02.006_bb0400 article-title: Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-microRNA-122, RG-101 publication-title: Hepatology doi: 10.1002/hep.29148 – volume: 37 start-page: 562 year: 2019 ident: 10.1016/j.tig.2022.02.006_bb0675 article-title: SOLAR: A phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with mycosis fungoides (MF) [abstract] publication-title: Hematol. Oncol. doi: 10.1002/hon.10_2632 – volume: 5 year: 2016 ident: 10.1016/j.tig.2022.02.006_bb0120 article-title: Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington’s disease publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.7 – volume: 13 start-page: 817 year: 2021 ident: 10.1016/j.tig.2022.02.006_bb0415 article-title: Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13060817 – volume: 86 start-page: 1534 year: 2014 ident: 10.1016/j.tig.2022.02.006_bb0380 article-title: Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates publication-title: Anal. Chem. doi: 10.1021/ac403044t |
SSID | ssj0005735 |
Score | 2.732923 |
SecondaryResourceType | review_article |
Snippet | MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 613 |
SubjectTerms | cell functional manipulations clinical trials Humans microRNA MicroRNAs - genetics Neoplasms - genetics preclinical studies therapeutics |
Title | Emerging concepts of miRNA therapeutics: from cells to clinic |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S016895252200018X https://dx.doi.org/10.1016/j.tig.2022.02.006 https://www.ncbi.nlm.nih.gov/pubmed/35303998 https://www.proquest.com/docview/2640995129 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRfEiWl_1xQqehNhku9kk3oooVbEHH9Dbkn1JRVux8eDF3-5sNil6qIKQS8IO2cxuZr7ZeQEcIaKwMtHOra7CgPFUBllsWaApR7SRJSYus9JuBrz_wK6G8bABZ3UujAurrGS_l-mltK6edCpudl5Ho84dgpU0iykCCAdU0qHLYGeJ2-Unn9_CPBLfZBMHB2507dksY7yK0SOaiJT6sp18nm6ahz1LHXSxCisVeCQ9P781aJhxCxZ9O8mPFizdVI7ydSgPm1z_IaJ8XuKUTCx5Gd0OeuRbytX0lLj8EuKO76ekmBCfKLkBDxfn92f9oOqUEChU2EWQda1UNqQqzaXFT2ZMSaNpxnMqkf2ZtDyKDFVdV7uFo41luLUsYTrSOo1s3N2E5ngyNttAGDMGTQzJaSaZzmmOEDFyvkmVG61Z3Iaw5pFQVRlx183iWdTxYk8C2SocW0WIV8jbcDwjefU1NH4bTGvGizo5FMWZQAn_GxGbEf3YPX-RHdYrK_CvcrzOx2byPhUIExE6OzDUhi2_5LOpd2NU-2il7vzvpbuw7O58uNkeNIu3d7OPwKaQB-XOPYCF3uV1f_AFviHzyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VEMsFsVNWI3FCCk1cx024IQQqS3tgkXqz4g0VQYtoOHDh2xnHSVUOgISUU-JRkrE988azARwiorCypZ1bXYUB44kM0tiyQFOOaCNtmbjISut0efuBXfXiXg3OqlwYF1ZZyn4v0wtpXd5plNxsvPb7jTsEK0kaUwQQDqgkvSmYYbh9XRuD48-JOI-W77KJowM3vHJtFkFeef8RbURKfd1O_pNy-gl8FkroYgkWS_RITv0HLkPNDFZg1veT_FiBuU7pKV-F4rTJNSAiyicmjsjQkpf-bfeUTORcjU6ISzAh7vx-RPIh8ZmSa_BwcX5_1g7KVgmBQo2dB2nTSmVDqpJMWvxlxpQ0mqY8oxL5n0rLo8hQ1XTFWzgaWYZby1pMR1onkY2b6zA9GA7MJhDGjEEbQ3KaSqYzmiFGjJxzUmVGaxbXIax4JFRZR9y1s3gWVcDYk0C2CsdWEeIV8jocjUlefRGN3wbTivGiyg5FeSZQxP9GxMZE35bPX2QH1cwK3FaO19nADN9HAnEiYmeHhuqw4ad8_OnNGPU-mqlb_3vpPsy37zs34uaye70NC-6Jjz3bgen87d3sIsrJ5V6xir8AUqf1Vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+concepts+of+miRNA+therapeutics%3A+from+cells+to+clinic&rft.jtitle=Trends+in+genetics&rft.au=Diener%2C+Caroline&rft.au=Keller%2C+Andreas&rft.au=Meese%2C+Eckart&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0168-9525&rft.volume=38&rft.issue=6&rft.spage=613&rft.epage=626&rft_id=info:doi/10.1016%2Fj.tig.2022.02.006&rft.externalDocID=S016895252200018X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |