Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles

The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. T...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 16; no. 5; pp. 1108 - 1121
Main Authors Sharma, Deepak, Sharma, Rakesh Kumar, Sharma, Navneet, Gabrani, Reema, Sharma, Sanjeev K., Ali, Javed, Dang, Shweta
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP ( z- average and drug entrapment) was investigated. Developed DNP showed z -average 148–337 d.nm, polydispersity index 0.04–0.45, drug entrapment 69–92%, and zeta potential in the range of −15 to −29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ( 99m Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23–1.45, 258, and 61% for 99m Tc-DNP (i.n) compared to 99m Tc-DS (i.n) (0.38–1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.
AbstractList The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.
The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP ( z- average and drug entrapment) was investigated. Developed DNP showed z -average 148–337 d.nm, polydispersity index 0.04–0.45, drug entrapment 69–92%, and zeta potential in the range of −15 to −29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ( 99m Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23–1.45, 258, and 61% for 99m Tc-DNP (i.n) compared to 99m Tc-DS (i.n) (0.38–1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.
The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.
Author Ali, Javed
Sharma, Navneet
Sharma, Deepak
Dang, Shweta
Gabrani, Reema
Sharma, Sanjeev K.
Sharma, Rakesh Kumar
Author_xml – sequence: 1
  givenname: Deepak
  surname: Sharma
  fullname: Sharma, Deepak
  organization: Department of Biotechnology, Jaypee Institute of Information Technology
– sequence: 2
  givenname: Rakesh Kumar
  surname: Sharma
  fullname: Sharma, Rakesh Kumar
  organization: Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences
– sequence: 3
  givenname: Navneet
  surname: Sharma
  fullname: Sharma, Navneet
  organization: Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences
– sequence: 4
  givenname: Reema
  surname: Gabrani
  fullname: Gabrani, Reema
  organization: Department of Biotechnology, Jaypee Institute of Information Technology
– sequence: 5
  givenname: Sanjeev K.
  surname: Sharma
  fullname: Sharma, Sanjeev K.
  organization: Department of Biotechnology, Jaypee Institute of Information Technology
– sequence: 6
  givenname: Javed
  surname: Ali
  fullname: Ali, Javed
  organization: Faculty of Pharmacy, Jamia Hamdard
– sequence: 7
  givenname: Shweta
  surname: Dang
  fullname: Dang, Shweta
  email: shweta.dang@jiit.ac.in
  organization: Department of Biotechnology, Jaypee Institute of Information Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25698083$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPAjEUhRuDUXz8ADeGpZtqXzPTbkwQFU0IusB10yl3tGZosR1I8Nc7BDTqglWb9nzn3NxzhDo-eEDojJJLyoi8SpQxoTChGSZMCUz2UJdmnGClOOv8uh-io5TeCWGcKn6ADlmWK0kk76JsHBLgScA30Tjfu4XaLSGueqHqPY-GfXzrzCfMzaw3Nj7MTWycrSGdoP3K1AlOt-cxerm_mwwe8Ohp-Djoj7DNKGuwtFBWQrLMiIzxCozNRFEqU1VWMCEL2j5JaXMhKeGKWqYk8FxMRWnKEijlx-h64ztflDOYWvBNNLWeRzczcaWDcfrvj3dv-jUstcgLkXPeGlxsDWL4WEBq9MwlC3VtPIRF0rQoFGFMqnXW-e-sn5DvXbUCuhHYGFKKUP1IKNHrPvSmD932odd9aNIyxT_GusY0LqzHdfVOkm3I1Kb4V4j6PSyib7e9A_oC27qeCg
CitedBy_id crossref_primary_10_1016_j_chemosphere_2018_11_076
crossref_primary_10_1016_j_isci_2023_107321
crossref_primary_10_1016_j_jconrel_2017_11_047
crossref_primary_10_1016_j_apsb_2016_05_013
crossref_primary_10_3390_pharmaceutics13122049
crossref_primary_10_4155_tde_2019_0060
crossref_primary_10_1002_adhm_202102610
crossref_primary_10_1016_j_jconrel_2017_06_019
crossref_primary_10_2174_1567201817666200708115627
crossref_primary_10_1080_17425247_2019_1684895
crossref_primary_10_1016_j_jddst_2021_102533
crossref_primary_10_1016_j_apmt_2022_101631
crossref_primary_10_1039_D1BM01251G
crossref_primary_10_1089_rej_2018_2119
crossref_primary_10_1088_1361_6528_ab373e
crossref_primary_10_1177_0883911520913906
crossref_primary_10_1016_j_jddst_2020_101724
crossref_primary_10_1007_s10571_020_00979_z
crossref_primary_10_1016_j_indcrop_2015_11_046
crossref_primary_10_1080_21691401_2021_1939709
crossref_primary_10_1007_s40005_021_00528_w
crossref_primary_10_1002_advs_202002085
crossref_primary_10_1177_20417314221083414
crossref_primary_10_3389_fnagi_2024_1342366
crossref_primary_10_1016_j_fct_2024_114962
crossref_primary_10_1016_j_jconrel_2020_06_028
crossref_primary_10_3389_fnagi_2022_960246
crossref_primary_10_3390_pharmaceutics15010233
crossref_primary_10_3390_pharmaceutics11030118
crossref_primary_10_1007_s11094_019_02088_8
crossref_primary_10_1016_j_jconrel_2018_12_049
crossref_primary_10_3390_pharmaceutics12050451
crossref_primary_10_3390_pharmaceutics16010066
crossref_primary_10_3390_pharmaceutics13071042
crossref_primary_10_1016_j_jddst_2023_104421
crossref_primary_10_53879_id_58_05_12489
crossref_primary_10_3390_pharmaceutics11020084
crossref_primary_10_1016_j_ijpharm_2020_119776
crossref_primary_10_1080_02652048_2022_2041751
crossref_primary_10_3390_gels8060342
crossref_primary_10_2147_IJN_S452316
crossref_primary_10_2174_1381612828666211222163025
crossref_primary_10_2174_1567201819666220303101506
crossref_primary_10_1186_s41181_023_00227_x
crossref_primary_10_3390_ma14216291
crossref_primary_10_1007_s13318_020_00641_5
crossref_primary_10_1016_j_ijpharm_2017_08_064
crossref_primary_10_1016_j_ijpharm_2021_120724
crossref_primary_10_1016_j_jconrel_2021_12_009
crossref_primary_10_1021_acs_molpharmaceut_3c00773
crossref_primary_10_1021_acs_molpharmaceut_9b01215
crossref_primary_10_1016_j_ijpharm_2015_12_046
crossref_primary_10_1016_j_ejpb_2025_114661
crossref_primary_10_1080_10837450_2023_2177673
crossref_primary_10_1016_j_drudis_2018_01_005
crossref_primary_10_15171_apb_2017_073
crossref_primary_10_3390_pharmaceutics15082119
crossref_primary_10_3390_pharmaceutics12121167
crossref_primary_10_1021_acsomega_4c02983
crossref_primary_10_2174_1381612826666200116153912
crossref_primary_10_1208_s12249_016_0652_6
crossref_primary_10_3390_ijms24043390
crossref_primary_10_1111_jphp_13292
crossref_primary_10_1016_j_surfin_2023_103138
crossref_primary_10_1007_s40139_016_0118_2
crossref_primary_10_3390_pharmaceutics10010034
crossref_primary_10_1016_j_jddst_2024_106282
crossref_primary_10_1016_j_lfs_2022_120797
crossref_primary_10_2174_1874467215666220819143105
crossref_primary_10_1080_02652048_2020_1756971
crossref_primary_10_52711_0974_360X_2023_00988
crossref_primary_10_1016_j_msec_2020_111824
crossref_primary_10_1007_s13346_019_00622_5
crossref_primary_10_1016_j_ijpharm_2021_120474
crossref_primary_10_3390_pharmaceutics12020093
crossref_primary_10_2174_2211738511666230106154557
crossref_primary_10_1016_j_xphs_2018_07_013
crossref_primary_10_1016_j_jddst_2023_104523
Cites_doi 10.1155/2009/754810
10.1186/1471-2202-9-S3-S5
10.1080/10611860802476504
10.1016/j.eplepsyres.2013.02.018
10.1208/s12249-009-9329-8
10.1016/j.ijpharm.2004.11.027
10.1166/asl.2014.5520
10.1016/j.cep.2011.05.006
10.3390/polym3031377
10.1586/erm.09.15
10.2174/156720112803529828
10.1016/j.taap.2008.06.026
10.1155/2013/238428
10.1016/j.neuroscience.2004.05.029
10.1007/s11095-006-9534-z
10.1016/j.ijpharm.2006.11.061
10.1016/j.actbio.2011.07.025
10.4103/0975-7406.120081
10.1016/j.ejpb.2008.01.013
10.1111/j.1600-0404.2009.01170.x
10.1016/j.colsurfa.2005.10.064
10.1016/j.eplepsyres.2014.04.007
10.1111/epi.12755
10.1039/C0SM00862A
10.1080/02652040802456726
10.1007/BF02707148
10.1016/j.ejps.2004.09.011
10.1002/jps.23350
10.1016/j.nano.2009.02.005
10.1016/j.jconrel.2012.01.043
10.1371/journal.pone.0032616
10.1016/j.nano.2010.02.002
10.2217/17435889.2.2.219
10.1080/10611860500246217
10.1007/s12034-012-0313-7
10.1016/j.ijpharm.2009.05.009
10.3390/cancers5031020
10.1016/j.nano.2005.12.003
10.1002/jps.20094
10.2147/IJN.S35329
10.1016/j.eplepsyres.2012.07.018
10.1016/j.ijpharm.2008.03.029
10.4155/tde.14.41
10.3109/1061186X.2011.558090
10.1002/9781444316667
10.1016/j.colsurfb.2009.09.001
10.3109/03639049809108571
ContentType Journal Article
Copyright American Association of Pharmaceutical Scientists 2015
Copyright_xml – notice: American Association of Pharmaceutical Scientists 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1208/s12249-015-0294-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
EndPage 1121
ExternalDocumentID PMC4674633
25698083
10_1208_s12249_015_0294_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BDATZ
BGNMA
BSONS
C1A
CAG
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GX1
H13
HG6
HH5
HMJXF
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LGEZI
LLZTM
LOTEE
M4Y
MA-
NADUK
NPVJJ
NQJWS
NU0
NXXTH
O9-
O93
O9I
O9J
OK1
OVD
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z87
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c512t-8cebf4825a4523feac547b9affc424871fea88c64810391c298e364d4babbe113
IEDL.DBID U2A
ISSN 1530-9932
IngestDate Thu Aug 21 17:29:11 EDT 2025
Thu Jul 10 23:33:55 EDT 2025
Mon Jul 21 05:58:57 EDT 2025
Tue Jul 01 01:45:29 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Feb 21 02:33:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords process optimization
controlled release
nanoparticles
scintigraphy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-8cebf4825a4523feac547b9affc424871fea88c64810391c298e364d4babbe113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1208/s12249-015-0294-0.pdf
PMID 25698083
PQID 1779022891
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4674633
proquest_miscellaneous_1779022891
pubmed_primary_25698083
crossref_primary_10_1208_s12249_015_0294_0
crossref_citationtrail_10_1208_s12249_015_0294_0
springer_journals_10_1208_s12249_015_0294_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References ShorvonSPeruccaEEngelJJrThe treatment of epilepsy20093UKWiley-Blackwell West Sussex10.1002/9781444316667
ShingakiTHidalgoIJFurubayashiTKatsumiHSakaneTYamamotoAThe transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid)Int J Pharm200937785911:CAS:528:DC%2BD1MXotlOlsbo%3D10.1016/j.ijpharm.2009.05.00919446619
MakadiaHKSiegelSJPoly Lactic-co-Glycolic acid (PLGA) as biodegradable controlled drug delivery carrierPolymers2011313779733478611:CAS:528:DC%2BC3MXhtFOis7jJ10.3390/polym303137722577513
AlamSKhanZIMustafaGKumarMIslamFBhatnagarADevelopment and evaluation of thymoquinone- encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic studyInt J Nanomedicine2012757051834978941:CAS:528:DC%2BC38XhslyisbrE10.2147/IJN.S3532923180965
MainardesRMEvangelistaRCPLGA nanoparticles containing praziquantel: effect of formulation variables on size distributionInt J Pharm2005290714410.1016/j.ijpharm.2004.11.027
SongXZhaoYHouSXuFZhaoRHeJDual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiencyEur J Pharm Biopharm200869445531:CAS:528:DC%2BD1cXmtVShu7s%3D10.1016/j.ejpb.2008.01.01318374554
SemeteBBooysenLLemmerYKalomboLKatataLJanVIn vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systemsNanomedicine Nanotech Biol Med20106662711:CAS:528:DC%2BC3cXhtlGmu7fJ10.1016/j.nano.2010.02.002
MukerjeeAVishwanathaJKFormulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapyAnticancer Res2009293867761:CAS:528:DC%2BD1MXhsVOlt7jE19846921
Fessi et al. Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles. US Patent 1992; 5,118,528.
NahJWY-IlJKohJJDrug release from nanoparticles of poly(dl-lactide-co-glycolide)Korean J Chem Eng200617230610.1007/BF02707148
BabuRJDayalPPPawarKSinghMNose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in ratsJ Drug Target20111973140333486510.3109/1061186X.2011.558090
PatilSBSawantKKDevelopment, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal deliveryJ Microencapsul200926432431:CAS:528:DC%2BD1MXos1Wjsb4%3D10.1080/0265204080245672618932060
KumariAYadavSKYadavSCBiodegradable polymeric nanoparticles based drug delivery systemsColloids Surf B2010751181:CAS:528:DC%2BD1MXhsVKntr%2FO10.1016/j.colsurfb.2009.09.001
USP30-NF25, Diazepam, 1912.
SharmaDMaheshwariDPhilipGRanaRBhatiaSSinghMFormulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluationBiomed Res Int2014
IvaturiVKrielRBrundageRGordonLMansbachHCloydJBioavailability of intranasal vs. rectal diazepamEpilepsy Res2013103254611:CAS:528:DC%2BC38XhtlKrsbfO10.1016/j.eplepsyres.2012.07.01822981338
IvaturiVDRissJRKrielRLCloydJCPharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteersActa Neurol Scand200912035371:CAS:528:DC%2BD1MXhsVOls7%2FE10.1111/j.1600-0404.2009.01170.x19456308
GizurarsonSAnatomical and histological factors affecting intranasal drug and vaccine deliveryCurr Drug Deliv201295668234807211:CAS:528:DC%2BC3sXjvFCisrc%3D10.2174/15672011280352982822788696
BudhianASiegelSJWineyKIHaloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug contentInt J Pharm2007336367751:CAS:528:DC%2BD2sXkvFajs7g%3D10.1016/j.ijpharm.2006.11.06117207944
SharmaDGabraniRSharmaSKAliJDangSDevelopment of midazolam loaded PLGA nanoparticles for treatment of status epilepticusAdv Sci Lett20142015263010.1166/asl.2014.5520
HaoJFangXWangJGuoFLiFPengXDevelopment and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken designInt J Nanomedicine201166839230843151:CAS:528:DC%2BC3MXmt1aqt7w%3D21556343
AgarwalSKKrielRLBrundageRCIvaturiVDCloydJCA pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteersEpilepsy Res201310536271:CAS:528:DC%2BC3sXlt1CjsLk%3D10.1016/j.eplepsyres.2013.02.01823561287
SharmaGMishraAKMishraPMisraAIntranasal cabergoline: pharmacokinetic and pharmacodynamic studiesAAPS PharmSciTech20091013213027995951:CAS:528:DC%2BC3cXovVGqt7w%3D10.1208/s12249-009-9329-819894122
FeczkoTTothJDosaGGyenisJInfluence of process conditions on the mean size of PLGA nanoparticlesChem Eng Process201150846531:CAS:528:DC%2BC3MXhtVagt7vO10.1016/j.cep.2011.05.006
DanhierFAnsorenaESilvaJMCocoRBretonALPreatVPLGA-based nanoparticles: an overview of biomedical applicationsJ Control Release2012161505221:CAS:528:DC%2BC38Xjs1Squr4%3D10.1016/j.jconrel.2012.01.04322353619
SperlingMRHaasKFKraussGSeif EddeineHHenneyHR3rdRabinowiczALDosing feasibility and tolerability of intranasal diazepam in adults with epilepsyEpilepsia2014551544501:CAS:528:DC%2BC2cXhvVSjs7fJ10.1111/epi.1275525154625
HenneyHR3rdSperlingMRRabinowiczALBreamGCarrazanaEJAssessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adultsEpilepsy Res20141081204111:CAS:528:DC%2BC2cXhtVWrsbjJ10.1016/j.eplepsyres.2014.04.00724934774
SejuUKumarASawantKKDevelopment and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studiesActa Biomater201174169761:CAS:528:DC%2BC3MXhsVSkt77E10.1016/j.actbio.2011.07.02521839863
KumarMMisraAMishraAKMishraPPathakKMucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targetingJ Drug Target200816806141:CAS:528:DC%2BD1cXhtlOmt7bK10.1080/1061186080247650418988064
El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009; 754810. doi:10.1155/2009/754810.
LeiRWuCYangBMaHShiCWangQIntegrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicityToxicol Appl Pharmacol20082322923011:CAS:528:DC%2BD1cXhtFyqtrjL10.1016/j.taap.2008.06.02618706438
BilatiUEmannEADoelkerEDevelopment of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticlesEur J Pharm Sci20052467751:CAS:528:DC%2BD2MXjtler10.1016/j.ejps.2004.09.01115626579
BetancourtTBrownBBrannon-PeppasLDoxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluationNanomedicine20072219321:CAS:528:DC%2BD2sXjsVCjtbs%3D10.2217/17435889.2.2.21917716122
SylajaBSrinivasanSExperimental and theoretical investigation of spectroscopic properties of diazepamInt J Chem Tech Res20124361761:CAS:528:DC%2BC38Xjt1Sju78%3D
LuJMWangXMullerCMWangHLinPHYaoQCurrent advances in research and clinical applications of PLGA based NanotechnologyExpert Rev Mol Diagn200993254127011631:CAS:528:DC%2BD1MXlvVWkt7Y%3D10.1586/erm.09.1519435455
CamposEVRMeloNFSDGuilhermeVAPaulaEDRosaAHArauJoDRDPreparation and characterization of poly(ε-Caprolactone) nanospheres containing the local anesthetic lidocaineJ Pharm Sci20131022152610.1002/jps.23350
SnehalathaMKolachinaVSahaRNBabbarAKSharmaNSharmaRKEnhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton’s lymphoma tumor bearing miceJ Pharm Bioallied Sci20135384510.4103/0975-7406.120081
van WoenselMWauthozNRosièreRAmighiKMathieuVLefrancFFormulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?Cancers2013510204837953771:CAS:528:DC%2BC3sXhtlaqtrzF10.3390/cancers503102024202332
MathewATakahiroFYutakaNTakashiHHisaoMYasuhikoYCurcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s diseasePLoS ONE2012127e3261610.1371/journal.pone.0032616
MasseriniMNanoparticles for brain drug deliveryISRN Biochem201320131810.1155/2013/238428
PrajapatiRKMahajanHSSuranaSJPLGA based mucoadhesive microspheres for nasal delivery: in vitro/ex vivo studiesIndian J Novel Drug Deliv20113916
HornigSHeinzeTBecerCRSchubertbUSNanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid)Soft Matter201171581810.1039/C0SM00862A
VyasTKBabbarAKSharmaRKMisraAIntranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targetingJ Drug Target200513317241:CAS:528:DC%2BD2MXhtVKnt7jO10.1080/1061186050024621716199375
KumarMMisraABabbarAKMishraAKMishraPPathakKIntranasal nanoemulsion based brain targeting drug delivery system of risperidoneInt J Pharm2008358285911:CAS:528:DC%2BD1cXmsFagur4%3D10.1016/j.ijpharm.2008.03.02918455333
SongaKCLeeHSChoungaIYChoaKIAhnbYChoiEJThe effect of type of organic phase solvents on the particle size of poly(d, l-lactide-co-glycolide) nanoparticlesColloids Surf A2006276162710.1016/j.colsurfa.2005.10.064
WestinUEBoströmEGråsjöJHammarlund-UdenaesMBjörkEDirect nose-to-brain transfer of morphine after nasal administration to ratsPharm Res200623565721:CAS:528:DC%2BD28Xitlemtb0%3D10.1007/s11095-006-9534-z16489488
Quintanar-GuerreroDAllemannEFessiHDoelkerEPreparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymersDrug Dev Ind Pharm1998241113281:CAS:528:DyaK1cXnvFWquro%3D10.3109/036390498091085719876569
DjupeslandPGMessinaJCMahmoudRAThe nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overviewTher Deliv20145709331:CAS:528:DC%2BC2cXht1Kju7zN10.4155/tde.14.4125090283
VergoniAVTosiGTacchiRVandelliMABertoliniACostantinoLNanoparticles as drug delivery agents specific for CNS: in vivo biodistributionNanomedicine Nanotech Biol Med20095369771:CAS:528:DC%2BC3cXls1eksw%3D%3D10.1016/j.nano.2009.02.005
PanyamJWilliamsDDashALeslie-PeleckyDLabhasetwarVSolid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticlesJ Pharm Sci2004931804141:CAS:528:DC%2BD2cXltlKrs78%3D10.1002/jps.2009415
PG Djupesland (294_CR5) 2014; 5
RM Mainardes (294_CR51) 2006; 42
CP Reis (294_CR12) 2006; 2
LR Hanson (294_CR41) 2008; 9
U Bilati (294_CR27) 2005; 24
B Semete (294_CR30) 2010; 6
M van Woensel (294_CR52) 2013; 5
SK Agarwal (294_CR45) 2013; 105
RJ Babu (294_CR55) 2011; 19
D Quintanar-Guerrero (294_CR49) 1998; 24
J Hao (294_CR24) 2011; 6
MR Sperling (294_CR4) 2014; 55
M Kumar (294_CR37) 2008; 358
AV Vergoni (294_CR17) 2009; 5
VD Ivaturi (294_CR3) 2009; 120
T Feczko (294_CR18) 2011; 50
G Sharma (294_CR54) 2009; 10
S Gizurarson (294_CR7) 2012; 9
RG Thorne (294_CR8) 2004; 127
D Sharma (294_CR47) 2014; 20
B Sylaja (294_CR50) 2012; 4
RK Prajapati (294_CR48) 2011; 3
S Alam (294_CR39) 2012; 7
S Shorvon (294_CR1) 2009
RK Averineni (294_CR42) 2012; 35
JW Nah (294_CR43) 2006; 17
A Kumari (294_CR14) 2010; 75
TK Vyas (294_CR36) 2005; 13
A Mukerjee (294_CR53) 2009; 29
J Panyam (294_CR40) 2004; 93
R Lei (294_CR32) 2008; 232
SB Patil (294_CR11) 2009; 26
F Danhier (294_CR13) 2012; 161
UE Westin (294_CR9) 2006; 23
T Betancourt (294_CR46) 2007; 2
A Budhian (294_CR21) 2007; 336
M Kumar (294_CR38) 2008; 16
M Masserini (294_CR6) 2013; 2013
V Ivaturi (294_CR44) 2013; 103
JM Lu (294_CR15) 2009; 9
RM Mainardes (294_CR19) 2005; 290
X Song (294_CR22) 2008; 69
EVR Campos (294_CR33) 2013; 102
A Mathew (294_CR34) 2012; 12
M Snehalatha (294_CR35) 2013; 5
HR Henney 3rd (294_CR2) 2014; 108
294_CR31
D Sharma (294_CR20) 2014
S Hornig (294_CR28) 2011; 7
HK Makadia (294_CR16) 2011; 3
294_CR26
KC Songa (294_CR23) 2006; 276
T Shingaki (294_CR10) 2009; 377
294_CR29
U Seju (294_CR25) 2011; 7
25126544 - Biomed Res Int. 2014;2014:156010
19894122 - AAPS PharmSciTech. 2009;10(4):1321-30
19435455 - Expert Rev Mol Diagn. 2009 May;9(4):325-41
16199375 - J Drug Target. 2005 Jun;13(5):317-24
20230912 - Nanomedicine. 2010 Oct;6(5):662-71
19446619 - Int J Pharm. 2009 Jul 30;377(1-2):85-91
18455333 - Int J Pharm. 2008 Jun 24;358(1-2):285-91
15176068 - J Pharm Sci. 2004 Jul;93(7):1804-14
22981338 - Epilepsy Res. 2013 Feb;103(2-3):254-61
23561287 - Epilepsy Res. 2013 Aug;105(3):362-7
19091002 - BMC Neurosci. 2008;9 Suppl 3:S5
24934774 - Epilepsy Res. 2014 Sep;108(7):1204-11
15664139 - Int J Pharm. 2005 Feb 16;290(1-2):137-44
25154625 - Epilepsia. 2014 Oct;55(10):1544-50
22403681 - PLoS One. 2012;7(3):e32616
22788696 - Curr Drug Deliv. 2012 Nov;9(6):566-82
18988064 - J Drug Target. 2008 Dec;16(10):806-14
15626579 - Eur J Pharm Sci. 2005 Jan;24(1):67-75
24302837 - J Pharm Bioallied Sci. 2013 Oct;5(4):290-7
22577513 - Polymers (Basel). 2011 Sep 1;3(3):1377-1397
19341816 - Nanomedicine. 2009 Dec;5(4):369-77
17716122 - Nanomedicine (Lond). 2007 Apr;2(2):219-32
21556343 - Int J Nanomedicine. 2011;6:683-92
23108693 - J Pharm Sci. 2013 Jan;102(1):215-26
18374554 - Eur J Pharm Biopharm. 2008 Jun;69(2):445-53
18932060 - J Microencapsul. 2009 Aug;26(5):432-43
17207944 - Int J Pharm. 2007 May 24;336(2):367-75
24202332 - Cancers (Basel). 2013 Aug 14;5(3):1020-48
15262337 - Neuroscience. 2004;127(2):481-96
19846921 - Anticancer Res. 2009 Oct;29(10):3867-75
16489488 - Pharm Res. 2006 Mar;23(3):565-72
25937958 - ISRN Biochem. 2013 May 21;2013:238428
21428693 - J Drug Target. 2011 Nov;19(9):731-40
25090283 - Ther Deliv. 2014 Jun;5(6):709-33
23180965 - Int J Nanomedicine. 2012;7:5705-18
21839863 - Acta Biomater. 2011 Dec;7(12):4169-76
18706438 - Toxicol Appl Pharmacol. 2008 Oct 15;232(2):292-301
9876569 - Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28
17292111 - Nanomedicine. 2006 Mar;2(1):8-21
19782542 - Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18
22353619 - J Control Release. 2012 Jul 20;161(2):505-22
19456308 - Acta Neurol Scand. 2009 Nov;120(5):353-7
20130771 - J Toxicol. 2009;2009:754810
References_xml – reference: PatilSBSawantKKDevelopment, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal deliveryJ Microencapsul200926432431:CAS:528:DC%2BD1MXos1Wjsb4%3D10.1080/0265204080245672618932060
– reference: MathewATakahiroFYutakaNTakashiHHisaoMYasuhikoYCurcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s diseasePLoS ONE2012127e3261610.1371/journal.pone.0032616
– reference: SemeteBBooysenLLemmerYKalomboLKatataLJanVIn vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systemsNanomedicine Nanotech Biol Med20106662711:CAS:528:DC%2BC3cXhtlGmu7fJ10.1016/j.nano.2010.02.002
– reference: FeczkoTTothJDosaGGyenisJInfluence of process conditions on the mean size of PLGA nanoparticlesChem Eng Process201150846531:CAS:528:DC%2BC3MXhtVagt7vO10.1016/j.cep.2011.05.006
– reference: SongaKCLeeHSChoungaIYChoaKIAhnbYChoiEJThe effect of type of organic phase solvents on the particle size of poly(d, l-lactide-co-glycolide) nanoparticlesColloids Surf A2006276162710.1016/j.colsurfa.2005.10.064
– reference: PanyamJWilliamsDDashALeslie-PeleckyDLabhasetwarVSolid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticlesJ Pharm Sci2004931804141:CAS:528:DC%2BD2cXltlKrs78%3D10.1002/jps.2009415176068
– reference: VergoniAVTosiGTacchiRVandelliMABertoliniACostantinoLNanoparticles as drug delivery agents specific for CNS: in vivo biodistributionNanomedicine Nanotech Biol Med20095369771:CAS:528:DC%2BC3cXls1eksw%3D%3D10.1016/j.nano.2009.02.005
– reference: LeiRWuCYangBMaHShiCWangQIntegrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicityToxicol Appl Pharmacol20082322923011:CAS:528:DC%2BD1cXhtFyqtrjL10.1016/j.taap.2008.06.02618706438
– reference: SylajaBSrinivasanSExperimental and theoretical investigation of spectroscopic properties of diazepamInt J Chem Tech Res20124361761:CAS:528:DC%2BC38Xjt1Sju78%3D
– reference: KumarMMisraABabbarAKMishraAKMishraPPathakKIntranasal nanoemulsion based brain targeting drug delivery system of risperidoneInt J Pharm2008358285911:CAS:528:DC%2BD1cXmsFagur4%3D10.1016/j.ijpharm.2008.03.02918455333
– reference: SperlingMRHaasKFKraussGSeif EddeineHHenneyHR3rdRabinowiczALDosing feasibility and tolerability of intranasal diazepam in adults with epilepsyEpilepsia2014551544501:CAS:528:DC%2BC2cXhvVSjs7fJ10.1111/epi.1275525154625
– reference: MainardesRMEvangelistaRCPLGA nanoparticles containing praziquantel: effect of formulation variables on size distributionInt J Pharm2005290714410.1016/j.ijpharm.2004.11.027
– reference: AgarwalSKKrielRLBrundageRCIvaturiVDCloydJCA pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteersEpilepsy Res201310536271:CAS:528:DC%2BC3sXlt1CjsLk%3D10.1016/j.eplepsyres.2013.02.01823561287
– reference: CamposEVRMeloNFSDGuilhermeVAPaulaEDRosaAHArauJoDRDPreparation and characterization of poly(ε-Caprolactone) nanospheres containing the local anesthetic lidocaineJ Pharm Sci20131022152610.1002/jps.23350
– reference: SharmaDMaheshwariDPhilipGRanaRBhatiaSSinghMFormulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluationBiomed Res Int2014
– reference: AlamSKhanZIMustafaGKumarMIslamFBhatnagarADevelopment and evaluation of thymoquinone- encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic studyInt J Nanomedicine2012757051834978941:CAS:528:DC%2BC38XhslyisbrE10.2147/IJN.S3532923180965
– reference: LuJMWangXMullerCMWangHLinPHYaoQCurrent advances in research and clinical applications of PLGA based NanotechnologyExpert Rev Mol Diagn200993254127011631:CAS:528:DC%2BD1MXlvVWkt7Y%3D10.1586/erm.09.1519435455
– reference: MainardesRMGremiaoMPDEvangelistaRCThermoanalytical study of praziquantel-loaded PLGA nanoparticlesBraz J Pharm Sci200642523301:CAS:528:DC%2BD2sXks1alt7o%3D
– reference: BetancourtTBrownBBrannon-PeppasLDoxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluationNanomedicine20072219321:CAS:528:DC%2BD2sXjsVCjtbs%3D10.2217/17435889.2.2.21917716122
– reference: DanhierFAnsorenaESilvaJMCocoRBretonALPreatVPLGA-based nanoparticles: an overview of biomedical applicationsJ Control Release2012161505221:CAS:528:DC%2BC38Xjs1Squr4%3D10.1016/j.jconrel.2012.01.04322353619
– reference: MakadiaHKSiegelSJPoly Lactic-co-Glycolic acid (PLGA) as biodegradable controlled drug delivery carrierPolymers2011313779733478611:CAS:528:DC%2BC3MXhtFOis7jJ10.3390/polym303137722577513
– reference: NahJWY-IlJKohJJDrug release from nanoparticles of poly(dl-lactide-co-glycolide)Korean J Chem Eng200617230610.1007/BF02707148
– reference: KumarMMisraAMishraAKMishraPPathakKMucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targetingJ Drug Target200816806141:CAS:528:DC%2BD1cXhtlOmt7bK10.1080/1061186080247650418988064
– reference: El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009; 754810. doi:10.1155/2009/754810.
– reference: HaoJFangXWangJGuoFLiFPengXDevelopment and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken designInt J Nanomedicine201166839230843151:CAS:528:DC%2BC3MXmt1aqt7w%3D21556343
– reference: ShorvonSPeruccaEEngelJJrThe treatment of epilepsy20093UKWiley-Blackwell West Sussex10.1002/9781444316667
– reference: van WoenselMWauthozNRosièreRAmighiKMathieuVLefrancFFormulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?Cancers2013510204837953771:CAS:528:DC%2BC3sXhtlaqtrzF10.3390/cancers503102024202332
– reference: HornigSHeinzeTBecerCRSchubertbUSNanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid)Soft Matter201171581810.1039/C0SM00862A
– reference: VyasTKBabbarAKSharmaRKMisraAIntranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targetingJ Drug Target200513317241:CAS:528:DC%2BD2MXhtVKnt7jO10.1080/1061186050024621716199375
– reference: HansonLRFreyWHIntranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative diseaseBMC Neurosci200891410.1186/1471-2202-9-S3-S5
– reference: SongXZhaoYHouSXuFZhaoRHeJDual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiencyEur J Pharm Biopharm200869445531:CAS:528:DC%2BD1cXmtVShu7s%3D10.1016/j.ejpb.2008.01.01318374554
– reference: USP30-NF25, Diazepam, 1912.
– reference: BilatiUEmannEADoelkerEDevelopment of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticlesEur J Pharm Sci20052467751:CAS:528:DC%2BD2MXjtler10.1016/j.ejps.2004.09.01115626579
– reference: Quintanar-GuerreroDAllemannEFessiHDoelkerEPreparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymersDrug Dev Ind Pharm1998241113281:CAS:528:DyaK1cXnvFWquro%3D10.3109/036390498091085719876569
– reference: IvaturiVDRissJRKrielRLCloydJCPharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteersActa Neurol Scand200912035371:CAS:528:DC%2BD1MXhsVOls7%2FE10.1111/j.1600-0404.2009.01170.x19456308
– reference: KumariAYadavSKYadavSCBiodegradable polymeric nanoparticles based drug delivery systemsColloids Surf B2010751181:CAS:528:DC%2BD1MXhsVKntr%2FO10.1016/j.colsurfb.2009.09.001
– reference: PrajapatiRKMahajanHSSuranaSJPLGA based mucoadhesive microspheres for nasal delivery: in vitro/ex vivo studiesIndian J Novel Drug Deliv20113916
– reference: ShingakiTHidalgoIJFurubayashiTKatsumiHSakaneTYamamotoAThe transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid)Int J Pharm200937785911:CAS:528:DC%2BD1MXotlOlsbo%3D10.1016/j.ijpharm.2009.05.00919446619
– reference: WestinUEBoströmEGråsjöJHammarlund-UdenaesMBjörkEDirect nose-to-brain transfer of morphine after nasal administration to ratsPharm Res200623565721:CAS:528:DC%2BD28Xitlemtb0%3D10.1007/s11095-006-9534-z16489488
– reference: Fessi et al. Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles. US Patent 1992; 5,118,528.
– reference: GizurarsonSAnatomical and histological factors affecting intranasal drug and vaccine deliveryCurr Drug Deliv201295668234807211:CAS:528:DC%2BC3sXjvFCisrc%3D10.2174/15672011280352982822788696
– reference: SharmaGMishraAKMishraPMisraAIntranasal cabergoline: pharmacokinetic and pharmacodynamic studiesAAPS PharmSciTech20091013213027995951:CAS:528:DC%2BC3cXovVGqt7w%3D10.1208/s12249-009-9329-819894122
– reference: SejuUKumarASawantKKDevelopment and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studiesActa Biomater201174169761:CAS:528:DC%2BC3MXhsVSkt77E10.1016/j.actbio.2011.07.02521839863
– reference: HenneyHR3rdSperlingMRRabinowiczALBreamGCarrazanaEJAssessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adultsEpilepsy Res20141081204111:CAS:528:DC%2BC2cXhtVWrsbjJ10.1016/j.eplepsyres.2014.04.00724934774
– reference: MukerjeeAVishwanathaJKFormulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapyAnticancer Res2009293867761:CAS:528:DC%2BD1MXhsVOlt7jE19846921
– reference: AverineniRKShaviGVGurramAKDeshpandePBArumugamKMaliyakkalNPLGA 50:50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluationBull Mater Sci201235319261:CAS:528:DC%2BC38XhtVygu7vP10.1007/s12034-012-0313-7
– reference: SnehalathaMKolachinaVSahaRNBabbarAKSharmaNSharmaRKEnhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton’s lymphoma tumor bearing miceJ Pharm Bioallied Sci20135384510.4103/0975-7406.120081
– reference: SharmaDGabraniRSharmaSKAliJDangSDevelopment of midazolam loaded PLGA nanoparticles for treatment of status epilepticusAdv Sci Lett20142015263010.1166/asl.2014.5520
– reference: MasseriniMNanoparticles for brain drug deliveryISRN Biochem201320131810.1155/2013/238428
– reference: IvaturiVKrielRBrundageRGordonLMansbachHCloydJBioavailability of intranasal vs. rectal diazepamEpilepsy Res2013103254611:CAS:528:DC%2BC38XhtlKrsbfO10.1016/j.eplepsyres.2012.07.01822981338
– reference: DjupeslandPGMessinaJCMahmoudRAThe nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overviewTher Deliv20145709331:CAS:528:DC%2BC2cXht1Kju7zN10.4155/tde.14.4125090283
– reference: ReisCPNeufeldRJRibeiroANJVeigaFNanoencapsulation I. methods for preparation of drug-loaded polymeric NPNanomedicine Nanotech Biol Med200628211:CAS:528:DC%2BD28Xjsl2jtL8%3D10.1016/j.nano.2005.12.003
– reference: BudhianASiegelSJWineyKIHaloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug contentInt J Pharm2007336367751:CAS:528:DC%2BD2sXkvFajs7g%3D10.1016/j.ijpharm.2006.11.06117207944
– reference: ThorneRGPronkGJPadmanabhanVFreyWHDelivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administrationNeuroscience2004127481961:CAS:528:DC%2BD2cXlvVSqurg%3D10.1016/j.neuroscience.2004.05.02915262337
– reference: BabuRJDayalPPPawarKSinghMNose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in ratsJ Drug Target20111973140333486510.3109/1061186X.2011.558090
– ident: 294_CR31
  doi: 10.1155/2009/754810
– volume: 9
  start-page: 1
  year: 2008
  ident: 294_CR41
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-9-S3-S5
– volume: 16
  start-page: 806
  year: 2008
  ident: 294_CR38
  publication-title: J Drug Target
  doi: 10.1080/10611860802476504
– volume: 105
  start-page: 362
  year: 2013
  ident: 294_CR45
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2013.02.018
– volume: 10
  start-page: 1321
  year: 2009
  ident: 294_CR54
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-009-9329-8
– volume: 290
  start-page: 7
  year: 2005
  ident: 294_CR19
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2004.11.027
– volume: 20
  start-page: 1526
  year: 2014
  ident: 294_CR47
  publication-title: Adv Sci Lett
  doi: 10.1166/asl.2014.5520
– volume: 50
  start-page: 846
  year: 2011
  ident: 294_CR18
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2011.05.006
– volume: 3
  start-page: 1377
  year: 2011
  ident: 294_CR16
  publication-title: Polymers
  doi: 10.3390/polym3031377
– volume: 9
  start-page: 325
  year: 2009
  ident: 294_CR15
  publication-title: Expert Rev Mol Diagn
  doi: 10.1586/erm.09.15
– volume: 9
  start-page: 566
  year: 2012
  ident: 294_CR7
  publication-title: Curr Drug Deliv
  doi: 10.2174/156720112803529828
– volume: 232
  start-page: 292
  year: 2008
  ident: 294_CR32
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2008.06.026
– volume: 2013
  start-page: 18
  year: 2013
  ident: 294_CR6
  publication-title: ISRN Biochem
  doi: 10.1155/2013/238428
– volume: 127
  start-page: 481
  year: 2004
  ident: 294_CR8
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.05.029
– ident: 294_CR26
– volume: 23
  start-page: 565
  year: 2006
  ident: 294_CR9
  publication-title: Pharm Res
  doi: 10.1007/s11095-006-9534-z
– volume: 336
  start-page: 367
  year: 2007
  ident: 294_CR21
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2006.11.061
– year: 2014
  ident: 294_CR20
  publication-title: Biomed Res Int
– volume: 7
  start-page: 4169
  year: 2011
  ident: 294_CR25
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2011.07.025
– volume: 5
  start-page: 38
  year: 2013
  ident: 294_CR35
  publication-title: J Pharm Bioallied Sci
  doi: 10.4103/0975-7406.120081
– volume: 69
  start-page: 445
  year: 2008
  ident: 294_CR22
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2008.01.013
– volume: 120
  start-page: 353
  year: 2009
  ident: 294_CR3
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.2009.01170.x
– volume: 276
  start-page: 162
  year: 2006
  ident: 294_CR23
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2005.10.064
– volume: 108
  start-page: 1204
  year: 2014
  ident: 294_CR2
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2014.04.007
– volume: 55
  start-page: 1544
  year: 2014
  ident: 294_CR4
  publication-title: Epilepsia
  doi: 10.1111/epi.12755
– volume: 7
  start-page: 1581
  year: 2011
  ident: 294_CR28
  publication-title: Soft Matter
  doi: 10.1039/C0SM00862A
– volume: 26
  start-page: 432
  year: 2009
  ident: 294_CR11
  publication-title: J Microencapsul
  doi: 10.1080/02652040802456726
– volume: 17
  start-page: 230
  year: 2006
  ident: 294_CR43
  publication-title: Korean J Chem Eng
  doi: 10.1007/BF02707148
– volume: 24
  start-page: 67
  year: 2005
  ident: 294_CR27
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2004.09.011
– volume: 102
  start-page: 215
  year: 2013
  ident: 294_CR33
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23350
– volume: 5
  start-page: 369
  year: 2009
  ident: 294_CR17
  publication-title: Nanomedicine Nanotech Biol Med
  doi: 10.1016/j.nano.2009.02.005
– volume: 161
  start-page: 505
  year: 2012
  ident: 294_CR13
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2012.01.043
– volume: 12
  start-page: e32616
  issue: 7
  year: 2012
  ident: 294_CR34
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032616
– volume: 3
  start-page: 9
  year: 2011
  ident: 294_CR48
  publication-title: Indian J Novel Drug Deliv
– volume: 6
  start-page: 662
  year: 2010
  ident: 294_CR30
  publication-title: Nanomedicine Nanotech Biol Med
  doi: 10.1016/j.nano.2010.02.002
– volume: 2
  start-page: 219
  year: 2007
  ident: 294_CR46
  publication-title: Nanomedicine
  doi: 10.2217/17435889.2.2.219
– ident: 294_CR29
– volume: 13
  start-page: 317
  year: 2005
  ident: 294_CR36
  publication-title: J Drug Target
  doi: 10.1080/10611860500246217
– volume: 35
  start-page: 319
  year: 2012
  ident: 294_CR42
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-012-0313-7
– volume: 377
  start-page: 85
  year: 2009
  ident: 294_CR10
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2009.05.009
– volume: 5
  start-page: 1020
  year: 2013
  ident: 294_CR52
  publication-title: Cancers
  doi: 10.3390/cancers5031020
– volume: 2
  start-page: 8
  year: 2006
  ident: 294_CR12
  publication-title: Nanomedicine Nanotech Biol Med
  doi: 10.1016/j.nano.2005.12.003
– volume: 6
  start-page: 683
  year: 2011
  ident: 294_CR24
  publication-title: Int J Nanomedicine
– volume: 93
  start-page: 1804
  year: 2004
  ident: 294_CR40
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20094
– volume: 7
  start-page: 5705
  year: 2012
  ident: 294_CR39
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S35329
– volume: 103
  start-page: 254
  year: 2013
  ident: 294_CR44
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2012.07.018
– volume: 358
  start-page: 285
  year: 2008
  ident: 294_CR37
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2008.03.029
– volume: 29
  start-page: 3867
  year: 2009
  ident: 294_CR53
  publication-title: Anticancer Res
– volume: 5
  start-page: 709
  year: 2014
  ident: 294_CR5
  publication-title: Ther Deliv
  doi: 10.4155/tde.14.41
– volume: 19
  start-page: 731
  year: 2011
  ident: 294_CR55
  publication-title: J Drug Target
  doi: 10.3109/1061186X.2011.558090
– volume-title: The treatment of epilepsy
  year: 2009
  ident: 294_CR1
  doi: 10.1002/9781444316667
– volume: 4
  start-page: 361
  year: 2012
  ident: 294_CR50
  publication-title: Int J Chem Tech Res
– volume: 75
  start-page: 1
  year: 2010
  ident: 294_CR14
  publication-title: Colloids Surf B
  doi: 10.1016/j.colsurfb.2009.09.001
– volume: 42
  start-page: 523
  year: 2006
  ident: 294_CR51
  publication-title: Braz J Pharm Sci
– volume: 24
  start-page: 1113
  year: 1998
  ident: 294_CR49
  publication-title: Drug Dev Ind Pharm
  doi: 10.3109/03639049809108571
– reference: 19446619 - Int J Pharm. 2009 Jul 30;377(1-2):85-91
– reference: 19782542 - Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18
– reference: 15664139 - Int J Pharm. 2005 Feb 16;290(1-2):137-44
– reference: 22353619 - J Control Release. 2012 Jul 20;161(2):505-22
– reference: 23561287 - Epilepsy Res. 2013 Aug;105(3):362-7
– reference: 18706438 - Toxicol Appl Pharmacol. 2008 Oct 15;232(2):292-301
– reference: 20230912 - Nanomedicine. 2010 Oct;6(5):662-71
– reference: 24934774 - Epilepsy Res. 2014 Sep;108(7):1204-11
– reference: 25154625 - Epilepsia. 2014 Oct;55(10):1544-50
– reference: 21428693 - J Drug Target. 2011 Nov;19(9):731-40
– reference: 19894122 - AAPS PharmSciTech. 2009;10(4):1321-30
– reference: 15176068 - J Pharm Sci. 2004 Jul;93(7):1804-14
– reference: 22403681 - PLoS One. 2012;7(3):e32616
– reference: 21556343 - Int J Nanomedicine. 2011;6:683-92
– reference: 22788696 - Curr Drug Deliv. 2012 Nov;9(6):566-82
– reference: 18374554 - Eur J Pharm Biopharm. 2008 Jun;69(2):445-53
– reference: 18932060 - J Microencapsul. 2009 Aug;26(5):432-43
– reference: 19341816 - Nanomedicine. 2009 Dec;5(4):369-77
– reference: 24302837 - J Pharm Bioallied Sci. 2013 Oct;5(4):290-7
– reference: 22981338 - Epilepsy Res. 2013 Feb;103(2-3):254-61
– reference: 17292111 - Nanomedicine. 2006 Mar;2(1):8-21
– reference: 21839863 - Acta Biomater. 2011 Dec;7(12):4169-76
– reference: 22577513 - Polymers (Basel). 2011 Sep 1;3(3):1377-1397
– reference: 15626579 - Eur J Pharm Sci. 2005 Jan;24(1):67-75
– reference: 17207944 - Int J Pharm. 2007 May 24;336(2):367-75
– reference: 19091002 - BMC Neurosci. 2008;9 Suppl 3:S5
– reference: 16489488 - Pharm Res. 2006 Mar;23(3):565-72
– reference: 16199375 - J Drug Target. 2005 Jun;13(5):317-24
– reference: 19846921 - Anticancer Res. 2009 Oct;29(10):3867-75
– reference: 15262337 - Neuroscience. 2004;127(2):481-96
– reference: 24202332 - Cancers (Basel). 2013 Aug 14;5(3):1020-48
– reference: 19456308 - Acta Neurol Scand. 2009 Nov;120(5):353-7
– reference: 25126544 - Biomed Res Int. 2014;2014:156010
– reference: 19435455 - Expert Rev Mol Diagn. 2009 May;9(4):325-41
– reference: 17716122 - Nanomedicine (Lond). 2007 Apr;2(2):219-32
– reference: 23180965 - Int J Nanomedicine. 2012;7:5705-18
– reference: 18988064 - J Drug Target. 2008 Dec;16(10):806-14
– reference: 18455333 - Int J Pharm. 2008 Jun 24;358(1-2):285-91
– reference: 20130771 - J Toxicol. 2009;2009:754810
– reference: 25937958 - ISRN Biochem. 2013 May 21;2013:238428
– reference: 25090283 - Ther Deliv. 2014 Jun;5(6):709-33
– reference: 9876569 - Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28
– reference: 23108693 - J Pharm Sci. 2013 Jan;102(1):215-26
SSID ssj0023193
Score 2.4302378
Snippet The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1108
SubjectTerms Administration, Intranasal
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Brain - diagnostic imaging
Brain - metabolism
Calorimetry, Differential Scanning
Cell Survival - drug effects
Cercopithecus aethiops
Chemical Precipitation
Diazepam - administration & dosage
Diazepam - chemistry
Diazepam - metabolism
Diazepam - toxicity
Drug Carriers
Drug Compounding
Lactic Acid - chemistry
Male
Nanoparticles
Nanotechnology - methods
Nasal Absorption
Nasal Mucosa - diagnostic imaging
Nasal Mucosa - metabolism
Particle Size
Pharmacology/Toxicology
Pharmacy
Polyglycolic Acid - chemistry
Radiopharmaceuticals - administration & dosage
Radiopharmaceuticals - chemistry
Radiopharmaceuticals - metabolism
Radiopharmaceuticals - toxicity
Rats, Sprague-Dawley
Research Article
Solubility
Spectroscopy, Fourier Transform Infrared
Surface-Active Agents - chemistry
Tissue Distribution
Vero Cells
Title Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles
URI https://link.springer.com/article/10.1208/s12249-015-0294-0
https://www.ncbi.nlm.nih.gov/pubmed/25698083
https://www.proquest.com/docview/1779022891
https://pubmed.ncbi.nlm.nih.gov/PMC4674633
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLZYuOxlxWNhh5eChDgA0bZN2mmPw1uwoDnMSOwpStJUIEGL6HAYfj12H4OGl8S1TarKdmJ_sv0ZYFuEOssi33KTCsNl6CKeEAOtsGmaeVpqK6k5-fIqOhvK8-vwuunjLttq9zYlWd3UFQOCF_8tKQdEtT3UUUx8tj9gLkToTnVcw6A3QVloU6JJX364bdoBvYsq3xdHvsmQVo7nZB5-NREj69UqXoAZly_CTr-mnB7vs8FrB1W5z3ZY_5WMerwE4VVROj4o-AHNgmBH7o4KMcasyFj_32mPH93qZ_RI9wyvWcTPTZncbxieHA8Oz3gzKoFb9NgjHltnMoloT0tElhnepqHsmgT1YGWAmMTHR3FsIxlT6te3QRI7EclUGm2M832xDLN5kbs_wLqZCNLUxhkRv4c60kIYTcR8ofWF8ZIOeK38lG14xGmcxZ0iPIEiV7XIFYpckciV14HdyZaHmkTjq8VbrVIUmjrlL3TuiqdS-cSNGCBC9DuwUitp8jmM3JIYw8kOdKfUN1lANNrTb_Lbm4pOm-atRAJ37rWKVs05Lj__y9VvrV6DnwFZYFUEuA6zo8cnt4HBzMhswlzv9P_F8WZlxC-IlO7Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VeoBL1RbaLvRhJMQBsEhiJ-sct6V0C8tqD7sSN8t2HBWJJogsh-2v70weixbaSr0mdhTNjD3zaWa-AdgXscnzJHTcZsJyGfuEp8RAK1yW5YGRxklqTr4cJ8OZPL-Kr9o-7qqrdu9SkvVNXTMgBOqkohwQ1fZQRzHx2a7Bc4wFFJnyLBosURbalGjTl3_ctuqAnkSVT4sjH2VIa8dz9hJetBEjGzQqfgXPfPEaDiYN5fTimE0fOqiqY3bAJg9k1IstiMdl5fm05J9pFgQ79TdUiLFgZc4mo28DfnptfqFH-snwmkX83JbJbcPs7Ov0y5C3oxK4Q48958p5m0tEe0YisszxNo1l36aoBycjxCQhPlLKJVJR6jd0Uaq8SGQmrbHWh6F4A-tFWfh3wPq5iLLMqZyI32OTGCGsIWK-2IXCBmkPgk5-2rU84jTO4kYTnkCR60bkGkWuSeQ66MHhcsttQ6Lxr8V7nVI0mjrlL0zhy_tKh8SNGCFCDHvwtlHS8nMYuaUKw8ke9FfUt1xANNqrb4rrHzWdNs1bSQTuPOoUrdtzXP39L3f-a_Un2BhOL0d69H18sQubEVljXRD4Htbnd_f-AwY2c_uxNuTfcb3wNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5tTJr2Mg3YRjd-eNLEA2A1iZ00eSx0hTGo-tBKvFm2YwsklqClPHR__e6apKiwTeI1saPo7uy7T3f3HcBXEWvvk9BykwvDZewSnhEDrbB57gMttZXUnHw5Ss6m8vwqvmrmnFZttXubkqx7GoilqZh173JfsyEEabeifBDV-VB3MXHbvoRXkpqB0aCnUX-JuNC-RJPK_Ou2VWf0JMJ8Wij5KFu6cELDd_C2iR5Zv1b3OrxwxQbsj2v66fkRmzx0U1VHbJ-NH4ip55sQj8rK8UnJj2kuBBu4WyrKmLPSs_HFaZ8PbvRv9E4_GV65iKWbkrn3MB1-m5yc8WZsArfovWc8tc54ichPS0SZHm_WWPZMhjqxMkJ8EuKjNLWJTCkNHNooS51IZC6NNsaFofgAa0VZuC1gPS-iPLepJxL4WCdaCKOJpC-2oTBB1oGglZ-yDac4jba4VYQtUOSqFrlCkSsSuQo6cLDcclcTavxv8ZdWKQrNnnIZunDlfaVC4kmMEC2GHfhYK2n5OYzishRDyw70VtS3XECU2qtvipvrBbU2zV5JBO48bBWtmjNd_fsvPz1r9R68Hg-G6uL76MdneBORMS5qA7dhbfbr3u1gjDMzuws7_gMUrPRq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nose-To-Brain+Delivery+of+PLGA-Diazepam+Nanoparticles&rft.jtitle=AAPS+PharmSciTech&rft.au=Sharma%2C+Deepak&rft.au=Sharma%2C+Rakesh+Kumar&rft.au=Sharma%2C+Navneet&rft.au=Gabrani%2C+Reema&rft.date=2015-10-01&rft.eissn=1530-9932&rft.volume=16&rft.issue=5&rft.spage=1108&rft_id=info:doi/10.1208%2Fs12249-015-0294-0&rft_id=info%3Apmid%2F25698083&rft.externalDocID=25698083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon