Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles
The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. T...
Saved in:
Published in | AAPS PharmSciTech Vol. 16; no. 5; pp. 1108 - 1121 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (
z-
average and drug entrapment) was investigated. Developed DNP showed
z
-average 148–337 d.nm, polydispersity index 0.04–0.45, drug entrapment 69–92%, and zeta potential in the range of −15 to −29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR),
ex-vivo
drug release, and
in-vitro
cytotoxicity.
Ex-vivo
drug release study
via
sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled (
99m
Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23–1.45, 258, and 61% for
99m
Tc-DNP (i.n) compared to
99m
Tc-DS (i.n) (0.38–1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus. |
---|---|
AbstractList | The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus. The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP ( z- average and drug entrapment) was investigated. Developed DNP showed z -average 148–337 d.nm, polydispersity index 0.04–0.45, drug entrapment 69–92%, and zeta potential in the range of −15 to −29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ( 99m Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23–1.45, 258, and 61% for 99m Tc-DNP (i.n) compared to 99m Tc-DS (i.n) (0.38–1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus. The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus. |
Author | Ali, Javed Sharma, Navneet Sharma, Deepak Dang, Shweta Gabrani, Reema Sharma, Sanjeev K. Sharma, Rakesh Kumar |
Author_xml | – sequence: 1 givenname: Deepak surname: Sharma fullname: Sharma, Deepak organization: Department of Biotechnology, Jaypee Institute of Information Technology – sequence: 2 givenname: Rakesh Kumar surname: Sharma fullname: Sharma, Rakesh Kumar organization: Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences – sequence: 3 givenname: Navneet surname: Sharma fullname: Sharma, Navneet organization: Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences – sequence: 4 givenname: Reema surname: Gabrani fullname: Gabrani, Reema organization: Department of Biotechnology, Jaypee Institute of Information Technology – sequence: 5 givenname: Sanjeev K. surname: Sharma fullname: Sharma, Sanjeev K. organization: Department of Biotechnology, Jaypee Institute of Information Technology – sequence: 6 givenname: Javed surname: Ali fullname: Ali, Javed organization: Faculty of Pharmacy, Jamia Hamdard – sequence: 7 givenname: Shweta surname: Dang fullname: Dang, Shweta email: shweta.dang@jiit.ac.in organization: Department of Biotechnology, Jaypee Institute of Information Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25698083$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPAjEUhRuDUXz8ADeGpZtqXzPTbkwQFU0IusB10yl3tGZosR1I8Nc7BDTqglWb9nzn3NxzhDo-eEDojJJLyoi8SpQxoTChGSZMCUz2UJdmnGClOOv8uh-io5TeCWGcKn6ADlmWK0kk76JsHBLgScA30Tjfu4XaLSGueqHqPY-GfXzrzCfMzaw3Nj7MTWycrSGdoP3K1AlOt-cxerm_mwwe8Ohp-Djoj7DNKGuwtFBWQrLMiIzxCozNRFEqU1VWMCEL2j5JaXMhKeGKWqYk8FxMRWnKEijlx-h64ztflDOYWvBNNLWeRzczcaWDcfrvj3dv-jUstcgLkXPeGlxsDWL4WEBq9MwlC3VtPIRF0rQoFGFMqnXW-e-sn5DvXbUCuhHYGFKKUP1IKNHrPvSmD932odd9aNIyxT_GusY0LqzHdfVOkm3I1Kb4V4j6PSyib7e9A_oC27qeCg |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2018_11_076 crossref_primary_10_1016_j_isci_2023_107321 crossref_primary_10_1016_j_jconrel_2017_11_047 crossref_primary_10_1016_j_apsb_2016_05_013 crossref_primary_10_3390_pharmaceutics13122049 crossref_primary_10_4155_tde_2019_0060 crossref_primary_10_1002_adhm_202102610 crossref_primary_10_1016_j_jconrel_2017_06_019 crossref_primary_10_2174_1567201817666200708115627 crossref_primary_10_1080_17425247_2019_1684895 crossref_primary_10_1016_j_jddst_2021_102533 crossref_primary_10_1016_j_apmt_2022_101631 crossref_primary_10_1039_D1BM01251G crossref_primary_10_1089_rej_2018_2119 crossref_primary_10_1088_1361_6528_ab373e crossref_primary_10_1177_0883911520913906 crossref_primary_10_1016_j_jddst_2020_101724 crossref_primary_10_1007_s10571_020_00979_z crossref_primary_10_1016_j_indcrop_2015_11_046 crossref_primary_10_1080_21691401_2021_1939709 crossref_primary_10_1007_s40005_021_00528_w crossref_primary_10_1002_advs_202002085 crossref_primary_10_1177_20417314221083414 crossref_primary_10_3389_fnagi_2024_1342366 crossref_primary_10_1016_j_fct_2024_114962 crossref_primary_10_1016_j_jconrel_2020_06_028 crossref_primary_10_3389_fnagi_2022_960246 crossref_primary_10_3390_pharmaceutics15010233 crossref_primary_10_3390_pharmaceutics11030118 crossref_primary_10_1007_s11094_019_02088_8 crossref_primary_10_1016_j_jconrel_2018_12_049 crossref_primary_10_3390_pharmaceutics12050451 crossref_primary_10_3390_pharmaceutics16010066 crossref_primary_10_3390_pharmaceutics13071042 crossref_primary_10_1016_j_jddst_2023_104421 crossref_primary_10_53879_id_58_05_12489 crossref_primary_10_3390_pharmaceutics11020084 crossref_primary_10_1016_j_ijpharm_2020_119776 crossref_primary_10_1080_02652048_2022_2041751 crossref_primary_10_3390_gels8060342 crossref_primary_10_2147_IJN_S452316 crossref_primary_10_2174_1381612828666211222163025 crossref_primary_10_2174_1567201819666220303101506 crossref_primary_10_1186_s41181_023_00227_x crossref_primary_10_3390_ma14216291 crossref_primary_10_1007_s13318_020_00641_5 crossref_primary_10_1016_j_ijpharm_2017_08_064 crossref_primary_10_1016_j_ijpharm_2021_120724 crossref_primary_10_1016_j_jconrel_2021_12_009 crossref_primary_10_1021_acs_molpharmaceut_3c00773 crossref_primary_10_1021_acs_molpharmaceut_9b01215 crossref_primary_10_1016_j_ijpharm_2015_12_046 crossref_primary_10_1016_j_ejpb_2025_114661 crossref_primary_10_1080_10837450_2023_2177673 crossref_primary_10_1016_j_drudis_2018_01_005 crossref_primary_10_15171_apb_2017_073 crossref_primary_10_3390_pharmaceutics15082119 crossref_primary_10_3390_pharmaceutics12121167 crossref_primary_10_1021_acsomega_4c02983 crossref_primary_10_2174_1381612826666200116153912 crossref_primary_10_1208_s12249_016_0652_6 crossref_primary_10_3390_ijms24043390 crossref_primary_10_1111_jphp_13292 crossref_primary_10_1016_j_surfin_2023_103138 crossref_primary_10_1007_s40139_016_0118_2 crossref_primary_10_3390_pharmaceutics10010034 crossref_primary_10_1016_j_jddst_2024_106282 crossref_primary_10_1016_j_lfs_2022_120797 crossref_primary_10_2174_1874467215666220819143105 crossref_primary_10_1080_02652048_2020_1756971 crossref_primary_10_52711_0974_360X_2023_00988 crossref_primary_10_1016_j_msec_2020_111824 crossref_primary_10_1007_s13346_019_00622_5 crossref_primary_10_1016_j_ijpharm_2021_120474 crossref_primary_10_3390_pharmaceutics12020093 crossref_primary_10_2174_2211738511666230106154557 crossref_primary_10_1016_j_xphs_2018_07_013 crossref_primary_10_1016_j_jddst_2023_104523 |
Cites_doi | 10.1155/2009/754810 10.1186/1471-2202-9-S3-S5 10.1080/10611860802476504 10.1016/j.eplepsyres.2013.02.018 10.1208/s12249-009-9329-8 10.1016/j.ijpharm.2004.11.027 10.1166/asl.2014.5520 10.1016/j.cep.2011.05.006 10.3390/polym3031377 10.1586/erm.09.15 10.2174/156720112803529828 10.1016/j.taap.2008.06.026 10.1155/2013/238428 10.1016/j.neuroscience.2004.05.029 10.1007/s11095-006-9534-z 10.1016/j.ijpharm.2006.11.061 10.1016/j.actbio.2011.07.025 10.4103/0975-7406.120081 10.1016/j.ejpb.2008.01.013 10.1111/j.1600-0404.2009.01170.x 10.1016/j.colsurfa.2005.10.064 10.1016/j.eplepsyres.2014.04.007 10.1111/epi.12755 10.1039/C0SM00862A 10.1080/02652040802456726 10.1007/BF02707148 10.1016/j.ejps.2004.09.011 10.1002/jps.23350 10.1016/j.nano.2009.02.005 10.1016/j.jconrel.2012.01.043 10.1371/journal.pone.0032616 10.1016/j.nano.2010.02.002 10.2217/17435889.2.2.219 10.1080/10611860500246217 10.1007/s12034-012-0313-7 10.1016/j.ijpharm.2009.05.009 10.3390/cancers5031020 10.1016/j.nano.2005.12.003 10.1002/jps.20094 10.2147/IJN.S35329 10.1016/j.eplepsyres.2012.07.018 10.1016/j.ijpharm.2008.03.029 10.4155/tde.14.41 10.3109/1061186X.2011.558090 10.1002/9781444316667 10.1016/j.colsurfb.2009.09.001 10.3109/03639049809108571 |
ContentType | Journal Article |
Copyright | American Association of Pharmaceutical Scientists 2015 |
Copyright_xml | – notice: American Association of Pharmaceutical Scientists 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1208/s12249-015-0294-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1530-9932 |
EndPage | 1121 |
ExternalDocumentID | PMC4674633 25698083 10_1208_s12249_015_0294_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ AXYYD B-. BA0 BAWUL BDATZ BGNMA BSONS C1A CAG COF CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GX1 H13 HG6 HH5 HMJXF HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LGEZI LLZTM LOTEE M4Y MA- NADUK NPVJJ NQJWS NU0 NXXTH O9- O93 O9I O9J OK1 OVD P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z87 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c512t-8cebf4825a4523feac547b9affc424871fea88c64810391c298e364d4babbe113 |
IEDL.DBID | U2A |
ISSN | 1530-9932 |
IngestDate | Thu Aug 21 17:29:11 EDT 2025 Thu Jul 10 23:33:55 EDT 2025 Mon Jul 21 05:58:57 EDT 2025 Tue Jul 01 01:45:29 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 21 02:33:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | process optimization controlled release nanoparticles scintigraphy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-8cebf4825a4523feac547b9affc424871fea88c64810391c298e364d4babbe113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1208/s12249-015-0294-0.pdf |
PMID | 25698083 |
PQID | 1779022891 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4674633 proquest_miscellaneous_1779022891 pubmed_primary_25698083 crossref_primary_10_1208_s12249_015_0294_0 crossref_citationtrail_10_1208_s12249_015_0294_0 springer_journals_10_1208_s12249_015_0294_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | AAPS PharmSciTech |
PublicationTitleAbbrev | AAPS PharmSciTech |
PublicationTitleAlternate | AAPS PharmSciTech |
PublicationYear | 2015 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | ShorvonSPeruccaEEngelJJrThe treatment of epilepsy20093UKWiley-Blackwell West Sussex10.1002/9781444316667 ShingakiTHidalgoIJFurubayashiTKatsumiHSakaneTYamamotoAThe transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid)Int J Pharm200937785911:CAS:528:DC%2BD1MXotlOlsbo%3D10.1016/j.ijpharm.2009.05.00919446619 MakadiaHKSiegelSJPoly Lactic-co-Glycolic acid (PLGA) as biodegradable controlled drug delivery carrierPolymers2011313779733478611:CAS:528:DC%2BC3MXhtFOis7jJ10.3390/polym303137722577513 AlamSKhanZIMustafaGKumarMIslamFBhatnagarADevelopment and evaluation of thymoquinone- encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic studyInt J Nanomedicine2012757051834978941:CAS:528:DC%2BC38XhslyisbrE10.2147/IJN.S3532923180965 MainardesRMEvangelistaRCPLGA nanoparticles containing praziquantel: effect of formulation variables on size distributionInt J Pharm2005290714410.1016/j.ijpharm.2004.11.027 SongXZhaoYHouSXuFZhaoRHeJDual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiencyEur J Pharm Biopharm200869445531:CAS:528:DC%2BD1cXmtVShu7s%3D10.1016/j.ejpb.2008.01.01318374554 SemeteBBooysenLLemmerYKalomboLKatataLJanVIn vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systemsNanomedicine Nanotech Biol Med20106662711:CAS:528:DC%2BC3cXhtlGmu7fJ10.1016/j.nano.2010.02.002 MukerjeeAVishwanathaJKFormulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapyAnticancer Res2009293867761:CAS:528:DC%2BD1MXhsVOlt7jE19846921 Fessi et al. Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles. US Patent 1992; 5,118,528. NahJWY-IlJKohJJDrug release from nanoparticles of poly(dl-lactide-co-glycolide)Korean J Chem Eng200617230610.1007/BF02707148 BabuRJDayalPPPawarKSinghMNose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in ratsJ Drug Target20111973140333486510.3109/1061186X.2011.558090 PatilSBSawantKKDevelopment, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal deliveryJ Microencapsul200926432431:CAS:528:DC%2BD1MXos1Wjsb4%3D10.1080/0265204080245672618932060 KumariAYadavSKYadavSCBiodegradable polymeric nanoparticles based drug delivery systemsColloids Surf B2010751181:CAS:528:DC%2BD1MXhsVKntr%2FO10.1016/j.colsurfb.2009.09.001 USP30-NF25, Diazepam, 1912. SharmaDMaheshwariDPhilipGRanaRBhatiaSSinghMFormulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluationBiomed Res Int2014 IvaturiVKrielRBrundageRGordonLMansbachHCloydJBioavailability of intranasal vs. rectal diazepamEpilepsy Res2013103254611:CAS:528:DC%2BC38XhtlKrsbfO10.1016/j.eplepsyres.2012.07.01822981338 IvaturiVDRissJRKrielRLCloydJCPharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteersActa Neurol Scand200912035371:CAS:528:DC%2BD1MXhsVOls7%2FE10.1111/j.1600-0404.2009.01170.x19456308 GizurarsonSAnatomical and histological factors affecting intranasal drug and vaccine deliveryCurr Drug Deliv201295668234807211:CAS:528:DC%2BC3sXjvFCisrc%3D10.2174/15672011280352982822788696 BudhianASiegelSJWineyKIHaloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug contentInt J Pharm2007336367751:CAS:528:DC%2BD2sXkvFajs7g%3D10.1016/j.ijpharm.2006.11.06117207944 SharmaDGabraniRSharmaSKAliJDangSDevelopment of midazolam loaded PLGA nanoparticles for treatment of status epilepticusAdv Sci Lett20142015263010.1166/asl.2014.5520 HaoJFangXWangJGuoFLiFPengXDevelopment and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken designInt J Nanomedicine201166839230843151:CAS:528:DC%2BC3MXmt1aqt7w%3D21556343 AgarwalSKKrielRLBrundageRCIvaturiVDCloydJCA pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteersEpilepsy Res201310536271:CAS:528:DC%2BC3sXlt1CjsLk%3D10.1016/j.eplepsyres.2013.02.01823561287 SharmaGMishraAKMishraPMisraAIntranasal cabergoline: pharmacokinetic and pharmacodynamic studiesAAPS PharmSciTech20091013213027995951:CAS:528:DC%2BC3cXovVGqt7w%3D10.1208/s12249-009-9329-819894122 FeczkoTTothJDosaGGyenisJInfluence of process conditions on the mean size of PLGA nanoparticlesChem Eng Process201150846531:CAS:528:DC%2BC3MXhtVagt7vO10.1016/j.cep.2011.05.006 DanhierFAnsorenaESilvaJMCocoRBretonALPreatVPLGA-based nanoparticles: an overview of biomedical applicationsJ Control Release2012161505221:CAS:528:DC%2BC38Xjs1Squr4%3D10.1016/j.jconrel.2012.01.04322353619 SperlingMRHaasKFKraussGSeif EddeineHHenneyHR3rdRabinowiczALDosing feasibility and tolerability of intranasal diazepam in adults with epilepsyEpilepsia2014551544501:CAS:528:DC%2BC2cXhvVSjs7fJ10.1111/epi.1275525154625 HenneyHR3rdSperlingMRRabinowiczALBreamGCarrazanaEJAssessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adultsEpilepsy Res20141081204111:CAS:528:DC%2BC2cXhtVWrsbjJ10.1016/j.eplepsyres.2014.04.00724934774 SejuUKumarASawantKKDevelopment and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studiesActa Biomater201174169761:CAS:528:DC%2BC3MXhsVSkt77E10.1016/j.actbio.2011.07.02521839863 KumarMMisraAMishraAKMishraPPathakKMucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targetingJ Drug Target200816806141:CAS:528:DC%2BD1cXhtlOmt7bK10.1080/1061186080247650418988064 El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009; 754810. doi:10.1155/2009/754810. LeiRWuCYangBMaHShiCWangQIntegrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicityToxicol Appl Pharmacol20082322923011:CAS:528:DC%2BD1cXhtFyqtrjL10.1016/j.taap.2008.06.02618706438 BilatiUEmannEADoelkerEDevelopment of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticlesEur J Pharm Sci20052467751:CAS:528:DC%2BD2MXjtler10.1016/j.ejps.2004.09.01115626579 BetancourtTBrownBBrannon-PeppasLDoxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluationNanomedicine20072219321:CAS:528:DC%2BD2sXjsVCjtbs%3D10.2217/17435889.2.2.21917716122 SylajaBSrinivasanSExperimental and theoretical investigation of spectroscopic properties of diazepamInt J Chem Tech Res20124361761:CAS:528:DC%2BC38Xjt1Sju78%3D LuJMWangXMullerCMWangHLinPHYaoQCurrent advances in research and clinical applications of PLGA based NanotechnologyExpert Rev Mol Diagn200993254127011631:CAS:528:DC%2BD1MXlvVWkt7Y%3D10.1586/erm.09.1519435455 CamposEVRMeloNFSDGuilhermeVAPaulaEDRosaAHArauJoDRDPreparation and characterization of poly(ε-Caprolactone) nanospheres containing the local anesthetic lidocaineJ Pharm Sci20131022152610.1002/jps.23350 SnehalathaMKolachinaVSahaRNBabbarAKSharmaNSharmaRKEnhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton’s lymphoma tumor bearing miceJ Pharm Bioallied Sci20135384510.4103/0975-7406.120081 van WoenselMWauthozNRosièreRAmighiKMathieuVLefrancFFormulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?Cancers2013510204837953771:CAS:528:DC%2BC3sXhtlaqtrzF10.3390/cancers503102024202332 MathewATakahiroFYutakaNTakashiHHisaoMYasuhikoYCurcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s diseasePLoS ONE2012127e3261610.1371/journal.pone.0032616 MasseriniMNanoparticles for brain drug deliveryISRN Biochem201320131810.1155/2013/238428 PrajapatiRKMahajanHSSuranaSJPLGA based mucoadhesive microspheres for nasal delivery: in vitro/ex vivo studiesIndian J Novel Drug Deliv20113916 HornigSHeinzeTBecerCRSchubertbUSNanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid)Soft Matter201171581810.1039/C0SM00862A VyasTKBabbarAKSharmaRKMisraAIntranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targetingJ Drug Target200513317241:CAS:528:DC%2BD2MXhtVKnt7jO10.1080/1061186050024621716199375 KumarMMisraABabbarAKMishraAKMishraPPathakKIntranasal nanoemulsion based brain targeting drug delivery system of risperidoneInt J Pharm2008358285911:CAS:528:DC%2BD1cXmsFagur4%3D10.1016/j.ijpharm.2008.03.02918455333 SongaKCLeeHSChoungaIYChoaKIAhnbYChoiEJThe effect of type of organic phase solvents on the particle size of poly(d, l-lactide-co-glycolide) nanoparticlesColloids Surf A2006276162710.1016/j.colsurfa.2005.10.064 WestinUEBoströmEGråsjöJHammarlund-UdenaesMBjörkEDirect nose-to-brain transfer of morphine after nasal administration to ratsPharm Res200623565721:CAS:528:DC%2BD28Xitlemtb0%3D10.1007/s11095-006-9534-z16489488 Quintanar-GuerreroDAllemannEFessiHDoelkerEPreparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymersDrug Dev Ind Pharm1998241113281:CAS:528:DyaK1cXnvFWquro%3D10.3109/036390498091085719876569 DjupeslandPGMessinaJCMahmoudRAThe nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overviewTher Deliv20145709331:CAS:528:DC%2BC2cXht1Kju7zN10.4155/tde.14.4125090283 VergoniAVTosiGTacchiRVandelliMABertoliniACostantinoLNanoparticles as drug delivery agents specific for CNS: in vivo biodistributionNanomedicine Nanotech Biol Med20095369771:CAS:528:DC%2BC3cXls1eksw%3D%3D10.1016/j.nano.2009.02.005 PanyamJWilliamsDDashALeslie-PeleckyDLabhasetwarVSolid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticlesJ Pharm Sci2004931804141:CAS:528:DC%2BD2cXltlKrs78%3D10.1002/jps.2009415 PG Djupesland (294_CR5) 2014; 5 RM Mainardes (294_CR51) 2006; 42 CP Reis (294_CR12) 2006; 2 LR Hanson (294_CR41) 2008; 9 U Bilati (294_CR27) 2005; 24 B Semete (294_CR30) 2010; 6 M van Woensel (294_CR52) 2013; 5 SK Agarwal (294_CR45) 2013; 105 RJ Babu (294_CR55) 2011; 19 D Quintanar-Guerrero (294_CR49) 1998; 24 J Hao (294_CR24) 2011; 6 MR Sperling (294_CR4) 2014; 55 M Kumar (294_CR37) 2008; 358 AV Vergoni (294_CR17) 2009; 5 VD Ivaturi (294_CR3) 2009; 120 T Feczko (294_CR18) 2011; 50 G Sharma (294_CR54) 2009; 10 S Gizurarson (294_CR7) 2012; 9 RG Thorne (294_CR8) 2004; 127 D Sharma (294_CR47) 2014; 20 B Sylaja (294_CR50) 2012; 4 RK Prajapati (294_CR48) 2011; 3 S Alam (294_CR39) 2012; 7 S Shorvon (294_CR1) 2009 RK Averineni (294_CR42) 2012; 35 JW Nah (294_CR43) 2006; 17 A Kumari (294_CR14) 2010; 75 TK Vyas (294_CR36) 2005; 13 A Mukerjee (294_CR53) 2009; 29 J Panyam (294_CR40) 2004; 93 R Lei (294_CR32) 2008; 232 SB Patil (294_CR11) 2009; 26 F Danhier (294_CR13) 2012; 161 UE Westin (294_CR9) 2006; 23 T Betancourt (294_CR46) 2007; 2 A Budhian (294_CR21) 2007; 336 M Kumar (294_CR38) 2008; 16 M Masserini (294_CR6) 2013; 2013 V Ivaturi (294_CR44) 2013; 103 JM Lu (294_CR15) 2009; 9 RM Mainardes (294_CR19) 2005; 290 X Song (294_CR22) 2008; 69 EVR Campos (294_CR33) 2013; 102 A Mathew (294_CR34) 2012; 12 M Snehalatha (294_CR35) 2013; 5 HR Henney 3rd (294_CR2) 2014; 108 294_CR31 D Sharma (294_CR20) 2014 S Hornig (294_CR28) 2011; 7 HK Makadia (294_CR16) 2011; 3 294_CR26 KC Songa (294_CR23) 2006; 276 T Shingaki (294_CR10) 2009; 377 294_CR29 U Seju (294_CR25) 2011; 7 25126544 - Biomed Res Int. 2014;2014:156010 19894122 - AAPS PharmSciTech. 2009;10(4):1321-30 19435455 - Expert Rev Mol Diagn. 2009 May;9(4):325-41 16199375 - J Drug Target. 2005 Jun;13(5):317-24 20230912 - Nanomedicine. 2010 Oct;6(5):662-71 19446619 - Int J Pharm. 2009 Jul 30;377(1-2):85-91 18455333 - Int J Pharm. 2008 Jun 24;358(1-2):285-91 15176068 - J Pharm Sci. 2004 Jul;93(7):1804-14 22981338 - Epilepsy Res. 2013 Feb;103(2-3):254-61 23561287 - Epilepsy Res. 2013 Aug;105(3):362-7 19091002 - BMC Neurosci. 2008;9 Suppl 3:S5 24934774 - Epilepsy Res. 2014 Sep;108(7):1204-11 15664139 - Int J Pharm. 2005 Feb 16;290(1-2):137-44 25154625 - Epilepsia. 2014 Oct;55(10):1544-50 22403681 - PLoS One. 2012;7(3):e32616 22788696 - Curr Drug Deliv. 2012 Nov;9(6):566-82 18988064 - J Drug Target. 2008 Dec;16(10):806-14 15626579 - Eur J Pharm Sci. 2005 Jan;24(1):67-75 24302837 - J Pharm Bioallied Sci. 2013 Oct;5(4):290-7 22577513 - Polymers (Basel). 2011 Sep 1;3(3):1377-1397 19341816 - Nanomedicine. 2009 Dec;5(4):369-77 17716122 - Nanomedicine (Lond). 2007 Apr;2(2):219-32 21556343 - Int J Nanomedicine. 2011;6:683-92 23108693 - J Pharm Sci. 2013 Jan;102(1):215-26 18374554 - Eur J Pharm Biopharm. 2008 Jun;69(2):445-53 18932060 - J Microencapsul. 2009 Aug;26(5):432-43 17207944 - Int J Pharm. 2007 May 24;336(2):367-75 24202332 - Cancers (Basel). 2013 Aug 14;5(3):1020-48 15262337 - Neuroscience. 2004;127(2):481-96 19846921 - Anticancer Res. 2009 Oct;29(10):3867-75 16489488 - Pharm Res. 2006 Mar;23(3):565-72 25937958 - ISRN Biochem. 2013 May 21;2013:238428 21428693 - J Drug Target. 2011 Nov;19(9):731-40 25090283 - Ther Deliv. 2014 Jun;5(6):709-33 23180965 - Int J Nanomedicine. 2012;7:5705-18 21839863 - Acta Biomater. 2011 Dec;7(12):4169-76 18706438 - Toxicol Appl Pharmacol. 2008 Oct 15;232(2):292-301 9876569 - Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28 17292111 - Nanomedicine. 2006 Mar;2(1):8-21 19782542 - Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18 22353619 - J Control Release. 2012 Jul 20;161(2):505-22 19456308 - Acta Neurol Scand. 2009 Nov;120(5):353-7 20130771 - J Toxicol. 2009;2009:754810 |
References_xml | – reference: PatilSBSawantKKDevelopment, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal deliveryJ Microencapsul200926432431:CAS:528:DC%2BD1MXos1Wjsb4%3D10.1080/0265204080245672618932060 – reference: MathewATakahiroFYutakaNTakashiHHisaoMYasuhikoYCurcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s diseasePLoS ONE2012127e3261610.1371/journal.pone.0032616 – reference: SemeteBBooysenLLemmerYKalomboLKatataLJanVIn vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systemsNanomedicine Nanotech Biol Med20106662711:CAS:528:DC%2BC3cXhtlGmu7fJ10.1016/j.nano.2010.02.002 – reference: FeczkoTTothJDosaGGyenisJInfluence of process conditions on the mean size of PLGA nanoparticlesChem Eng Process201150846531:CAS:528:DC%2BC3MXhtVagt7vO10.1016/j.cep.2011.05.006 – reference: SongaKCLeeHSChoungaIYChoaKIAhnbYChoiEJThe effect of type of organic phase solvents on the particle size of poly(d, l-lactide-co-glycolide) nanoparticlesColloids Surf A2006276162710.1016/j.colsurfa.2005.10.064 – reference: PanyamJWilliamsDDashALeslie-PeleckyDLabhasetwarVSolid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticlesJ Pharm Sci2004931804141:CAS:528:DC%2BD2cXltlKrs78%3D10.1002/jps.2009415176068 – reference: VergoniAVTosiGTacchiRVandelliMABertoliniACostantinoLNanoparticles as drug delivery agents specific for CNS: in vivo biodistributionNanomedicine Nanotech Biol Med20095369771:CAS:528:DC%2BC3cXls1eksw%3D%3D10.1016/j.nano.2009.02.005 – reference: LeiRWuCYangBMaHShiCWangQIntegrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicityToxicol Appl Pharmacol20082322923011:CAS:528:DC%2BD1cXhtFyqtrjL10.1016/j.taap.2008.06.02618706438 – reference: SylajaBSrinivasanSExperimental and theoretical investigation of spectroscopic properties of diazepamInt J Chem Tech Res20124361761:CAS:528:DC%2BC38Xjt1Sju78%3D – reference: KumarMMisraABabbarAKMishraAKMishraPPathakKIntranasal nanoemulsion based brain targeting drug delivery system of risperidoneInt J Pharm2008358285911:CAS:528:DC%2BD1cXmsFagur4%3D10.1016/j.ijpharm.2008.03.02918455333 – reference: SperlingMRHaasKFKraussGSeif EddeineHHenneyHR3rdRabinowiczALDosing feasibility and tolerability of intranasal diazepam in adults with epilepsyEpilepsia2014551544501:CAS:528:DC%2BC2cXhvVSjs7fJ10.1111/epi.1275525154625 – reference: MainardesRMEvangelistaRCPLGA nanoparticles containing praziquantel: effect of formulation variables on size distributionInt J Pharm2005290714410.1016/j.ijpharm.2004.11.027 – reference: AgarwalSKKrielRLBrundageRCIvaturiVDCloydJCA pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteersEpilepsy Res201310536271:CAS:528:DC%2BC3sXlt1CjsLk%3D10.1016/j.eplepsyres.2013.02.01823561287 – reference: CamposEVRMeloNFSDGuilhermeVAPaulaEDRosaAHArauJoDRDPreparation and characterization of poly(ε-Caprolactone) nanospheres containing the local anesthetic lidocaineJ Pharm Sci20131022152610.1002/jps.23350 – reference: SharmaDMaheshwariDPhilipGRanaRBhatiaSSinghMFormulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluationBiomed Res Int2014 – reference: AlamSKhanZIMustafaGKumarMIslamFBhatnagarADevelopment and evaluation of thymoquinone- encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic studyInt J Nanomedicine2012757051834978941:CAS:528:DC%2BC38XhslyisbrE10.2147/IJN.S3532923180965 – reference: LuJMWangXMullerCMWangHLinPHYaoQCurrent advances in research and clinical applications of PLGA based NanotechnologyExpert Rev Mol Diagn200993254127011631:CAS:528:DC%2BD1MXlvVWkt7Y%3D10.1586/erm.09.1519435455 – reference: MainardesRMGremiaoMPDEvangelistaRCThermoanalytical study of praziquantel-loaded PLGA nanoparticlesBraz J Pharm Sci200642523301:CAS:528:DC%2BD2sXks1alt7o%3D – reference: BetancourtTBrownBBrannon-PeppasLDoxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluationNanomedicine20072219321:CAS:528:DC%2BD2sXjsVCjtbs%3D10.2217/17435889.2.2.21917716122 – reference: DanhierFAnsorenaESilvaJMCocoRBretonALPreatVPLGA-based nanoparticles: an overview of biomedical applicationsJ Control Release2012161505221:CAS:528:DC%2BC38Xjs1Squr4%3D10.1016/j.jconrel.2012.01.04322353619 – reference: MakadiaHKSiegelSJPoly Lactic-co-Glycolic acid (PLGA) as biodegradable controlled drug delivery carrierPolymers2011313779733478611:CAS:528:DC%2BC3MXhtFOis7jJ10.3390/polym303137722577513 – reference: NahJWY-IlJKohJJDrug release from nanoparticles of poly(dl-lactide-co-glycolide)Korean J Chem Eng200617230610.1007/BF02707148 – reference: KumarMMisraAMishraAKMishraPPathakKMucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targetingJ Drug Target200816806141:CAS:528:DC%2BD1cXhtlOmt7bK10.1080/1061186080247650418988064 – reference: El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009; 754810. doi:10.1155/2009/754810. – reference: HaoJFangXWangJGuoFLiFPengXDevelopment and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken designInt J Nanomedicine201166839230843151:CAS:528:DC%2BC3MXmt1aqt7w%3D21556343 – reference: ShorvonSPeruccaEEngelJJrThe treatment of epilepsy20093UKWiley-Blackwell West Sussex10.1002/9781444316667 – reference: van WoenselMWauthozNRosièreRAmighiKMathieuVLefrancFFormulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?Cancers2013510204837953771:CAS:528:DC%2BC3sXhtlaqtrzF10.3390/cancers503102024202332 – reference: HornigSHeinzeTBecerCRSchubertbUSNanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid)Soft Matter201171581810.1039/C0SM00862A – reference: VyasTKBabbarAKSharmaRKMisraAIntranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targetingJ Drug Target200513317241:CAS:528:DC%2BD2MXhtVKnt7jO10.1080/1061186050024621716199375 – reference: HansonLRFreyWHIntranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative diseaseBMC Neurosci200891410.1186/1471-2202-9-S3-S5 – reference: SongXZhaoYHouSXuFZhaoRHeJDual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiencyEur J Pharm Biopharm200869445531:CAS:528:DC%2BD1cXmtVShu7s%3D10.1016/j.ejpb.2008.01.01318374554 – reference: USP30-NF25, Diazepam, 1912. – reference: BilatiUEmannEADoelkerEDevelopment of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticlesEur J Pharm Sci20052467751:CAS:528:DC%2BD2MXjtler10.1016/j.ejps.2004.09.01115626579 – reference: Quintanar-GuerreroDAllemannEFessiHDoelkerEPreparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymersDrug Dev Ind Pharm1998241113281:CAS:528:DyaK1cXnvFWquro%3D10.3109/036390498091085719876569 – reference: IvaturiVDRissJRKrielRLCloydJCPharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteersActa Neurol Scand200912035371:CAS:528:DC%2BD1MXhsVOls7%2FE10.1111/j.1600-0404.2009.01170.x19456308 – reference: KumariAYadavSKYadavSCBiodegradable polymeric nanoparticles based drug delivery systemsColloids Surf B2010751181:CAS:528:DC%2BD1MXhsVKntr%2FO10.1016/j.colsurfb.2009.09.001 – reference: PrajapatiRKMahajanHSSuranaSJPLGA based mucoadhesive microspheres for nasal delivery: in vitro/ex vivo studiesIndian J Novel Drug Deliv20113916 – reference: ShingakiTHidalgoIJFurubayashiTKatsumiHSakaneTYamamotoAThe transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid)Int J Pharm200937785911:CAS:528:DC%2BD1MXotlOlsbo%3D10.1016/j.ijpharm.2009.05.00919446619 – reference: WestinUEBoströmEGråsjöJHammarlund-UdenaesMBjörkEDirect nose-to-brain transfer of morphine after nasal administration to ratsPharm Res200623565721:CAS:528:DC%2BD28Xitlemtb0%3D10.1007/s11095-006-9534-z16489488 – reference: Fessi et al. Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles. US Patent 1992; 5,118,528. – reference: GizurarsonSAnatomical and histological factors affecting intranasal drug and vaccine deliveryCurr Drug Deliv201295668234807211:CAS:528:DC%2BC3sXjvFCisrc%3D10.2174/15672011280352982822788696 – reference: SharmaGMishraAKMishraPMisraAIntranasal cabergoline: pharmacokinetic and pharmacodynamic studiesAAPS PharmSciTech20091013213027995951:CAS:528:DC%2BC3cXovVGqt7w%3D10.1208/s12249-009-9329-819894122 – reference: SejuUKumarASawantKKDevelopment and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studiesActa Biomater201174169761:CAS:528:DC%2BC3MXhsVSkt77E10.1016/j.actbio.2011.07.02521839863 – reference: HenneyHR3rdSperlingMRRabinowiczALBreamGCarrazanaEJAssessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adultsEpilepsy Res20141081204111:CAS:528:DC%2BC2cXhtVWrsbjJ10.1016/j.eplepsyres.2014.04.00724934774 – reference: MukerjeeAVishwanathaJKFormulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapyAnticancer Res2009293867761:CAS:528:DC%2BD1MXhsVOlt7jE19846921 – reference: AverineniRKShaviGVGurramAKDeshpandePBArumugamKMaliyakkalNPLGA 50:50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluationBull Mater Sci201235319261:CAS:528:DC%2BC38XhtVygu7vP10.1007/s12034-012-0313-7 – reference: SnehalathaMKolachinaVSahaRNBabbarAKSharmaNSharmaRKEnhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton’s lymphoma tumor bearing miceJ Pharm Bioallied Sci20135384510.4103/0975-7406.120081 – reference: SharmaDGabraniRSharmaSKAliJDangSDevelopment of midazolam loaded PLGA nanoparticles for treatment of status epilepticusAdv Sci Lett20142015263010.1166/asl.2014.5520 – reference: MasseriniMNanoparticles for brain drug deliveryISRN Biochem201320131810.1155/2013/238428 – reference: IvaturiVKrielRBrundageRGordonLMansbachHCloydJBioavailability of intranasal vs. rectal diazepamEpilepsy Res2013103254611:CAS:528:DC%2BC38XhtlKrsbfO10.1016/j.eplepsyres.2012.07.01822981338 – reference: DjupeslandPGMessinaJCMahmoudRAThe nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overviewTher Deliv20145709331:CAS:528:DC%2BC2cXht1Kju7zN10.4155/tde.14.4125090283 – reference: ReisCPNeufeldRJRibeiroANJVeigaFNanoencapsulation I. methods for preparation of drug-loaded polymeric NPNanomedicine Nanotech Biol Med200628211:CAS:528:DC%2BD28Xjsl2jtL8%3D10.1016/j.nano.2005.12.003 – reference: BudhianASiegelSJWineyKIHaloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug contentInt J Pharm2007336367751:CAS:528:DC%2BD2sXkvFajs7g%3D10.1016/j.ijpharm.2006.11.06117207944 – reference: ThorneRGPronkGJPadmanabhanVFreyWHDelivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administrationNeuroscience2004127481961:CAS:528:DC%2BD2cXlvVSqurg%3D10.1016/j.neuroscience.2004.05.02915262337 – reference: BabuRJDayalPPPawarKSinghMNose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in ratsJ Drug Target20111973140333486510.3109/1061186X.2011.558090 – ident: 294_CR31 doi: 10.1155/2009/754810 – volume: 9 start-page: 1 year: 2008 ident: 294_CR41 publication-title: BMC Neurosci doi: 10.1186/1471-2202-9-S3-S5 – volume: 16 start-page: 806 year: 2008 ident: 294_CR38 publication-title: J Drug Target doi: 10.1080/10611860802476504 – volume: 105 start-page: 362 year: 2013 ident: 294_CR45 publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2013.02.018 – volume: 10 start-page: 1321 year: 2009 ident: 294_CR54 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-009-9329-8 – volume: 290 start-page: 7 year: 2005 ident: 294_CR19 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2004.11.027 – volume: 20 start-page: 1526 year: 2014 ident: 294_CR47 publication-title: Adv Sci Lett doi: 10.1166/asl.2014.5520 – volume: 50 start-page: 846 year: 2011 ident: 294_CR18 publication-title: Chem Eng Process doi: 10.1016/j.cep.2011.05.006 – volume: 3 start-page: 1377 year: 2011 ident: 294_CR16 publication-title: Polymers doi: 10.3390/polym3031377 – volume: 9 start-page: 325 year: 2009 ident: 294_CR15 publication-title: Expert Rev Mol Diagn doi: 10.1586/erm.09.15 – volume: 9 start-page: 566 year: 2012 ident: 294_CR7 publication-title: Curr Drug Deliv doi: 10.2174/156720112803529828 – volume: 232 start-page: 292 year: 2008 ident: 294_CR32 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2008.06.026 – volume: 2013 start-page: 18 year: 2013 ident: 294_CR6 publication-title: ISRN Biochem doi: 10.1155/2013/238428 – volume: 127 start-page: 481 year: 2004 ident: 294_CR8 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.05.029 – ident: 294_CR26 – volume: 23 start-page: 565 year: 2006 ident: 294_CR9 publication-title: Pharm Res doi: 10.1007/s11095-006-9534-z – volume: 336 start-page: 367 year: 2007 ident: 294_CR21 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2006.11.061 – year: 2014 ident: 294_CR20 publication-title: Biomed Res Int – volume: 7 start-page: 4169 year: 2011 ident: 294_CR25 publication-title: Acta Biomater doi: 10.1016/j.actbio.2011.07.025 – volume: 5 start-page: 38 year: 2013 ident: 294_CR35 publication-title: J Pharm Bioallied Sci doi: 10.4103/0975-7406.120081 – volume: 69 start-page: 445 year: 2008 ident: 294_CR22 publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2008.01.013 – volume: 120 start-page: 353 year: 2009 ident: 294_CR3 publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.2009.01170.x – volume: 276 start-page: 162 year: 2006 ident: 294_CR23 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2005.10.064 – volume: 108 start-page: 1204 year: 2014 ident: 294_CR2 publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2014.04.007 – volume: 55 start-page: 1544 year: 2014 ident: 294_CR4 publication-title: Epilepsia doi: 10.1111/epi.12755 – volume: 7 start-page: 1581 year: 2011 ident: 294_CR28 publication-title: Soft Matter doi: 10.1039/C0SM00862A – volume: 26 start-page: 432 year: 2009 ident: 294_CR11 publication-title: J Microencapsul doi: 10.1080/02652040802456726 – volume: 17 start-page: 230 year: 2006 ident: 294_CR43 publication-title: Korean J Chem Eng doi: 10.1007/BF02707148 – volume: 24 start-page: 67 year: 2005 ident: 294_CR27 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2004.09.011 – volume: 102 start-page: 215 year: 2013 ident: 294_CR33 publication-title: J Pharm Sci doi: 10.1002/jps.23350 – volume: 5 start-page: 369 year: 2009 ident: 294_CR17 publication-title: Nanomedicine Nanotech Biol Med doi: 10.1016/j.nano.2009.02.005 – volume: 161 start-page: 505 year: 2012 ident: 294_CR13 publication-title: J Control Release doi: 10.1016/j.jconrel.2012.01.043 – volume: 12 start-page: e32616 issue: 7 year: 2012 ident: 294_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032616 – volume: 3 start-page: 9 year: 2011 ident: 294_CR48 publication-title: Indian J Novel Drug Deliv – volume: 6 start-page: 662 year: 2010 ident: 294_CR30 publication-title: Nanomedicine Nanotech Biol Med doi: 10.1016/j.nano.2010.02.002 – volume: 2 start-page: 219 year: 2007 ident: 294_CR46 publication-title: Nanomedicine doi: 10.2217/17435889.2.2.219 – ident: 294_CR29 – volume: 13 start-page: 317 year: 2005 ident: 294_CR36 publication-title: J Drug Target doi: 10.1080/10611860500246217 – volume: 35 start-page: 319 year: 2012 ident: 294_CR42 publication-title: Bull Mater Sci doi: 10.1007/s12034-012-0313-7 – volume: 377 start-page: 85 year: 2009 ident: 294_CR10 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2009.05.009 – volume: 5 start-page: 1020 year: 2013 ident: 294_CR52 publication-title: Cancers doi: 10.3390/cancers5031020 – volume: 2 start-page: 8 year: 2006 ident: 294_CR12 publication-title: Nanomedicine Nanotech Biol Med doi: 10.1016/j.nano.2005.12.003 – volume: 6 start-page: 683 year: 2011 ident: 294_CR24 publication-title: Int J Nanomedicine – volume: 93 start-page: 1804 year: 2004 ident: 294_CR40 publication-title: J Pharm Sci doi: 10.1002/jps.20094 – volume: 7 start-page: 5705 year: 2012 ident: 294_CR39 publication-title: Int J Nanomedicine doi: 10.2147/IJN.S35329 – volume: 103 start-page: 254 year: 2013 ident: 294_CR44 publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2012.07.018 – volume: 358 start-page: 285 year: 2008 ident: 294_CR37 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2008.03.029 – volume: 29 start-page: 3867 year: 2009 ident: 294_CR53 publication-title: Anticancer Res – volume: 5 start-page: 709 year: 2014 ident: 294_CR5 publication-title: Ther Deliv doi: 10.4155/tde.14.41 – volume: 19 start-page: 731 year: 2011 ident: 294_CR55 publication-title: J Drug Target doi: 10.3109/1061186X.2011.558090 – volume-title: The treatment of epilepsy year: 2009 ident: 294_CR1 doi: 10.1002/9781444316667 – volume: 4 start-page: 361 year: 2012 ident: 294_CR50 publication-title: Int J Chem Tech Res – volume: 75 start-page: 1 year: 2010 ident: 294_CR14 publication-title: Colloids Surf B doi: 10.1016/j.colsurfb.2009.09.001 – volume: 42 start-page: 523 year: 2006 ident: 294_CR51 publication-title: Braz J Pharm Sci – volume: 24 start-page: 1113 year: 1998 ident: 294_CR49 publication-title: Drug Dev Ind Pharm doi: 10.3109/03639049809108571 – reference: 19446619 - Int J Pharm. 2009 Jul 30;377(1-2):85-91 – reference: 19782542 - Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18 – reference: 15664139 - Int J Pharm. 2005 Feb 16;290(1-2):137-44 – reference: 22353619 - J Control Release. 2012 Jul 20;161(2):505-22 – reference: 23561287 - Epilepsy Res. 2013 Aug;105(3):362-7 – reference: 18706438 - Toxicol Appl Pharmacol. 2008 Oct 15;232(2):292-301 – reference: 20230912 - Nanomedicine. 2010 Oct;6(5):662-71 – reference: 24934774 - Epilepsy Res. 2014 Sep;108(7):1204-11 – reference: 25154625 - Epilepsia. 2014 Oct;55(10):1544-50 – reference: 21428693 - J Drug Target. 2011 Nov;19(9):731-40 – reference: 19894122 - AAPS PharmSciTech. 2009;10(4):1321-30 – reference: 15176068 - J Pharm Sci. 2004 Jul;93(7):1804-14 – reference: 22403681 - PLoS One. 2012;7(3):e32616 – reference: 21556343 - Int J Nanomedicine. 2011;6:683-92 – reference: 22788696 - Curr Drug Deliv. 2012 Nov;9(6):566-82 – reference: 18374554 - Eur J Pharm Biopharm. 2008 Jun;69(2):445-53 – reference: 18932060 - J Microencapsul. 2009 Aug;26(5):432-43 – reference: 19341816 - Nanomedicine. 2009 Dec;5(4):369-77 – reference: 24302837 - J Pharm Bioallied Sci. 2013 Oct;5(4):290-7 – reference: 22981338 - Epilepsy Res. 2013 Feb;103(2-3):254-61 – reference: 17292111 - Nanomedicine. 2006 Mar;2(1):8-21 – reference: 21839863 - Acta Biomater. 2011 Dec;7(12):4169-76 – reference: 22577513 - Polymers (Basel). 2011 Sep 1;3(3):1377-1397 – reference: 15626579 - Eur J Pharm Sci. 2005 Jan;24(1):67-75 – reference: 17207944 - Int J Pharm. 2007 May 24;336(2):367-75 – reference: 19091002 - BMC Neurosci. 2008;9 Suppl 3:S5 – reference: 16489488 - Pharm Res. 2006 Mar;23(3):565-72 – reference: 16199375 - J Drug Target. 2005 Jun;13(5):317-24 – reference: 19846921 - Anticancer Res. 2009 Oct;29(10):3867-75 – reference: 15262337 - Neuroscience. 2004;127(2):481-96 – reference: 24202332 - Cancers (Basel). 2013 Aug 14;5(3):1020-48 – reference: 19456308 - Acta Neurol Scand. 2009 Nov;120(5):353-7 – reference: 25126544 - Biomed Res Int. 2014;2014:156010 – reference: 19435455 - Expert Rev Mol Diagn. 2009 May;9(4):325-41 – reference: 17716122 - Nanomedicine (Lond). 2007 Apr;2(2):219-32 – reference: 23180965 - Int J Nanomedicine. 2012;7:5705-18 – reference: 18988064 - J Drug Target. 2008 Dec;16(10):806-14 – reference: 18455333 - Int J Pharm. 2008 Jun 24;358(1-2):285-91 – reference: 20130771 - J Toxicol. 2009;2009:754810 – reference: 25937958 - ISRN Biochem. 2013 May 21;2013:238428 – reference: 25090283 - Ther Deliv. 2014 Jun;5(6):709-33 – reference: 9876569 - Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28 – reference: 23108693 - J Pharm Sci. 2013 Jan;102(1):215-26 |
SSID | ssj0023193 |
Score | 2.4302378 |
Snippet | The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1108 |
SubjectTerms | Administration, Intranasal Animals Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Brain - diagnostic imaging Brain - metabolism Calorimetry, Differential Scanning Cell Survival - drug effects Cercopithecus aethiops Chemical Precipitation Diazepam - administration & dosage Diazepam - chemistry Diazepam - metabolism Diazepam - toxicity Drug Carriers Drug Compounding Lactic Acid - chemistry Male Nanoparticles Nanotechnology - methods Nasal Absorption Nasal Mucosa - diagnostic imaging Nasal Mucosa - metabolism Particle Size Pharmacology/Toxicology Pharmacy Polyglycolic Acid - chemistry Radiopharmaceuticals - administration & dosage Radiopharmaceuticals - chemistry Radiopharmaceuticals - metabolism Radiopharmaceuticals - toxicity Rats, Sprague-Dawley Research Article Solubility Spectroscopy, Fourier Transform Infrared Surface-Active Agents - chemistry Tissue Distribution Vero Cells |
Title | Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles |
URI | https://link.springer.com/article/10.1208/s12249-015-0294-0 https://www.ncbi.nlm.nih.gov/pubmed/25698083 https://www.proquest.com/docview/1779022891 https://pubmed.ncbi.nlm.nih.gov/PMC4674633 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLZYuOxlxWNhh5eChDgA0bZN2mmPw1uwoDnMSOwpStJUIEGL6HAYfj12H4OGl8S1TarKdmJ_sv0ZYFuEOssi33KTCsNl6CKeEAOtsGmaeVpqK6k5-fIqOhvK8-vwuunjLttq9zYlWd3UFQOCF_8tKQdEtT3UUUx8tj9gLkToTnVcw6A3QVloU6JJX364bdoBvYsq3xdHvsmQVo7nZB5-NREj69UqXoAZly_CTr-mnB7vs8FrB1W5z3ZY_5WMerwE4VVROj4o-AHNgmBH7o4KMcasyFj_32mPH93qZ_RI9wyvWcTPTZncbxieHA8Oz3gzKoFb9NgjHltnMoloT0tElhnepqHsmgT1YGWAmMTHR3FsIxlT6te3QRI7EclUGm2M832xDLN5kbs_wLqZCNLUxhkRv4c60kIYTcR8ofWF8ZIOeK38lG14xGmcxZ0iPIEiV7XIFYpckciV14HdyZaHmkTjq8VbrVIUmjrlL3TuiqdS-cSNGCBC9DuwUitp8jmM3JIYw8kOdKfUN1lANNrTb_Lbm4pOm-atRAJ37rWKVs05Lj__y9VvrV6DnwFZYFUEuA6zo8cnt4HBzMhswlzv9P_F8WZlxC-IlO7Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VeoBL1RbaLvRhJMQBsEhiJ-sct6V0C8tqD7sSN8t2HBWJJogsh-2v70weixbaSr0mdhTNjD3zaWa-AdgXscnzJHTcZsJyGfuEp8RAK1yW5YGRxklqTr4cJ8OZPL-Kr9o-7qqrdu9SkvVNXTMgBOqkohwQ1fZQRzHx2a7Bc4wFFJnyLBosURbalGjTl3_ctuqAnkSVT4sjH2VIa8dz9hJetBEjGzQqfgXPfPEaDiYN5fTimE0fOqiqY3bAJg9k1IstiMdl5fm05J9pFgQ79TdUiLFgZc4mo28DfnptfqFH-snwmkX83JbJbcPs7Ov0y5C3oxK4Q48958p5m0tEe0YisszxNo1l36aoBycjxCQhPlLKJVJR6jd0Uaq8SGQmrbHWh6F4A-tFWfh3wPq5iLLMqZyI32OTGCGsIWK-2IXCBmkPgk5-2rU84jTO4kYTnkCR60bkGkWuSeQ66MHhcsttQ6Lxr8V7nVI0mjrlL0zhy_tKh8SNGCFCDHvwtlHS8nMYuaUKw8ke9FfUt1xANNqrb4rrHzWdNs1bSQTuPOoUrdtzXP39L3f-a_Un2BhOL0d69H18sQubEVljXRD4Htbnd_f-AwY2c_uxNuTfcb3wNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5tTJr2Mg3YRjd-eNLEA2A1iZ00eSx0hTGo-tBKvFm2YwsklqClPHR__e6apKiwTeI1saPo7uy7T3f3HcBXEWvvk9BykwvDZewSnhEDrbB57gMttZXUnHw5Ss6m8vwqvmrmnFZttXubkqx7GoilqZh173JfsyEEabeifBDV-VB3MXHbvoRXkpqB0aCnUX-JuNC-RJPK_Ou2VWf0JMJ8Wij5KFu6cELDd_C2iR5Zv1b3OrxwxQbsj2v66fkRmzx0U1VHbJ-NH4ip55sQj8rK8UnJj2kuBBu4WyrKmLPSs_HFaZ8PbvRv9E4_GV65iKWbkrn3MB1-m5yc8WZsArfovWc8tc54ichPS0SZHm_WWPZMhjqxMkJ8EuKjNLWJTCkNHNooS51IZC6NNsaFofgAa0VZuC1gPS-iPLepJxL4WCdaCKOJpC-2oTBB1oGglZ-yDac4jba4VYQtUOSqFrlCkSsSuQo6cLDcclcTavxv8ZdWKQrNnnIZunDlfaVC4kmMEC2GHfhYK2n5OYzishRDyw70VtS3XECU2qtvipvrBbU2zV5JBO48bBWtmjNd_fsvPz1r9R68Hg-G6uL76MdneBORMS5qA7dhbfbr3u1gjDMzuws7_gMUrPRq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nose-To-Brain+Delivery+of+PLGA-Diazepam+Nanoparticles&rft.jtitle=AAPS+PharmSciTech&rft.au=Sharma%2C+Deepak&rft.au=Sharma%2C+Rakesh+Kumar&rft.au=Sharma%2C+Navneet&rft.au=Gabrani%2C+Reema&rft.date=2015-10-01&rft.eissn=1530-9932&rft.volume=16&rft.issue=5&rft.spage=1108&rft_id=info:doi/10.1208%2Fs12249-015-0294-0&rft_id=info%3Apmid%2F25698083&rft.externalDocID=25698083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |