Protein kinase D at the Golgi controls NLRP3 inflammasome activation

The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 214; no. 9; pp. 2671 - 2693
Main Authors Zhang, Zhirong, Meszaros, Gergö, He, Wan-ting, Xu, Yanfang, de Fatima Magliarelli, Helena, Mailly, Laurent, Mihlan, Michael, Liu, Yansheng, Puig Gámez, Marta, Goginashvili, Alexander, Pasquier, Adrien, Bielska, Olga, Neven, Bénédicte, Quartier, Pierre, Aebersold, Rudolf, Baumert, Thomas F., Georgel, Philippe, Han, Jiahuai, Ricci, Romeo
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 04.09.2017
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
AbstractList The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi phosphorylates NLRP3 to release it from mitochondria-associated endoplasmic reticulum membranes, allowing for assembly of the mature inflammasome in the cytosol. The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi phosphorylates NLRP3 to release it from mitochondria-associated endoplasmic reticulum membranes, allowing for assembly of the mature inflammasome in the cytosol.The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
Author Puig Gámez, Marta
Neven, Bénédicte
Meszaros, Gergö
Quartier, Pierre
Georgel, Philippe
Goginashvili, Alexander
Ricci, Romeo
Aebersold, Rudolf
Xu, Yanfang
He, Wan-ting
Zhang, Zhirong
de Fatima Magliarelli, Helena
Baumert, Thomas F.
Mihlan, Michael
Bielska, Olga
Mailly, Laurent
Han, Jiahuai
Liu, Yansheng
Pasquier, Adrien
AuthorAffiliation 14 Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
10 Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
7 Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
1 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
15 ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
4 Université de Strasbourg, Strasbourg, France
8 State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
13 Faculty of Science, University of Zurich, Zurich, Switzerland
2 Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
5 Laboratoire
AuthorAffiliation_xml – name: 6 State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
– name: 1 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
– name: 3 Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
– name: 13 Faculty of Science, University of Zurich, Zurich, Switzerland
– name: 7 Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
– name: 2 Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
– name: 8 State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
– name: 5 Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
– name: 14 Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
– name: 12 Unité d'immuno-hématologie pédiatrique, Hôpital Necker-Enfant Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
– name: 9 Institut National de la Santé et de la Recherche Medicale (INSERM), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
– name: 11 Institut IMAGINE, Sorbonne Paris Cité, Université Paris-Descartes, Paris, France
– name: 15 ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
– name: 10 Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
– name: 4 Université de Strasbourg, Strasbourg, France
Author_xml – sequence: 1
  givenname: Zhirong
  orcidid: 0000-0002-7331-783X
  surname: Zhang
  fullname: Zhang, Zhirong
– sequence: 2
  givenname: Gergö
  surname: Meszaros
  fullname: Meszaros, Gergö
– sequence: 3
  givenname: Wan-ting
  surname: He
  fullname: He, Wan-ting
– sequence: 4
  givenname: Yanfang
  orcidid: 0000-0002-6207-545X
  surname: Xu
  fullname: Xu, Yanfang
– sequence: 5
  givenname: Helena
  surname: de Fatima Magliarelli
  fullname: de Fatima Magliarelli, Helena
– sequence: 6
  givenname: Laurent
  surname: Mailly
  fullname: Mailly, Laurent
– sequence: 7
  givenname: Michael
  surname: Mihlan
  fullname: Mihlan, Michael
– sequence: 8
  givenname: Yansheng
  orcidid: 0000-0002-2626-3912
  surname: Liu
  fullname: Liu, Yansheng
– sequence: 9
  givenname: Marta
  surname: Puig Gámez
  fullname: Puig Gámez, Marta
– sequence: 10
  givenname: Alexander
  surname: Goginashvili
  fullname: Goginashvili, Alexander
– sequence: 11
  givenname: Adrien
  orcidid: 0000-0002-3282-9820
  surname: Pasquier
  fullname: Pasquier, Adrien
– sequence: 12
  givenname: Olga
  surname: Bielska
  fullname: Bielska, Olga
– sequence: 13
  givenname: Bénédicte
  surname: Neven
  fullname: Neven, Bénédicte
– sequence: 14
  givenname: Pierre
  surname: Quartier
  fullname: Quartier, Pierre
– sequence: 15
  givenname: Rudolf
  surname: Aebersold
  fullname: Aebersold, Rudolf
– sequence: 16
  givenname: Thomas F.
  surname: Baumert
  fullname: Baumert, Thomas F.
– sequence: 17
  givenname: Philippe
  orcidid: 0000-0001-6853-7080
  surname: Georgel
  fullname: Georgel, Philippe
– sequence: 18
  givenname: Jiahuai
  surname: Han
  fullname: Han, Jiahuai
– sequence: 19
  givenname: Romeo
  orcidid: 0000-0002-9766-4369
  surname: Ricci
  fullname: Ricci, Romeo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28716882$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLJDEUhYMo2j52riUwGxeW5l3pzYDojCM0KuI-3EqlNG1VopW04L-f-GhRcXUX97uHc8_ZRKshBofQLiWHlGhxNHfDISNUMSLICppQKUg1lVyvogkhjFWUkHoDbaY0J4QKIdU62mC6pkprNkGnV2PMzgd87wMkh08xZJzvHD6L_a3HNoY8xj7hi9n1Fcc-dD0MA6Q4OAw2-yfIPoZttNZBn9zO-9xCN3__3Jz8q2aXZ-cnx7PKSspypZUGrhpeqxosgbZmTLXAtQPadlprR0HAVPGWNVowWfOmUVZJ0jUWJHN8C_1-k31YNINrrSveoDcPox9gfDYRvPm6Cf7O3MYnI6UWlPEisP8uMMbHhUvZDD5Z1_cQXFwkQ6eMUi4lFwX99Q2dx8UYyneF0gVgSr5Qe58dfVhZ5lsA9gbYMaY0us5Yn18zKwZ9bygxLyWaUqJZlliODr4dLXV_xP8D6omcyQ
CitedBy_id crossref_primary_10_1002_eji_202350382
crossref_primary_10_1016_j_neuint_2023_105610
crossref_primary_10_1042_BST20200987
crossref_primary_10_1083_jcb_202310006
crossref_primary_10_3390_ijms24076126
crossref_primary_10_1007_s10753_018_0894_4
crossref_primary_10_1186_s13054_024_05069_w
crossref_primary_10_1002_cbdv_202402596
crossref_primary_10_1016_j_phymed_2025_156620
crossref_primary_10_4049_immunohorizons_2200017
crossref_primary_10_1186_s12872_025_04626_7
crossref_primary_10_3390_ijms20133328
crossref_primary_10_3390_molecules25102427
crossref_primary_10_1016_j_celrep_2024_113752
crossref_primary_10_3389_fimmu_2020_618231
crossref_primary_10_1016_j_biopha_2024_117382
crossref_primary_10_1016_j_ejmech_2022_114890
crossref_primary_10_3390_biom12071005
crossref_primary_10_1038_s41420_024_01918_3
crossref_primary_10_1073_pnas_2121353119
crossref_primary_10_3389_fimmu_2020_01840
crossref_primary_10_15252_embr_202050645
crossref_primary_10_1002_1873_3468_14181
crossref_primary_10_1016_j_bbrc_2019_11_141
crossref_primary_10_1016_j_immuni_2019_08_005
crossref_primary_10_3389_fimmu_2018_01054
crossref_primary_10_1038_s41392_023_01687_y
crossref_primary_10_1038_s41421_020_0167_x
crossref_primary_10_1371_journal_pone_0248668
crossref_primary_10_3390_molecules25194572
crossref_primary_10_1080_26895293_2022_2156622
crossref_primary_10_1038_s41418_024_01367_6
crossref_primary_10_3390_pathogens10020120
crossref_primary_10_1038_s41577_019_0165_0
crossref_primary_10_3389_fimmu_2022_846384
crossref_primary_10_1038_s12276_024_01261_8
crossref_primary_10_1016_j_preteyeres_2024_101263
crossref_primary_10_1111_imcb_12603
crossref_primary_10_1016_j_tcb_2020_02_008
crossref_primary_10_1021_acs_jproteome_2c00253
crossref_primary_10_1016_j_intimp_2024_113821
crossref_primary_10_3390_nu15214584
crossref_primary_10_1038_s41419_019_1413_8
crossref_primary_10_1080_0886022X_2022_2036620
crossref_primary_10_1016_j_celrep_2024_114152
crossref_primary_10_1042_BST20241738
crossref_primary_10_1186_s12964_022_00864_w
crossref_primary_10_3389_fgene_2023_1159167
crossref_primary_10_1038_s41423_022_00922_w
crossref_primary_10_1084_jem_20201656
crossref_primary_10_1152_ajpcell_00286_2022
crossref_primary_10_1016_j_atherosclerosis_2023_117391
crossref_primary_10_1111_tra_12819
crossref_primary_10_3389_fcell_2021_769213
crossref_primary_10_1002_JLB_3MR0720_513R
crossref_primary_10_7554_eLife_94302_3
crossref_primary_10_1126_sciimmunol_adf4699
crossref_primary_10_1002_eji_202149612
crossref_primary_10_1016_j_biopha_2024_116646
crossref_primary_10_1126_scisignal_aap9727
crossref_primary_10_1016_j_molcel_2024_08_001
crossref_primary_10_1016_j_abb_2019_01_031
crossref_primary_10_3390_biom11030483
crossref_primary_10_1051_medsci_20183401013
crossref_primary_10_1038_s41418_020_0524_1
crossref_primary_10_1016_j_molcel_2023_11_015
crossref_primary_10_3390_ijms22010024
crossref_primary_10_1128_JVI_00826_20
crossref_primary_10_1074_jbc_RA120_014077
crossref_primary_10_1016_j_intimp_2021_108513
crossref_primary_10_1111_imr_12891
crossref_primary_10_1084_jem_20240221
crossref_primary_10_1186_s43556_024_00179_x
crossref_primary_10_1016_j_cell_2021_11_011
crossref_primary_10_12677_ACM_2018_86090
crossref_primary_10_3390_cells10071618
crossref_primary_10_1016_j_it_2021_07_005
crossref_primary_10_3390_biom12050634
crossref_primary_10_3892_br_2022_1559
crossref_primary_10_3389_fcell_2021_630479
crossref_primary_10_1016_j_it_2019_09_005
crossref_primary_10_3389_fphar_2024_1430236
crossref_primary_10_3389_fimmu_2022_931690
crossref_primary_10_1097_IN9_0000000000000053
crossref_primary_10_1016_j_tibs_2022_10_002
crossref_primary_10_7554_eLife_94302
crossref_primary_10_1042_CS20190768
crossref_primary_10_1161_CIRCULATIONAHA_123_065344
crossref_primary_10_3389_fimmu_2023_1074606
crossref_primary_10_1083_jcb_202006194
crossref_primary_10_1038_s41590_022_01355_3
crossref_primary_10_1038_s41467_021_22987_3
crossref_primary_10_3390_ijms22020872
crossref_primary_10_3390_cells11101630
crossref_primary_10_1038_s41584_020_0455_8
crossref_primary_10_3389_fimmu_2021_624919
crossref_primary_10_1038_s41419_024_06765_9
crossref_primary_10_3390_antiox10071020
crossref_primary_10_1073_pnas_2009309118
crossref_primary_10_1007_s00011_023_01790_4
crossref_primary_10_3390_ijms25169018
crossref_primary_10_3389_fimmu_2023_1188864
crossref_primary_10_1016_j_bbamcr_2024_119814
crossref_primary_10_1016_j_jaci_2023_10_008
crossref_primary_10_3389_fimmu_2023_1281607
crossref_primary_10_1097_FJC_0000000000000718
crossref_primary_10_1186_s12964_020_00688_6
crossref_primary_10_1016_j_mehy_2023_111172
crossref_primary_10_3389_fimmu_2023_1075834
crossref_primary_10_3389_fimmu_2018_02305
crossref_primary_10_1016_j_celrep_2021_109129
crossref_primary_10_7133_jca_19_00022
crossref_primary_10_3389_fimmu_2019_01556
crossref_primary_10_15252_embr_202154226
crossref_primary_10_3390_cells9081831
crossref_primary_10_1126_scisignal_abe3410
crossref_primary_10_2147_JIR_S344730
crossref_primary_10_1016_j_jlr_2024_100534
crossref_primary_10_3389_fcell_2020_00692
crossref_primary_10_1016_j_molmed_2020_06_005
crossref_primary_10_1016_j_molimm_2018_09_010
crossref_primary_10_3724_abbs_2022137
crossref_primary_10_1051_medsci_2024110
crossref_primary_10_1038_s41380_023_02239_0
crossref_primary_10_1111_imr_13410
crossref_primary_10_15252_embr_202256241
crossref_primary_10_1007_s12035_025_04715_w
crossref_primary_10_1016_j_lfs_2020_118918
crossref_primary_10_1038_s41423_021_00670_3
crossref_primary_10_3389_fimmu_2020_565924
crossref_primary_10_1016_j_tibs_2018_06_008
crossref_primary_10_3389_fphar_2021_712907
crossref_primary_10_1016_j_trsl_2019_08_003
crossref_primary_10_1111_imr_13403
crossref_primary_10_1038_s41435_020_0104_x
crossref_primary_10_1016_j_mam_2020_100889
crossref_primary_10_3390_molecules26061704
crossref_primary_10_1084_jem_20231200
crossref_primary_10_1038_s41418_022_00997_y
crossref_primary_10_4049_jimmunol_2100734
crossref_primary_10_1016_j_tcb_2021_06_010
crossref_primary_10_4049_jimmunol_2300241
crossref_primary_10_1016_j_abb_2019_02_020
crossref_primary_10_1007_s10753_023_01916_0
crossref_primary_10_12688_f1000research_18557_1
crossref_primary_10_3389_fncel_2018_00426
crossref_primary_10_1242_jcs_248344
crossref_primary_10_1016_j_jbc_2024_107386
crossref_primary_10_3389_fimmu_2023_1233680
crossref_primary_10_26508_lsa_202000863
crossref_primary_10_1002_advs_202003205
crossref_primary_10_1111_aji_13075
crossref_primary_10_1016_j_phymed_2019_153019
crossref_primary_10_1038_s41422_020_0295_8
crossref_primary_10_3390_ijms25189975
crossref_primary_10_1007_s12072_023_10610_0
crossref_primary_10_3390_antiox11040762
crossref_primary_10_1016_j_celrep_2020_108405
crossref_primary_10_1111_obr_13145
crossref_primary_10_1038_s41586_022_04467_w
crossref_primary_10_3390_ijms25074120
crossref_primary_10_1016_j_coi_2020_01_005
crossref_primary_10_1155_2021_8868361
crossref_primary_10_1038_nrd_2018_97
crossref_primary_10_1038_s41467_018_07573_4
crossref_primary_10_2329_perio_65_49
crossref_primary_10_1016_j_biopha_2020_110542
crossref_primary_10_3390_biomedicines9030258
crossref_primary_10_1161_ATVBAHA_119_312965
crossref_primary_10_1038_s41467_021_26142_w
crossref_primary_10_1074_jbc_RA119_008713
crossref_primary_10_46235_1028_7221_1096_MIG
crossref_primary_10_1002_1873_3468_13851
crossref_primary_10_1016_j_immuni_2018_08_021
crossref_primary_10_1038_s41598_024_55651_z
crossref_primary_10_1002_jcp_30285
crossref_primary_10_1111_aos_16646
crossref_primary_10_3390_cells9051219
crossref_primary_10_1126_scisignal_abo0264
crossref_primary_10_1016_j_jaci_2023_09_020
crossref_primary_10_1007_s12035_023_03229_7
crossref_primary_10_1021_acs_jmedchem_0c01307
crossref_primary_10_2174_1570159X20666220411101217
crossref_primary_10_1016_j_celrep_2021_108826
crossref_primary_10_1002_ctm2_13
crossref_primary_10_1038_s41598_023_45870_1
crossref_primary_10_1016_j_phrs_2021_105447
crossref_primary_10_1038_s41423_020_00630_3
crossref_primary_10_18231_j_ijpi_2020_036
crossref_primary_10_1096_fj_201801585R
crossref_primary_10_1016_j_celrep_2024_113700
crossref_primary_10_1002_JLB_3MR0520_104RR
crossref_primary_10_3389_fcell_2022_887533
crossref_primary_10_3390_ijerph18020511
crossref_primary_10_1016_j_metop_2022_100166
crossref_primary_10_1186_s12944_020_01286_8
crossref_primary_10_1083_jcb_201709057
crossref_primary_10_1111_acel_14398
crossref_primary_10_1016_j_exer_2024_110110
Cites_doi 10.1002/art.30280
10.1038/nature11588
10.1016/j.cell.2016.03.046
10.1002/art.38961
10.1016/j.immuni.2013.05.016
10.1073/pnas.1117765109
10.1056/NEJMoa1102140
10.1146/annurev-cellbio-101011-155745
10.1038/ni.1980
10.1038/nature15514
10.1038/ni.3015
10.1038/nature10759
10.1016/S0092-8674(01)00228-8
10.1038/ni.3333
10.1038/ni.2919
10.1016/j.immuni.2009.05.005
10.1038/nprot.2006.468
10.1038/ni.3538
10.1016/S0014-5793(03)00487-3
10.1128/MCB.25.19.8520-8530.2005
10.1016/j.molmed.2014.11.008
10.1038/cddis.2011.132
10.1074/jbc.C115.700492
10.1016/j.ajhg.2012.08.006
10.1016/j.it.2014.02.007
10.1038/ncomms8360
10.1038/ncomms2339
10.1016/j.cell.2010.01.040
10.1002/glia.22337
10.1016/j.tibs.2014.09.004
10.1038/ncomms5977
10.1074/jbc.R500002200
10.1038/nri.2016.58
10.1016/j.immuni.2012.01.009
10.1016/j.cell.2013.02.054
10.1038/nature09663
10.1002/j.1460-2075.1990.tb08268.x
10.1038/nature07965
10.1016/j.immuni.2012.04.013
10.1016/S1074-7613(04)00046-9
10.1038/sj.cdd.4402195
10.1038/ncomms7115
10.1074/jbc.M109.019265
10.1016/S0960-9822(99)80168-7
10.1002/art.22491
10.1016/S0006-291X(03)00221-3
10.1038/cr.2015.139
10.1016/j.immuni.2013.08.001
10.1126/science.1066759
10.1091/mbc.9.2.483
10.1038/nature11290
10.1038/nri3452
10.1038/nature04516
10.1016/j.cell.2014.04.007
10.1038/nature15541
10.1038/cmi.2015.95
10.1084/jem.20160933
10.4049/jimmunol.1402658
10.1016/j.cub.2004.10.027
10.1038/nprot.2009.151
10.1016/j.ceb.2015.04.016
10.1080/15384101.2016.1188237
10.1016/j.immuni.2005.01.018
10.1073/pnas.0712265105
10.1182/blood-2010-08-303115
10.1016/S0960-9822(01)00326-8
10.1038/nature04515
10.1146/annurev.biochem.70.1.281
10.1073/pnas.1402911111
10.4049/jimmunol.179.10.6933
10.1038/nature16959
10.1074/jbc.M103530200
10.1038/nature10072
10.1016/j.immuni.2016.09.008
ContentType Journal Article
Copyright 2017 Zhang et al.
Copyright Rockefeller University Press Sep 4, 2017
2017 Zhang et al. 2017
Copyright_xml – notice: 2017 Zhang et al.
– notice: Copyright Rockefeller University Press Sep 4, 2017
– notice: 2017 Zhang et al. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1084/jem.20162040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Protein kinase D activates the NLRP3 inflammasome
EISSN 1540-9538
EndPage 2693
ExternalDocumentID PMC5584123
28716882
10_1084_jem_20162040
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 671231
– fundername: ;
– fundername: French State
  grantid: ANR-10-LABX-0030-INRT
– fundername: European Union
  grantid: ERC-AdG-2014-671231-HEPCIR; EU H2020-667273-HEPCAR; LABEX ANR-10-LABX-0028_HEPSYS
– fundername: ;
  grantid: ANR-10-IDEX-0002-02
– fundername: Chinese Diabetes Society
– fundername: Lilly Research
– fundername: ;
  grantid: ERC-2011-StG; 281271-STRESSMETABOL
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c512t-868a36b3767ac0ad7226da38ea1df888e1a4a963d2b842573bb6c650fbca52e3
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 18:07:16 EDT 2025
Fri Jul 11 14:17:15 EDT 2025
Mon Jun 30 16:48:02 EDT 2025
Sat May 31 02:11:04 EDT 2025
Thu Apr 24 23:00:03 EDT 2025
Tue Jul 01 00:41:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2017 Zhang et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-868a36b3767ac0ad7226da38ea1df888e1a4a963d2b842573bb6c650fbca52e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G. Meszaros and W.-t. He contributed equally to this paper.
ORCID 0000-0002-3282-9820
0000-0002-9766-4369
0000-0002-2626-3912
0000-0002-6207-545X
0000-0002-7331-783X
0000-0001-6853-7080
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5584123
PMID 28716882
PQID 1983432654
PQPubID 2046203
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584123
proquest_miscellaneous_1921135534
proquest_journals_1983432654
pubmed_primary_28716882
crossref_citationtrail_10_1084_jem_20162040
crossref_primary_10_1084_jem_20162040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170904
PublicationDateYYYYMMDD 2017-09-04
PublicationDate_xml – month: 9
  year: 2017
  text: 20170904
  day: 4
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2017
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Aksentijevich (2023072604003873000_bib3) 2007; 56
Chae (2023072604003873000_bib9) 2015; 67
Jin (2023072604003873000_bib23) 2001; 276
Sander (2023072604003873000_bib56) 2011; 474
Subramanian (2023072604003873000_bib66) 2013; 153
Jo (2023072604003873000_bib24) 2016; 13
Liljedahl (2023072604003873000_bib33) 2001; 104
Dowds (2023072604003873000_bib12) 2003; 302
Kjer-Nielsen (2023072604003873000_bib27) 1999; 9
He (2023072604003873000_bib18) 2015; 25
Stutz (2023072604003873000_bib65) 2017; 214
Muñoz-Planillo (2023072604003873000_bib43) 2013; 38
Wieckowski (2023072604003873000_bib69) 2009; 4
Ponpuak (2023072604003873000_bib49) 2015; 35
Agostini (2023072604003873000_bib2) 2004; 20
Lu (2023072604003873000_bib34) 2012; 488
Ombrello (2023072604003873000_bib47) 2012; 366
Menu (2023072604003873000_bib40) 2012; 3
Man (2023072604003873000_bib35) 2014; 111
Schmid-Burgk (2023072604003873000_bib57) 2016; 291
Pétrilli (2023072604003873000_bib48) 2007; 14
Rathinam (2023072604003873000_bib50) 2016; 165
Codazzi (2023072604003873000_bib11) 2001; 11
Gross (2023072604003873000_bib15) 2009; 459
Rykx (2023072604003873000_bib55) 2003; 546
Yu (2023072604003873000_bib71) 2005; 22
Zhang (2023072604003873000_bib72) 2016; 15
Lamkanfi (2023072604003873000_bib30) 2014; 157
Miller (2023072604003873000_bib41) 2007; 179
Wang (2023072604003873000_bib68) 2014; 15
Kayagaki (2023072604003873000_bib26) 2015; 526
Murakami (2023072604003873000_bib44) 2012; 109
Gurung (2023072604003873000_bib17) 2015; 21
Lee (2023072604003873000_bib32) 2012; 492
Fielitz (2023072604003873000_bib14) 2008; 105
Storz (2023072604003873000_bib63) 2005; 25
Iyer (2023072604003873000_bib22) 2013; 39
Shimada (2023072604003873000_bib62) 2012; 36
Katsnelson (2023072604003873000_bib25) 2015; 194
Shevchenko (2023072604003873000_bib59) 2006; 1
Martinon (2023072604003873000_bib39) 2006; 440
Baron (2023072604003873000_bib6) 2002; 295
Nakahira (2023072604003873000_bib45) 2011; 12
Yang (2023072604003873000_bib70) 2015; 6
Ito (2023072604003873000_bib21) 2015; 6
Zhou (2023072604003873000_bib73) 2012; 91
Everett (2023072604003873000_bib13) 2009; 284
Baroja-Mazo (2023072604003873000_bib5) 2014; 15
Abe (2023072604003873000_bib1) 2011; 63
Chuang (2023072604003873000_bib10) 2011; 117
Zhou (2023072604003873000_bib74) 2011; 469
Mariathasan (2023072604003873000_bib36) 2006; 440
Koss (2023072604003873000_bib28) 2014; 39
Nakamura (2023072604003873000_bib46) 2012; 37
Rhee (2023072604003873000_bib51) 2001; 70
Rozengurt (2023072604003873000_bib53) 2005; 280
Strowig (2023072604003873000_bib64) 2012; 481
Horng (2023072604003873000_bib20) 2014; 35
He (2023072604003873000_bib19) 2016; 530
Rubartelli (2023072604003873000_bib54) 1990; 9
Broz (2023072604003873000_bib7) 2016; 16
Mortimer (2023072604003873000_bib42) 2016; 17
Shi (2023072604003873000_bib60) 2016; 17
Barker (2023072604003873000_bib4) 1998; 9
Schroder (2023072604003873000_bib58) 2010; 140
Shi (2023072604003873000_bib61) 2015; 526
Latz (2023072604003873000_bib31) 2013; 13
Martin (2023072604003873000_bib37) 2014; 5
Uesugi (2023072604003873000_bib67) 2012; 60
Martinon (2023072604003873000_bib38) 2004; 14
Guo (2023072604003873000_bib16) 2016; 45
Lamkanfi (2023072604003873000_bib29) 2012; 28
Rossol (2023072604003873000_bib52) 2012; 3
Brydges (2023072604003873000_bib8) 2009; 30
References_xml – volume: 63
  start-page: 1301
  year: 2011
  ident: 2023072604003873000_bib1
  article-title: A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase Cγ2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.30280
– volume: 492
  start-page: 123
  year: 2012
  ident: 2023072604003873000_bib32
  article-title: The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP
  publication-title: Nature.
  doi: 10.1038/nature11588
– volume: 165
  start-page: 792
  year: 2016
  ident: 2023072604003873000_bib50
  article-title: Inflammasome complexes: Emerging mechanisms and effector functions
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.03.046
– volume: 67
  start-page: 563
  year: 2015
  ident: 2023072604003873000_bib9
  article-title: Connecting two pathways through Ca2+ signaling: NLRP3 inflammasome activation induced by a hypermorphic PLCG2 mutation
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.38961
– volume: 38
  start-page: 1142
  year: 2013
  ident: 2023072604003873000_bib43
  article-title: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2013.05.016
– volume: 109
  start-page: 11282
  year: 2012
  ident: 2023072604003873000_bib44
  article-title: Critical role for calcium mobilization in activation of the NLRP3 inflammasome
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1117765109
– volume: 366
  start-page: 330
  year: 2012
  ident: 2023072604003873000_bib47
  article-title: Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1102140
– volume: 28
  start-page: 137
  year: 2012
  ident: 2023072604003873000_bib29
  article-title: Inflammasomes and their roles in health and disease
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101011-155745
– volume: 12
  start-page: 222
  year: 2011
  ident: 2023072604003873000_bib45
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1980
– volume: 526
  start-page: 660
  year: 2015
  ident: 2023072604003873000_bib61
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature.
  doi: 10.1038/nature15514
– volume: 15
  start-page: 1126
  year: 2014
  ident: 2023072604003873000_bib68
  article-title: RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3015
– volume: 481
  start-page: 278
  year: 2012
  ident: 2023072604003873000_bib64
  article-title: Inflammasomes in health and disease
  publication-title: Nature.
  doi: 10.1038/nature10759
– volume: 104
  start-page: 409
  year: 2001
  ident: 2023072604003873000_bib33
  article-title: Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network
  publication-title: Cell.
  doi: 10.1016/S0092-8674(01)00228-8
– volume: 17
  start-page: 250
  year: 2016
  ident: 2023072604003873000_bib60
  article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3333
– volume: 15
  start-page: 738
  year: 2014
  ident: 2023072604003873000_bib5
  article-title: The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2919
– volume: 30
  start-page: 875
  year: 2009
  ident: 2023072604003873000_bib8
  article-title: Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2009.05.005
– volume: 1
  start-page: 2856
  year: 2006
  ident: 2023072604003873000_bib59
  article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.468
– volume: 17
  start-page: 1176
  year: 2016
  ident: 2023072604003873000_bib42
  article-title: NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3538
– volume: 546
  start-page: 81
  year: 2003
  ident: 2023072604003873000_bib55
  article-title: Protein kinase D: A family affair
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00487-3
– volume: 25
  start-page: 8520
  year: 2005
  ident: 2023072604003873000_bib63
  article-title: Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.19.8520-8530.2005
– volume: 21
  start-page: 193
  year: 2015
  ident: 2023072604003873000_bib17
  article-title: Mitochondria: Diversity in the regulation of the NLRP3 inflammasome
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2014.11.008
– volume: 3
  start-page: e261
  year: 2012
  ident: 2023072604003873000_bib40
  article-title: ER stress activates the NLRP3 inflammasome via an UPR-independent pathway
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2011.132
– volume: 291
  start-page: 103
  year: 2016
  ident: 2023072604003873000_bib57
  article-title: A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C115.700492
– volume: 91
  start-page: 713
  year: 2012
  ident: 2023072604003873000_bib73
  article-title: A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2012.08.006
– volume: 35
  start-page: 253
  year: 2014
  ident: 2023072604003873000_bib20
  article-title: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.02.007
– volume: 6
  start-page: 7360
  year: 2015
  ident: 2023072604003873000_bib21
  article-title: Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8360
– volume: 3
  start-page: 1329
  year: 2012
  ident: 2023072604003873000_bib52
  article-title: Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2339
– volume: 140
  start-page: 821
  year: 2010
  ident: 2023072604003873000_bib58
  article-title: The inflammasomes
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.01.040
– volume: 60
  start-page: 1094
  year: 2012
  ident: 2023072604003873000_bib67
  article-title: Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis
  publication-title: Glia.
  doi: 10.1002/glia.22337
– volume: 39
  start-page: 603
  year: 2014
  ident: 2023072604003873000_bib28
  article-title: Dysfunction of phospholipase Cγ in immune disorders and cancer
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.09.004
– volume: 5
  start-page: 4977
  year: 2014
  ident: 2023072604003873000_bib37
  article-title: IKKα negatively regulates ASC-dependent inflammasome activation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5977
– volume: 280
  start-page: 13205
  year: 2005
  ident: 2023072604003873000_bib53
  article-title: Protein kinase D signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R500002200
– volume: 16
  start-page: 407
  year: 2016
  ident: 2023072604003873000_bib7
  article-title: Inflammasomes: Mechanism of assembly, regulation and signalling
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.58
– volume: 36
  start-page: 401
  year: 2012
  ident: 2023072604003873000_bib62
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2012.01.009
– volume: 153
  start-page: 348
  year: 2013
  ident: 2023072604003873000_bib66
  article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.02.054
– volume: 469
  start-page: 221
  year: 2011
  ident: 2023072604003873000_bib74
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature.
  doi: 10.1038/nature09663
– volume: 9
  start-page: 1503
  year: 1990
  ident: 2023072604003873000_bib54
  article-title: A novel secretory pathway for interleukin-1 β, a protein lacking a signal sequence
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1990.tb08268.x
– volume: 459
  start-page: 433
  year: 2009
  ident: 2023072604003873000_bib15
  article-title: Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence
  publication-title: Nature.
  doi: 10.1038/nature07965
– volume: 37
  start-page: 85
  year: 2012
  ident: 2023072604003873000_bib46
  article-title: Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2012.04.013
– volume: 20
  start-page: 319
  year: 2004
  ident: 2023072604003873000_bib2
  article-title: NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder
  publication-title: Immunity.
  doi: 10.1016/S1074-7613(04)00046-9
– volume: 14
  start-page: 1583
  year: 2007
  ident: 2023072604003873000_bib48
  article-title: Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402195
– volume: 6
  start-page: 6115
  year: 2015
  ident: 2023072604003873000_bib70
  article-title: Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7115
– volume: 284
  start-page: 23083
  year: 2009
  ident: 2023072604003873000_bib13
  article-title: Characterization of phospholipase C γ enzymes with gain-of-function mutations
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.019265
– volume: 9
  start-page: 385
  year: 1999
  ident: 2023072604003873000_bib27
  article-title: A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80168-7
– volume: 56
  start-page: 1273
  year: 2007
  ident: 2023072604003873000_bib3
  article-title: The clinical continuum of cryopyrinopathies: Novel CIAS1 mutations in North American patients and a new cryopyrin model
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.22491
– volume: 302
  start-page: 575
  year: 2003
  ident: 2023072604003873000_bib12
  article-title: Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)00221-3
– volume: 25
  start-page: 1285
  year: 2015
  ident: 2023072604003873000_bib18
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.139
– volume: 39
  start-page: 311
  year: 2013
  ident: 2023072604003873000_bib22
  article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2013.08.001
– volume: 295
  start-page: 325
  year: 2002
  ident: 2023072604003873000_bib6
  article-title: Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane
  publication-title: Science.
  doi: 10.1126/science.1066759
– volume: 9
  start-page: 483
  year: 1998
  ident: 2023072604003873000_bib4
  article-title: Wortmannin-sensitive phosphorylation, translocation, and activation of PLCγ1, but not PLCγ2, in antigen-stimulated RBL-2H3 mast cells
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.9.2.483
– volume: 488
  start-page: 670
  year: 2012
  ident: 2023072604003873000_bib34
  article-title: Novel role of PKR in inflammasome activation and HMGB1 release
  publication-title: Nature.
  doi: 10.1038/nature11290
– volume: 13
  start-page: 397
  year: 2013
  ident: 2023072604003873000_bib31
  article-title: Activation and regulation of the inflammasomes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3452
– volume: 440
  start-page: 237
  year: 2006
  ident: 2023072604003873000_bib39
  article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature.
  doi: 10.1038/nature04516
– volume: 157
  start-page: 1013
  year: 2014
  ident: 2023072604003873000_bib30
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.04.007
– volume: 526
  start-page: 666
  year: 2015
  ident: 2023072604003873000_bib26
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature.
  doi: 10.1038/nature15541
– volume: 13
  start-page: 148
  year: 2016
  ident: 2023072604003873000_bib24
  article-title: Molecular mechanisms regulating NLRP3 inflammasome activation
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/cmi.2015.95
– volume: 214
  start-page: 1725
  year: 2017
  ident: 2023072604003873000_bib65
  article-title: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160933
– volume: 194
  start-page: 3937
  year: 2015
  ident: 2023072604003873000_bib25
  article-title: K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402658
– volume: 14
  start-page: 1929
  year: 2004
  ident: 2023072604003873000_bib38
  article-title: Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.10.027
– volume: 4
  start-page: 1582
  year: 2009
  ident: 2023072604003873000_bib69
  article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.151
– volume: 35
  start-page: 106
  year: 2015
  ident: 2023072604003873000_bib49
  article-title: Secretory autophagy
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.04.016
– volume: 15
  start-page: 1844
  year: 2016
  ident: 2023072604003873000_bib72
  article-title: PKD3 deficiency causes alterations in microtubule dynamics during the cell cycle
  publication-title: Cell Cycle.
  doi: 10.1080/15384101.2016.1188237
– volume: 22
  start-page: 451
  year: 2005
  ident: 2023072604003873000_bib71
  article-title: Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca2+ entry
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2005.01.018
– volume: 105
  start-page: 3059
  year: 2008
  ident: 2023072604003873000_bib14
  article-title: Requirement of protein kinase D1 for pathological cardiac remodeling
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0712265105
– volume: 117
  start-page: 960
  year: 2011
  ident: 2023072604003873000_bib10
  article-title: Tumor suppressor death-associated protein kinase is required for full IL-1β production
  publication-title: Blood.
  doi: 10.1182/blood-2010-08-303115
– volume: 11
  start-page: 1089
  year: 2001
  ident: 2023072604003873000_bib11
  article-title: Control of astrocyte Ca2+ oscillations and waves by oscillating translocation and activation of protein kinase C
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00326-8
– volume: 440
  start-page: 228
  year: 2006
  ident: 2023072604003873000_bib36
  article-title: Cryopyrin activates the inflammasome in response to toxins and ATP
  publication-title: Nature.
  doi: 10.1038/nature04515
– volume: 70
  start-page: 281
  year: 2001
  ident: 2023072604003873000_bib51
  article-title: Regulation of phosphoinositide-specific phospholipase C
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.70.1.281
– volume: 111
  start-page: 7403
  year: 2014
  ident: 2023072604003873000_bib35
  article-title: Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1402911111
– volume: 179
  start-page: 6933
  year: 2007
  ident: 2023072604003873000_bib41
  article-title: Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.10.6933
– volume: 530
  start-page: 354
  year: 2016
  ident: 2023072604003873000_bib19
  article-title: NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux
  publication-title: Nature.
  doi: 10.1038/nature16959
– volume: 276
  start-page: 30301
  year: 2001
  ident: 2023072604003873000_bib23
  article-title: Role of the CDC25 homology domain of phospholipase Cε in amplification of Rap1-dependent signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103530200
– volume: 474
  start-page: 385
  year: 2011
  ident: 2023072604003873000_bib56
  article-title: Detection of prokaryotic mRNA signifies microbial viability and promotes immunity
  publication-title: Nature.
  doi: 10.1038/nature10072
– volume: 45
  start-page: 802
  year: 2016
  ident: 2023072604003873000_bib16
  article-title: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2016.09.008
SSID ssj0014456
Score 2.6208818
Snippet The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes...
Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2671
SubjectTerms Activation
Animals
Assembly
Cytosol
Deactivation
Diglycerides
Diglycerides - metabolism
Endoplasmic reticulum
Endoplasmic Reticulum - physiology
Golgi apparatus
Golgi Apparatus - physiology
Hazards
Humans
Immune response
Inactivation
Inflammasomes
Inflammasomes - physiology
Innate immunity
Kinases
Leukocytes (mononuclear)
Leukocytes, Mononuclear - metabolism
Membranes
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria
Mutation
NLR Family, Pyrin Domain-Containing 3 Protein - physiology
Oligomerization
Peripheral blood mononuclear cells
Phosphorylation
Protein kinase
Protein Kinase C - physiology
Proteins
Signaling
Title Protein kinase D at the Golgi controls NLRP3 inflammasome activation
URI https://www.ncbi.nlm.nih.gov/pubmed/28716882
https://www.proquest.com/docview/1983432654
https://www.proquest.com/docview/1921135534
https://pubmed.ncbi.nlm.nih.gov/PMC5584123
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDfdXZCR4FQFmrf3CFugQhRVqyIqLpEdO93ANlm1KYf9O_xRZhzHSVuQYC9R5Uzq1vNlZux5EfJCuhKsCiUdnjLpgD6Wjoh85SgB5jP3sWQankNOPkfjL8HHeTjv9X51opY2lXiVXv0xr-Q6XIUx4Ctmyf4HZ-2XwgB8Bv7CFTgM13_i8RSLLOTF4EdegDIajExm4uBDebHImyh0EGSfzqY-hl0B95d8XS7rEho_W6Z8bzHTsVC3qv_vOuHtSfO3c8yUW1jOqfUVX5XmwH21QE_8W3v8N9bnp1954VR5-8x8ozUBLzJuBs05BOg27VWxyMFfeAYiXGXocFjtJTp2hTDsfzE4o1ZBRu4GQ_Qks65g9ur0UoPAk66Yjeq-LUZle1HdZXFPHQxZgOpAYckBFyvvD7tkwMzLpYaG3jayugvSTvnt6eQ0BCMNFPwNctODvYjOKJ_bOCLYkOoWwfZfmewKmPp1d2KsOm1m2TaB9vY1u-G5HXtndpfcMTCgb2rU3SM9VdwntyYGBQ_IyICP1uCjI8orCuCjGny0AR_V4KNd8NEWfA_J7P272enYMS05nBQsw8phEeN-JLAEEE-HXMZgvUvuM8VdmTHGlMsDDjJdegL9u7EvRJTCJiATKQ895T8iB0VZqCeEioxz6WO_80wGQSxECDRgiwexBIszHfbJoFmkJDXl6rFrykWiwyZYkMDqJs3q9slLS31Zl2n5C91xs96JeZHXiXvCML06CoM-eW5vg5hF3xkvVLlBGs91wTb3geZxzR47UcPXPom3GGcJsIT79p0iP9el3A20Dq_95BG53b6Mx-SgWm3UUzCTK_FMw_Q3LiW-5A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+kinase+D+at+the+Golgi+controls+NLRP3+inflammasome+activation&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Zhang%2C+Zhirong&rft.au=Meszaros%2C+Gerg%C3%B6&rft.au=He%2C+Wan-ting&rft.au=Xu%2C+Yanfang&rft.date=2017-09-04&rft.pub=The+Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=214&rft.issue=9&rft.spage=2671&rft.epage=2693&rft_id=info:doi/10.1084%2Fjem.20162040&rft_id=info%3Apmid%2F28716882&rft.externalDocID=PMC5584123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon