Protein kinase D at the Golgi controls NLRP3 inflammasome activation
The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP...
Saved in:
Published in | The Journal of experimental medicine Vol. 214; no. 9; pp. 2671 - 2693 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
04.09.2017
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation. |
---|---|
AbstractList | The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation. Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi phosphorylates NLRP3 to release it from mitochondria-associated endoplasmic reticulum membranes, allowing for assembly of the mature inflammasome in the cytosol. The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation. The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation. Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi phosphorylates NLRP3 to release it from mitochondria-associated endoplasmic reticulum membranes, allowing for assembly of the mature inflammasome in the cytosol.The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation. |
Author | Puig Gámez, Marta Neven, Bénédicte Meszaros, Gergö Quartier, Pierre Georgel, Philippe Goginashvili, Alexander Ricci, Romeo Aebersold, Rudolf Xu, Yanfang He, Wan-ting Zhang, Zhirong de Fatima Magliarelli, Helena Baumert, Thomas F. Mihlan, Michael Bielska, Olga Mailly, Laurent Han, Jiahuai Liu, Yansheng Pasquier, Adrien |
AuthorAffiliation | 14 Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France 10 Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland 7 Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China 1 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France 15 ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France 4 Université de Strasbourg, Strasbourg, France 8 State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China 13 Faculty of Science, University of Zurich, Zurich, Switzerland 2 Centre National de la Recherche Scientifique, UMR7104, Illkirch, France 5 Laboratoire |
AuthorAffiliation_xml | – name: 6 State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China – name: 1 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France – name: 3 Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France – name: 13 Faculty of Science, University of Zurich, Zurich, Switzerland – name: 7 Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China – name: 2 Centre National de la Recherche Scientifique, UMR7104, Illkirch, France – name: 8 State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China – name: 5 Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France – name: 14 Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France – name: 12 Unité d'immuno-hématologie pédiatrique, Hôpital Necker-Enfant Malades, Assistance Publique des Hôpitaux de Paris, Paris, France – name: 9 Institut National de la Santé et de la Recherche Medicale (INSERM), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France – name: 11 Institut IMAGINE, Sorbonne Paris Cité, Université Paris-Descartes, Paris, France – name: 15 ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France – name: 10 Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland – name: 4 Université de Strasbourg, Strasbourg, France |
Author_xml | – sequence: 1 givenname: Zhirong orcidid: 0000-0002-7331-783X surname: Zhang fullname: Zhang, Zhirong – sequence: 2 givenname: Gergö surname: Meszaros fullname: Meszaros, Gergö – sequence: 3 givenname: Wan-ting surname: He fullname: He, Wan-ting – sequence: 4 givenname: Yanfang orcidid: 0000-0002-6207-545X surname: Xu fullname: Xu, Yanfang – sequence: 5 givenname: Helena surname: de Fatima Magliarelli fullname: de Fatima Magliarelli, Helena – sequence: 6 givenname: Laurent surname: Mailly fullname: Mailly, Laurent – sequence: 7 givenname: Michael surname: Mihlan fullname: Mihlan, Michael – sequence: 8 givenname: Yansheng orcidid: 0000-0002-2626-3912 surname: Liu fullname: Liu, Yansheng – sequence: 9 givenname: Marta surname: Puig Gámez fullname: Puig Gámez, Marta – sequence: 10 givenname: Alexander surname: Goginashvili fullname: Goginashvili, Alexander – sequence: 11 givenname: Adrien orcidid: 0000-0002-3282-9820 surname: Pasquier fullname: Pasquier, Adrien – sequence: 12 givenname: Olga surname: Bielska fullname: Bielska, Olga – sequence: 13 givenname: Bénédicte surname: Neven fullname: Neven, Bénédicte – sequence: 14 givenname: Pierre surname: Quartier fullname: Quartier, Pierre – sequence: 15 givenname: Rudolf surname: Aebersold fullname: Aebersold, Rudolf – sequence: 16 givenname: Thomas F. surname: Baumert fullname: Baumert, Thomas F. – sequence: 17 givenname: Philippe orcidid: 0000-0001-6853-7080 surname: Georgel fullname: Georgel, Philippe – sequence: 18 givenname: Jiahuai surname: Han fullname: Han, Jiahuai – sequence: 19 givenname: Romeo orcidid: 0000-0002-9766-4369 surname: Ricci fullname: Ricci, Romeo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28716882$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLJDEUhYMo2j52riUwGxeW5l3pzYDojCM0KuI-3EqlNG1VopW04L-f-GhRcXUX97uHc8_ZRKshBofQLiWHlGhxNHfDISNUMSLICppQKUg1lVyvogkhjFWUkHoDbaY0J4QKIdU62mC6pkprNkGnV2PMzgd87wMkh08xZJzvHD6L_a3HNoY8xj7hi9n1Fcc-dD0MA6Q4OAw2-yfIPoZttNZBn9zO-9xCN3__3Jz8q2aXZ-cnx7PKSspypZUGrhpeqxosgbZmTLXAtQPadlprR0HAVPGWNVowWfOmUVZJ0jUWJHN8C_1-k31YNINrrSveoDcPox9gfDYRvPm6Cf7O3MYnI6UWlPEisP8uMMbHhUvZDD5Z1_cQXFwkQ6eMUi4lFwX99Q2dx8UYyneF0gVgSr5Qe58dfVhZ5lsA9gbYMaY0us5Yn18zKwZ9bygxLyWaUqJZlliODr4dLXV_xP8D6omcyQ |
CitedBy_id | crossref_primary_10_1002_eji_202350382 crossref_primary_10_1016_j_neuint_2023_105610 crossref_primary_10_1042_BST20200987 crossref_primary_10_1083_jcb_202310006 crossref_primary_10_3390_ijms24076126 crossref_primary_10_1007_s10753_018_0894_4 crossref_primary_10_1186_s13054_024_05069_w crossref_primary_10_1002_cbdv_202402596 crossref_primary_10_1016_j_phymed_2025_156620 crossref_primary_10_4049_immunohorizons_2200017 crossref_primary_10_1186_s12872_025_04626_7 crossref_primary_10_3390_ijms20133328 crossref_primary_10_3390_molecules25102427 crossref_primary_10_1016_j_celrep_2024_113752 crossref_primary_10_3389_fimmu_2020_618231 crossref_primary_10_1016_j_biopha_2024_117382 crossref_primary_10_1016_j_ejmech_2022_114890 crossref_primary_10_3390_biom12071005 crossref_primary_10_1038_s41420_024_01918_3 crossref_primary_10_1073_pnas_2121353119 crossref_primary_10_3389_fimmu_2020_01840 crossref_primary_10_15252_embr_202050645 crossref_primary_10_1002_1873_3468_14181 crossref_primary_10_1016_j_bbrc_2019_11_141 crossref_primary_10_1016_j_immuni_2019_08_005 crossref_primary_10_3389_fimmu_2018_01054 crossref_primary_10_1038_s41392_023_01687_y crossref_primary_10_1038_s41421_020_0167_x crossref_primary_10_1371_journal_pone_0248668 crossref_primary_10_3390_molecules25194572 crossref_primary_10_1080_26895293_2022_2156622 crossref_primary_10_1038_s41418_024_01367_6 crossref_primary_10_3390_pathogens10020120 crossref_primary_10_1038_s41577_019_0165_0 crossref_primary_10_3389_fimmu_2022_846384 crossref_primary_10_1038_s12276_024_01261_8 crossref_primary_10_1016_j_preteyeres_2024_101263 crossref_primary_10_1111_imcb_12603 crossref_primary_10_1016_j_tcb_2020_02_008 crossref_primary_10_1021_acs_jproteome_2c00253 crossref_primary_10_1016_j_intimp_2024_113821 crossref_primary_10_3390_nu15214584 crossref_primary_10_1038_s41419_019_1413_8 crossref_primary_10_1080_0886022X_2022_2036620 crossref_primary_10_1016_j_celrep_2024_114152 crossref_primary_10_1042_BST20241738 crossref_primary_10_1186_s12964_022_00864_w crossref_primary_10_3389_fgene_2023_1159167 crossref_primary_10_1038_s41423_022_00922_w crossref_primary_10_1084_jem_20201656 crossref_primary_10_1152_ajpcell_00286_2022 crossref_primary_10_1016_j_atherosclerosis_2023_117391 crossref_primary_10_1111_tra_12819 crossref_primary_10_3389_fcell_2021_769213 crossref_primary_10_1002_JLB_3MR0720_513R crossref_primary_10_7554_eLife_94302_3 crossref_primary_10_1126_sciimmunol_adf4699 crossref_primary_10_1002_eji_202149612 crossref_primary_10_1016_j_biopha_2024_116646 crossref_primary_10_1126_scisignal_aap9727 crossref_primary_10_1016_j_molcel_2024_08_001 crossref_primary_10_1016_j_abb_2019_01_031 crossref_primary_10_3390_biom11030483 crossref_primary_10_1051_medsci_20183401013 crossref_primary_10_1038_s41418_020_0524_1 crossref_primary_10_1016_j_molcel_2023_11_015 crossref_primary_10_3390_ijms22010024 crossref_primary_10_1128_JVI_00826_20 crossref_primary_10_1074_jbc_RA120_014077 crossref_primary_10_1016_j_intimp_2021_108513 crossref_primary_10_1111_imr_12891 crossref_primary_10_1084_jem_20240221 crossref_primary_10_1186_s43556_024_00179_x crossref_primary_10_1016_j_cell_2021_11_011 crossref_primary_10_12677_ACM_2018_86090 crossref_primary_10_3390_cells10071618 crossref_primary_10_1016_j_it_2021_07_005 crossref_primary_10_3390_biom12050634 crossref_primary_10_3892_br_2022_1559 crossref_primary_10_3389_fcell_2021_630479 crossref_primary_10_1016_j_it_2019_09_005 crossref_primary_10_3389_fphar_2024_1430236 crossref_primary_10_3389_fimmu_2022_931690 crossref_primary_10_1097_IN9_0000000000000053 crossref_primary_10_1016_j_tibs_2022_10_002 crossref_primary_10_7554_eLife_94302 crossref_primary_10_1042_CS20190768 crossref_primary_10_1161_CIRCULATIONAHA_123_065344 crossref_primary_10_3389_fimmu_2023_1074606 crossref_primary_10_1083_jcb_202006194 crossref_primary_10_1038_s41590_022_01355_3 crossref_primary_10_1038_s41467_021_22987_3 crossref_primary_10_3390_ijms22020872 crossref_primary_10_3390_cells11101630 crossref_primary_10_1038_s41584_020_0455_8 crossref_primary_10_3389_fimmu_2021_624919 crossref_primary_10_1038_s41419_024_06765_9 crossref_primary_10_3390_antiox10071020 crossref_primary_10_1073_pnas_2009309118 crossref_primary_10_1007_s00011_023_01790_4 crossref_primary_10_3390_ijms25169018 crossref_primary_10_3389_fimmu_2023_1188864 crossref_primary_10_1016_j_bbamcr_2024_119814 crossref_primary_10_1016_j_jaci_2023_10_008 crossref_primary_10_3389_fimmu_2023_1281607 crossref_primary_10_1097_FJC_0000000000000718 crossref_primary_10_1186_s12964_020_00688_6 crossref_primary_10_1016_j_mehy_2023_111172 crossref_primary_10_3389_fimmu_2023_1075834 crossref_primary_10_3389_fimmu_2018_02305 crossref_primary_10_1016_j_celrep_2021_109129 crossref_primary_10_7133_jca_19_00022 crossref_primary_10_3389_fimmu_2019_01556 crossref_primary_10_15252_embr_202154226 crossref_primary_10_3390_cells9081831 crossref_primary_10_1126_scisignal_abe3410 crossref_primary_10_2147_JIR_S344730 crossref_primary_10_1016_j_jlr_2024_100534 crossref_primary_10_3389_fcell_2020_00692 crossref_primary_10_1016_j_molmed_2020_06_005 crossref_primary_10_1016_j_molimm_2018_09_010 crossref_primary_10_3724_abbs_2022137 crossref_primary_10_1051_medsci_2024110 crossref_primary_10_1038_s41380_023_02239_0 crossref_primary_10_1111_imr_13410 crossref_primary_10_15252_embr_202256241 crossref_primary_10_1007_s12035_025_04715_w crossref_primary_10_1016_j_lfs_2020_118918 crossref_primary_10_1038_s41423_021_00670_3 crossref_primary_10_3389_fimmu_2020_565924 crossref_primary_10_1016_j_tibs_2018_06_008 crossref_primary_10_3389_fphar_2021_712907 crossref_primary_10_1016_j_trsl_2019_08_003 crossref_primary_10_1111_imr_13403 crossref_primary_10_1038_s41435_020_0104_x crossref_primary_10_1016_j_mam_2020_100889 crossref_primary_10_3390_molecules26061704 crossref_primary_10_1084_jem_20231200 crossref_primary_10_1038_s41418_022_00997_y crossref_primary_10_4049_jimmunol_2100734 crossref_primary_10_1016_j_tcb_2021_06_010 crossref_primary_10_4049_jimmunol_2300241 crossref_primary_10_1016_j_abb_2019_02_020 crossref_primary_10_1007_s10753_023_01916_0 crossref_primary_10_12688_f1000research_18557_1 crossref_primary_10_3389_fncel_2018_00426 crossref_primary_10_1242_jcs_248344 crossref_primary_10_1016_j_jbc_2024_107386 crossref_primary_10_3389_fimmu_2023_1233680 crossref_primary_10_26508_lsa_202000863 crossref_primary_10_1002_advs_202003205 crossref_primary_10_1111_aji_13075 crossref_primary_10_1016_j_phymed_2019_153019 crossref_primary_10_1038_s41422_020_0295_8 crossref_primary_10_3390_ijms25189975 crossref_primary_10_1007_s12072_023_10610_0 crossref_primary_10_3390_antiox11040762 crossref_primary_10_1016_j_celrep_2020_108405 crossref_primary_10_1111_obr_13145 crossref_primary_10_1038_s41586_022_04467_w crossref_primary_10_3390_ijms25074120 crossref_primary_10_1016_j_coi_2020_01_005 crossref_primary_10_1155_2021_8868361 crossref_primary_10_1038_nrd_2018_97 crossref_primary_10_1038_s41467_018_07573_4 crossref_primary_10_2329_perio_65_49 crossref_primary_10_1016_j_biopha_2020_110542 crossref_primary_10_3390_biomedicines9030258 crossref_primary_10_1161_ATVBAHA_119_312965 crossref_primary_10_1038_s41467_021_26142_w crossref_primary_10_1074_jbc_RA119_008713 crossref_primary_10_46235_1028_7221_1096_MIG crossref_primary_10_1002_1873_3468_13851 crossref_primary_10_1016_j_immuni_2018_08_021 crossref_primary_10_1038_s41598_024_55651_z crossref_primary_10_1002_jcp_30285 crossref_primary_10_1111_aos_16646 crossref_primary_10_3390_cells9051219 crossref_primary_10_1126_scisignal_abo0264 crossref_primary_10_1016_j_jaci_2023_09_020 crossref_primary_10_1007_s12035_023_03229_7 crossref_primary_10_1021_acs_jmedchem_0c01307 crossref_primary_10_2174_1570159X20666220411101217 crossref_primary_10_1016_j_celrep_2021_108826 crossref_primary_10_1002_ctm2_13 crossref_primary_10_1038_s41598_023_45870_1 crossref_primary_10_1016_j_phrs_2021_105447 crossref_primary_10_1038_s41423_020_00630_3 crossref_primary_10_18231_j_ijpi_2020_036 crossref_primary_10_1096_fj_201801585R crossref_primary_10_1016_j_celrep_2024_113700 crossref_primary_10_1002_JLB_3MR0520_104RR crossref_primary_10_3389_fcell_2022_887533 crossref_primary_10_3390_ijerph18020511 crossref_primary_10_1016_j_metop_2022_100166 crossref_primary_10_1186_s12944_020_01286_8 crossref_primary_10_1083_jcb_201709057 crossref_primary_10_1111_acel_14398 crossref_primary_10_1016_j_exer_2024_110110 |
Cites_doi | 10.1002/art.30280 10.1038/nature11588 10.1016/j.cell.2016.03.046 10.1002/art.38961 10.1016/j.immuni.2013.05.016 10.1073/pnas.1117765109 10.1056/NEJMoa1102140 10.1146/annurev-cellbio-101011-155745 10.1038/ni.1980 10.1038/nature15514 10.1038/ni.3015 10.1038/nature10759 10.1016/S0092-8674(01)00228-8 10.1038/ni.3333 10.1038/ni.2919 10.1016/j.immuni.2009.05.005 10.1038/nprot.2006.468 10.1038/ni.3538 10.1016/S0014-5793(03)00487-3 10.1128/MCB.25.19.8520-8530.2005 10.1016/j.molmed.2014.11.008 10.1038/cddis.2011.132 10.1074/jbc.C115.700492 10.1016/j.ajhg.2012.08.006 10.1016/j.it.2014.02.007 10.1038/ncomms8360 10.1038/ncomms2339 10.1016/j.cell.2010.01.040 10.1002/glia.22337 10.1016/j.tibs.2014.09.004 10.1038/ncomms5977 10.1074/jbc.R500002200 10.1038/nri.2016.58 10.1016/j.immuni.2012.01.009 10.1016/j.cell.2013.02.054 10.1038/nature09663 10.1002/j.1460-2075.1990.tb08268.x 10.1038/nature07965 10.1016/j.immuni.2012.04.013 10.1016/S1074-7613(04)00046-9 10.1038/sj.cdd.4402195 10.1038/ncomms7115 10.1074/jbc.M109.019265 10.1016/S0960-9822(99)80168-7 10.1002/art.22491 10.1016/S0006-291X(03)00221-3 10.1038/cr.2015.139 10.1016/j.immuni.2013.08.001 10.1126/science.1066759 10.1091/mbc.9.2.483 10.1038/nature11290 10.1038/nri3452 10.1038/nature04516 10.1016/j.cell.2014.04.007 10.1038/nature15541 10.1038/cmi.2015.95 10.1084/jem.20160933 10.4049/jimmunol.1402658 10.1016/j.cub.2004.10.027 10.1038/nprot.2009.151 10.1016/j.ceb.2015.04.016 10.1080/15384101.2016.1188237 10.1016/j.immuni.2005.01.018 10.1073/pnas.0712265105 10.1182/blood-2010-08-303115 10.1016/S0960-9822(01)00326-8 10.1038/nature04515 10.1146/annurev.biochem.70.1.281 10.1073/pnas.1402911111 10.4049/jimmunol.179.10.6933 10.1038/nature16959 10.1074/jbc.M103530200 10.1038/nature10072 10.1016/j.immuni.2016.09.008 |
ContentType | Journal Article |
Copyright | 2017 Zhang et al. Copyright Rockefeller University Press Sep 4, 2017 2017 Zhang et al. 2017 |
Copyright_xml | – notice: 2017 Zhang et al. – notice: Copyright Rockefeller University Press Sep 4, 2017 – notice: 2017 Zhang et al. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1084/jem.20162040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Protein kinase D activates the NLRP3 inflammasome |
EISSN | 1540-9538 |
EndPage | 2693 |
ExternalDocumentID | PMC5584123 28716882 10_1084_jem_20162040 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 671231 – fundername: ; – fundername: French State grantid: ANR-10-LABX-0030-INRT – fundername: European Union grantid: ERC-AdG-2014-671231-HEPCIR; EU H2020-667273-HEPCAR; LABEX ANR-10-LABX-0028_HEPSYS – fundername: ; grantid: ANR-10-IDEX-0002-02 – fundername: Chinese Diabetes Society – fundername: Lilly Research – fundername: ; grantid: ERC-2011-StG; 281271-STRESSMETABOL |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c512t-868a36b3767ac0ad7226da38ea1df888e1a4a963d2b842573bb6c650fbca52e3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 18:07:16 EDT 2025 Fri Jul 11 14:17:15 EDT 2025 Mon Jun 30 16:48:02 EDT 2025 Sat May 31 02:11:04 EDT 2025 Thu Apr 24 23:00:03 EDT 2025 Tue Jul 01 00:41:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2017 Zhang et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c512t-868a36b3767ac0ad7226da38ea1df888e1a4a963d2b842573bb6c650fbca52e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G. Meszaros and W.-t. He contributed equally to this paper. |
ORCID | 0000-0002-3282-9820 0000-0002-9766-4369 0000-0002-2626-3912 0000-0002-6207-545X 0000-0002-7331-783X 0000-0001-6853-7080 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5584123 |
PMID | 28716882 |
PQID | 1983432654 |
PQPubID | 2046203 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584123 proquest_miscellaneous_1921135534 proquest_journals_1983432654 pubmed_primary_28716882 crossref_citationtrail_10_1084_jem_20162040 crossref_primary_10_1084_jem_20162040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170904 |
PublicationDateYYYYMMDD | 2017-09-04 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170904 day: 4 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2017 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Aksentijevich (2023072604003873000_bib3) 2007; 56 Chae (2023072604003873000_bib9) 2015; 67 Jin (2023072604003873000_bib23) 2001; 276 Sander (2023072604003873000_bib56) 2011; 474 Subramanian (2023072604003873000_bib66) 2013; 153 Jo (2023072604003873000_bib24) 2016; 13 Liljedahl (2023072604003873000_bib33) 2001; 104 Dowds (2023072604003873000_bib12) 2003; 302 Kjer-Nielsen (2023072604003873000_bib27) 1999; 9 He (2023072604003873000_bib18) 2015; 25 Stutz (2023072604003873000_bib65) 2017; 214 Muñoz-Planillo (2023072604003873000_bib43) 2013; 38 Wieckowski (2023072604003873000_bib69) 2009; 4 Ponpuak (2023072604003873000_bib49) 2015; 35 Agostini (2023072604003873000_bib2) 2004; 20 Lu (2023072604003873000_bib34) 2012; 488 Ombrello (2023072604003873000_bib47) 2012; 366 Menu (2023072604003873000_bib40) 2012; 3 Man (2023072604003873000_bib35) 2014; 111 Schmid-Burgk (2023072604003873000_bib57) 2016; 291 Pétrilli (2023072604003873000_bib48) 2007; 14 Rathinam (2023072604003873000_bib50) 2016; 165 Codazzi (2023072604003873000_bib11) 2001; 11 Gross (2023072604003873000_bib15) 2009; 459 Rykx (2023072604003873000_bib55) 2003; 546 Yu (2023072604003873000_bib71) 2005; 22 Zhang (2023072604003873000_bib72) 2016; 15 Lamkanfi (2023072604003873000_bib30) 2014; 157 Miller (2023072604003873000_bib41) 2007; 179 Wang (2023072604003873000_bib68) 2014; 15 Kayagaki (2023072604003873000_bib26) 2015; 526 Murakami (2023072604003873000_bib44) 2012; 109 Gurung (2023072604003873000_bib17) 2015; 21 Lee (2023072604003873000_bib32) 2012; 492 Fielitz (2023072604003873000_bib14) 2008; 105 Storz (2023072604003873000_bib63) 2005; 25 Iyer (2023072604003873000_bib22) 2013; 39 Shimada (2023072604003873000_bib62) 2012; 36 Katsnelson (2023072604003873000_bib25) 2015; 194 Shevchenko (2023072604003873000_bib59) 2006; 1 Martinon (2023072604003873000_bib39) 2006; 440 Baron (2023072604003873000_bib6) 2002; 295 Nakahira (2023072604003873000_bib45) 2011; 12 Yang (2023072604003873000_bib70) 2015; 6 Ito (2023072604003873000_bib21) 2015; 6 Zhou (2023072604003873000_bib73) 2012; 91 Everett (2023072604003873000_bib13) 2009; 284 Baroja-Mazo (2023072604003873000_bib5) 2014; 15 Abe (2023072604003873000_bib1) 2011; 63 Chuang (2023072604003873000_bib10) 2011; 117 Zhou (2023072604003873000_bib74) 2011; 469 Mariathasan (2023072604003873000_bib36) 2006; 440 Koss (2023072604003873000_bib28) 2014; 39 Nakamura (2023072604003873000_bib46) 2012; 37 Rhee (2023072604003873000_bib51) 2001; 70 Rozengurt (2023072604003873000_bib53) 2005; 280 Strowig (2023072604003873000_bib64) 2012; 481 Horng (2023072604003873000_bib20) 2014; 35 He (2023072604003873000_bib19) 2016; 530 Rubartelli (2023072604003873000_bib54) 1990; 9 Broz (2023072604003873000_bib7) 2016; 16 Mortimer (2023072604003873000_bib42) 2016; 17 Shi (2023072604003873000_bib60) 2016; 17 Barker (2023072604003873000_bib4) 1998; 9 Schroder (2023072604003873000_bib58) 2010; 140 Shi (2023072604003873000_bib61) 2015; 526 Latz (2023072604003873000_bib31) 2013; 13 Martin (2023072604003873000_bib37) 2014; 5 Uesugi (2023072604003873000_bib67) 2012; 60 Martinon (2023072604003873000_bib38) 2004; 14 Guo (2023072604003873000_bib16) 2016; 45 Lamkanfi (2023072604003873000_bib29) 2012; 28 Rossol (2023072604003873000_bib52) 2012; 3 Brydges (2023072604003873000_bib8) 2009; 30 |
References_xml | – volume: 63 start-page: 1301 year: 2011 ident: 2023072604003873000_bib1 article-title: A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase Cγ2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model publication-title: Arthritis Rheum. doi: 10.1002/art.30280 – volume: 492 start-page: 123 year: 2012 ident: 2023072604003873000_bib32 article-title: The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP publication-title: Nature. doi: 10.1038/nature11588 – volume: 165 start-page: 792 year: 2016 ident: 2023072604003873000_bib50 article-title: Inflammasome complexes: Emerging mechanisms and effector functions publication-title: Cell. doi: 10.1016/j.cell.2016.03.046 – volume: 67 start-page: 563 year: 2015 ident: 2023072604003873000_bib9 article-title: Connecting two pathways through Ca2+ signaling: NLRP3 inflammasome activation induced by a hypermorphic PLCG2 mutation publication-title: Arthritis Rheumatol. doi: 10.1002/art.38961 – volume: 38 start-page: 1142 year: 2013 ident: 2023072604003873000_bib43 article-title: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter publication-title: Immunity. doi: 10.1016/j.immuni.2013.05.016 – volume: 109 start-page: 11282 year: 2012 ident: 2023072604003873000_bib44 article-title: Critical role for calcium mobilization in activation of the NLRP3 inflammasome publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1117765109 – volume: 366 start-page: 330 year: 2012 ident: 2023072604003873000_bib47 article-title: Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1102140 – volume: 28 start-page: 137 year: 2012 ident: 2023072604003873000_bib29 article-title: Inflammasomes and their roles in health and disease publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101011-155745 – volume: 12 start-page: 222 year: 2011 ident: 2023072604003873000_bib45 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat. Immunol. doi: 10.1038/ni.1980 – volume: 526 start-page: 660 year: 2015 ident: 2023072604003873000_bib61 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature. doi: 10.1038/nature15514 – volume: 15 start-page: 1126 year: 2014 ident: 2023072604003873000_bib68 article-title: RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway publication-title: Nat. Immunol. doi: 10.1038/ni.3015 – volume: 481 start-page: 278 year: 2012 ident: 2023072604003873000_bib64 article-title: Inflammasomes in health and disease publication-title: Nature. doi: 10.1038/nature10759 – volume: 104 start-page: 409 year: 2001 ident: 2023072604003873000_bib33 article-title: Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network publication-title: Cell. doi: 10.1016/S0092-8674(01)00228-8 – volume: 17 start-page: 250 year: 2016 ident: 2023072604003873000_bib60 article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component publication-title: Nat. Immunol. doi: 10.1038/ni.3333 – volume: 15 start-page: 738 year: 2014 ident: 2023072604003873000_bib5 article-title: The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response publication-title: Nat. Immunol. doi: 10.1038/ni.2919 – volume: 30 start-page: 875 year: 2009 ident: 2023072604003873000_bib8 article-title: Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity publication-title: Immunity. doi: 10.1016/j.immuni.2009.05.005 – volume: 1 start-page: 2856 year: 2006 ident: 2023072604003873000_bib59 article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.468 – volume: 17 start-page: 1176 year: 2016 ident: 2023072604003873000_bib42 article-title: NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations publication-title: Nat. Immunol. doi: 10.1038/ni.3538 – volume: 546 start-page: 81 year: 2003 ident: 2023072604003873000_bib55 article-title: Protein kinase D: A family affair publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00487-3 – volume: 25 start-page: 8520 year: 2005 ident: 2023072604003873000_bib63 article-title: Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.19.8520-8530.2005 – volume: 21 start-page: 193 year: 2015 ident: 2023072604003873000_bib17 article-title: Mitochondria: Diversity in the regulation of the NLRP3 inflammasome publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2014.11.008 – volume: 3 start-page: e261 year: 2012 ident: 2023072604003873000_bib40 article-title: ER stress activates the NLRP3 inflammasome via an UPR-independent pathway publication-title: Cell Death Dis. doi: 10.1038/cddis.2011.132 – volume: 291 start-page: 103 year: 2016 ident: 2023072604003873000_bib57 article-title: A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.C115.700492 – volume: 91 start-page: 713 year: 2012 ident: 2023072604003873000_bib73 article-title: A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.08.006 – volume: 35 start-page: 253 year: 2014 ident: 2023072604003873000_bib20 article-title: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome publication-title: Trends Immunol. doi: 10.1016/j.it.2014.02.007 – volume: 6 start-page: 7360 year: 2015 ident: 2023072604003873000_bib21 article-title: Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury publication-title: Nat. Commun. doi: 10.1038/ncomms8360 – volume: 3 start-page: 1329 year: 2012 ident: 2023072604003873000_bib52 article-title: Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors publication-title: Nat. Commun. doi: 10.1038/ncomms2339 – volume: 140 start-page: 821 year: 2010 ident: 2023072604003873000_bib58 article-title: The inflammasomes publication-title: Cell. doi: 10.1016/j.cell.2010.01.040 – volume: 60 start-page: 1094 year: 2012 ident: 2023072604003873000_bib67 article-title: Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis publication-title: Glia. doi: 10.1002/glia.22337 – volume: 39 start-page: 603 year: 2014 ident: 2023072604003873000_bib28 article-title: Dysfunction of phospholipase Cγ in immune disorders and cancer publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.09.004 – volume: 5 start-page: 4977 year: 2014 ident: 2023072604003873000_bib37 article-title: IKKα negatively regulates ASC-dependent inflammasome activation publication-title: Nat. Commun. doi: 10.1038/ncomms5977 – volume: 280 start-page: 13205 year: 2005 ident: 2023072604003873000_bib53 article-title: Protein kinase D signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.R500002200 – volume: 16 start-page: 407 year: 2016 ident: 2023072604003873000_bib7 article-title: Inflammasomes: Mechanism of assembly, regulation and signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.58 – volume: 36 start-page: 401 year: 2012 ident: 2023072604003873000_bib62 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity. doi: 10.1016/j.immuni.2012.01.009 – volume: 153 start-page: 348 year: 2013 ident: 2023072604003873000_bib66 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell. doi: 10.1016/j.cell.2013.02.054 – volume: 469 start-page: 221 year: 2011 ident: 2023072604003873000_bib74 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature. doi: 10.1038/nature09663 – volume: 9 start-page: 1503 year: 1990 ident: 2023072604003873000_bib54 article-title: A novel secretory pathway for interleukin-1 β, a protein lacking a signal sequence publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb08268.x – volume: 459 start-page: 433 year: 2009 ident: 2023072604003873000_bib15 article-title: Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence publication-title: Nature. doi: 10.1038/nature07965 – volume: 37 start-page: 85 year: 2012 ident: 2023072604003873000_bib46 article-title: Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein publication-title: Immunity. doi: 10.1016/j.immuni.2012.04.013 – volume: 20 start-page: 319 year: 2004 ident: 2023072604003873000_bib2 article-title: NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder publication-title: Immunity. doi: 10.1016/S1074-7613(04)00046-9 – volume: 14 start-page: 1583 year: 2007 ident: 2023072604003873000_bib48 article-title: Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402195 – volume: 6 start-page: 6115 year: 2015 ident: 2023072604003873000_bib70 article-title: Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome publication-title: Nat. Commun. doi: 10.1038/ncomms7115 – volume: 284 start-page: 23083 year: 2009 ident: 2023072604003873000_bib13 article-title: Characterization of phospholipase C γ enzymes with gain-of-function mutations publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.019265 – volume: 9 start-page: 385 year: 1999 ident: 2023072604003873000_bib27 article-title: A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80168-7 – volume: 56 start-page: 1273 year: 2007 ident: 2023072604003873000_bib3 article-title: The clinical continuum of cryopyrinopathies: Novel CIAS1 mutations in North American patients and a new cryopyrin model publication-title: Arthritis Rheum. doi: 10.1002/art.22491 – volume: 302 start-page: 575 year: 2003 ident: 2023072604003873000_bib12 article-title: Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)00221-3 – volume: 25 start-page: 1285 year: 2015 ident: 2023072604003873000_bib18 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion publication-title: Cell Res. doi: 10.1038/cr.2015.139 – volume: 39 start-page: 311 year: 2013 ident: 2023072604003873000_bib22 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity. doi: 10.1016/j.immuni.2013.08.001 – volume: 295 start-page: 325 year: 2002 ident: 2023072604003873000_bib6 article-title: Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane publication-title: Science. doi: 10.1126/science.1066759 – volume: 9 start-page: 483 year: 1998 ident: 2023072604003873000_bib4 article-title: Wortmannin-sensitive phosphorylation, translocation, and activation of PLCγ1, but not PLCγ2, in antigen-stimulated RBL-2H3 mast cells publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.9.2.483 – volume: 488 start-page: 670 year: 2012 ident: 2023072604003873000_bib34 article-title: Novel role of PKR in inflammasome activation and HMGB1 release publication-title: Nature. doi: 10.1038/nature11290 – volume: 13 start-page: 397 year: 2013 ident: 2023072604003873000_bib31 article-title: Activation and regulation of the inflammasomes publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3452 – volume: 440 start-page: 237 year: 2006 ident: 2023072604003873000_bib39 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature. doi: 10.1038/nature04516 – volume: 157 start-page: 1013 year: 2014 ident: 2023072604003873000_bib30 article-title: Mechanisms and functions of inflammasomes publication-title: Cell. doi: 10.1016/j.cell.2014.04.007 – volume: 526 start-page: 666 year: 2015 ident: 2023072604003873000_bib26 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature. doi: 10.1038/nature15541 – volume: 13 start-page: 148 year: 2016 ident: 2023072604003873000_bib24 article-title: Molecular mechanisms regulating NLRP3 inflammasome activation publication-title: Cell. Mol. Immunol. doi: 10.1038/cmi.2015.95 – volume: 214 start-page: 1725 year: 2017 ident: 2023072604003873000_bib65 article-title: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain publication-title: J. Exp. Med. doi: 10.1084/jem.20160933 – volume: 194 start-page: 3937 year: 2015 ident: 2023072604003873000_bib25 article-title: K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.1402658 – volume: 14 start-page: 1929 year: 2004 ident: 2023072604003873000_bib38 article-title: Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.10.027 – volume: 4 start-page: 1582 year: 2009 ident: 2023072604003873000_bib69 article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.151 – volume: 35 start-page: 106 year: 2015 ident: 2023072604003873000_bib49 article-title: Secretory autophagy publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.04.016 – volume: 15 start-page: 1844 year: 2016 ident: 2023072604003873000_bib72 article-title: PKD3 deficiency causes alterations in microtubule dynamics during the cell cycle publication-title: Cell Cycle. doi: 10.1080/15384101.2016.1188237 – volume: 22 start-page: 451 year: 2005 ident: 2023072604003873000_bib71 article-title: Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca2+ entry publication-title: Immunity. doi: 10.1016/j.immuni.2005.01.018 – volume: 105 start-page: 3059 year: 2008 ident: 2023072604003873000_bib14 article-title: Requirement of protein kinase D1 for pathological cardiac remodeling publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0712265105 – volume: 117 start-page: 960 year: 2011 ident: 2023072604003873000_bib10 article-title: Tumor suppressor death-associated protein kinase is required for full IL-1β production publication-title: Blood. doi: 10.1182/blood-2010-08-303115 – volume: 11 start-page: 1089 year: 2001 ident: 2023072604003873000_bib11 article-title: Control of astrocyte Ca2+ oscillations and waves by oscillating translocation and activation of protein kinase C publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00326-8 – volume: 440 start-page: 228 year: 2006 ident: 2023072604003873000_bib36 article-title: Cryopyrin activates the inflammasome in response to toxins and ATP publication-title: Nature. doi: 10.1038/nature04515 – volume: 70 start-page: 281 year: 2001 ident: 2023072604003873000_bib51 article-title: Regulation of phosphoinositide-specific phospholipase C publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.70.1.281 – volume: 111 start-page: 7403 year: 2014 ident: 2023072604003873000_bib35 article-title: Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1402911111 – volume: 179 start-page: 6933 year: 2007 ident: 2023072604003873000_bib41 article-title: Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo publication-title: J. Immunol. doi: 10.4049/jimmunol.179.10.6933 – volume: 530 start-page: 354 year: 2016 ident: 2023072604003873000_bib19 article-title: NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux publication-title: Nature. doi: 10.1038/nature16959 – volume: 276 start-page: 30301 year: 2001 ident: 2023072604003873000_bib23 article-title: Role of the CDC25 homology domain of phospholipase Cε in amplification of Rap1-dependent signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M103530200 – volume: 474 start-page: 385 year: 2011 ident: 2023072604003873000_bib56 article-title: Detection of prokaryotic mRNA signifies microbial viability and promotes immunity publication-title: Nature. doi: 10.1038/nature10072 – volume: 45 start-page: 802 year: 2016 ident: 2023072604003873000_bib16 article-title: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome publication-title: Immunity. doi: 10.1016/j.immuni.2016.09.008 |
SSID | ssj0014456 |
Score | 2.6208818 |
Snippet | The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes... Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2671 |
SubjectTerms | Activation Animals Assembly Cytosol Deactivation Diglycerides Diglycerides - metabolism Endoplasmic reticulum Endoplasmic Reticulum - physiology Golgi apparatus Golgi Apparatus - physiology Hazards Humans Immune response Inactivation Inflammasomes Inflammasomes - physiology Innate immunity Kinases Leukocytes (mononuclear) Leukocytes, Mononuclear - metabolism Membranes Mice Mice, Inbred C57BL Mice, Knockout Mitochondria Mutation NLR Family, Pyrin Domain-Containing 3 Protein - physiology Oligomerization Peripheral blood mononuclear cells Phosphorylation Protein kinase Protein Kinase C - physiology Proteins Signaling |
Title | Protein kinase D at the Golgi controls NLRP3 inflammasome activation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28716882 https://www.proquest.com/docview/1983432654 https://www.proquest.com/docview/1921135534 https://pubmed.ncbi.nlm.nih.gov/PMC5584123 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDfdXZCR4FQFmrf3CFugQhRVqyIqLpEdO93ANlm1KYf9O_xRZhzHSVuQYC9R5Uzq1vNlZux5EfJCuhKsCiUdnjLpgD6Wjoh85SgB5jP3sWQankNOPkfjL8HHeTjv9X51opY2lXiVXv0xr-Q6XIUx4Ctmyf4HZ-2XwgB8Bv7CFTgM13_i8RSLLOTF4EdegDIajExm4uBDebHImyh0EGSfzqY-hl0B95d8XS7rEho_W6Z8bzHTsVC3qv_vOuHtSfO3c8yUW1jOqfUVX5XmwH21QE_8W3v8N9bnp1954VR5-8x8ozUBLzJuBs05BOg27VWxyMFfeAYiXGXocFjtJTp2hTDsfzE4o1ZBRu4GQ_Qks65g9ur0UoPAk66Yjeq-LUZle1HdZXFPHQxZgOpAYckBFyvvD7tkwMzLpYaG3jayugvSTvnt6eQ0BCMNFPwNctODvYjOKJ_bOCLYkOoWwfZfmewKmPp1d2KsOm1m2TaB9vY1u-G5HXtndpfcMTCgb2rU3SM9VdwntyYGBQ_IyICP1uCjI8orCuCjGny0AR_V4KNd8NEWfA_J7P272enYMS05nBQsw8phEeN-JLAEEE-HXMZgvUvuM8VdmTHGlMsDDjJdegL9u7EvRJTCJiATKQ895T8iB0VZqCeEioxz6WO_80wGQSxECDRgiwexBIszHfbJoFmkJDXl6rFrykWiwyZYkMDqJs3q9slLS31Zl2n5C91xs96JeZHXiXvCML06CoM-eW5vg5hF3xkvVLlBGs91wTb3geZxzR47UcPXPom3GGcJsIT79p0iP9el3A20Dq_95BG53b6Mx-SgWm3UUzCTK_FMw_Q3LiW-5A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+kinase+D+at+the+Golgi+controls+NLRP3+inflammasome+activation&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Zhang%2C+Zhirong&rft.au=Meszaros%2C+Gerg%C3%B6&rft.au=He%2C+Wan-ting&rft.au=Xu%2C+Yanfang&rft.date=2017-09-04&rft.pub=The+Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=214&rft.issue=9&rft.spage=2671&rft.epage=2693&rft_id=info:doi/10.1084%2Fjem.20162040&rft_id=info%3Apmid%2F28716882&rft.externalDocID=PMC5584123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |