Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI

We proposed ICA-AROMA as a strategy for the removal of motion-related artifacts from fMRI data (Pruim et al., 2015). ICA-AROMA automatically identifies and subsequently removes data-driven derived components that represent motion-related artifacts. Here we present an extensive evaluation of ICA-AROM...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 112; pp. 278 - 287
Main Authors Pruim, Raimon H R, Mennes, Maarten, Buitelaar, Jan K, Beckmann, Christian F
Format Journal Article
LanguageEnglish
Published United States Elsevier Limited 15.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We proposed ICA-AROMA as a strategy for the removal of motion-related artifacts from fMRI data (Pruim et al., 2015). ICA-AROMA automatically identifies and subsequently removes data-driven derived components that represent motion-related artifacts. Here we present an extensive evaluation of ICA-AROMA by comparing our strategy to a range of alternative strategies for motion-related artifact removal: (i) no secondary motion correction, (ii) extensive nuisance regression utilizing 6 or (iii) 24 realignment parameters, (iv) spike regression (Satterthwaite et al., 2013a), (v) motion scrubbing (Power et al., 2012), (vi) aCompCor (Behzadi et al., 2007; Muschelli et al., 2014), (vii) SOCK (Bhaganagarapu et al., 2013), and (viii) ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), without re-training the classifier. Using three different functional connectivity analysis approaches and four different multi-subject resting-state fMRI datasets, we assessed all strategies regarding their potential to remove motion artifacts, ability to preserve signal of interest, and induced loss in temporal degrees of freedom (tDoF). Results demonstrated that ICA-AROMA, spike regression, scrubbing, and ICA-FIX similarly minimized the impact of motion on functional connectivity metrics. However, both ICA-AROMA and ICA-FIX resulted in significantly improved resting-state network reproducibility and decreased loss in tDoF compared to spike regression and scrubbing. In comparison to ICA-FIX, ICA-AROMA yielded improved preservation of signal of interest across all datasets. These results demonstrate that ICA-AROMA is an effective strategy for removing motion-related artifacts from rfMRI data. Our robust and generalizable strategy avoids the need for censoring fMRI data and reduces motion-induced signal variations in fMRI data, while preserving signal of interest and increasing the reproducibility of functional connectivity metrics. In addition, ICA-AROMA preserves the temporal non-artifactual time-series characteristics and limits the loss in tDoF, thereby increasing statistical power at both the subject- and the between-subject analysis level.
AbstractList We proposed ICA-AROMA as a strategy for the removal of motion-related artifacts from fMRI data (Pruim et al., 2015). ICA-AROMA automatically identifies and subsequently removes data-driven derived components that represent motion-related artifacts. Here we present an extensive evaluation of ICA-AROMA by comparing our strategy to a range of alternative strategies for motion-related artifact removal: (i) no secondary motion correction, (ii) extensive nuisance regression utilizing 6 or (iii) 24 realignment parameters, (iv) spike regression (Satterthwaite et al., 2013a), (v) motion scrubbing (Power et al., 2012), (vi) aCompCor (Behzadi et al., 2007; Muschelli et al., 2014), (vii) SOCK (Bhaganagarapu et al., 2013), and (viii) ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), without re-training the classifier. Using three different functional connectivity analysis approaches and four different multi-subject resting-state fMRI datasets, we assessed all strategies regarding their potential to remove motion artifacts, ability to preserve signal of interest, and induced loss in temporal degrees of freedom (tDoF). Results demonstrated that ICA-AROMA, spike regression, scrubbing, and ICA-FIX similarly minimized the impact of motion on functional connectivity metrics. However, both ICA-AROMA and ICA-FIX resulted in significantly improved resting-state network reproducibility and decreased loss in tDoF compared to spike regression and scrubbing. In comparison to ICA-FIX, ICA-AROMA yielded improved preservation of signal of interest across all datasets. These results demonstrate that ICA-AROMA is an effective strategy for removing motion-related artifacts from rfMRI data. Our robust and generalizable strategy avoids the need for censoring fMRI data and reduces motion-induced signal variations in fMRI data, while preserving signal of interest and increasing the reproducibility of functional connectivity metrics. In addition, ICA-AROMA preserves the temporal non-artifactual time-series characteristics and limits the loss in tDoF, thereby increasing statistical power at both the subject- and the between-subject analysis level.
Author Buitelaar, Jan K
Mennes, Maarten
Beckmann, Christian F
Pruim, Raimon H R
Author_xml – sequence: 1
  givenname: Raimon H R
  surname: Pruim
  fullname: Pruim, Raimon H R
  email: r.pruim@fcdonders.ru.nl
  organization: Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands. Electronic address: r.pruim@fcdonders.ru.nl
– sequence: 2
  givenname: Maarten
  surname: Mennes
  fullname: Mennes, Maarten
  organization: Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 3
  givenname: Jan K
  surname: Buitelaar
  fullname: Buitelaar, Jan K
  organization: Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
– sequence: 4
  givenname: Christian F
  surname: Beckmann
  fullname: Beckmann, Christian F
  organization: Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25770990$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3TAQhUVIyav9C0WQTTZ2R9KVR1peQpoEEgKhXQtZli--2FIi2YH8--rmVcgmq5lB55wZ9B2T_RCDJ4QyqBmw5te2Dn5JcZjsxtccmKyB19CIPXLEQMtKS-T7u16KSjGmD8lxzlsA0GylDsghl4igNRyR7uLJjoudhxho7On1-bpa39_drqkNHbXj7FMoj0-e5jnZ2W8Gn2kfE53ii8Wmeeitm2nyUyxJdAilzfMQNsVRDLS_vb_-Tr71dsz-x1s9IX9_X_w5v6pu7i7LxpvKScbnCrmUCB1rlQZUfuV60TqOskzQOQnSWQFSigY7y1et6lXbrpRqOhReO0RxQs5ecx9SfFzKGWYasvPjaIOPSzYMBVeC66b5WtqgVIgod6mnn6TbuJRvGV9UQkmGGopKvapcijkn35uHVPikZ8PA7KCZrfkPzeygGeCmQCvWn28Llnby3YfxnZL4Bw6vlow
CitedBy_id crossref_primary_10_1186_s13063_019_3177_y
crossref_primary_10_1093_scan_nsaa094
crossref_primary_10_1080_13554794_2021_1978502
crossref_primary_10_1111_adb_13070
crossref_primary_10_1002_hbm_24345
crossref_primary_10_1016_j_neures_2020_05_006
crossref_primary_10_1002_hbm_26081
crossref_primary_10_1016_j_nicl_2021_102789
crossref_primary_10_1016_j_neuroimage_2017_02_019
crossref_primary_10_1016_j_nicl_2017_03_008
crossref_primary_10_1007_s40279_016_0666_y
crossref_primary_10_1016_j_neuroscience_2017_02_005
crossref_primary_10_1016_j_nicl_2019_101966
crossref_primary_10_1002_aur_2351
crossref_primary_10_1177_0333102417729113
crossref_primary_10_1073_pnas_1611743113
crossref_primary_10_1007_s12021_021_09524_9
crossref_primary_10_1093_joc_jqy043
crossref_primary_10_1109_TNNLS_2018_2796023
crossref_primary_10_1093_braincomms_fcac329
crossref_primary_10_1177_0269881117715607
crossref_primary_10_1002_hbm_25669
crossref_primary_10_1038_srep46411
crossref_primary_10_1016_j_biopsych_2018_12_002
crossref_primary_10_1016_j_cortex_2022_10_012
crossref_primary_10_7554_eLife_71846
crossref_primary_10_1002_hbm_24692
crossref_primary_10_1002_hbm_23362
crossref_primary_10_1016_j_neuroscience_2018_04_029
crossref_primary_10_1002_hbm_25665
crossref_primary_10_1016_j_dcn_2020_100814
crossref_primary_10_1186_s12868_021_00636_1
crossref_primary_10_7554_eLife_06738
crossref_primary_10_1002_hbm_26631
crossref_primary_10_1038_s41467_021_22027_0
crossref_primary_10_1002_hbm_26071
crossref_primary_10_1210_clinem_dgaa611
crossref_primary_10_1007_s11682_018_9973_2
crossref_primary_10_1016_j_neuroimage_2023_119933
crossref_primary_10_1016_j_bpsc_2020_09_015
crossref_primary_10_1016_j_euroneuro_2018_07_099
crossref_primary_10_1016_j_bpsc_2020_01_007
crossref_primary_10_1016_j_jad_2023_01_026
crossref_primary_10_1007_s11682_017_9714_y
crossref_primary_10_1002_hbm_25897
crossref_primary_10_1016_j_neuroimage_2016_12_036
crossref_primary_10_1007_s11682_021_00466_z
crossref_primary_10_3389_fneur_2017_00608
crossref_primary_10_3389_fnsys_2021_647143
crossref_primary_10_3390_brainsci10030175
crossref_primary_10_1093_cercor_bhac072
crossref_primary_10_1002_hbm_25332
crossref_primary_10_1007_s11682_017_9811_y
crossref_primary_10_1080_1028415X_2018_1477538
crossref_primary_10_1371_journal_pone_0137484
crossref_primary_10_1093_scan_nsad026
crossref_primary_10_1159_000512891
crossref_primary_10_1016_j_neuroimage_2023_119949
crossref_primary_10_1227_neu_0000000000003012
crossref_primary_10_1371_journal_pone_0276221
crossref_primary_10_1093_braincomms_fcae048
crossref_primary_10_1002_hbm_22850
crossref_primary_10_1016_j_appet_2018_09_019
crossref_primary_10_1016_j_neuroimage_2020_116594
crossref_primary_10_1038_s44220_024_00242_0
crossref_primary_10_1002_aur_2014
crossref_primary_10_1093_ajcn_nqy344
crossref_primary_10_1210_clinem_dgad592
crossref_primary_10_1038_s41380_023_02077_0
crossref_primary_10_1038_s42003_019_0611_3
crossref_primary_10_1177_1073858415595004
crossref_primary_10_1016_j_neuroimage_2017_09_038
crossref_primary_10_1007_s00429_018_1700_7
crossref_primary_10_1111_ejn_14574
crossref_primary_10_1016_j_dcn_2023_101271
crossref_primary_10_1016_j_neuroimage_2017_12_073
crossref_primary_10_1007_s10072_020_04433_2
crossref_primary_10_1038_s41380_019_0545_7
crossref_primary_10_1016_j_nicl_2022_103253
crossref_primary_10_1177_0333102420951465
crossref_primary_10_1002_hbm_26406
crossref_primary_10_1088_1741_2552_aba5cc
crossref_primary_10_1093_cercor_bhaa105
crossref_primary_10_3389_fnbeh_2022_919327
crossref_primary_10_3758_s13415_018_0612_6
crossref_primary_10_1002_aur_1971
crossref_primary_10_3389_fnins_2017_00115
crossref_primary_10_1038_s41398_023_02526_y
crossref_primary_10_1093_cercor_bhad101
crossref_primary_10_1093_cercor_bhad100
crossref_primary_10_1016_j_ebiom_2021_103445
crossref_primary_10_1016_j_neuroimage_2022_119721
crossref_primary_10_1016_j_nicl_2019_101763
crossref_primary_10_7554_eLife_84951
crossref_primary_10_1016_j_jneumeth_2019_108497
crossref_primary_10_1016_j_neulet_2020_134985
crossref_primary_10_3389_fnins_2024_1223230
crossref_primary_10_1111_exsy_12644
crossref_primary_10_1016_j_neuroimage_2016_11_029
crossref_primary_10_1371_journal_pone_0215520
crossref_primary_10_1016_j_neuroimage_2017_07_046
crossref_primary_10_1016_j_neuroimage_2017_05_031
crossref_primary_10_1371_journal_pcbi_1011942
crossref_primary_10_1016_j_neuroimage_2018_09_059
crossref_primary_10_1016_j_nicl_2016_10_006
crossref_primary_10_1152_jn_00288_2019
crossref_primary_10_1016_j_nicl_2018_06_024
crossref_primary_10_1007_s00429_021_02226_7
crossref_primary_10_1016_j_ajp_2024_104009
crossref_primary_10_1162_jocn_a_01807
crossref_primary_10_1038_s42003_024_06016_9
crossref_primary_10_1016_j_neurobiolaging_2023_06_001
crossref_primary_10_1016_j_nicl_2021_102919
crossref_primary_10_1111_jon_12645
crossref_primary_10_1002_hbm_24532
crossref_primary_10_1007_s10803_023_06171_8
crossref_primary_10_1038_s41398_023_02559_3
crossref_primary_10_1038_s41596_018_0065_y
crossref_primary_10_3389_fnint_2018_00043
crossref_primary_10_3389_fpsyt_2024_1337921
crossref_primary_10_3389_fnins_2023_1098441
crossref_primary_10_1016_j_clinph_2020_11_009
crossref_primary_10_1080_15622975_2020_1813329
crossref_primary_10_1016_j_pnpbp_2016_01_011
crossref_primary_10_1016_j_nicl_2017_06_033
crossref_primary_10_1038_s41597_022_01413_3
crossref_primary_10_1016_j_neuroimage_2016_05_048
crossref_primary_10_1093_cercor_bhw029
crossref_primary_10_3174_ajnr_A4975
crossref_primary_10_1016_j_mri_2021_10_028
crossref_primary_10_1093_braincomms_fcad105
crossref_primary_10_1002_hbm_25979
crossref_primary_10_1038_s41537_020_00111_6
crossref_primary_10_3389_fncom_2023_1302010
crossref_primary_10_1016_j_neurobiolaging_2015_08_020
crossref_primary_10_1017_S0033291718003136
crossref_primary_10_1176_appi_ajp_2021_20101526
crossref_primary_10_1155_2018_6142898
crossref_primary_10_1017_S003329172000416X
crossref_primary_10_3389_fnhum_2023_1263292
crossref_primary_10_1162_netn_a_00067
crossref_primary_10_1007_s12311_024_01699_6
crossref_primary_10_1016_j_bpsc_2016_03_004
crossref_primary_10_1186_s13229_022_00529_y
crossref_primary_10_1016_j_neuroimage_2021_117914
crossref_primary_10_1016_j_pscychresns_2018_02_008
crossref_primary_10_1016_j_neuroimage_2016_09_065
crossref_primary_10_1007_s00406_023_01671_1
crossref_primary_10_20900_jpbs_20200024
crossref_primary_10_1002_da_22627
crossref_primary_10_1016_j_neuroimage_2017_02_078
crossref_primary_10_1523_JNEUROSCI_1778_22_2023
crossref_primary_10_1038_s42003_023_04969_x
crossref_primary_10_1002_hbm_23901
crossref_primary_10_1038_s41598_021_82199_z
crossref_primary_10_1016_j_neuroimage_2019_05_044
crossref_primary_10_1016_j_neuroimage_2022_119296
crossref_primary_10_1007_s00429_016_1286_x
crossref_primary_10_1093_cercor_bhab072
crossref_primary_10_1186_s12888_019_2031_9
crossref_primary_10_3389_fnins_2021_625309
crossref_primary_10_1007_s00429_017_1556_2
crossref_primary_10_1016_j_nicl_2019_101678
crossref_primary_10_1007_s11682_018_9889_x
crossref_primary_10_1111_psyp_14034
crossref_primary_10_3389_fnagi_2017_00097
crossref_primary_10_1016_j_neuroimage_2018_04_076
crossref_primary_10_1371_journal_pone_0173289
crossref_primary_10_1016_j_dcn_2017_06_003
crossref_primary_10_7554_eLife_60673
crossref_primary_10_1016_j_tics_2017_04_002
crossref_primary_10_1016_j_neuroimage_2020_116543
crossref_primary_10_1016_j_neuroimage_2017_12_035
crossref_primary_10_1007_s11571_021_09765_z
crossref_primary_10_1371_journal_pone_0244847
crossref_primary_10_1093_schbul_sbx171
crossref_primary_10_3389_fnagi_2019_00067
crossref_primary_10_1017_S1355617718000413
crossref_primary_10_1016_j_neuroimage_2015_12_028
crossref_primary_10_1016_j_neuroimage_2019_116512
crossref_primary_10_1093_cercor_bhy268
crossref_primary_10_1016_j_neuroimage_2016_09_008
crossref_primary_10_3389_fninf_2019_00005
crossref_primary_10_1016_j_neuroimage_2019_07_002
crossref_primary_10_1038_s41598_017_11872_z
crossref_primary_10_1002_alz_12209
crossref_primary_10_1007_s00259_023_06124_4
crossref_primary_10_1038_s41598_020_74726_1
crossref_primary_10_1016_j_nicl_2020_102546
crossref_primary_10_1016_j_dcn_2019_100630
crossref_primary_10_1016_j_neuroimage_2019_116070
crossref_primary_10_1016_j_mri_2019_11_012
crossref_primary_10_1002_hbm_24731
crossref_primary_10_1016_j_nicl_2022_103081
crossref_primary_10_3389_fneur_2024_1331365
crossref_primary_10_1002_hbm_23767
crossref_primary_10_1016_j_neuroimage_2016_11_073
crossref_primary_10_1016_j_jad_2018_12_068
crossref_primary_10_1038_s41539_019_0058_9
crossref_primary_10_1002_hbm_25020
crossref_primary_10_1016_j_dcn_2017_11_011
crossref_primary_10_1002_jor_25014
crossref_primary_10_1016_j_neuroimage_2017_01_048
crossref_primary_10_1007_s10339_020_00964_w
crossref_primary_10_1016_j_tics_2016_03_014
crossref_primary_10_1111_jon_13011
crossref_primary_10_1093_cercor_bhw079
crossref_primary_10_1002_hbm_25381
crossref_primary_10_1016_j_neuroimage_2023_120082
crossref_primary_10_1016_j_drugalcdep_2020_108402
crossref_primary_10_1016_j_jneuroling_2020_100984
crossref_primary_10_1038_s41366_021_00974_4
crossref_primary_10_3389_fnins_2019_00825
crossref_primary_10_1007_s00429_019_01924_7
crossref_primary_10_1016_j_neuroimage_2019_01_041
crossref_primary_10_1017_S1355617716000060
crossref_primary_10_1017_S1355617718000279
crossref_primary_10_1016_j_euroneuro_2019_10_008
crossref_primary_10_1098_rstb_2021_0181
crossref_primary_10_1016_j_nicl_2016_11_014
crossref_primary_10_1002_hbm_24725
crossref_primary_10_1002_hbm_24967
crossref_primary_10_1016_j_softx_2020_100598
crossref_primary_10_3389_fnagi_2021_803436
crossref_primary_10_3389_fpsyt_2022_802449
crossref_primary_10_1038_s41562_019_0738_8
crossref_primary_10_1123_jsr_2018_0026
crossref_primary_10_1016_j_neuroimage_2022_119025
crossref_primary_10_1038_srep40180
crossref_primary_10_3389_fninf_2018_00052
crossref_primary_10_1002_hbm_26025
crossref_primary_10_1038_s41598_019_44728_9
crossref_primary_10_1016_j_nicl_2021_102921
crossref_primary_10_1210_clinem_dgac426
crossref_primary_10_1523_ENEURO_0208_21_2021
crossref_primary_10_1038_nn_4511
crossref_primary_10_3389_fnins_2019_00722
crossref_primary_10_26603_001c_57782
crossref_primary_10_1016_j_nicl_2020_102402
crossref_primary_10_3758_s13415_018_0579_3
crossref_primary_10_1016_j_jaac_2015_05_014
crossref_primary_10_1016_j_pscychresns_2023_111710
crossref_primary_10_3389_fnins_2022_1006056
crossref_primary_10_1016_j_tics_2016_10_005
crossref_primary_10_1016_j_nicl_2018_03_023
crossref_primary_10_1017_S0033291716002695
crossref_primary_10_1016_j_neuroimage_2023_120403
crossref_primary_10_1002_hbm_23548
crossref_primary_10_1523_ENEURO_0336_17_2018
crossref_primary_10_1002_brb3_533
crossref_primary_10_1017_S0033291723000636
crossref_primary_10_1177_0271678X211064846
crossref_primary_10_1080_14459795_2018_1449884
crossref_primary_10_1016_j_neuroimage_2022_119015
crossref_primary_10_1016_j_neuroimage_2019_03_015
crossref_primary_10_3389_fnhum_2017_00054
crossref_primary_10_1111_psyp_13381
crossref_primary_10_3389_fnhum_2021_687288
crossref_primary_10_3389_fnins_2019_00729
crossref_primary_10_1002_aur_2427
crossref_primary_10_1093_braincomms_fcad126
crossref_primary_10_1016_j_dcn_2019_100726
crossref_primary_10_1016_j_neuroimage_2019_04_054
crossref_primary_10_1007_s11682_017_9777_9
crossref_primary_10_1016_j_dcn_2023_101316
crossref_primary_10_3389_fnins_2021_748426
crossref_primary_10_1093_cercor_bhz156
crossref_primary_10_1111_jora_12760
crossref_primary_10_3389_fpsyg_2015_01855
crossref_primary_10_3389_fnhum_2020_509075
crossref_primary_10_1016_j_neuroimage_2022_119569
crossref_primary_10_3758_s13415_019_00689_0
crossref_primary_10_1016_j_neuroimage_2017_03_020
crossref_primary_10_1016_j_nicl_2016_06_020
crossref_primary_10_1093_cercor_bhz153
crossref_primary_10_1016_j_nicl_2020_102347
crossref_primary_10_1016_j_nicl_2021_102622
crossref_primary_10_3389_fpsyg_2018_01600
crossref_primary_10_1016_j_neuroimage_2017_10_056
crossref_primary_10_1016_j_neuroimage_2022_118907
crossref_primary_10_1016_j_cortex_2018_05_018
crossref_primary_10_1016_j_neuroimage_2020_117024
crossref_primary_10_1016_j_bpsc_2018_11_014
crossref_primary_10_3389_fnhum_2019_00164
crossref_primary_10_7554_eLife_85082
crossref_primary_10_3389_fnhum_2019_00162
crossref_primary_10_3389_fninf_2018_00101
crossref_primary_10_1111_desc_13415
crossref_primary_10_1038_s41598_019_56923_9
crossref_primary_10_1371_journal_pone_0269154
crossref_primary_10_1109_ACCESS_2023_3324183
crossref_primary_10_1093_schbul_sbw145
crossref_primary_10_3390_brainsci12040496
crossref_primary_10_1016_j_neuroimage_2020_117013
crossref_primary_10_1016_j_nicl_2019_101809
crossref_primary_10_1089_brain_2016_0433
crossref_primary_10_1111_acer_14782
crossref_primary_10_1111_cdev_13759
crossref_primary_10_1016_j_dcn_2016_06_002
crossref_primary_10_3389_fnins_2023_1076824
crossref_primary_10_1016_j_pscychresns_2018_09_006
crossref_primary_10_1038_s41398_022_02085_8
crossref_primary_10_1017_S0033291718000144
crossref_primary_10_1016_j_neuroimage_2017_08_025
crossref_primary_10_1016_j_schres_2019_05_038
crossref_primary_10_1038_s41366_023_01370_w
crossref_primary_10_1016_j_cortex_2016_01_012
crossref_primary_10_1038_s41380_023_01971_x
crossref_primary_10_1523_ENEURO_0060_16_2016
crossref_primary_10_1080_19490976_2021_2006586
crossref_primary_10_1089_neu_2022_0242
crossref_primary_10_1016_j_bpsc_2023_08_008
crossref_primary_10_1016_j_neuroimage_2020_117126
crossref_primary_10_1016_j_neuroimage_2021_117760
crossref_primary_10_1093_brain_awab204
crossref_primary_10_1177_19417381221079339
crossref_primary_10_1080_1028415X_2019_1639306
crossref_primary_10_1002_brb3_2174
crossref_primary_10_1016_j_psyneuen_2023_106292
crossref_primary_10_1259_bjr_20160656
crossref_primary_10_1109_TMI_2022_3169640
crossref_primary_10_1016_j_cub_2019_04_011
crossref_primary_10_1016_j_parkreldis_2023_105845
crossref_primary_10_1093_brain_awx042
crossref_primary_10_1093_brain_awaa465
crossref_primary_10_1002_hbm_25118
crossref_primary_10_1002_hbm_26447
crossref_primary_10_1016_j_neuroimage_2020_117231
crossref_primary_10_1016_j_neuroimage_2016_12_018
Cites_doi 10.1073/pnas.0811879106
10.1371/journal.pone.0095493
10.1016/j.neuroimage.2014.08.010
10.1073/pnas.1317424111
10.1002/hbm.20022
10.1002/mrm.1910350312
10.3389/fnins.2013.00072
10.1073/pnas.0705843104
10.1371/journal.pcbi.1000381
10.1016/j.neuroimage.2013.11.046
10.3389/fnhum.2013.00343
10.1155/2013/935154
10.1073/pnas.0601417103
10.1016/j.neuroimage.2014.03.012
10.1016/j.neuroimage.2008.10.055
10.1016/j.mri.2007.03.009
10.1016/j.neuroimage.2013.03.004
10.1073/pnas.0905267106
10.1016/j.neuroimage.2009.10.080
10.1016/j.neuroimage.2014.06.038
10.1073/pnas.0800376105
10.1016/j.neuroimage.2013.02.066
10.1098/rstb.2005.1634
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2007.04.042
10.1371/journal.pone.0104947
10.1016/j.neuroimage.2012.08.052
10.1126/science.1194144
10.1016/j.neuroimage.2014.03.028
10.1006/nimg.2002.1132
10.1371/journal.pone.0104989
10.1016/j.neuroimage.2004.07.051
10.1016/B978-0-444-53839-0.00017-X
10.1093/cercor/bhn256
10.1016/j.neuroimage.2013.08.048
10.3389/fnhum.2013.00214
10.1007/s00787-014-0573-4
10.1016/j.neubiorev.2014.05.009
10.1016/j.neuroimage.2011.12.028
10.1371/journal.pone.0093375
10.1016/S1053-8119(09)71511-3
10.1016/j.conb.2005.03.001
10.1073/pnas.0911855107
10.1016/j.mri.2006.09.042
10.1152/jn.00783.2009
10.1016/j.neuroimage.2009.06.060
10.1016/j.neuroimage.2013.06.045
10.1016/j.neuroimage.2004.12.027
10.1016/j.neuroimage.2011.12.063
10.1016/j.neuroimage.2011.10.018
10.1006/nimg.2002.1200
10.1016/j.neuroimage.2013.07.058
10.1016/j.neuroimage.2007.10.013
10.1016/j.neuroimage.2011.07.044
10.1016/j.neuron.2010.08.017
10.1016/j.neuroimage.2014.06.065
10.1016/j.neuroimage.2014.03.034
10.1016/j.neuroimage.2006.08.041
10.1016/S1361-8415(01)00036-6
ContentType Journal Article
Copyright Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 15, 2015
Copyright_xml – notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 15, 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2015.02.063
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest One Psychology
Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 287
ExternalDocumentID 3657420751
10_1016_j_neuroimage_2015_02_063
25770990
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
3V.
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADFRT
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKRA
AFKWA
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
C45
CCPQU
CGR
CS3
CUY
CVF
DM4
DU5
DWQXO
EBS
ECM
EFBJH
EIF
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMQ
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
NPM
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SNS
SSH
SSN
SSZ
T5K
TEORI
UV1
YK3
Z5R
ZU3
~G-
29N
53G
6I.
AAQXK
AAYXX
ABXDB
ADFGL
ADMUD
ADVLN
AGHFR
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
NCXOZ
OK1
R2-
SEW
WUQ
XPP
ZMT
7TK
7XB
8FD
8FK
FR3
K9.
P64
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c512t-725570d1b89078e4cf3bc2759070dc505ca3055367da24b8f8bb4886d73e9c773
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Fri Aug 16 21:23:17 EDT 2024
Fri Aug 16 07:35:46 EDT 2024
Tue Sep 24 22:15:35 EDT 2024
Thu Sep 26 16:22:41 EDT 2024
Sat Sep 28 08:46:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Motion
Connectivity
Functional MRI
Resting state
Artifact
Independent component analysis
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-725570d1b89078e4cf3bc2759070dc505ca3055367da24b8f8bb4886d73e9c773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7279-3439
PMID 25770990
PQID 1673851790
PQPubID 2031077
PageCount 10
ParticipantIDs proquest_miscellaneous_1732832966
proquest_miscellaneous_1675877757
proquest_journals_1673851790
crossref_primary_10_1016_j_neuroimage_2015_02_063
pubmed_primary_25770990
PublicationCentury 2000
PublicationDate 2015-05-15
PublicationDateYYYYMMDD 2015-05-15
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Limited
Publisher_xml – name: Elsevier Limited
References Dosenbach (10.1016/j.neuroimage.2015.02.063_bb0060) 2010; 329
Jenkinson (10.1016/j.neuroimage.2015.02.063_bb0100) 2002; 17
Storti (10.1016/j.neuroimage.2015.02.063_bb0255) 2013; 7
Damoiseaux (10.1016/j.neuroimage.2015.02.063_bb0050) 2006; 103
Power (10.1016/j.neuroimage.2015.02.063_bb0175) 2012; 59
Filippini (10.1016/j.neuroimage.2015.02.063_bb0080) 2009; 106
Jenkinson (10.1016/j.neuroimage.2015.02.063_bb0110) 2001; 5
Fair (10.1016/j.neuroimage.2015.02.063_bb0075) 2007; 104
Woolrich (10.1016/j.neuroimage.2015.02.063_bb0295) 2009; 45
von Rhein (10.1016/j.neuroimage.2015.02.063_bb0200) 2015; 24
Power (10.1016/j.neuroimage.2015.02.063_bb0185) 2014; 84
Fair (10.1016/j.neuroimage.2015.02.063_bb0070) 2009; 5
Beall (10.1016/j.neuroimage.2015.02.063_bb0010) 2014; 101
Bhaganagarapu (10.1016/j.neuroimage.2015.02.063_bb0030) 2013; 7
Wisner (10.1016/j.neuroimage.2015.02.063_bb0290) 2013; 76
Kong (10.1016/j.neuroimage.2015.02.063_bb0135) 2014; 9
Smith (10.1016/j.neuroimage.2015.02.063_bb0240) 2004; 23
Jo (10.1016/j.neuroimage.2015.02.063_bb0115) 2013; 2013
Lemieux (10.1016/j.neuroimage.2015.02.063_bb0145) 2007; 25
Jenkinson (10.1016/j.neuroimage.2015.02.063_bb0105) 2012; 62
Zeng (10.1016/j.neuroimage.2015.02.063_bb0305) 2014; 111
The ADHD-200 Consortium (10.1016/j.neuroimage.2015.02.063_bb0260) 2012; 6
Salimi-Khorshidi (10.1016/j.neuroimage.2015.02.063_bb0210) 2014; 90
Tohka (10.1016/j.neuroimage.2015.02.063_bb0270) 2008; 39
Kochiyama (10.1016/j.neuroimage.2015.02.063_bb0130) 2005; 25
Courchesne (10.1016/j.neuroimage.2015.02.063_bb0040) 2005; 15
Van Dijk (10.1016/j.neuroimage.2015.02.063_bb0280) 2010; 103
Zuo (10.1016/j.neuroimage.2015.02.063_bb0315) 2014; 45
Kelly (10.1016/j.neuroimage.2015.02.063_bb0125) 2009; 19
Liao (10.1016/j.neuroimage.2015.02.063_bb0150) 2013; 83
Zuo (10.1016/j.neuroimage.2015.02.063_bb0310) 2010; 49
Satterthwaite (10.1016/j.neuroimage.2015.02.063_bb0215) 2013; 64
Yan (10.1016/j.neuroimage.2015.02.063_bb0300) 2013; 76
Andersson (10.1016/j.neuroimage.2015.02.063_bb0005) 2007
Friston (10.1016/j.neuroimage.2015.02.063_bb0085) 1996; 35
Griffanti (10.1016/j.neuroimage.2015.02.063_bb0095) 2014; 95
De Martino (10.1016/j.neuroimage.2015.02.063_bb0055) 2007; 34
Behzadi (10.1016/j.neuroimage.2015.02.063_bb0025) 2007; 37
Kalcher (10.1016/j.neuroimage.2015.02.063_bb0120) 2014; 9
Van De Ven (10.1016/j.neuroimage.2015.02.063_bb0275) 2004; 22
Kundu (10.1016/j.neuroimage.2015.02.063_bb0140) 2012; 60
Muschelli (10.1016/j.neuroimage.2015.02.063_bb0155) 2014; 96
Sochat (10.1016/j.neuroimage.2015.02.063_bb0245) 2014; 9
Thomas (10.1016/j.neuroimage.2015.02.063_bb0265) 2002; 17
Niazy (10.1016/j.neuroimage.2015.02.063_bb0160) 2011; 193
Spisák (10.1016/j.neuroimage.2015.02.063_bb0250) 2014; 9
Smith (10.1016/j.neuroimage.2015.02.063_bb0235) 2009; 106
Fair (10.1016/j.neuroimage.2015.02.063_bb0065) 2008; 105
Power (10.1016/j.neuroimage.2015.02.063_bb0180) 2010; 67
Pruim (10.1016/j.neuroimage.2015.02.063_bb0190) 2015
Perlbarg (10.1016/j.neuroimage.2015.02.063_bb0170) 2007; 25
Greve (10.1016/j.neuroimage.2015.02.063_bb0090) 2009; 48
Van Dijk (10.1016/j.neuroimage.2015.02.063_bb0285) 2012; 59
Beckmann (10.1016/j.neuroimage.2015.02.063_bb0015) 2009; 47
Couvy-Duchesne (10.1016/j.neuroimage.2015.02.063_bb0045) 2014; 102
Patel (10.1016/j.neuroimage.2015.02.063_bb0165) 2014; 95
Satterthwaite (10.1016/j.neuroimage.2015.02.063_bb0220) 2012; 60
Shehzad (10.1016/j.neuroimage.2015.02.063_bb0230) 2009; 19
Beckmann (10.1016/j.neuroimage.2015.02.063_bb0020) 2005; 360
Pujol (10.1016/j.neuroimage.2015.02.063_bb0195) 2014; 101
Satterthwaite (10.1016/j.neuroimage.2015.02.063_bb0225) 2013; 83
Biswal (10.1016/j.neuroimage.2015.02.063_bb0035) 2010; 107
Rummel (10.1016/j.neuroimage.2015.02.063_bb0205) 2013; 7
References_xml – volume: 106
  start-page: 7209
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0080
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0811879106
  contributor:
    fullname: Filippini
– volume: 9
  start-page: e95493
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0245
  article-title: A robust classifier to distinguish noise from fMRI independent components
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0095493
  contributor:
    fullname: Sochat
– volume: 102
  start-page: 424
  issue: Pt 2
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0045
  article-title: Heritability of head motion during resting state functional MRI in 462 healthy twins
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.08.010
  contributor:
    fullname: Couvy-Duchesne
– year: 2015
  ident: 10.1016/j.neuroimage.2015.02.063_bb0190
  article-title: ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: NeuroImage.
  contributor:
    fullname: Pruim
– volume: 111
  start-page: 6058
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0305
  article-title: Neurobiological basis of head motion in brain imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1317424111
  contributor:
    fullname: Zeng
– volume: 22
  start-page: 165
  year: 2004
  ident: 10.1016/j.neuroimage.2015.02.063_bb0275
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20022
  contributor:
    fullname: Van De Ven
– volume: 35
  start-page: 346
  year: 1996
  ident: 10.1016/j.neuroimage.2015.02.063_bb0085
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
  contributor:
    fullname: Friston
– volume: 7
  start-page: 72
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0255
  article-title: Automatic selection of resting-state networks with functional magnetic resonance imaging
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00072
  contributor:
    fullname: Storti
– volume: 104
  start-page: 13507
  year: 2007
  ident: 10.1016/j.neuroimage.2015.02.063_bb0075
  article-title: Development of distinct control networks through segregation and integration
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0705843104
  contributor:
    fullname: Fair
– volume: 5
  start-page: e1000381
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0070
  article-title: Functional brain networks develop from a “local to distributed” organization
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000381
  contributor:
    fullname: Fair
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0210
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.046
  contributor:
    fullname: Salimi-Khorshidi
– volume: 7
  start-page: 343
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0030
  article-title: An automated method for identifying artifact in independent component analysis of resting-state FMRI
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00343
  contributor:
    fullname: Bhaganagarapu
– year: 2007
  ident: 10.1016/j.neuroimage.2015.02.063_bb0005
  article-title: Non-linear registration, aka spatial normalisation
  contributor:
    fullname: Andersson
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0115
  article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI
  publication-title: J. Appl. Math.
  doi: 10.1155/2013/935154
  contributor:
    fullname: Jo
– volume: 103
  start-page: 13848
  year: 2006
  ident: 10.1016/j.neuroimage.2015.02.063_bb0050
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0601417103
  contributor:
    fullname: Damoiseaux
– volume: 95
  start-page: 287
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0165
  article-title: A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.012
  contributor:
    fullname: Patel
– volume: 45
  start-page: S173
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0295
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.055
  contributor:
    fullname: Woolrich
– volume: 25
  start-page: 894
  year: 2007
  ident: 10.1016/j.neuroimage.2015.02.063_bb0145
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.03.009
  contributor:
    fullname: Lemieux
– volume: 6
  start-page: 62
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.063_bb0260
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
  contributor:
    fullname: The ADHD-200 Consortium
– volume: 76
  start-page: 183
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0300
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.004
  contributor:
    fullname: Yan
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0235
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905267106
  contributor:
    fullname: Smith
– volume: 49
  start-page: 2163
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.063_bb0310
  article-title: Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.080
  contributor:
    fullname: Zuo
– volume: 101
  start-page: 21
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0010
  article-title: SimPACE: generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: a new, highly effective slicewise motion correction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.038
  contributor:
    fullname: Beall
– volume: 105
  start-page: 4028
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.063_bb0065
  article-title: The maturing architecture of the brain's default network
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0800376105
  contributor:
    fullname: Fair
– volume: 76
  start-page: 236
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0290
  article-title: Neurometrics of intrinsic connectivity networks at rest using fMRI: retest reliability and cross-validation using a meta-level method
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.02.066
  contributor:
    fullname: Wisner
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.neuroimage.2015.02.063_bb0020
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
  contributor:
    fullname: Beckmann
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.063_bb0105
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
  contributor:
    fullname: Jenkinson
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2015.02.063_bb0025
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
  contributor:
    fullname: Behzadi
– volume: 9
  start-page: e104947
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0250
  article-title: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104947
  contributor:
    fullname: Spisák
– volume: 64
  start-page: 240
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0215
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.052
  contributor:
    fullname: Satterthwaite
– volume: 329
  start-page: 1358
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.063_bb0060
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1194144
  contributor:
    fullname: Dosenbach
– volume: 96
  start-page: 22
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0155
  article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.028
  contributor:
    fullname: Muschelli
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2015.02.063_bb0100
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
  contributor:
    fullname: Jenkinson
– volume: 9
  start-page: e104989
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0135
  article-title: Individual differences in impulsivity predict head motion during magnetic resonance imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104989
  contributor:
    fullname: Kong
– volume: 23
  start-page: S208
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.neuroimage.2015.02.063_bb0240
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
  contributor:
    fullname: Smith
– volume: 193
  start-page: 259
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.063_bb0160
  article-title: Spectral characteristics of resting state networks
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-53839-0.00017-X
  contributor:
    fullname: Niazy
– volume: 19
  start-page: 2209
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0230
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn256
  contributor:
    fullname: Shehzad
– volume: 84
  start-page: 320
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0185
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.048
  contributor:
    fullname: Power
– volume: 7
  start-page: 214
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0205
  article-title: Time course based artifact identification for independent components of resting-state FMRI
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00214
  contributor:
    fullname: Rummel
– volume: 19
  start-page: 640
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0125
  article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood
  publication-title: Cereb Cortex (New York, N.Y.: 1991)
  contributor:
    fullname: Kelly
– volume: 24
  start-page: 265
  year: 2015
  ident: 10.1016/j.neuroimage.2015.02.063_bb0200
  article-title: The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives
  publication-title: Eur. Child Adolesc. Psychiatry
  doi: 10.1007/s00787-014-0573-4
  contributor:
    fullname: von Rhein
– volume: 45
  start-page: 100
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0315
  article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.05.009
  contributor:
    fullname: Zuo
– volume: 60
  start-page: 1759
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.063_bb0140
  article-title: Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.12.028
  contributor:
    fullname: Kundu
– volume: 9
  start-page: e93375
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0120
  article-title: The spectral diversity of resting-state fluctuations in the human brain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093375
  contributor:
    fullname: Kalcher
– volume: 47
  start-page: S148
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0015
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)71511-3
  contributor:
    fullname: Beckmann
– volume: 15
  start-page: 225
  year: 2005
  ident: 10.1016/j.neuroimage.2015.02.063_bb0040
  article-title: Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2005.03.001
  contributor:
    fullname: Courchesne
– volume: 107
  start-page: 4734
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.063_bb0035
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911855107
  contributor:
    fullname: Biswal
– volume: 25
  start-page: 35
  year: 2007
  ident: 10.1016/j.neuroimage.2015.02.063_bb0170
  article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.09.042
  contributor:
    fullname: Perlbarg
– volume: 103
  start-page: 297
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.063_bb0280
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00783.2009
  contributor:
    fullname: Van Dijk
– volume: 48
  start-page: 63
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.063_bb0090
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.060
  contributor:
    fullname: Greve
– volume: 83
  start-page: 45
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0225
  article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.045
  contributor:
    fullname: Satterthwaite
– volume: 25
  start-page: 802
  year: 2005
  ident: 10.1016/j.neuroimage.2015.02.063_bb0130
  article-title: Removing the effects of task-related motion using independent-component analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.027
  contributor:
    fullname: Kochiyama
– volume: 60
  start-page: 623
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.063_bb0220
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.12.063
  contributor:
    fullname: Satterthwaite
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.063_bb0175
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
  contributor:
    fullname: Power
– volume: 17
  start-page: 1521
  year: 2002
  ident: 10.1016/j.neuroimage.2015.02.063_bb0265
  article-title: Noise reduction in BOLD-based fMRI using component analysis
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1200
  contributor:
    fullname: Thomas
– volume: 83
  start-page: 969
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.063_bb0150
  article-title: Functional brain hubs and their test–retest reliability: a multiband resting-state functional MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.058
  contributor:
    fullname: Liao
– volume: 39
  start-page: 1227
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.063_bb0270
  article-title: Automatic independent component labeling for artifact removal in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.10.013
  contributor:
    fullname: Tohka
– volume: 59
  start-page: 431
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.063_bb0285
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.044
  contributor:
    fullname: Van Dijk
– volume: 67
  start-page: 735
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.063_bb0180
  article-title: The development of human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.017
  contributor:
    fullname: Power
– volume: 101
  start-page: 87
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0195
  article-title: Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.065
  contributor:
    fullname: Pujol
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.063_bb0095
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.034
  contributor:
    fullname: Griffanti
– volume: 34
  start-page: 177
  year: 2007
  ident: 10.1016/j.neuroimage.2015.02.063_bb0055
  article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.041
  contributor:
    fullname: De Martino
– volume: 5
  start-page: 143
  year: 2001
  ident: 10.1016/j.neuroimage.2015.02.063_bb0110
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
  contributor:
    fullname: Jenkinson
SSID ssj0009148
Score 2.6360526
Snippet We proposed ICA-AROMA as a strategy for the removal of motion-related artifacts from fMRI data (Pruim et al., 2015). ICA-AROMA automatically identifies and...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 278
SubjectTerms Adult
Algorithms
Brain research
Child
Databases, Factual
Datasets
Grants
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Motion
Neural Pathways - anatomy & histology
Neural Pathways - physiology
Noise
Principal Component Analysis
Regression Analysis
Rest - physiology
Time series
Title Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI
URI https://www.ncbi.nlm.nih.gov/pubmed/25770990
https://www.proquest.com/docview/1673851790/abstract/
https://search.proquest.com/docview/1675877757
https://search.proquest.com/docview/1732832966
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6FsZexr6Xrisa7FUkkixLeRpeSEnH0pWwQt6M9WHooHbXuv9_72Q7YQ_rkzEWRpzudD_p7n4H8LU2FYL8aoaWFgzPVMy4Rb_I5zZa6WQMIoUL1hf56ir7sdXbA1iNtTCUVjnuiWmjDq2nO_KpoPaUiU9qWjm6BfDd9NvtX079oyjOOjTTeAZHQiKsQM02W7On3xVZXxSnFbdCzIecnj7TKzFHXt-g_VKql04cnrn611H9B30mL3T2Cl4O8JEV_Xq_hoPYvIHn6yFA_hbCcsfezdqanS8KXmx-rQtWNYGlyHiTmL7ZfTdyRDCEraxv5sNIj6jUgd3Fmxb_xK4bRs070L-xVHrE6vXm_B1cnS1_L1Z8aKTAPfrzjhtJRFtBOItHYRszXyvnpdH4NgseMZCviPhL5SZUMnO2ts6hYefBqDj3xqj3cNi0TfwITLlcu8rF6GcR_Z-0UQdpEfvGLDqEfhMQo9TK254voxwTyf6Ue0mXJOlyJkuU9ARORvGWgwXdl_v1nsCX3WfUfQpoVE1sH9IYTXyG2jwxhtiIlMRT3QQ-9Eu3mxhuV4YCg8dPT-ATvKDZUs6A0Cdw2N09xM8IRTp3mrTsFI6KxebnJT6_Ly8uN49FK99I
link.rule.ids 315,786,790,12083,21416,27957,27958,31754,31755,33779,33780,43345,43840,74102,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEB6sQuuLaH-eVZtCX0Nv82OTeyqHKHfqWhCFewubTRYsuGu98_93Jrt7Rx_q47IhhEkm8yXz5RuAH7UpEeSXY_S0YLiSUXGLcZFPbLTCixiylC4orvPZnbpY6EV_4bbsaZXDnpg26tBWdEf-M6PylElP6tfjX05Voyi72pfQeAM7SkpFlD6zMBvR3Ux1T-G05DbLJj2Tp-N3Jb3I-wf0WiJ46aTcmct_w9N_MGeKPef7sNeDRjbtZvkAtmLzHt4WfVr8A4SztWY3a2s2P53y6c3vYsrKJrCUD2-SvjdbrgZlCIZglXUlfBitHnrgwJ7iQ4s9sfuGUckOjGosPThidXEz_wh352e3pzPel0_gFUbxFTeC5LVC5i0egG1UVS19JYzGr3GoEPlUJcl9ydyEUihva-s9unMejIyTyhj5CbabtolfgEmfa1_6GKtxxKgnbNRBWES8UUWPgG8E2WA199ipZLiBPvbHbSztyNJuLBxaegRHg3ld7zdLt5nlEXxf_8YVT2mMsontc2qjScVQm1fakAaRFHiWG8HnburWA8NNylA68PD1AXyDd7Pb4spdza8vv8IujZxYA5k-gu3V03M8RjCy8idpxb0AKqzbTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED4xkNBeJraxrRvbPIlXi8aOY_dpKqwVZWtBFUi8WXHsSEwiYbT8_905Tqs9jMcoVmSd73yfc5-_AziudYkgvxxipHnNcxlybjAv8pEJRjgRfBbLBfNFcX6TX9yq28R_WiVaZb8nxo3atxX9Iz_JqD1l1JM6qRMt4urH9PvDH04dpKjSmtppvIA9nRcKPXzvdLK4Wm4leLO8uxinJDdZNkq8no7tFdUj7-4xhonupaKOZyH_TVb_QaAxE00P4FWCkGzcrflr2AnNG9ifpyL5W_CTjYI3a2s2Oxvz8fJyPmZl41msjjdR7Zut1r1OBEPoyrqGPox8ia47sMdw3-KX2F3DqIEH5jgWrx-xer6cHcLNdHJ9ds5TMwVeYU5fcy1IbMtnzuBx2IS8qqWrhFb4NPQV4qCqJPEvWWhfityZ2jiHwV14LcOo0lq-g92mbcIHYNIVypUuhGoYMAcKE5QXBvFvyIND-DeArLeafeg0M2xPJvttt5a2ZGk7FBYtPYCj3rw2RdHKbtd8AN82r9H_qahRNqF9imMUaRoq_cwYUiSSAk92A3jfLd1mYrhlaSoOfnx-Al9hH93N_potfn6ClzRxohBk6gh2149P4TMik7X7klzuL0e_4O8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+ICA-AROMA+and+alternative+strategies+for+motion+artifact+removal+in+resting+state+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Pruim%2C+Raimon+HR&rft.au=Mennes%2C+Maarten&rft.au=Buitelaar%2C+Jan+K&rft.au=Beckmann%2C+Christian+F&rft.date=2015-05-15&rft.issn=1053-8119&rft.volume=112&rft.spage=278&rft.epage=287&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.02.063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon