Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses
An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln²²⁶) and A/Anhui/1/2013 (AH-H7N9) (co...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 342; no. 6155; pp. 243 - 247 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
11.10.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln²²⁶) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu²²⁶). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu²²⁶ → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property. |
---|---|
AbstractList | Two Viruses to BindStructural studies of two different H7N9 influenza viruses isolated from humans-A/Shanghai/1/2013 and A/Anhui/1/2013-which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243, published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time. Two Viruses to Bind Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243, published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time. An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property. Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243 , published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time. Four amino acids in the H7N9 influenza virus binding site provide a hydrophobic environment for human receptors. An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor–binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln 226 ) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu 226 ). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu 226 → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor–binding property. Structural studies of two different H7N9 influenza viruses isolated from humans--A/Shanghai/1/2013 and A/Anhui/1/2013--which have different amino acid sequences in the receptor binding site, provide data indicating that the virus is in transition with respect to host adaptation. The Shanghai virus was one of the first isolated in humans that binds avian receptor glycans with high affinity, but binds poorly to human receptors. However, the later Anhui isolates can bind both avian and human receptors at high affinity. Shi et al. (p. 243, published online 5 September) show that four hydrophobic mutations contribute to acquisition of affinity for the human receptor by the virus hemagglutinin (HA) and confirm this effect in binding studies with virus particles. Further comparison of a mutant H7N9 A/Anhui/1/2013 HA with the bird flu H5N1 virus revealed the significance of some of the naturally occurring changes observed in circulating H7N9 viruses, which helps to explain how these viruses have been able to cause many severe human infections in a short time. [PUBLICATION ABSTRACT] An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln226) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu226). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu226 [arrow right] Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property. [PUBLICATION ABSTRACT] An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln²²⁶) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu²²⁶). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu²²⁶ → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property. An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property.An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property. |
Author | Shi, Yi Qin, Chengfeng Wang, Yu Zhang, Wei Sun, Honglei Qi, Jianxun Zhang, Yanfang Liu, Wenjun Wang, Fei Song, Hao Bi, Yuhai Haywood, Joel Gao, George F. Wang, Dayan Liu, Jinhua Wu, Ying Gao, Feng Gong, Weimin Yan, Jinghua Fan, Zheng Shu, Yuelong |
Author_xml | – sequence: 1 givenname: Yi surname: Shi fullname: Shi, Yi – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 3 givenname: Fei surname: Wang fullname: Wang, Fei – sequence: 4 givenname: Jianxun surname: Qi fullname: Qi, Jianxun – sequence: 5 givenname: Ying surname: Wu fullname: Wu, Ying – sequence: 6 givenname: Hao surname: Song fullname: Song, Hao – sequence: 7 givenname: Feng surname: Gao fullname: Gao, Feng – sequence: 8 givenname: Yuhai surname: Bi fullname: Bi, Yuhai – sequence: 9 givenname: Yanfang surname: Zhang fullname: Zhang, Yanfang – sequence: 10 givenname: Zheng surname: Fan fullname: Fan, Zheng – sequence: 11 givenname: Chengfeng surname: Qin fullname: Qin, Chengfeng – sequence: 12 givenname: Honglei surname: Sun fullname: Sun, Honglei – sequence: 13 givenname: Jinhua surname: Liu fullname: Liu, Jinhua – sequence: 14 givenname: Joel surname: Haywood fullname: Haywood, Joel – sequence: 15 givenname: Wenjun surname: Liu fullname: Liu, Wenjun – sequence: 16 givenname: Weimin surname: Gong fullname: Gong, Weimin – sequence: 17 givenname: Dayan surname: Wang fullname: Wang, Dayan – sequence: 18 givenname: Yuelong surname: Shu fullname: Shu, Yuelong – sequence: 19 givenname: Yu surname: Wang fullname: Wang, Yu – sequence: 20 givenname: Jinghua surname: Yan fullname: Yan, Jinghua – sequence: 21 givenname: George F. surname: Gao fullname: Gao, George F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24009358$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9rFDEUx4NU7Lb17EkJePEybX5uJkct2i0UBa3eZMhkXpYsM5k1Pw7tX2-W3fZQkHpKwvt8H9_38j1BR2EOgNAbSs4pZcuLZD0EC-eUCaapeoEWlGjZaEb4EVoQwpdNS5Q8RicpbQipNc1foWMm6pXLdoF-_8ix2FwiJGzCgL-DhW2eI_7kw-DDGs8Or2Ay6_VYsg8-JOziPOFVmUxoroMDm3fYSn3VuD7HAuHe4F8-lgTpDL10Zkzw-nCeop9fPt9erpqbb1fXlx9vGispy41smRNWKjUYRVpFmGVuyaUSfS976AdnuJJ60Nb0auC9sIRAr7QRDkA6Jfgp-rDvu43znwIpd5NPFsbRBJhL6lgdnUvGqX4WpS1p6za1-g9USlptUk2fR4XgglR85_X9E3QzlxjqenYUZS2lSlbq3YEq_QRDt41-MvGue_i5Csg9YOOcUgTXWZ9N9nPI0fixo6TbJaQ7JKQ7JKTqLp7oHlr_W_F2r9ikGoxHXLAl1S1T_C9RNcb7 |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1038_srep29888 crossref_primary_10_1021_acs_jmedchem_6b00537 crossref_primary_10_3201_eid2602_191105 crossref_primary_10_1038_emi_2016_66 crossref_primary_10_1128_JVI_03173_15 crossref_primary_10_1016_j_chom_2017_09_008 crossref_primary_10_1007_s11427_017_9152_1 crossref_primary_10_1007_s11908_018_0642_9 crossref_primary_10_1128_jvi_01370_23 crossref_primary_10_1007_s13238_015_0189_6 crossref_primary_10_3389_fcimb_2018_00280 crossref_primary_10_1371_journal_pone_0171936 crossref_primary_10_1016_j_vaccine_2015_11_050 crossref_primary_10_1016_j_ijid_2019_09_002 crossref_primary_10_1128_JVI_01295_15 crossref_primary_10_1038_srep25856 crossref_primary_10_1093_ve_veaa021 crossref_primary_10_1016_j_antiviral_2017_09_014 crossref_primary_10_1016_j_jmgm_2014_07_004 crossref_primary_10_1016_j_bios_2016_12_037 crossref_primary_10_2807_1560_7917_ES2014_19_25_20836 crossref_primary_10_1097_CM9_0000000000002001 crossref_primary_10_1007_s11427_017_9141_3 crossref_primary_10_1016_j_tim_2014_01_010 crossref_primary_10_1128_JVI_00049_17 crossref_primary_10_1007_s11684_020_0814_5 crossref_primary_10_1038_s44298_024_00059_9 crossref_primary_10_3390_ijms18071541 crossref_primary_10_4236_cmb_2015_51001 crossref_primary_10_1002_anie_201606488 crossref_primary_10_1016_j_tim_2017_06_008 crossref_primary_10_1016_S1473_3099_15_00378_3 crossref_primary_10_1128_mBio_01408_18 crossref_primary_10_1128_JVI_00107_14 crossref_primary_10_1016_j_jinf_2016_01_003 crossref_primary_10_1128_spectrum_01798_22 crossref_primary_10_1371_journal_ppat_1005411 crossref_primary_10_1038_srep12986 crossref_primary_10_1128_JVI_03052_15 crossref_primary_10_1016_j_meegid_2018_09_022 crossref_primary_10_1093_femsre_fuv039 crossref_primary_10_1371_journal_pone_0113963 crossref_primary_10_1016_j_celrep_2017_07_028 crossref_primary_10_1016_j_chom_2015_02_006 crossref_primary_10_1016_j_chom_2015_02_005 crossref_primary_10_1016_j_tim_2014_08_008 crossref_primary_10_1142_S0219720018400231 crossref_primary_10_1128_mSphereDirect_00462_18 crossref_primary_10_1016_j_meegid_2021_104993 crossref_primary_10_2807_1560_7917_ES_2019_24_21_1900273 crossref_primary_10_1007_s12274_021_4011_x crossref_primary_10_1128_JVI_02740_13 crossref_primary_10_1016_j_celrep_2017_03_054 crossref_primary_10_3390_v16010152 crossref_primary_10_1007_s10822_016_9981_5 crossref_primary_10_1007_s00430_016_0466_x crossref_primary_10_1038_s41598_022_06157_z crossref_primary_10_1111_tbed_14458 crossref_primary_10_1016_j_chom_2016_04_013 crossref_primary_10_1016_j_vaccine_2015_06_047 crossref_primary_10_1021_acs_biochem_6b00693 crossref_primary_10_1128_JVI_01627_18 crossref_primary_10_1101_cshperspect_a038349 crossref_primary_10_1039_D1TB00627D crossref_primary_10_1038_s41467_024_48758_4 crossref_primary_10_1007_s13238_014_0036_1 crossref_primary_10_1038_nprot_2017_112 crossref_primary_10_1128_JVI_00570_19 crossref_primary_10_1016_j_meegid_2014_10_016 crossref_primary_10_1021_acs_langmuir_0c02047 crossref_primary_10_1007_s00705_018_3800_3 crossref_primary_10_1016_j_csbj_2022_08_052 crossref_primary_10_1128_JVI_00570_14 crossref_primary_10_3201_eid2807_212482 crossref_primary_10_1038_s41467_024_55193_y crossref_primary_10_1039_C9SC05319K crossref_primary_10_1002_bies_201400133 crossref_primary_10_1128_JVI_00134_16 crossref_primary_10_3390_v13122524 crossref_primary_10_1016_j_jmb_2018_06_024 crossref_primary_10_1371_journal_ppat_1006390 crossref_primary_10_1128_JVI_01740_18 crossref_primary_10_1038_s44298_024_00026_4 crossref_primary_10_1093_infdis_jiy082 crossref_primary_10_1038_ncomms4142 crossref_primary_10_1111_zph_12393 crossref_primary_10_1007_s13238_015_0235_4 crossref_primary_10_1128_JVI_00216_20 crossref_primary_10_1038_s41598_017_14823_w crossref_primary_10_1038_srep19474 crossref_primary_10_1038_s41564_018_0303_7 crossref_primary_10_1016_j_ijid_2018_04_4322 crossref_primary_10_1177_0300060519845488 crossref_primary_10_1002_jmv_70090 crossref_primary_10_1007_s00705_016_2872_1 crossref_primary_10_1126_sciadv_aav2554 crossref_primary_10_1039_C5IB00041F crossref_primary_10_1128_JVI_02293_16 crossref_primary_10_1038_mt_2016_23 crossref_primary_10_1080_22221751_2018_1560234 crossref_primary_10_1186_s40249_015_0083_8 crossref_primary_10_1016_j_virol_2017_08_016 crossref_primary_10_1128_JVI_01850_17 crossref_primary_10_1128_mbio_00488_23 crossref_primary_10_1093_infdis_jiw471 crossref_primary_10_1128_JVI_00046_17 crossref_primary_10_1586_14760584_2014_864564 crossref_primary_10_1016_j_carres_2017_10_021 crossref_primary_10_1128_JVI_00921_17 crossref_primary_10_1038_ncomms8708 crossref_primary_10_3201_eid2002_131094 crossref_primary_10_1021_acs_jctc_1c01044 crossref_primary_10_1016_j_compbiolchem_2015_08_003 crossref_primary_10_1007_s13238_014_0084_6 crossref_primary_10_1128_JVI_03319_13 crossref_primary_10_1111_crj_12351 crossref_primary_10_1128_JVI_02959_13 crossref_primary_10_1021_acsnano_4c01571 crossref_primary_10_1128_JVI_00100_14 crossref_primary_10_1016_j_vaccine_2020_08_037 crossref_primary_10_1016_j_virusres_2021_198335 crossref_primary_10_1128_JVI_01277_17 crossref_primary_10_3201_eid2406_171135 crossref_primary_10_1140_epjp_i2015_15032_6 crossref_primary_10_1021_nn5002485 crossref_primary_10_1128_JVI_01567_14 crossref_primary_10_1007_s10393_014_1004_1 crossref_primary_10_1016_j_cell_2023_08_011 crossref_primary_10_3390_v11060494 crossref_primary_10_4236_ns_2015_72007 crossref_primary_10_1016_j_micpath_2019_02_023 crossref_primary_10_1038_ncomms7714 crossref_primary_10_1038_nrmicro3362 crossref_primary_10_1074_jbc_REV120_013309 crossref_primary_10_1126_science_1243761 crossref_primary_10_1038_s41426_018_0160_8 crossref_primary_10_1128_mSphere_00502_17 crossref_primary_10_3390_ijms18081650 crossref_primary_10_1016_j_carres_2019_01_008 crossref_primary_10_2807_1560_7917_ES_2017_22_19_30533 crossref_primary_10_1016_j_virol_2018_07_004 crossref_primary_10_1101_cshperspect_a038406 crossref_primary_10_3390_v12010065 crossref_primary_10_1016_j_antiviral_2014_06_017 crossref_primary_10_1039_C6MH00571C crossref_primary_10_1016_j_antiviral_2016_10_001 crossref_primary_10_3389_fcimb_2018_00414 crossref_primary_10_3390_vaccines11081318 crossref_primary_10_1016_j_carres_2016_03_022 crossref_primary_10_1016_j_virs_2024_06_005 crossref_primary_10_1099_jgv_0_002008 crossref_primary_10_1111_tbed_13750 crossref_primary_10_1111_irv_12657 crossref_primary_10_1111_febs_15668 crossref_primary_10_3390_v14102141 crossref_primary_10_1016_j_celrep_2019_10_047 crossref_primary_10_1101_cshperspect_a038620 crossref_primary_10_1073_pnas_1617993114 crossref_primary_10_3390_v10090461 crossref_primary_10_1016_j_antiviral_2019_104564 crossref_primary_10_1016_j_cell_2014_02_040 crossref_primary_10_1002_ange_201606488 crossref_primary_10_1186_s13731_024_00434_z crossref_primary_10_1038_s41594_018_0025_9 crossref_primary_10_1128_jvi_01944_23 crossref_primary_10_1016_j_antiviral_2020_104776 crossref_primary_10_1016_j_celrep_2015_08_029 crossref_primary_10_1016_j_intimp_2019_106013 crossref_primary_10_1002_adfm_201500448 crossref_primary_10_2147_IDR_S265718 crossref_primary_10_1016_j_cell_2015_12_044 crossref_primary_10_1128_CVI_00085_16 crossref_primary_10_1080_23744235_2017_1355105 crossref_primary_10_3389_fmicb_2020_01313 crossref_primary_10_3389_fmicb_2021_777885 crossref_primary_10_1371_journal_pone_0096350 crossref_primary_10_1089_vbz_2018_2299 crossref_primary_10_1016_j_lanmic_2024_100973 crossref_primary_10_1021_acsami_7b07485 crossref_primary_10_3389_fimmu_2018_01664 crossref_primary_10_1016_j_celrep_2018_03_081 crossref_primary_10_3390_v12040376 crossref_primary_10_1139_cjm_2014_0186 crossref_primary_10_3389_fmicb_2022_1002522 crossref_primary_10_1038_s41467_022_32926_5 crossref_primary_10_1016_j_virol_2018_08_001 crossref_primary_10_1080_21505594_2023_2223057 crossref_primary_10_1128_JVI_00246_17 crossref_primary_10_1007_s11427_017_9251_2 crossref_primary_10_1016_j_virol_2015_03_009 crossref_primary_10_1038_ncomms6600 crossref_primary_10_1016_j_chom_2017_05_011 crossref_primary_10_1186_s12985_020_01464_1 crossref_primary_10_1080_14760584_2017_1333907 crossref_primary_10_1007_s11192_015_1681_8 crossref_primary_10_15252_embj_201590960 crossref_primary_10_3389_fmicb_2015_00140 crossref_primary_10_1371_journal_pone_0134576 crossref_primary_10_1128_JVI_02390_14 crossref_primary_10_1016_j_coviro_2014_03_001 crossref_primary_10_1007_s10517_019_04407_1 crossref_primary_10_3201_eid2502_191105 crossref_primary_10_1007_s10337_017_3256_8 crossref_primary_10_1371_journal_ppat_1005578 crossref_primary_10_3390_v13102057 crossref_primary_10_1093_cid_ciy681 crossref_primary_10_1038_ncomms15279 crossref_primary_10_1128_JCM_02322_14 crossref_primary_10_1038_nature13443 crossref_primary_10_1038_cr_2013_150 crossref_primary_10_1128_jvi_01065_24 crossref_primary_10_1038_ncomms14751 crossref_primary_10_1038_s41598_017_01761_w crossref_primary_10_1128_JVI_00301_18 crossref_primary_10_3390_v12111220 crossref_primary_10_1021_acs_langmuir_8b01605 |
Cites_doi | 10.1016/0168-1702(93)90056-S 10.1038/39218 10.1007/s13238-010-0059-1 10.1073/pnas.0308352100 10.1016/0008-6215(91)84084-R 10.1107/S0907444994003112 10.1016/S0076-6879(97)76066-X 10.1126/science.1093373 10.1007/s11427-013-4491-3 10.1107/S0907444904019158 10.1126/science.1236787 10.1007/s13238-013-3906-z 10.1007/BF01875524 10.1107/S0907444901012471 10.1107/S0907444996012255 10.1016/S0140-6736(04)15589-X 10.1128/JVI.06959-11 10.1038/nature12144 10.1016/S0140-6736(13)60938-1 10.1016/j.jmb.2005.11.002 10.1126/science.1213362 10.1016/S0969-2126(96)00021-4 10.1073/pnas.201401198 10.1371/journal.pone.0049597 10.1056/NEJMoa1304617 10.1006/jmbi.1993.1415 10.1146/annurev.biochem.69.1.531 10.1128/JVI.00281-12 10.1371/journal.ppat.1002068 10.1128/JVI.00154-13 10.1002/pro.5560030202 10.1007/s11427-013-4496-y 10.1038/304076a0 10.3201/eid1012.040743 10.1107/S0907444909052925 10.1016/S0140-6736(13)60903-4 10.1126/science.1093155 10.1038/nature10831 10.1073/pnas.1019109108 10.1128/JVI.74.18.8502-8512.2000 10.1006/viro.1997.8526 10.1016/S0021-9258(17)39617-5 10.1006/viro.1997.8572 10.1128/JVI.00545-13 10.1007/s10719-006-5440-1 10.1056/NEJMoa1304459 10.1111/j.1432-1033.1989.tb14504.x 10.1107/S0021889892009944 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1242917 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts AGRICOLA MEDLINE CrossRef Materials Research Database MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 247 |
ExternalDocumentID | 3095972061 24009358 10_1126_science_1242917 42619827 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX AGFXO ALIPV CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c512t-582f4c577da708702c2f63574bb5bebdfa3759d9cab7d3b4c00eb79a4fee5f743 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 06:10:39 EDT 2025 Mon Jul 21 11:52:46 EDT 2025 Fri Jul 11 05:19:53 EDT 2025 Fri Jul 11 13:39:33 EDT 2025 Fri Jul 25 10:33:42 EDT 2025 Mon Jul 21 06:01:33 EDT 2025 Tue Jul 01 04:10:01 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Sun Aug 24 12:10:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6155 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c512t-582f4c577da708702c2f63574bb5bebdfa3759d9cab7d3b4c00eb79a4fee5f743 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24009358 |
PQID | 1441281175 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2000352319 proquest_miscellaneous_1808124979 proquest_miscellaneous_1551635191 proquest_miscellaneous_1443405164 proquest_journals_1441281175 pubmed_primary_24009358 crossref_citationtrail_10_1126_science_1242917 crossref_primary_10_1126_science_1242917 jstor_primary_42619827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-11 |
PublicationDateYYYYMMDD | 2013-10-11 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 Nguyen-Van-Tam J. S. (e_1_3_2_7_2) 2006; 11 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_39_2 doi: 10.1016/0168-1702(93)90056-S – ident: e_1_3_2_2_2 doi: 10.1038/39218 – ident: e_1_3_2_41_2 doi: 10.1007/s13238-010-0059-1 – ident: e_1_3_2_3_2 doi: 10.1073/pnas.0308352100 – ident: e_1_3_2_32_2 doi: 10.1016/0008-6215(91)84084-R – ident: e_1_3_2_45_2 doi: 10.1107/S0907444994003112 – ident: e_1_3_2_43_2 doi: 10.1016/S0076-6879(97)76066-X – ident: e_1_3_2_42_2 doi: 10.1126/science.1093373 – ident: e_1_3_2_13_2 doi: 10.1007/s11427-013-4491-3 – ident: e_1_3_2_47_2 doi: 10.1107/S0907444904019158 – ident: e_1_3_2_18_2 doi: 10.1126/science.1236787 – ident: e_1_3_2_29_2 doi: 10.1007/s13238-013-3906-z – ident: e_1_3_2_31_2 doi: 10.1007/BF01875524 – ident: e_1_3_2_44_2 doi: 10.1107/S0907444901012471 – ident: e_1_3_2_46_2 doi: 10.1107/S0907444996012255 – ident: e_1_3_2_4_2 doi: 10.1016/S0140-6736(04)15589-X – ident: e_1_3_2_40_2 doi: 10.1128/JVI.06959-11 – ident: e_1_3_2_17_2 doi: 10.1038/nature12144 – ident: e_1_3_2_11_2 doi: 10.1016/S0140-6736(13)60938-1 – ident: e_1_3_2_27_2 doi: 10.1016/j.jmb.2005.11.002 – ident: e_1_3_2_15_2 doi: 10.1126/science.1213362 – ident: e_1_3_2_33_2 doi: 10.1016/S0969-2126(96)00021-4 – ident: e_1_3_2_36_2 doi: 10.1073/pnas.201401198 – ident: e_1_3_2_38_2 doi: 10.1371/journal.pone.0049597 – ident: e_1_3_2_10_2 doi: 10.1056/NEJMoa1304617 – ident: e_1_3_2_34_2 doi: 10.1006/jmbi.1993.1415 – ident: e_1_3_2_14_2 doi: 10.1146/annurev.biochem.69.1.531 – ident: e_1_3_2_20_2 doi: 10.1128/JVI.00281-12 – ident: e_1_3_2_51_2 doi: 10.1371/journal.ppat.1002068 – ident: e_1_3_2_5_2 doi: 10.1128/JVI.00154-13 – ident: e_1_3_2_35_2 doi: 10.1002/pro.5560030202 – ident: e_1_3_2_12_2 doi: 10.1007/s11427-013-4496-y – ident: e_1_3_2_23_2 doi: 10.1038/304076a0 – ident: e_1_3_2_6_2 doi: 10.3201/eid1012.040743 – ident: e_1_3_2_48_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_8_2 doi: 10.1016/S0140-6736(13)60903-4 – ident: e_1_3_2_22_2 doi: 10.1126/science.1093155 – ident: e_1_3_2_16_2 doi: 10.1038/nature10831 – ident: e_1_3_2_50_2 doi: 10.1073/pnas.1019109108 – ident: e_1_3_2_26_2 doi: 10.1128/JVI.74.18.8502-8512.2000 – ident: e_1_3_2_28_2 doi: 10.1006/viro.1997.8526 – ident: e_1_3_2_24_2 doi: 10.1016/S0021-9258(17)39617-5 – ident: e_1_3_2_25_2 doi: 10.1006/viro.1997.8572 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.00545-13 – ident: e_1_3_2_37_2 doi: 10.1007/s10719-006-5440-1 – volume: 11 start-page: E0605042 year: 2006 ident: e_1_3_2_7_2 article-title: Outbreak of low pathogenicity H7N3 avian influenza in UK, including associated case of human conjunctivitis publication-title: Euro Surveill. – ident: e_1_3_2_9_2 doi: 10.1056/NEJMoa1304459 – ident: e_1_3_2_30_2 doi: 10.1111/j.1432-1033.1989.tb14504.x – ident: e_1_3_2_49_2 doi: 10.1107/S0021889892009944 |
SSID | ssj0009593 |
Score | 2.5446289 |
Snippet | An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding... Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different amino acid sequences... Structural studies of two different H7N9 influenza viruses isolated from humans--A/Shanghai/1/2013 and A/Anhui/1/2013--which have different amino acid... Two Viruses to BindStructural studies of two different H7N9 influenza viruses isolated from humans-A/Shanghai/1/2013 and A/Anhui/1/2013-which have different... Two Viruses to Bind Structural studies of two different H7N9 influenza viruses isolated from humans—A/Shanghai/1/2013 and A/Anhui/1/2013—which have different... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 243 |
SubjectTerms | Affinity amino acid sequences Amino acids Animals Avian flu avian influenza Binding binding sites Birds China Crystallography, X-Ray Glycine - chemistry Glycine - genetics Glycine - metabolism Hemagglutinin Glycoproteins, Influenza Virus - chemistry Hemagglutinin Glycoproteins, Influenza Virus - metabolism hemagglutinins Human human diseases Humans hydrophobicity Hydroxyapatite Influenza Influenza A virus Influenza A virus - metabolism Influenza in Birds - virology Influenza, Human - virology mutants mutation polysaccharides Protein Conformation Receptors Receptors, Cell Surface - chemistry Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism virion Virology Viruses |
Title | Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses |
URI | https://www.jstor.org/stable/42619827 https://www.ncbi.nlm.nih.gov/pubmed/24009358 https://www.proquest.com/docview/1441281175 https://www.proquest.com/docview/1443405164 https://www.proquest.com/docview/1551635191 https://www.proquest.com/docview/1808124979 https://www.proquest.com/docview/2000352319 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviA0GhYGMxMNQlapx7KZ5bGFVmUYRWsvKA4rsxJ4qQYrWVoL99ZztS5oyOg1eoso5t6nv58vd-T4IeZ2D1tZWoQkibWTAgcWB4okOTGSdAhmXOrS5wx9GneGEn0zFdB065LJLlqqVXf01r-R_uApjwFebJfsPnK2-FAbgM_AXrsBhuN6Kx2eu-OsKLGbMM7QxKvPLZn_mc1Wsk15_lxcX9iEKGwzjskmc4z5478OwgGwYjxIQFK5byZVsfp5drhYYWohqaykBQB2tjnhqjK1iFXs-oqAMMMBpNW_Dmesh3Pwyu-awPtfV2DkODdZDn9y0E8Dyz1VR91SELuYNJSlKXyx-XJe-EWc1mNlT0ro49SWc8M3MfG3O60K_1qZSt0BhYYnPB90srz36mA4mp6fp-Hg6vkt2GdgVIBh3e_13_cHWOs1YDaqWZ1X-wIYi42NZt1spTlsZPyQP0MygPY-ZPXJHF_vknm88-muf7CFnFvQI646_eUS-ruFEAU60hBNFONG5oZtwohZO9A84UQsnWsGJIpwek8ngePx2GGD3jSADJXAZiC4zPBNxnMu4DVKdZczY4oVcKaG0yo2MYpHkSSZVnEeKZ-22VnEiudFaGFBMD8hOMS_0U0JBy1UiVElbM80j3lF5LEQkRRYJ2TVaNUirXMo0w9L0tkPKt9SZqKyT4tqnuPYNclRN-OGrsmwnPXC8qeicz6DL4MZhyawU9_Qite4FZnOvRYO8qm6DxLXHaLLQ85WjicDMCTv8Bhp7_mx7X4Y30NimN4wncbKdhrmjfrDBgOaJB1T1R2z0t41ieHaLp3hO7q935CHZATzpF6BNL9VL3AG_AR9tzBM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+and+Receptor+Binding+of+Hemagglutinins+from+Human-Infecting+H7N9+Influenza+Viruses&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Shi%2C+Yi&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Fei&rft.au=Qi%2C+Jianxun&rft.date=2013-10-11&rft.issn=0036-8075&rft.volume=342&rft.issue=6155&rft.spage=243&rft.epage=247&rft_id=info:doi/10.1126%2Fscience.1242917&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |