A systematic study of the class imbalance problem in convolutional neural networks

In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine le...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 106; pp. 249 - 259
Main Authors Buda, Mateusz, Maki, Atsuto, Mazurowski, Maciej A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
AbstractList In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest. 
Author Buda, Mateusz
Mazurowski, Maciej A.
Maki, Atsuto
Author_xml – sequence: 1
  givenname: Mateusz
  orcidid: 0000-0003-3222-0203
  surname: Buda
  fullname: Buda, Mateusz
  email: buda@kth.se
  organization: Department of Radiology, Duke University School of Medicine, Durham, NC, USA
– sequence: 2
  givenname: Atsuto
  surname: Maki
  fullname: Maki, Atsuto
  email: atsuto@kth.se
  organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Maciej A.
  surname: Mazurowski
  fullname: Mazurowski, Maciej A.
  email: maciej.mazurowski@duke.edu
  organization: Department of Radiology, Duke University School of Medicine, Durham, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30092410$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235561$$DView record from Swedish Publication Index
BookMark eNqFkUFv1DAUhC1URLeFf4CQj1wSnu3ESTggrQq0SJWQUMXVcpxn6m0SL7bTav89XlJ64ACnuXwzem_mjJzMfkZCXjMoGTD5blfOuMyYSg6sLaEpgbFnZMPapit40_ITsoG2E4WEFk7JWYw7AJBtJV6QUwHQ8YrBhnzb0niICSednKExLcOBekvTLVIz6hipm3o96tkg3QffjzhRN1Pj53s_Lsn5WY803xF-S3rw4S6-JM-tHiO-etRzcvP5083FVXH99fLLxfa6MDXjqagrK2rUrKlML01bSyu7obZCWuACUVcCW4tV01fQGYmcY2PB1gNvJMAwiHNSrLHxAfdLr_bBTToclNdOfXTft8qHH-ou3Sou6lqyzL9d-fzHzwVjUpOLBsf8HPolKg5tU3dCwhF984gu_YTDU_Sf2jJQrYAJPsaA9glhoI7rqJ1a11HHdRQ0Kq-Tbe__shmX9LHFFLQb_2f-sJoxd3rvMKhoHOZhBhfQJDV49--AX20zrkY
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108578
crossref_primary_10_1016_j_eswa_2024_125597
crossref_primary_10_3390_app14031157
crossref_primary_10_1002_agj2_21285
crossref_primary_10_1002_tee_23775
crossref_primary_10_1016_j_artmed_2023_102751
crossref_primary_10_1109_TGRS_2024_3369178
crossref_primary_10_1111_pace_14209
crossref_primary_10_1109_ACCESS_2022_3218463
crossref_primary_10_1016_j_jag_2020_102279
crossref_primary_10_1016_j_jag_2021_102313
crossref_primary_10_3390_app14010454
crossref_primary_10_1080_03081079_2025_2456960
crossref_primary_10_1145_3594669
crossref_primary_10_1134_S1063779620030259
crossref_primary_10_3390_cancers13112779
crossref_primary_10_1111_2041_210X_13436
crossref_primary_10_1016_j_compbiomed_2023_107167
crossref_primary_10_1007_s11334_022_00457_3
crossref_primary_10_1007_s11263_024_02049_z
crossref_primary_10_1148_radiol_2019181343
crossref_primary_10_1021_acsestwater_1c00037
crossref_primary_10_1190_geo2021_0318_1
crossref_primary_10_1109_TIV_2022_3145035
crossref_primary_10_3390_agriengineering6040277
crossref_primary_10_3389_fmars_2023_1113224
crossref_primary_10_1080_01431161_2019_1608393
crossref_primary_10_1016_j_eswa_2023_119643
crossref_primary_10_1007_s11831_024_10179_3
crossref_primary_10_1016_j_eswa_2022_118255
crossref_primary_10_1016_j_future_2024_07_032
crossref_primary_10_3390_jimaging9100232
crossref_primary_10_3390_rs10111689
crossref_primary_10_1016_j_neucom_2025_129747
crossref_primary_10_3390_cancers15154007
crossref_primary_10_1080_10618600_2025_2459285
crossref_primary_10_1016_j_compag_2024_109002
crossref_primary_10_1016_j_neucom_2025_129983
crossref_primary_10_3390_a16020065
crossref_primary_10_1109_TNNLS_2022_3177695
crossref_primary_10_1007_s00521_024_10323_x
crossref_primary_10_1088_1741_2552_abb5be
crossref_primary_10_3390_agriculture12081084
crossref_primary_10_1007_s11280_024_01256_5
crossref_primary_10_1016_j_neuroimage_2023_120253
crossref_primary_10_1016_j_patrec_2024_12_016
crossref_primary_10_1016_j_media_2023_102957
crossref_primary_10_1111_neup_12880
crossref_primary_10_1016_j_eswa_2025_126507
crossref_primary_10_1109_TAI_2022_3160658
crossref_primary_10_1109_ACCESS_2019_2963461
crossref_primary_10_1016_j_autcon_2020_103383
crossref_primary_10_1016_j_chinastron_2021_08_005
crossref_primary_10_1080_19942060_2023_2288235
crossref_primary_10_3390_app11135868
crossref_primary_10_1016_j_ast_2025_110090
crossref_primary_10_1109_TASLP_2020_2966857
crossref_primary_10_1016_j_asoc_2024_112677
crossref_primary_10_1080_19424280_2023_2198987
crossref_primary_10_3390_jpm11121349
crossref_primary_10_3390_rs16081398
crossref_primary_10_1016_j_ijhydene_2023_04_091
crossref_primary_10_3389_fgene_2019_00013
crossref_primary_10_1016_j_patcog_2021_108069
crossref_primary_10_1016_j_ecoinf_2022_101649
crossref_primary_10_1016_j_jhydrol_2024_130950
crossref_primary_10_1016_j_neucom_2023_126921
crossref_primary_10_1016_j_atech_2025_100867
crossref_primary_10_35234_fumbd_1642238
crossref_primary_10_1007_s11263_022_01625_5
crossref_primary_10_1177_09544097221080366
crossref_primary_10_1002_lom3_10591
crossref_primary_10_4316_AECE_2022_01001
crossref_primary_10_1109_TPAMI_2022_3174892
crossref_primary_10_1142_S0129065720500604
crossref_primary_10_1016_j_media_2021_102121
crossref_primary_10_1016_j_solener_2021_05_095
crossref_primary_10_1029_2023MS004145
crossref_primary_10_1016_j_apacoust_2020_107740
crossref_primary_10_1016_j_engappai_2021_104541
crossref_primary_10_3390_app9040746
crossref_primary_10_1016_j_tplants_2022_08_021
crossref_primary_10_3390_rs11141713
crossref_primary_10_1109_TGRS_2021_3134674
crossref_primary_10_1016_j_jag_2021_102510
crossref_primary_10_1109_TCOMM_2022_3157314
crossref_primary_10_1186_s40537_022_00648_6
crossref_primary_10_1109_TIM_2020_2998233
crossref_primary_10_1109_TIP_2024_3425148
crossref_primary_10_1109_TAFFC_2021_3053275
crossref_primary_10_1016_j_cma_2022_115236
crossref_primary_10_1016_j_neurobiolaging_2020_12_005
crossref_primary_10_1016_j_engappai_2022_105080
crossref_primary_10_1109_TII_2024_3413982
crossref_primary_10_1145_3339308
crossref_primary_10_1016_j_jnca_2020_102766
crossref_primary_10_1109_JSTARS_2024_3509712
crossref_primary_10_1016_j_eswa_2021_114885
crossref_primary_10_1016_j_ejrad_2025_111957
crossref_primary_10_1007_s13351_019_8162_6
crossref_primary_10_1109_TGRS_2021_3066802
crossref_primary_10_1186_s13643_022_02082_4
crossref_primary_10_1016_j_jag_2024_103697
crossref_primary_10_1016_j_neucom_2021_04_021
crossref_primary_10_1007_s10278_022_00637_4
crossref_primary_10_3389_fpls_2022_972445
crossref_primary_10_3390_app10030973
crossref_primary_10_1016_j_ecolmodel_2023_110414
crossref_primary_10_1109_TIM_2023_3234095
crossref_primary_10_1016_j_procs_2024_10_319
crossref_primary_10_1111_mice_12495
crossref_primary_10_1016_j_isatra_2020_05_001
crossref_primary_10_1093_bioinformatics_btab547
crossref_primary_10_1007_s13369_021_06377_x
crossref_primary_10_1007_s40477_021_00642_3
crossref_primary_10_3390_app13064006
crossref_primary_10_1007_s10462_024_11081_x
crossref_primary_10_1016_j_saa_2023_123742
crossref_primary_10_1109_ACCESS_2019_2956725
crossref_primary_10_1002_jbio_201960186
crossref_primary_10_1051_e3sconf_202458307015
crossref_primary_10_1088_1361_6560_acce1c
crossref_primary_10_1109_TNNLS_2021_3051721
crossref_primary_10_1017_S0033291720001579
crossref_primary_10_1080_13658816_2021_1931237
crossref_primary_10_1016_j_neunet_2020_06_026
crossref_primary_10_24857_rgsa_v18n10_293
crossref_primary_10_1111_1462_2920_16175
crossref_primary_10_1007_s40194_025_01951_5
crossref_primary_10_1109_MSP_2021_3134629
crossref_primary_10_1177_02670836241308470
crossref_primary_10_1016_j_patcog_2022_109012
crossref_primary_10_1109_JIOT_2022_3218008
crossref_primary_10_1109_JSTARS_2022_3142395
crossref_primary_10_1109_TGRS_2024_3446950
crossref_primary_10_1109_TMI_2020_2995508
crossref_primary_10_1097_j_pain_0000000000003587
crossref_primary_10_3390_agronomy12102363
crossref_primary_10_1038_s41598_022_07174_8
crossref_primary_10_1016_j_isatra_2023_06_016
crossref_primary_10_1109_TIM_2024_3366277
crossref_primary_10_3390_agronomy13061530
crossref_primary_10_3390_rs14164103
crossref_primary_10_1007_s13369_021_06275_2
crossref_primary_10_3390_s18093039
crossref_primary_10_3390_nu15122751
crossref_primary_10_1117_1_JMI_6_2_027501
crossref_primary_10_3390_diagnostics14232646
crossref_primary_10_1016_j_neucom_2023_126762
crossref_primary_10_1039_C9AN01624D
crossref_primary_10_1016_j_rineng_2019_100036
crossref_primary_10_1109_ACCESS_2024_3494550
crossref_primary_10_1186_s40537_019_0197_0
crossref_primary_10_1016_j_neunet_2024_106134
crossref_primary_10_1109_TIP_2022_3197931
crossref_primary_10_1109_TIM_2021_3063755
crossref_primary_10_1111_nph_18387
crossref_primary_10_1186_s40537_020_00382_x
crossref_primary_10_4018_IJRSDA_2019070103
crossref_primary_10_1007_s10796_020_10022_7
crossref_primary_10_1007_s00428_019_02594_w
crossref_primary_10_1007_s13042_022_01575_x
crossref_primary_10_1016_j_health_2024_100374
crossref_primary_10_3390_app13031912
crossref_primary_10_1109_TPAMI_2022_3196044
crossref_primary_10_4995_raet_2025_21858
crossref_primary_10_1109_ACCESS_2020_2995567
crossref_primary_10_1002_cyto_a_24829
crossref_primary_10_3389_frai_2024_1446368
crossref_primary_10_1016_j_patcog_2022_109284
crossref_primary_10_1109_ACCESS_2023_3308822
crossref_primary_10_1088_1755_1315_606_1_012025
crossref_primary_10_1039_D0MO00031K
crossref_primary_10_1109_TPAMI_2023_3311636
crossref_primary_10_3390_foods13121869
crossref_primary_10_1007_s42979_022_01549_4
crossref_primary_10_1109_ACCESS_2020_3022883
crossref_primary_10_1121_10_0016845
crossref_primary_10_1088_1361_6501_ac6224
crossref_primary_10_3390_rs13030464
crossref_primary_10_1007_s10994_023_06326_9
crossref_primary_10_3390_cancers15041174
crossref_primary_10_1109_TNNLS_2022_3231917
crossref_primary_10_1016_j_patcog_2023_110064
crossref_primary_10_1109_ACCESS_2020_3033531
crossref_primary_10_35453_NEDJR_ASCN_2018_0006
crossref_primary_10_1016_j_autcon_2019_01_017
crossref_primary_10_1007_s11432_021_3489_1
crossref_primary_10_1016_j_ifacol_2023_10_320
crossref_primary_10_1186_s13677_020_00187_6
crossref_primary_10_3389_fcvm_2022_849223
crossref_primary_10_1016_j_petrol_2021_109482
crossref_primary_10_1109_TNNLS_2021_3102514
crossref_primary_10_1016_j_asoc_2022_109588
crossref_primary_10_1109_TKDE_2023_3324510
crossref_primary_10_3390_computers12020045
crossref_primary_10_4103_jmss_jmss_12_22
crossref_primary_10_1007_s00521_024_09641_x
crossref_primary_10_1007_s11063_020_10366_w
crossref_primary_10_1002_prot_25966
crossref_primary_10_3233_IDA_215735
crossref_primary_10_1016_j_procs_2023_01_239
crossref_primary_10_3390_s22176592
crossref_primary_10_1007_s13753_019_00233_1
crossref_primary_10_1088_2632_2153_acc637
crossref_primary_10_1080_09540091_2023_2227780
crossref_primary_10_1186_s13075_022_02914_7
crossref_primary_10_1002_mp_16875
crossref_primary_10_1016_j_dsp_2023_103951
crossref_primary_10_1016_j_knosys_2020_106631
crossref_primary_10_1109_ACCESS_2022_3233411
crossref_primary_10_46632_cset_1_2_2
crossref_primary_10_1080_09540091_2023_2191893
crossref_primary_10_1145_3603253
crossref_primary_10_1016_j_measurement_2021_110691
crossref_primary_10_1109_TSMC_2022_3151394
crossref_primary_10_1088_2632_2153_ad64a7
crossref_primary_10_1029_2023GL106278
crossref_primary_10_1109_TITS_2024_3386928
crossref_primary_10_3847_1538_4365_ad7730
crossref_primary_10_1109_ACCESS_2024_3413578
crossref_primary_10_3390_app11041691
crossref_primary_10_1016_j_jestch_2024_101818
crossref_primary_10_1109_JSEN_2024_3383887
crossref_primary_10_1109_TSC_2024_3437742
crossref_primary_10_1007_s00521_021_06629_9
crossref_primary_10_1016_j_compbiomed_2022_105339
crossref_primary_10_1109_TEVC_2023_3257230
crossref_primary_10_1371_journal_pone_0235765
crossref_primary_10_1007_s00521_023_08374_7
crossref_primary_10_1038_s41598_020_77875_5
crossref_primary_10_1016_j_scico_2024_103172
crossref_primary_10_1109_ACCESS_2021_3102399
crossref_primary_10_1109_ACCESS_2023_3336289
crossref_primary_10_1109_TNNLS_2021_3071122
crossref_primary_10_3390_app131810182
crossref_primary_10_1109_ACCESS_2019_2924060
crossref_primary_10_1109_TNNLS_2020_3047335
crossref_primary_10_1109_TGRS_2021_3071559
crossref_primary_10_3390_met13111820
crossref_primary_10_1109_TASLP_2023_3265860
crossref_primary_10_1016_j_mattod_2023_05_029
crossref_primary_10_1016_j_infsof_2020_106430
crossref_primary_10_1109_ACCESS_2023_3349132
crossref_primary_10_1016_j_jbi_2022_104171
crossref_primary_10_1111_ggi_14670
crossref_primary_10_1016_j_isatra_2020_08_010
crossref_primary_10_1093_comjnl_bxae017
crossref_primary_10_1007_s00521_023_08363_w
crossref_primary_10_1088_1361_6501_ad5b7d
crossref_primary_10_1088_1361_6668_ad3d10
crossref_primary_10_3390_a17030097
crossref_primary_10_1109_TIP_2024_3379929
crossref_primary_10_1016_j_cie_2025_111024
crossref_primary_10_1038_s41598_020_65105_x
crossref_primary_10_1109_TNSRE_2022_3145515
crossref_primary_10_1038_s41398_024_02876_1
crossref_primary_10_1088_1361_6560_acc9f8
crossref_primary_10_1186_s40537_021_00414_0
crossref_primary_10_1109_TITS_2022_3207798
crossref_primary_10_1016_j_cstp_2023_101093
crossref_primary_10_1007_s10032_024_00492_9
crossref_primary_10_1177_14759217241291143
crossref_primary_10_1109_TSM_2023_3283101
crossref_primary_10_1002_mp_14467
crossref_primary_10_3390_s22176325
crossref_primary_10_1007_s10489_021_02623_9
crossref_primary_10_1007_s40747_024_01370_x
crossref_primary_10_3390_s20123504
crossref_primary_10_1016_j_eswa_2023_122678
crossref_primary_10_1016_j_adiac_2023_100722
crossref_primary_10_3390_app142310782
crossref_primary_10_1038_s41746_024_01311_5
crossref_primary_10_1007_s13042_023_01835_4
crossref_primary_10_1177_25138502211063531
crossref_primary_10_1109_ACCESS_2020_3035910
crossref_primary_10_1183_23120541_00579_2021
crossref_primary_10_1016_j_cortex_2022_10_016
crossref_primary_10_3390_rs14163937
crossref_primary_10_1039_D0LC00055H
crossref_primary_10_3390_rs12060999
crossref_primary_10_1016_j_cageo_2023_105450
crossref_primary_10_1093_iob_obae036
crossref_primary_10_1038_s41598_024_69109_9
crossref_primary_10_3390_electronics11010002
crossref_primary_10_1016_j_oregeorev_2024_106270
crossref_primary_10_1002_hed_27999
crossref_primary_10_1016_j_neucom_2024_127735
crossref_primary_10_1016_j_ijcard_2024_132191
crossref_primary_10_1109_ACCESS_2023_3240216
crossref_primary_10_1016_j_ins_2022_12_046
crossref_primary_10_3390_sym11010005
crossref_primary_10_1007_s10462_024_10779_2
crossref_primary_10_1109_TR_2024_3356515
crossref_primary_10_1109_ACCESS_2024_3388099
crossref_primary_10_3389_fnins_2021_756536
crossref_primary_10_3390_a16110521
crossref_primary_10_3390_agriculture12020259
crossref_primary_10_1016_j_neunet_2024_106789
crossref_primary_10_1186_s13007_018_0292_9
crossref_primary_10_3390_rs13101933
crossref_primary_10_1016_j_ijpe_2022_108708
crossref_primary_10_1016_j_iswa_2023_200316
crossref_primary_10_1016_j_neucom_2021_07_055
crossref_primary_10_1029_2019PA003612
crossref_primary_10_1016_j_optlastec_2024_110648
crossref_primary_10_1016_j_procs_2022_12_026
crossref_primary_10_3390_ijgi12060245
crossref_primary_10_1002_qre_2983
crossref_primary_10_1111_odi_13825
crossref_primary_10_22144_ctujos_2024_407
crossref_primary_10_1109_ACCESS_2020_2991237
crossref_primary_10_1177_14780771231225697
crossref_primary_10_1016_j_energy_2022_125042
crossref_primary_10_1016_j_aei_2024_102737
crossref_primary_10_1016_j_cviu_2025_104291
crossref_primary_10_1088_2632_2153_ad4768
crossref_primary_10_1142_S0218488522500209
crossref_primary_10_3390_a16110510
crossref_primary_10_1109_TGRS_2020_3043661
crossref_primary_10_1186_s40537_019_0192_5
crossref_primary_10_1038_s44172_023_00066_3
crossref_primary_10_1016_j_neunet_2023_01_015
crossref_primary_10_51130_graphicon_2020_2_4_19
crossref_primary_10_1109_ACCESS_2020_2991231
crossref_primary_10_1007_s10994_023_06344_7
crossref_primary_10_1016_j_patcog_2023_110107
crossref_primary_10_2139_ssrn_4115383
crossref_primary_10_3390_info15100590
crossref_primary_10_1016_j_undsp_2023_01_004
crossref_primary_10_1061__ASCE_IS_1943_555X_0000708
crossref_primary_10_1016_j_seppur_2024_128237
crossref_primary_10_3390_s20082296
crossref_primary_10_1109_JSTARS_2022_3197937
crossref_primary_10_3390_s20082297
crossref_primary_10_1007_s10044_024_01209_8
crossref_primary_10_3389_fdata_2025_1455442
crossref_primary_10_1109_ACCESS_2023_3267964
crossref_primary_10_1007_s13246_025_01526_0
crossref_primary_10_3390_rs12223820
crossref_primary_10_1038_s41598_023_28175_1
crossref_primary_10_1049_ipr2_12410
crossref_primary_10_1109_ACCESS_2019_2946264
crossref_primary_10_1016_j_ijcha_2022_100954
crossref_primary_10_1145_3345318
crossref_primary_10_1016_j_neucom_2024_128617
crossref_primary_10_1038_s41893_019_0246_x
crossref_primary_10_1016_j_eswa_2021_115067
crossref_primary_10_1109_TGRS_2022_3177853
crossref_primary_10_1148_ryai_2019180050
crossref_primary_10_1109_TGRS_2024_3390764
crossref_primary_10_1177_24056456241297300
crossref_primary_10_3390_electronics9050731
crossref_primary_10_1109_ACCESS_2022_3205744
crossref_primary_10_1016_j_bas_2025_104208
crossref_primary_10_1109_TSE_2023_3305244
crossref_primary_10_1177_00220345221100169
crossref_primary_10_1049_ipr2_12661
crossref_primary_10_1109_ACCESS_2020_3032580
crossref_primary_10_1016_j_engappai_2022_105741
crossref_primary_10_1016_j_ijdrr_2023_103972
crossref_primary_10_1016_j_rse_2020_112107
crossref_primary_10_1016_j_eswa_2024_124613
crossref_primary_10_1002_smr_2543
crossref_primary_10_2139_ssrn_4197678
crossref_primary_10_1109_TII_2019_2898264
crossref_primary_10_3390_f14081596
crossref_primary_10_1109_ACCESS_2021_3107687
crossref_primary_10_3390_fire8020050
crossref_primary_10_12688_f1000research_20498_1
crossref_primary_10_1007_s00521_021_06139_8
crossref_primary_10_1186_s12911_021_01430_z
crossref_primary_10_1109_ACCESS_2024_3522972
crossref_primary_10_1186_s12859_023_05582_9
crossref_primary_10_1109_ACCESS_2018_2884249
crossref_primary_10_12688_f1000research_20498_2
crossref_primary_10_1016_j_iot_2023_100687
crossref_primary_10_1016_j_knosys_2024_111682
crossref_primary_10_1016_j_eujim_2020_101114
crossref_primary_10_1117_1_JMI_9_4_044503
crossref_primary_10_1038_s41746_019_0170_5
crossref_primary_10_1016_j_chemolab_2024_105247
crossref_primary_10_1016_j_patrec_2020_02_007
crossref_primary_10_1016_j_neunet_2019_05_010
crossref_primary_10_1016_j_ecoinf_2020_101137
crossref_primary_10_1016_j_ins_2019_11_004
crossref_primary_10_1016_j_health_2025_100387
crossref_primary_10_3390_app11219783
crossref_primary_10_1021_acs_analchem_2c03020
crossref_primary_10_1109_TAI_2023_3298303
crossref_primary_10_1007_s10462_024_10831_1
crossref_primary_10_1016_j_nucengdes_2020_110699
crossref_primary_10_2196_67967
crossref_primary_10_1016_j_atech_2021_100028
crossref_primary_10_1007_s13349_022_00552_w
crossref_primary_10_1016_j_jviromet_2024_115011
crossref_primary_10_1016_j_neunet_2023_07_030
crossref_primary_10_3390_app13052932
crossref_primary_10_1016_j_neucom_2022_01_004
crossref_primary_10_3390_rs14133075
crossref_primary_10_1016_j_jpsychires_2022_06_009
crossref_primary_10_1016_j_cmpb_2021_106281
crossref_primary_10_1016_j_cageo_2021_104968
crossref_primary_10_1016_j_ecoinf_2021_101423
crossref_primary_10_1016_j_jhydrol_2024_132250
crossref_primary_10_1186_s12911_022_01775_z
crossref_primary_10_1016_j_cageo_2020_104430
crossref_primary_10_1109_ACCESS_2021_3063461
crossref_primary_10_1109_TCSVT_2021_3122110
crossref_primary_10_3389_fnbot_2021_775688
crossref_primary_10_1007_s10462_020_09820_x
crossref_primary_10_1016_j_ijar_2022_08_007
crossref_primary_10_1155_2021_6619088
crossref_primary_10_3390_s21196451
crossref_primary_10_3390_s21238077
crossref_primary_10_1016_j_engappai_2020_103535
crossref_primary_10_1016_j_neucom_2024_128419
crossref_primary_10_1016_j_jdent_2025_105679
crossref_primary_10_1080_19475683_2020_1803402
crossref_primary_10_1109_TCYB_2022_3173356
crossref_primary_10_1016_j_neunet_2024_106932
crossref_primary_10_1016_j_rse_2024_114274
crossref_primary_10_32604_cmc_2024_048307
crossref_primary_10_1007_s10515_021_00319_5
crossref_primary_10_1109_ACCESS_2020_3031908
crossref_primary_10_1177_09544100221107252
crossref_primary_10_3390_jpm11060482
crossref_primary_10_3390_rs11212523
crossref_primary_10_1016_j_isci_2022_105331
crossref_primary_10_1038_s42256_025_01006_w
crossref_primary_10_1016_j_compag_2024_109653
crossref_primary_10_1016_j_knosys_2022_109817
crossref_primary_10_1051_shsconf_202214402018
crossref_primary_10_1109_ACCESS_2024_3431534
crossref_primary_10_3390_cancers16234046
crossref_primary_10_1007_s10845_020_01579_w
crossref_primary_10_3390_electronics14020280
crossref_primary_10_1145_3715073_3715082
crossref_primary_10_1016_j_jag_2023_103478
crossref_primary_10_1016_j_caeai_2024_100312
crossref_primary_10_1109_MAES_2019_2933972
crossref_primary_10_1016_j_asoc_2024_112050
crossref_primary_10_1016_j_media_2020_101715
crossref_primary_10_1080_17421772_2023_2214600
crossref_primary_10_1007_s11042_022_13617_1
crossref_primary_10_1109_ACCESS_2024_3358275
crossref_primary_10_1016_j_ins_2021_07_033
crossref_primary_10_3390_life14101248
crossref_primary_10_1186_s12984_020_00758_3
crossref_primary_10_1007_s10994_023_06397_8
crossref_primary_10_1155_2023_3018320
crossref_primary_10_3390_machines13010049
crossref_primary_10_1109_TKDE_2024_3443160
crossref_primary_10_3390_rs12060934
crossref_primary_10_1016_j_canrad_2021_06_027
crossref_primary_10_1186_s42492_020_00055_9
crossref_primary_10_3233_IDT_210037
crossref_primary_10_1016_j_neunet_2023_06_036
crossref_primary_10_1111_mice_12578
crossref_primary_10_3390_drones4040075
crossref_primary_10_1016_j_ecoinf_2021_101217
crossref_primary_10_1016_j_eswa_2020_113660
crossref_primary_10_1007_s13755_025_00343_9
crossref_primary_10_1038_s41598_019_44839_3
crossref_primary_10_1007_s00521_024_09483_7
crossref_primary_10_1038_s41576_021_00434_9
crossref_primary_10_3390_rs11070772
crossref_primary_10_1109_JBHI_2018_2885134
crossref_primary_10_1016_j_knosys_2024_112301
crossref_primary_10_3389_fgene_2022_912614
crossref_primary_10_1016_j_compbiomed_2022_106092
crossref_primary_10_3390_diagnostics13010067
crossref_primary_10_3389_frai_2019_00028
crossref_primary_10_3390_s23125485
crossref_primary_10_1016_j_knosys_2024_112306
crossref_primary_10_1002_ima_22465
crossref_primary_10_2147_JMDH_S472170
crossref_primary_10_1186_s12911_025_02900_4
crossref_primary_10_2174_0126662558286875231215054324
crossref_primary_10_1016_j_ascom_2022_100625
crossref_primary_10_3390_computers13110297
crossref_primary_10_1016_j_aei_2020_101131
crossref_primary_10_37391_ijeer_110203
crossref_primary_10_1016_j_neunet_2020_07_019
crossref_primary_10_1029_2024JB029194
crossref_primary_10_1073_pnas_2103091118
crossref_primary_10_1142_S1469026822500158
crossref_primary_10_1007_s11657_020_00802_8
crossref_primary_10_1016_j_neucom_2019_12_091
crossref_primary_10_1016_j_compag_2024_109859
crossref_primary_10_1016_j_eswa_2024_123138
crossref_primary_10_1093_mnras_staa1856
crossref_primary_10_1109_JBHI_2022_3141976
crossref_primary_10_1109_TPAMI_2023_3298433
crossref_primary_10_3390_drones5010006
crossref_primary_10_1109_ACCESS_2023_3255983
crossref_primary_10_1007_s40747_023_01225_x
crossref_primary_10_1049_cit2_12152
crossref_primary_10_1007_s11633_023_1487_8
crossref_primary_10_1016_j_joen_2024_05_014
crossref_primary_10_1111_ppa_13988
crossref_primary_10_1109_TNNLS_2021_3106306
crossref_primary_10_1007_s11053_025_10462_5
crossref_primary_10_18048_2019_57_01
crossref_primary_10_1016_j_patcog_2023_109971
crossref_primary_10_1142_S0218001421520108
crossref_primary_10_1016_j_compscitech_2021_109091
crossref_primary_10_1016_j_compag_2025_109909
crossref_primary_10_1145_3630256
crossref_primary_10_1016_j_bspc_2024_106545
crossref_primary_10_3390_info13010009
crossref_primary_10_1016_j_comnet_2020_107315
crossref_primary_10_1016_j_chest_2022_03_044
crossref_primary_10_1080_08839514_2024_2411845
crossref_primary_10_3390_s22020497
crossref_primary_10_1007_s11704_023_3272_9
crossref_primary_10_1109_TSE_2021_3079841
crossref_primary_10_1109_TPWRD_2022_3202958
crossref_primary_10_3390_rs11243056
crossref_primary_10_1142_S1793351X22500040
crossref_primary_10_1038_s41598_021_93889_z
crossref_primary_10_1038_s41598_022_26825_4
crossref_primary_10_1186_s12859_020_03914_7
crossref_primary_10_1007_s11063_021_10534_6
crossref_primary_10_1016_j_media_2022_102359
crossref_primary_10_3390_agriengineering6040243
crossref_primary_10_1016_j_chemolab_2025_105366
crossref_primary_10_1016_j_compag_2020_105792
crossref_primary_10_1016_j_neucom_2021_06_012
crossref_primary_10_3390_ijgi11120587
crossref_primary_10_1109_ACCESS_2021_3050548
crossref_primary_10_1109_TPAMI_2023_3275585
crossref_primary_10_1016_j_neucom_2020_11_009
crossref_primary_10_1109_ACCESS_2022_3202295
crossref_primary_10_1111_2041_210X_13099
crossref_primary_10_1016_j_eswa_2024_123153
crossref_primary_10_1109_LSP_2024_3451962
crossref_primary_10_1109_TNNLS_2022_3213522
crossref_primary_10_1190_geo2023_0149_1
crossref_primary_10_1093_llc_fqad046
crossref_primary_10_1109_JIOT_2020_2985694
crossref_primary_10_1016_j_bbe_2021_10_003
crossref_primary_10_1016_j_comcom_2023_04_002
crossref_primary_10_1016_j_jrras_2022_100461
crossref_primary_10_1088_2057_1976_ad4f73
crossref_primary_10_1038_s41598_022_18463_7
crossref_primary_10_1016_j_patcog_2021_108026
crossref_primary_10_1016_j_patcog_2022_108564
crossref_primary_10_1016_j_compbiomed_2021_104644
crossref_primary_10_1016_j_compbiomed_2024_109503
crossref_primary_10_1016_j_isprsjprs_2019_04_014
crossref_primary_10_1061__ASCE_NH_1527_6996_0000561
crossref_primary_10_1080_17538947_2023_2298245
crossref_primary_10_1177_10963480241230957
crossref_primary_10_1109_TGRS_2021_3097148
crossref_primary_10_3389_frai_2024_1299169
crossref_primary_10_1155_2019_7206096
crossref_primary_10_1029_2023SW003524
crossref_primary_10_3390_app112110373
crossref_primary_10_1051_itmconf_20246301025
crossref_primary_10_1016_j_agwat_2024_108692
crossref_primary_10_1109_ACCESS_2019_2899608
crossref_primary_10_3390_diagnostics12061410
crossref_primary_10_1016_j_eswa_2024_124230
crossref_primary_10_1016_j_media_2023_102881
crossref_primary_10_1049_iet_ipr_2019_1690
crossref_primary_10_1109_LRA_2020_2969947
crossref_primary_10_3390_app13063457
crossref_primary_10_1016_j_ophoto_2022_100016
crossref_primary_10_3390_diagnostics12102362
crossref_primary_10_3390_rs11232765
crossref_primary_10_3390_rs14040897
crossref_primary_10_1109_TGRS_2021_3064316
crossref_primary_10_1109_TPAMI_2024_3435937
crossref_primary_10_1016_j_jag_2022_102949
crossref_primary_10_32604_csse_2022_024695
crossref_primary_10_1016_j_bspc_2023_105637
crossref_primary_10_1016_j_imu_2022_100850
crossref_primary_10_1088_2632_2153_ad23fb
crossref_primary_10_1109_TBDATA_2024_3352978
crossref_primary_10_1109_TNNLS_2022_3154204
crossref_primary_10_1016_j_neucom_2024_129115
crossref_primary_10_1063_1_5113532
crossref_primary_10_1007_s10664_021_10095_1
crossref_primary_10_1109_TMLCN_2025_3533427
crossref_primary_10_5351_KJAS_2024_37_5_615
crossref_primary_10_1186_s40494_024_01468_y
crossref_primary_10_3233_ICA_220676
crossref_primary_10_1016_j_eswa_2020_114463
crossref_primary_10_1093_bib_bbaa272
crossref_primary_10_1109_ACCESS_2019_2955983
crossref_primary_10_1088_1674_4527_19_9_133
crossref_primary_10_1007_s00779_019_01292_3
crossref_primary_10_1007_s13369_021_05674_9
crossref_primary_10_1109_TGRS_2023_3274296
crossref_primary_10_3390_en18010059
crossref_primary_10_1016_j_engstruct_2022_115485
crossref_primary_10_1109_TPAMI_2024_3421300
crossref_primary_10_3847_1538_4357_ac9d91
crossref_primary_10_32604_cmes_2022_020263
crossref_primary_10_3390_s21165317
crossref_primary_10_1002_int_23068
crossref_primary_10_1016_j_measurement_2019_107459
crossref_primary_10_1016_j_health_2022_100060
crossref_primary_10_1186_s12903_023_03751_z
crossref_primary_10_1016_j_eswa_2023_121806
crossref_primary_10_1016_j_jss_2023_111650
crossref_primary_10_1038_s41598_023_48751_9
crossref_primary_10_1016_j_ymssp_2021_108271
crossref_primary_10_3390_agronomy12081843
crossref_primary_10_1007_s11760_024_03651_x
crossref_primary_10_1111_2041_210X_13335
crossref_primary_10_1016_j_marpetgeo_2020_104687
crossref_primary_10_1007_s10115_023_01975_7
crossref_primary_10_1016_j_eswa_2024_124399
crossref_primary_10_1007_s11227_023_05820_0
crossref_primary_10_1109_ACCESS_2024_3399204
crossref_primary_10_1109_TMI_2020_3046692
crossref_primary_10_1016_j_compag_2021_106059
crossref_primary_10_1016_j_biosystemseng_2019_04_007
crossref_primary_10_1080_2573234X_2021_1978337
crossref_primary_10_1109_TAI_2023_3275133
crossref_primary_10_1109_ACCESS_2020_3041672
crossref_primary_10_1371_journal_pbio_3001544
crossref_primary_10_1007_s10044_024_01387_5
crossref_primary_10_1016_j_ress_2021_107934
crossref_primary_10_3390_s21093169
crossref_primary_10_1016_j_neucom_2025_129606
crossref_primary_10_1016_j_neucom_2023_01_063
crossref_primary_10_1038_s41598_023_45532_2
crossref_primary_10_1007_s10994_022_06241_5
crossref_primary_10_1007_s11227_022_05037_7
crossref_primary_10_1080_07391102_2022_2112976
crossref_primary_10_3390_rs15164098
crossref_primary_10_3390_ijgi9020104
crossref_primary_10_1007_s10462_023_10557_6
crossref_primary_10_1007_s11263_024_02342_x
crossref_primary_10_1016_j_isprsjprs_2022_02_013
crossref_primary_10_1155_2022_6805460
crossref_primary_10_1016_j_compag_2021_106065
crossref_primary_10_1109_TCE_2023_3275540
crossref_primary_10_3390_medicina57111230
crossref_primary_10_1093_icesjms_fsad165
crossref_primary_10_1109_ACCESS_2023_3262604
crossref_primary_10_1016_j_eswa_2019_112866
crossref_primary_10_1016_j_neucom_2025_129832
crossref_primary_10_1007_s11676_024_01768_w
crossref_primary_10_1177_1088467X241305509
crossref_primary_10_1016_j_compeleceng_2023_108586
crossref_primary_10_1038_s41598_023_42847_y
crossref_primary_10_11648_j_ijdsa_20241001_12
crossref_primary_10_1136_bjophthalmol_2021_319470
crossref_primary_10_3390_electronics12071542
crossref_primary_10_1109_TASE_2023_3270202
crossref_primary_10_1155_2021_9954204
crossref_primary_10_1016_j_mtbio_2023_100879
crossref_primary_10_3390_ijms21165710
crossref_primary_10_37394_23205_2020_19_22
crossref_primary_10_1109_ACCESS_2024_3444772
crossref_primary_10_3389_fpubh_2023_1241388
crossref_primary_10_1063_1_5144458
crossref_primary_10_1016_j_compedu_2020_104109
crossref_primary_10_1016_j_heliyon_2024_e37647
crossref_primary_10_1016_j_ipm_2021_102599
crossref_primary_10_1016_j_compbiomed_2019_05_002
crossref_primary_10_1088_1742_6596_1631_1_012046
crossref_primary_10_1007_s11042_024_19303_8
crossref_primary_10_1109_TAI_2022_3149971
crossref_primary_10_3390_app11041387
crossref_primary_10_1080_10618600_2021_1978470
crossref_primary_10_1109_JBHI_2020_3025381
crossref_primary_10_1109_JBHI_2023_3240136
crossref_primary_10_1007_s11432_023_3897_2
crossref_primary_10_1016_j_knosys_2022_109561
crossref_primary_10_1155_2021_6702625
crossref_primary_10_1016_j_imu_2021_100545
crossref_primary_10_26552_com_C_2022_3_D105_D115
crossref_primary_10_1016_j_eswa_2021_114994
crossref_primary_10_1007_s11042_022_12697_3
crossref_primary_10_1109_ACCESS_2021_3132046
crossref_primary_10_1109_TPAMI_2023_3278694
crossref_primary_10_3390_app122010623
crossref_primary_10_7717_peerj_cs_328
crossref_primary_10_1016_j_neucom_2025_129807
crossref_primary_10_1002_adom_202301337
crossref_primary_10_3390_s21020638
crossref_primary_10_1016_j_neunet_2021_07_003
crossref_primary_10_1109_JBHI_2023_3253208
crossref_primary_10_1016_j_compbiomed_2022_105402
crossref_primary_10_1016_j_knosys_2020_105833
crossref_primary_10_1016_j_diii_2019_07_002
crossref_primary_10_1016_j_measurement_2020_107703
crossref_primary_10_3390_rs13030389
crossref_primary_10_3390_app11010202
crossref_primary_10_1109_TCBB_2023_3238001
crossref_primary_10_1109_TMM_2023_3267887
crossref_primary_10_3390_sym12050836
crossref_primary_10_3390_s21237950
crossref_primary_10_1109_JSTSP_2024_3374593
crossref_primary_10_1007_s11390_023_3086_0
crossref_primary_10_4103_jpi_jpi_36_21
crossref_primary_10_3389_fspas_2020_600031
crossref_primary_10_3390_f16030492
crossref_primary_10_1002_ima_22703
crossref_primary_10_1109_THMS_2022_3189576
crossref_primary_10_1007_s11042_021_11747_6
crossref_primary_10_1177_0192623320986423
crossref_primary_10_1111_2041_210X_14239
crossref_primary_10_1007_s10278_024_01221_8
crossref_primary_10_1016_j_jdent_2024_105063
crossref_primary_10_1016_j_eswa_2024_125287
crossref_primary_10_1002_qre_3217
crossref_primary_10_1016_j_neucom_2022_11_020
crossref_primary_10_1016_j_ins_2021_03_001
crossref_primary_10_3390_app12125775
crossref_primary_10_1016_j_imavis_2024_105307
crossref_primary_10_1016_j_compbiomed_2022_106519
crossref_primary_10_1145_3636427
crossref_primary_10_1016_j_knosys_2022_108296
crossref_primary_10_1007_s11356_022_23280_6
crossref_primary_10_1109_TIV_2023_3325343
crossref_primary_10_1109_JBHI_2024_3439568
crossref_primary_10_1016_j_cj_2022_01_009
crossref_primary_10_1016_j_amjcard_2025_02_030
crossref_primary_10_1109_TCSVT_2023_3311142
crossref_primary_10_3390_rs14225793
crossref_primary_10_1016_j_bspc_2023_104704
crossref_primary_10_1111_2041_210X_13953
crossref_primary_10_1007_s10994_022_06296_4
crossref_primary_10_1109_TIM_2022_3232646
crossref_primary_10_1016_j_array_2021_100057
crossref_primary_10_1109_ACCESS_2020_3019336
crossref_primary_10_1007_s12021_020_09477_5
crossref_primary_10_1016_j_media_2024_103102
crossref_primary_10_3390_w14192939
crossref_primary_10_1007_s00521_021_06770_5
crossref_primary_10_1017_S0003055419000285
crossref_primary_10_1016_j_ijleo_2022_169986
crossref_primary_10_1016_j_dsp_2025_105149
crossref_primary_10_1016_j_patrec_2021_01_011
crossref_primary_10_3390_bdcc8090118
crossref_primary_10_1016_j_jcae_2024_100403
crossref_primary_10_1016_j_patrec_2023_05_035
crossref_primary_10_1007_s11263_022_01622_8
crossref_primary_10_1109_JSEN_2021_3131166
crossref_primary_10_1109_TITS_2020_3009725
crossref_primary_10_1016_j_ymeth_2022_11_004
crossref_primary_10_1109_TNSM_2024_3430052
crossref_primary_10_3389_fmicb_2022_886201
crossref_primary_10_1109_ACCESS_2020_3018498
crossref_primary_10_1021_acs_chemrestox_0c00316
crossref_primary_10_1177_25138502221063531
crossref_primary_10_1016_j_hydroa_2025_100201
crossref_primary_10_1109_TMI_2023_3310716
crossref_primary_10_3390_data3030028
crossref_primary_10_1016_j_eswa_2025_126695
crossref_primary_10_1007_s11042_020_10485_5
crossref_primary_10_1007_s42452_020_3128_y
crossref_primary_10_1016_j_bspc_2025_107562
crossref_primary_10_1115_1_4044645
crossref_primary_10_1088_1361_6579_aaf34d
crossref_primary_10_1071_MF23166
crossref_primary_10_1159_000510992
crossref_primary_10_1007_s11119_022_09959_3
crossref_primary_10_1007_s00530_021_00827_0
crossref_primary_10_1007_s10994_022_06208_6
crossref_primary_10_1016_j_eswa_2022_119054
crossref_primary_10_1016_j_eswa_2023_119578
crossref_primary_10_1109_JBHI_2023_3308697
crossref_primary_10_2174_1574893618666230320103421
crossref_primary_10_1007_s00603_023_03623_6
crossref_primary_10_3389_fenrg_2021_686616
crossref_primary_10_1016_j_acags_2025_100229
crossref_primary_10_1021_acs_iecr_9b06298
crossref_primary_10_1109_ACCESS_2021_3091810
crossref_primary_10_1785_0120230198
crossref_primary_10_1038_s41598_020_66505_9
crossref_primary_10_1186_s12911_021_01623_6
crossref_primary_10_3390_jcp4040040
crossref_primary_10_3390_electronics10050586
crossref_primary_10_1186_s12859_018_2474_x
crossref_primary_10_1007_s11227_024_06301_8
crossref_primary_10_1016_j_phycom_2024_102355
crossref_primary_10_3390_app12136645
crossref_primary_10_1038_s41598_022_07111_9
crossref_primary_10_1016_j_jag_2024_104085
crossref_primary_10_32604_iasc_2023_041873
crossref_primary_10_1016_j_neunet_2024_106485
crossref_primary_10_1109_JBHI_2019_2929264
crossref_primary_10_1155_2021_6659022
crossref_primary_10_1109_JTEHM_2022_3180933
crossref_primary_10_1148_radiol_2019191061
crossref_primary_10_1016_j_promfg_2020_07_003
crossref_primary_10_1109_ACCESS_2024_3373001
crossref_primary_10_1371_journal_pgph_0001584
crossref_primary_10_2139_ssrn_4557797
crossref_primary_10_3390_info11040200
crossref_primary_10_1109_TSE_2024_3454605
crossref_primary_10_1128_spectrum_05237_22
crossref_primary_10_1007_s12524_024_01869_3
crossref_primary_10_1111_ddg_15113_g
crossref_primary_10_1016_j_engappai_2025_110541
crossref_primary_10_1093_icesjms_fsab140
crossref_primary_10_3390_molecules25061317
crossref_primary_10_35940_ijeat_B3915_1212222
crossref_primary_10_1007_s00170_023_11021_z
crossref_primary_10_1016_j_asoc_2024_111841
crossref_primary_10_1016_j_compmedimag_2021_101866
crossref_primary_10_1093_mnras_staa2265
crossref_primary_10_1109_ACCESS_2023_3341755
crossref_primary_10_1038_s41598_022_26180_4
crossref_primary_10_1002_cyto_a_24514
crossref_primary_10_2166_wst_2023_097
crossref_primary_10_3389_fbioe_2024_1465108
crossref_primary_10_3390_geomatics1010004
crossref_primary_10_1109_ACCESS_2024_3417822
crossref_primary_10_1109_ACCESS_2020_2975640
crossref_primary_10_1109_TVT_2020_3003933
crossref_primary_10_2514_1_I011508
crossref_primary_10_1080_08839514_2024_2406712
crossref_primary_10_1177_14759217221139730
crossref_primary_10_1016_j_jag_2024_104029
crossref_primary_10_1002_cpe_8103
crossref_primary_10_1148_ryai_220010
crossref_primary_10_3389_feart_2023_1285138
crossref_primary_10_1001_jamanetworkopen_2021_19100
crossref_primary_10_1088_1757_899X_1099_1_012077
crossref_primary_10_1002_mrm_27166
crossref_primary_10_1016_j_bspc_2021_103010
crossref_primary_10_1021_acs_jcim_4c00159
crossref_primary_10_3390_rs12172839
crossref_primary_10_1109_TBDATA_2023_3313029
crossref_primary_10_1016_j_patrec_2019_07_006
crossref_primary_10_1080_07038992_2021_1910499
crossref_primary_10_3390_app12031600
crossref_primary_10_1002_eng2_12298
crossref_primary_10_1007_s10994_022_06185_w
crossref_primary_10_1016_j_artmed_2021_102017
crossref_primary_10_1017_pan_2021_9
crossref_primary_10_1177_15910199221140962
crossref_primary_10_1007_s10278_022_00618_7
crossref_primary_10_1200_CCI_20_00060
crossref_primary_10_1016_j_irbm_2022_09_006
crossref_primary_10_3390_ai5040105
crossref_primary_10_1109_ACCESS_2023_3327463
crossref_primary_10_3390_w17010021
crossref_primary_10_1007_s10278_024_01018_9
crossref_primary_10_2196_14952
crossref_primary_10_1111_adj_12812
crossref_primary_10_1016_j_jag_2024_104272
crossref_primary_10_1371_journal_pcbi_1009257
crossref_primary_10_1148_radiol_2020200334
crossref_primary_10_2139_ssrn_4182236
crossref_primary_10_4018_IJFC_2018070103
crossref_primary_10_1016_j_ecoinf_2023_102262
crossref_primary_10_1002_jrs_5750
crossref_primary_10_1002_acm2_70061
crossref_primary_10_2196_18082
crossref_primary_10_1109_TNNLS_2020_3007943
crossref_primary_10_1007_s10994_021_06087_3
crossref_primary_10_1016_j_eswax_2019_100003
crossref_primary_10_1016_j_media_2021_101997
crossref_primary_10_1093_mnras_stab2041
crossref_primary_10_1115_1_4065754
crossref_primary_10_1080_08839514_2021_1975393
crossref_primary_10_1016_j_engappai_2023_106950
crossref_primary_10_1016_j_isprsjprs_2022_04_012
crossref_primary_10_3390_s22176441
crossref_primary_10_1016_j_ssci_2021_105390
crossref_primary_10_3390_ijerph191912378
crossref_primary_10_3390_math11132996
crossref_primary_10_4018_IJNCR_2020010104
crossref_primary_10_1016_j_bspc_2023_104962
crossref_primary_10_1016_j_eswa_2021_115673
crossref_primary_10_1109_JOE_2022_3221127
crossref_primary_10_1186_s12911_019_0899_4
crossref_primary_10_3390_atmos15060631
crossref_primary_10_1016_j_neunet_2023_09_022
crossref_primary_10_1145_3369798
crossref_primary_10_3390_agronomy12040906
crossref_primary_10_1016_j_jretconser_2021_102573
crossref_primary_10_1109_ACCESS_2020_2975630
crossref_primary_10_1109_JSEN_2024_3360408
crossref_primary_10_1162_neco_a_01470
crossref_primary_10_1111_jiec_13340
crossref_primary_10_1016_j_knosys_2024_111504
crossref_primary_10_1007_s11869_019_00734_4
crossref_primary_10_1016_j_ssci_2024_106677
crossref_primary_10_1016_j_cose_2023_103347
crossref_primary_10_3390_jmse12122203
crossref_primary_10_1109_TGRS_2024_3444045
crossref_primary_10_1109_TITS_2023_3256442
crossref_primary_10_1016_j_mehy_2020_109761
crossref_primary_10_1016_j_neucom_2023_03_020
crossref_primary_10_1109_TIM_2023_3292952
crossref_primary_10_1080_07038992_2023_2247091
crossref_primary_10_3390_app10041276
crossref_primary_10_1007_s10044_022_01103_1
crossref_primary_10_1080_09524622_2020_1835539
crossref_primary_10_1002_ece3_7591
crossref_primary_10_1016_j_artint_2021_103602
crossref_primary_10_1080_02678292_2023_2292635
crossref_primary_10_1007_s00521_023_08290_w
crossref_primary_10_1007_s11263_024_01998_9
crossref_primary_10_1177_0192623320973986
crossref_primary_10_1016_j_neunet_2020_10_004
crossref_primary_10_1109_TCSVT_2023_3297842
crossref_primary_10_1016_j_autcon_2022_104342
crossref_primary_10_1117_1_NPh_10_3_035004
crossref_primary_10_3389_fpls_2021_671134
crossref_primary_10_3390_app142311093
crossref_primary_10_1186_s13007_020_0563_0
crossref_primary_10_3390_s21196511
crossref_primary_10_1109_ACCESS_2022_3157316
crossref_primary_10_1016_j_softx_2020_100630
crossref_primary_10_1371_journal_pone_0289613
crossref_primary_10_3390_app11083331
crossref_primary_10_3389_fpls_2019_00941
crossref_primary_10_1109_ACCESS_2021_3116034
crossref_primary_10_1515_itit_2023_0050
crossref_primary_10_1016_j_cmpb_2023_107804
crossref_primary_10_1111_ddg_15113
crossref_primary_10_3390_app13169146
crossref_primary_10_1186_s40537_019_0225_0
crossref_primary_10_1016_j_neucom_2020_12_122
crossref_primary_10_1007_s00330_024_11181_w
crossref_primary_10_1186_s41747_025_00557_2
crossref_primary_10_5115_acb_22_205
crossref_primary_10_1109_ACCESS_2020_3022242
crossref_primary_10_1016_j_eplepsyres_2022_106861
crossref_primary_10_1016_j_procs_2022_11_349
crossref_primary_10_1016_j_engappai_2024_108297
crossref_primary_10_1016_j_patter_2022_100464
crossref_primary_10_1051_0004_6361_202142751
crossref_primary_10_1016_j_rse_2021_112751
crossref_primary_10_1007_s13042_019_01001_9
crossref_primary_10_3390_diagnostics12020414
crossref_primary_10_1007_s00138_023_01480_5
crossref_primary_10_1109_TKDE_2021_3061428
crossref_primary_10_1007_s10489_024_05754_x
crossref_primary_10_3390_s23125768
crossref_primary_10_1155_2021_1735386
crossref_primary_10_1016_j_compbiomed_2020_103735
crossref_primary_10_1007_s12652_023_04602_z
crossref_primary_10_3390_bioengineering9090480
crossref_primary_10_1016_j_ecoinf_2023_102233
crossref_primary_10_1021_acs_jcim_1c00086
crossref_primary_10_1016_j_scico_2024_103156
crossref_primary_10_1088_1361_6579_ad2218
crossref_primary_10_1016_j_iswa_2023_200215
crossref_primary_10_1007_s11042_023_16181_4
crossref_primary_10_1109_TMI_2021_3066295
crossref_primary_10_1145_3689036
crossref_primary_10_1016_j_rsase_2025_101505
crossref_primary_10_1016_j_ijdrr_2019_101243
crossref_primary_10_1111_mice_12832
crossref_primary_10_1007_s10120_019_00992_2
crossref_primary_10_1016_j_scitotenv_2019_134723
crossref_primary_10_1186_s40537_023_00738_z
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_1016_j_ins_2021_12_083
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1109_ACCESS_2019_2923022
crossref_primary_10_3390_ijgi10090600
crossref_primary_10_1016_j_bbcan_2021_188515
crossref_primary_10_1007_s12205_024_1587_1
crossref_primary_10_1029_2022EA002338
crossref_primary_10_3390_life14121602
crossref_primary_10_1109_TIM_2023_3264047
crossref_primary_10_1021_acs_jcim_0c00565
crossref_primary_10_1109_JSTARS_2023_3335891
crossref_primary_10_1145_3636512
crossref_primary_10_1109_ACCESS_2020_3025941
crossref_primary_10_1016_j_aei_2024_102684
crossref_primary_10_3390_s21051906
crossref_primary_10_1109_ACCESS_2022_3167397
crossref_primary_10_1016_j_joen_2019_03_016
crossref_primary_10_1080_2150704X_2023_2270107
crossref_primary_10_1016_j_compbiomed_2025_109772
crossref_primary_10_1109_TKDE_2023_3323401
crossref_primary_10_1038_s41598_022_21017_6
crossref_primary_10_1117_1_OE_63_5_054117
crossref_primary_10_1038_s41598_021_03546_8
crossref_primary_10_1111_raq_12726
crossref_primary_10_1088_1361_6560_ac72f0
crossref_primary_10_1109_TSM_2019_2940334
crossref_primary_10_3390_app13148403
crossref_primary_10_1109_TNNLS_2021_3106484
crossref_primary_10_1016_j_engappai_2020_103878
crossref_primary_10_1007_s11042_023_17583_0
crossref_primary_10_1016_j_compbiomed_2022_106178
crossref_primary_10_1109_ACCESS_2023_3240515
crossref_primary_10_3390_app11083301
crossref_primary_10_1007_s10489_021_02983_2
crossref_primary_10_1016_j_artd_2023_101308
crossref_primary_10_1016_j_engappai_2024_109580
crossref_primary_10_1587_transinf_2021HCK0001
crossref_primary_10_1007_s11633_021_1291_2
crossref_primary_10_1109_TNNLS_2024_3350363
crossref_primary_10_1016_j_ins_2021_11_058
crossref_primary_10_1007_s00521_021_06066_8
crossref_primary_10_1016_j_tust_2022_104399
crossref_primary_10_1109_TCAD_2022_3227815
crossref_primary_10_3390_math10224286
crossref_primary_10_1007_s11760_024_03701_4
crossref_primary_10_3389_fonc_2020_00490
crossref_primary_10_3390_s25051437
crossref_primary_10_1016_j_imu_2022_101139
crossref_primary_10_1007_s00521_021_06138_9
crossref_primary_10_1016_j_patcog_2021_108302
crossref_primary_10_3390_s21103500
crossref_primary_10_1016_j_neucom_2024_128530
crossref_primary_10_1016_j_jenvman_2021_111979
crossref_primary_10_3390_e24070974
crossref_primary_10_3390_rs15071768
crossref_primary_10_1007_s11263_022_01716_3
crossref_primary_10_1016_j_neunet_2020_12_003
crossref_primary_10_3390_rs14071552
crossref_primary_10_1109_ACCESS_2020_2985097
crossref_primary_10_1038_s41598_021_87737_3
crossref_primary_10_3390_agronomy13030887
crossref_primary_10_3390_cancers16193417
crossref_primary_10_1007_s11548_021_02498_8
crossref_primary_10_1007_s13246_020_00952_6
crossref_primary_10_1038_s41598_025_89574_0
crossref_primary_10_1016_j_media_2022_102490
crossref_primary_10_3390_e22091058
crossref_primary_10_3390_rs15184572
crossref_primary_10_1002_smtd_202101619
crossref_primary_10_1016_j_ins_2023_01_074
crossref_primary_10_3390_drones8090484
crossref_primary_10_3390_rs16020390
crossref_primary_10_1016_j_nicl_2023_103482
crossref_primary_10_7717_peerj_cs_2088
crossref_primary_10_1007_s00521_024_09582_5
crossref_primary_10_1007_s13278_024_01328_4
crossref_primary_10_1155_2021_8667868
crossref_primary_10_1136_jcp_2023_209215
crossref_primary_10_1051_0004_6361_202347244
crossref_primary_10_1016_j_jretconser_2024_103865
crossref_primary_10_1371_journal_pone_0274522
crossref_primary_10_1016_j_media_2020_101836
crossref_primary_10_37221_eaef_15_2_47
crossref_primary_10_3390_diagnostics12061318
crossref_primary_10_1371_journal_pone_0271260
crossref_primary_10_1109_ACCESS_2021_3109780
crossref_primary_10_1109_TMRB_2023_3260273
crossref_primary_10_1007_s00530_024_01317_9
crossref_primary_10_1002_rse2_205
crossref_primary_10_1016_j_caeai_2024_100200
crossref_primary_10_1016_j_compbiomed_2025_109971
crossref_primary_10_1007_s13042_024_02241_0
crossref_primary_10_1016_j_compbiomed_2021_104712
crossref_primary_10_1109_ACCESS_2024_3442569
crossref_primary_10_1007_s11263_023_01831_9
crossref_primary_10_1038_s41746_024_01196_4
crossref_primary_10_1109_TMI_2021_3123300
crossref_primary_10_1109_TCSVT_2023_3321733
crossref_primary_10_1108_IJBPA_01_2022_0018
crossref_primary_10_1109_ACCESS_2021_3096822
crossref_primary_10_1109_TBME_2021_3136753
crossref_primary_10_1016_j_engstruct_2022_115291
crossref_primary_10_1145_3624774
crossref_primary_10_1111_2041_210X_14031
crossref_primary_10_1007_s10207_023_00686_y
crossref_primary_10_1016_j_compositesa_2022_106973
crossref_primary_10_1007_s11263_024_01996_x
crossref_primary_10_1007_s11263_024_02081_z
crossref_primary_10_1016_j_autcon_2022_104167
crossref_primary_10_1007_s00146_021_01370_2
crossref_primary_10_1007_s11548_024_03061_x
crossref_primary_10_1007_s12652_020_01773_x
crossref_primary_10_1016_j_engappai_2022_104959
crossref_primary_10_1515_bmt_2020_0106
crossref_primary_10_3390_app12042158
crossref_primary_10_1007_s10994_022_06268_8
crossref_primary_10_1007_s11548_019_02070_5
crossref_primary_10_1109_TNNLS_2021_3105104
crossref_primary_10_1007_s10489_023_04486_8
crossref_primary_10_1016_j_ecoinf_2024_102927
crossref_primary_10_1007_s11042_021_10612_w
crossref_primary_10_1109_TGRS_2022_3211847
crossref_primary_10_1109_TPWRS_2023_3326137
crossref_primary_10_1587_transfun_2021EAP1036
crossref_primary_10_1063_1_5136269
crossref_primary_10_1109_TSMC_2020_2982226
crossref_primary_10_3390_ani12091177
crossref_primary_10_1093_mnras_stac3770
crossref_primary_10_1111_ina_12780
crossref_primary_10_1016_j_artint_2021_103635
crossref_primary_10_1016_j_isprsjprs_2023_09_001
crossref_primary_10_1016_j_oceaneng_2021_110130
crossref_primary_10_1007_s11227_025_06920_9
crossref_primary_10_1109_ACCESS_2019_2921241
crossref_primary_10_1016_j_measen_2024_101080
crossref_primary_10_1080_07038992_2019_1682980
crossref_primary_10_1007_s12008_024_02045_0
crossref_primary_10_1016_j_apenergy_2022_120279
crossref_primary_10_1109_TNNLS_2023_3321753
crossref_primary_10_1088_1361_6579_ad2c13
crossref_primary_10_3390_pharmaceutics11090466
crossref_primary_10_3390_f16030513
crossref_primary_10_1109_TMC_2024_3476340
crossref_primary_10_1016_j_ecoinf_2021_101350
crossref_primary_10_1016_j_eng_2023_07_014
crossref_primary_10_3390_rs16183494
crossref_primary_10_2139_ssrn_4046060
crossref_primary_10_1016_j_jvscit_2022_04_003
crossref_primary_10_3389_fenvs_2022_1044706
crossref_primary_10_1016_j_heliyon_2024_e38448
crossref_primary_10_1016_j_cag_2021_09_007
crossref_primary_10_1111_jep_14041
crossref_primary_10_1016_j_isprsjprs_2021_07_007
crossref_primary_10_3390_app13053287
crossref_primary_10_1016_j_addma_2021_101965
crossref_primary_10_1071_WR23151
crossref_primary_10_1109_TVCG_2022_3189094
crossref_primary_10_1016_j_neucom_2022_08_031
crossref_primary_10_1109_TIM_2023_3246470
crossref_primary_10_1016_j_jss_2024_112077
crossref_primary_10_1109_TIM_2023_3343775
crossref_primary_10_3390_app10010188
crossref_primary_10_1007_s10278_024_01383_5
crossref_primary_10_3390_atmos15101229
crossref_primary_10_1016_j_acra_2023_02_016
crossref_primary_10_1088_2632_2153_acf362
crossref_primary_10_1109_ACCESS_2022_3187140
crossref_primary_10_1109_TIFS_2024_3488527
crossref_primary_10_1109_ACCESS_2019_2954170
crossref_primary_10_1007_s11042_020_09155_3
crossref_primary_10_1109_ACCESS_2021_3122998
crossref_primary_10_3389_feart_2022_1106799
crossref_primary_10_1016_j_ibmed_2021_100034
crossref_primary_10_1007_s10115_022_01772_8
crossref_primary_10_1016_j_yebeh_2024_109732
crossref_primary_10_1007_s00034_019_01249_0
crossref_primary_10_1016_j_ecoinf_2025_103046
crossref_primary_10_54021_seesv5n2_772
crossref_primary_10_1016_j_ymeth_2019_04_008
crossref_primary_10_1002_ima_22558
crossref_primary_10_1016_j_measurement_2020_107785
crossref_primary_10_1109_JSTARS_2022_3184156
crossref_primary_10_1016_j_jbi_2019_103184
crossref_primary_10_1016_j_infrared_2021_103987
crossref_primary_10_1097_ICU_0000000000000695
crossref_primary_10_1016_j_scitotenv_2022_155807
crossref_primary_10_1016_j_neunet_2022_03_027
crossref_primary_10_1016_j_knosys_2020_106087
crossref_primary_10_1021_acs_jcim_8b00350
crossref_primary_10_1016_j_compbiolchem_2023_107929
crossref_primary_10_1186_s12903_024_03898_3
crossref_primary_10_3390_molecules26041111
crossref_primary_10_3390_s18041142
crossref_primary_10_3390_jmse8100770
crossref_primary_10_3390_s21082803
crossref_primary_10_1016_j_neucom_2023_01_023
crossref_primary_10_1111_mice_12667
crossref_primary_10_1016_j_aei_2019_101009
crossref_primary_10_2139_ssrn_4102846
crossref_primary_10_3389_fonc_2024_1335740
crossref_primary_10_1016_j_compbiomed_2021_104527
crossref_primary_10_3390_electronics10243124
crossref_primary_10_1007_s00417_022_05919_9
crossref_primary_10_3389_fonc_2020_01186
crossref_primary_10_3390_healthcare9080938
crossref_primary_10_1016_j_ress_2023_109832
crossref_primary_10_1080_08839514_2025_2468534
crossref_primary_10_1007_s00521_022_07167_8
crossref_primary_10_3390_electronics11091322
crossref_primary_10_1038_s41598_021_94750_z
crossref_primary_10_36306_konjes_1078358
Cites_doi 10.1080/01431161.2013.810825
10.1109/TKDE.2008.239
10.1162/neco.1991.3.4.461
10.1613/jair.953
10.1109/CVPR.2016.90
10.1016/S0933-3657(01)00092-6
10.1016/j.jbi.2004.07.008
10.4103/2153-3539.186902
10.1109/TKDE.2006.17
10.3233/IDA-2002-6504
10.1023/A:1007452223027
10.1109/TSMCB.2008.2007853
10.1016/0031-3203(81)90102-3
10.1145/1007730.1007737
10.1007/s11263-015-0816-y
10.1016/j.asoc.2013.09.014
10.1016/j.neunet.2007.12.031
10.1109/CVPRW.2015.7301352
10.1162/neco.1989.1.4.541
10.1016/S0031-3203(96)00142-2
10.1109/5.726791
10.1023/A:1024099825458
10.1016/S0893-6080(98)00116-6
10.1016/j.media.2016.05.004
10.1145/1007730.1007736
10.1162/089976600300015691
10.1007/11538059_91
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D8V
DOI 10.1016/j.neunet.2018.07.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 259
ExternalDocumentID oai_DiVA_org_kth_235561
30092410
10_1016_j_neunet_2018_07_011
S0893608018302107
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D8V
EFKBS
ID FETCH-LOGICAL-c512t-54f35ea174cb6c856f69d5f36f023eea43e8fe47b409c6e22e7f0f5d27600dd3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Aug 21 07:29:37 EDT 2025
Fri Jul 11 08:27:24 EDT 2025
Thu Apr 03 07:02:07 EDT 2025
Tue Jul 01 01:24:32 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Fri Feb 23 02:47:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional neural networks
Class imbalance
Image classification
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-54f35ea174cb6c856f69d5f36f023eea43e8fe47b409c6e22e7f0f5d27600dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3222-0203
OpenAccessLink http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219872
PMID 30092410
PQID 2087593601
PQPubID 23479
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_kth_235561
proquest_miscellaneous_2087593601
pubmed_primary_30092410
crossref_primary_10_1016_j_neunet_2018_07_011
crossref_citationtrail_10_1016_j_neunet_2018_07_011
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., & Bengio, Y. (2013). Maxout networks. In
Lawrence, Burns, Back, Tsoi, Giles (b39) 1998
Wang, Makond, Chen, Wang (b64) 2014; 20
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio (b19) 2017; 35
Van Horn, G., Mac Aodha, O., Song, Y., Shepard, A., Adam, H., & Perona, P. et al., The inaturalist challenge 2017 dataset, arXiv preprint
Kubat, Holte, Matwin (b36) 1998; 30
(pp. 179–186), Nashville, USA.
Barandela, Rangel, Sánchez, Ferri (b1) 2003
Japkowicz, N., Myers, C., & Gluck, M. et al., (1995). A novelty detection approach to classification. In
Chan, P. K., & Stolfo, S. J. (1998). Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection. In
Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions. In
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. Striving for simplicity: The all convolutional net, arXiv preprint
Liu, Wu, Zhou (b46) 2009; 39
(pp. 164–168).
Mac Namee, Cunningham, Byrne, Corrigan (b47) 2002; 24
Qian (b52) 1999; 12
(pp. 573–580), New York, NY.
He, Zhang, Ren, Sun (b21) 2015
Mazurowski, Habas, Zurada, Lo, Baker, Tourassi (b49) 2008; 21
Raj, Magg, Wermter (b54) 2016
Cardie, C., & Howe, N. (1997). Improving minority class prediction using case-specific feature weights. In
Janowczyk, Madabhushi (b25) 2016; 7
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Japkowicz, Stephen (b28) 2002; 6
.
(pp. 1–8).
Grzymala-Busse, Goodwin, Grzymala-Busse, Zheng (b14) 2004
(pp. 519–524).
Elkan (b11) 2001
Xiao, Hays, Ehinger, Oliva, Torralba (b65) 2010
Wang, Liu, Wu, Cao, Meng, Kennedy (b63) 2016
(pp. 518–523).
Zhou, Liu (b67) 2006; 18
LeCun, Bottou, Bengio, Haffner (b41) 1998
Zeiler, Fergus (b66) 2014
Beijbom, Edmunds, Kline, Mitchell, Kriegman (b2) 2012
Jia, Shelhamer, Donahue, Karayev, Long, Girshick (b29) 2014
Jo, Japkowicz (b30) 2004; 6
Shen, Lin, Huang (b57) 2016
Ling, C. X., Huang, J., & Zhang, H. (2003). Auc: a statistically consistent and more discriminating measure than accuracy. In
Russakovsky, Deng, Su, Krause, Satheesh, Ma (b56) 2015; 115
(pp. 57–65).
Chung, Y. A., Lin, H. T., & Yang, S. W. Cost-aware pre-training for multiclass cost-sensitive deep learning, arXiv preprint
Bradley (b3) 1997; 30
(pp. 34–42).
Johnson, Tateishi, Hoan (b31) 2013; 34
(pp. 1319–1327).
Kubat, M., & Matwin, S. et al., (1997). Addressing the curse of imbalanced training sets: one-sided selection. In
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., & Shuai, B. et al., Recent advances in convolutional neural networks, arXiv preprint
Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint
Japkowicz, Hanson, Gluck (b26) 2000; 12
(pp. 249–256).
(pp. 73–79).
Chawla, Bowyer, Hall, Kegelmeyer (b7) 2002; 16
Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal and unknown. In
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b50) 2011; 12
Radivojac, Chawla, Dunker, Obradovic (b53) 2004; 37
Kukar, M., & Kononenko, I. et al., (1998). Cost-sensitive learning with neural networks. In
Han, Wang, Mao (b18) 2005
(pp. 770–778).
Provost, Domingos (b51) 2003; 52
Krizhevsky, A., & Hinton, G. Learning multiple layers of features from tiny images.
Khan, S. H., Bennamoun, M., Sohel, F., & Togneri, R. Cost sensitive learning of deep feature representations from imbalanced data, arXiv preprint
Chawla, Lazarevic, Hall, Bowyer (b8) 2003
Guo, Viktor (b16) 2004; 6
Jaccard, Rogers, Morton, Griffin (b24) 2016
LeCun, Boser, Denker, Henderson, Howard, Hubbard (b40) 1989; 1
Koplowitz, Brown (b33) 1981; 13
Simon, M., Rodner, E., & Denzler, J. Imagenet pre-trained models with batch normalization, arXiv preprint
Chawla (b6) 2005
Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (b17) 2016
Drummond, C., & Holte, R. C. et al., (2009). C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In
Krizhevsky, Sutskever, Hinton (b35) 2012
Richard, Lippmann (b55) 1991; 3
Lee, Cho (b42) 2006
Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale image recognition, arXiv preprint
(pp. 445–449).
Sohn, H., Worden, K., & Farrar, C. R. (2001). Novelty detection using auto-associative neural network. In
He, Garcia (b20) 2009; 21
Levi, G., & Hassner, T. (2015). Age and gender classification using convolutional neural networks. In
Russakovsky (10.1016/j.neunet.2018.07.011_b56) 2015; 115
Haixiang (10.1016/j.neunet.2018.07.011_b17) 2016
Radivojac (10.1016/j.neunet.2018.07.011_b53) 2004; 37
10.1016/j.neunet.2018.07.011_b23
10.1016/j.neunet.2018.07.011_b22
Jia (10.1016/j.neunet.2018.07.011_b29) 2014
10.1016/j.neunet.2018.07.011_b61
Jo (10.1016/j.neunet.2018.07.011_b30) 2004; 6
10.1016/j.neunet.2018.07.011_b60
Krizhevsky (10.1016/j.neunet.2018.07.011_b35) 2012
10.1016/j.neunet.2018.07.011_b62
Barandela (10.1016/j.neunet.2018.07.011_b1) 2003
LeCun (10.1016/j.neunet.2018.07.011_b40) 1989; 1
10.1016/j.neunet.2018.07.011_b27
Beijbom (10.1016/j.neunet.2018.07.011_b2) 2012
Janowczyk (10.1016/j.neunet.2018.07.011_b25) 2016; 7
Japkowicz (10.1016/j.neunet.2018.07.011_b26) 2000; 12
Han (10.1016/j.neunet.2018.07.011_b18) 2005
Koplowitz (10.1016/j.neunet.2018.07.011_b33) 1981; 13
Chawla (10.1016/j.neunet.2018.07.011_b7) 2002; 16
10.1016/j.neunet.2018.07.011_b10
10.1016/j.neunet.2018.07.011_b12
Wang (10.1016/j.neunet.2018.07.011_b64) 2014; 20
He (10.1016/j.neunet.2018.07.011_b21) 2015
Kubat (10.1016/j.neunet.2018.07.011_b36) 1998; 30
Japkowicz (10.1016/j.neunet.2018.07.011_b28) 2002; 6
He (10.1016/j.neunet.2018.07.011_b20) 2009; 21
10.1016/j.neunet.2018.07.011_b58
10.1016/j.neunet.2018.07.011_b13
Richard (10.1016/j.neunet.2018.07.011_b55) 1991; 3
Chawla (10.1016/j.neunet.2018.07.011_b6) 2005
10.1016/j.neunet.2018.07.011_b15
10.1016/j.neunet.2018.07.011_b59
Bradley (10.1016/j.neunet.2018.07.011_b3) 1997; 30
Raj (10.1016/j.neunet.2018.07.011_b54) 2016
Jaccard (10.1016/j.neunet.2018.07.011_b24) 2016
Pedregosa (10.1016/j.neunet.2018.07.011_b50) 2011; 12
10.1016/j.neunet.2018.07.011_b43
10.1016/j.neunet.2018.07.011_b45
10.1016/j.neunet.2018.07.011_b44
Elkan (10.1016/j.neunet.2018.07.011_b11) 2001
Mazurowski (10.1016/j.neunet.2018.07.011_b49) 2008; 21
Zeiler (10.1016/j.neunet.2018.07.011_b66) 2014
Mac Namee (10.1016/j.neunet.2018.07.011_b47) 2002; 24
Lawrence (10.1016/j.neunet.2018.07.011_b39) 1998
10.1016/j.neunet.2018.07.011_b48
10.1016/j.neunet.2018.07.011_b9
Wang (10.1016/j.neunet.2018.07.011_b63) 2016
Zhou (10.1016/j.neunet.2018.07.011_b67) 2006; 18
Provost (10.1016/j.neunet.2018.07.011_b51) 2003; 52
Chawla (10.1016/j.neunet.2018.07.011_b8) 2003
Grzymala-Busse (10.1016/j.neunet.2018.07.011_b14) 2004
LeCun (10.1016/j.neunet.2018.07.011_b41) 1998
10.1016/j.neunet.2018.07.011_b32
Guo (10.1016/j.neunet.2018.07.011_b16) 2004; 6
Johnson (10.1016/j.neunet.2018.07.011_b31) 2013; 34
Xiao (10.1016/j.neunet.2018.07.011_b65) 2010
10.1016/j.neunet.2018.07.011_b34
Lee (10.1016/j.neunet.2018.07.011_b42) 2006
Liu (10.1016/j.neunet.2018.07.011_b46) 2009; 39
Havaei (10.1016/j.neunet.2018.07.011_b19) 2017; 35
Qian (10.1016/j.neunet.2018.07.011_b52) 1999; 12
Shen (10.1016/j.neunet.2018.07.011_b57) 2016
10.1016/j.neunet.2018.07.011_b5
10.1016/j.neunet.2018.07.011_b38
10.1016/j.neunet.2018.07.011_b4
10.1016/j.neunet.2018.07.011_b37
References_xml – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
– start-page: 3485
  year: 2010
  end-page: 3492
  ident: b65
  article-title: Sun database: Large-scale scene recognition from abbey to zoo
  publication-title: 2010 IEEE conference on computer vision and pattern recognition
– reference: (pp. 1319–1327).
– reference: (pp. 179–186), Nashville, USA.
– reference: (pp. 445–449).
– reference: Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale image recognition, arXiv preprint
– reference: Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal and unknown. In
– volume: 18
  start-page: 63
  year: 2006
  end-page: 77
  ident: b67
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 519–524).
– volume: 6
  start-page: 429
  year: 2002
  end-page: 449
  ident: b28
  article-title: The class imbalance problem: A systematic study
  publication-title: Intelligent Data Analysis
– reference: Kubat, M., & Matwin, S. et al., (1997). Addressing the curse of imbalanced training sets: one-sided selection. In
– reference: Krizhevsky, A., & Hinton, G. Learning multiple layers of features from tiny images.
– volume: 52
  start-page: 199
  year: 2003
  end-page: 215
  ident: b51
  article-title: Tree induction for probability-based ranking
  publication-title: Machine Learning
– reference: Khan, S. H., Bennamoun, M., Sohel, F., & Togneri, R. Cost sensitive learning of deep feature representations from imbalanced data, arXiv preprint
– volume: 20
  start-page: 15
  year: 2014
  end-page: 24
  ident: b64
  article-title: A hybrid classifier combining smote with pso to estimate 5-year survivability of breast cancer patients
  publication-title: Applied Soft Computing
– volume: 30
  start-page: 195
  year: 1998
  end-page: 215
  ident: b36
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Machine Learning
– start-page: 467
  year: 2016
  end-page: 482
  ident: b57
  article-title: Relay backpropagation for effective learning of deep convolutional neural networks
  publication-title: European conference on computer vision
– reference: (pp. 34–42).
– start-page: 853
  year: 2005
  end-page: 867
  ident: b6
  article-title: Data mining for imbalanced datasets: An overview
  publication-title: Data mining and knowledge discovery handbook
– start-page: 973
  year: 2001
  end-page: 978
  ident: b11
  article-title: The foundations of cost-sensitive learning
  publication-title: International joint conference on artificial intelligence, Vol. 17
– volume: 37
  start-page: 224
  year: 2004
  end-page: 239
  ident: b53
  article-title: Classification and knowledge discovery in protein databases
  publication-title: Journal of Biomedical Informatics
– reference: (pp. 249–256).
– reference: (pp. 1–8).
– reference: Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., & Shuai, B. et al., Recent advances in convolutional neural networks, arXiv preprint
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b7
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– reference: Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint
– start-page: 1
  year: 2016
  end-page: 17
  ident: b24
  article-title: Detection of concealed cars in complex cargo X-ray imagery using deep learning
  publication-title: Journal of X-Ray Science and Technology
– volume: 12
  start-page: 145
  year: 1999
  end-page: 151
  ident: b52
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Networks
– reference: Ling, C. X., Huang, J., & Zhang, H. (2003). Auc: a statistically consistent and more discriminating measure than accuracy. In
– volume: 3
  start-page: 461
  year: 1991
  end-page: 483
  ident: b55
  article-title: Neural network classifiers estimate Bayesian a posteriori probabilities
  publication-title: Neural Computation
– reference: Cardie, C., & Howe, N. (1997). Improving minority class prediction using case-specific feature weights. In
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: b40
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Computation
– reference: Levi, G., & Hassner, T. (2015). Age and gender classification using convolutional neural networks. In
– volume: 39
  start-page: 539
  year: 2009
  end-page: 550
  ident: b46
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– start-page: 1170
  year: 2012
  end-page: 1177
  ident: b2
  article-title: Automated annotation of coral reef survey images
  publication-title: 2012 IEEE conference on computer vision and pattern recognition
– volume: 7
  year: 2016
  ident: b25
  article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
  publication-title: Journal of Pathology Informatics
– start-page: 543
  year: 2004
  end-page: 553
  ident: b14
  article-title: An approach to imbalanced data sets based on changing rule strength
  publication-title: Rough-neural computing
– reference: Kukar, M., & Kononenko, I. et al., (1998). Cost-sensitive learning with neural networks. In
– volume: 13
  start-page: 251
  year: 1981
  end-page: 255
  ident: b33
  article-title: On the relation of performance to editing in nearest neighbor rules
  publication-title: Pattern Recognition
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: b3
  article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognition
– volume: 6
  start-page: 40
  year: 2004
  end-page: 49
  ident: b30
  article-title: Class imbalances versus small disjuncts
  publication-title: ACM Sigkdd Explorations Newsletter
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b21
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 107
  year: 2003
  end-page: 119
  ident: b8
  article-title: Smoteboost: Improving prediction of the minority class in boosting
  publication-title: European conference on principles of data mining and knowledge discovery
– reference: Sohn, H., Worden, K., & Farrar, C. R. (2001). Novelty detection using auto-associative neural network. In
– reference: Japkowicz, N., Myers, C., & Gluck, M. et al., (1995). A novelty detection approach to classification. In
– reference: Simon, M., Rodner, E., & Denzler, J. Imagenet pre-trained models with batch normalization, arXiv preprint
– start-page: 878
  year: 2005
  end-page: 887
  ident: b18
  article-title: Borderline-smote: a new over-sampling method in imbalanced data sets learning
  publication-title: Advances in Intelligent Computing
– start-page: 21
  year: 2006
  end-page: 30
  ident: b42
  article-title: The novelty detection approach for different degrees of class imbalance
  publication-title: Neural information processing
– start-page: 4368
  year: 2016
  end-page: 4374
  ident: b63
  article-title: Training deep neural networks on imbalanced data sets
  publication-title: 2016 international joint conference on neural networks
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b56
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
– reference: Chung, Y. A., Lin, H. T., & Yang, S. W. Cost-aware pre-training for multiclass cost-sensitive deep learning, arXiv preprint
– reference: Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In
– reference: (pp. 518–523).
– reference: (pp. 164–168).
– volume: 12
  start-page: 531
  year: 2000
  end-page: 545
  ident: b26
  article-title: Nonlinear autoassociation is not equivalent to pca
  publication-title: Neural Computation
– start-page: 675
  year: 2014
  end-page: 678
  ident: b29
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM international conference on multimedia
– reference: (pp. 770–778).
– start-page: 299
  year: 1998
  end-page: 313
  ident: b39
  article-title: Neural network classification and prior class probabilities
  publication-title: Neural networks: Tricks of the trade
– reference: Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions. In
– volume: 21
  start-page: 427
  year: 2008
  end-page: 436
  ident: b49
  article-title: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
  publication-title: Neural Networks
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b35
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: b19
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Medical Image Analysis
– start-page: 818
  year: 2014
  end-page: 833
  ident: b66
  article-title: Visualizing and understanding convolutional networks
  publication-title: European conference on computer vision
– year: 1998
  ident: b41
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– reference: Chan, P. K., & Stolfo, S. J. (1998). Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection. In
– reference: .
– volume: 24
  start-page: 51
  year: 2002
  end-page: 70
  ident: b47
  article-title: The problem of bias in training data in regression problems in medical decision support
  publication-title: Artificial Intelligence in Medicine
– start-page: 150
  year: 2016
  end-page: 162
  ident: b54
  article-title: Towards effective classification of imbalanced data with convolutional neural networks
  publication-title: IAPR workshop on artificial neural networks in pattern recognition
– reference: Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. Striving for simplicity: The all convolutional net, arXiv preprint
– reference: (pp. 57–65).
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b20
  article-title: Learning from imbalanced data
  publication-title: The IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 573–580), New York, NY.
– start-page: 424
  year: 2003
  end-page: 431
  ident: b1
  article-title: Restricted decontamination for the imbalanced training sample problem
  publication-title: Iberoamerican congress on pattern recognition
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b50
  article-title: Scikit-learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 30
  year: 2004
  end-page: 39
  ident: b16
  article-title: Learning from imbalanced data sets with boosting and data generation: the databoost-im approach
  publication-title: ACM Sigkdd Explorations Newsletter
– reference: Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., & Bengio, Y. (2013). Maxout networks. In
– volume: 34
  start-page: 6969
  year: 2013
  end-page: 6982
  ident: b31
  article-title: A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees
  publication-title: International Journal of Remote Sensing
– reference: Van Horn, G., Mac Aodha, O., Song, Y., Shepard, A., Adam, H., & Perona, P. et al., The inaturalist challenge 2017 dataset, arXiv preprint
– year: 2016
  ident: b17
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
– reference: (pp. 73–79).
– reference: Drummond, C., & Holte, R. C. et al., (2009). C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In
– volume: 34
  start-page: 6969
  issue: 20
  year: 2013
  ident: 10.1016/j.neunet.2018.07.011_b31
  article-title: A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2013.810825
– ident: 10.1016/j.neunet.2018.07.011_b34
– start-page: 107
  year: 2003
  ident: 10.1016/j.neunet.2018.07.011_b8
  article-title: Smoteboost: Improving prediction of the minority class in boosting
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.neunet.2018.07.011_b20
  article-title: Learning from imbalanced data
  publication-title: The IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.239
– volume: 3
  start-page: 461
  issue: 4
  year: 1991
  ident: 10.1016/j.neunet.2018.07.011_b55
  article-title: Neural network classifiers estimate Bayesian a posteriori probabilities
  publication-title: Neural Computation
  doi: 10.1162/neco.1991.3.4.461
– ident: 10.1016/j.neunet.2018.07.011_b15
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neunet.2018.07.011_b35
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1
  year: 2016
  ident: 10.1016/j.neunet.2018.07.011_b24
  article-title: Detection of concealed cars in complex cargo X-ray imagery using deep learning
  publication-title: Journal of X-Ray Science and Technology
– start-page: 3485
  year: 2010
  ident: 10.1016/j.neunet.2018.07.011_b65
  article-title: Sun database: Large-scale scene recognition from abbey to zoo
– ident: 10.1016/j.neunet.2018.07.011_b38
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.neunet.2018.07.011_b7
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– ident: 10.1016/j.neunet.2018.07.011_b22
  doi: 10.1109/CVPR.2016.90
– volume: 24
  start-page: 51
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2018.07.011_b47
  article-title: The problem of bias in training data in regression problems in medical decision support
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/S0933-3657(01)00092-6
– start-page: 424
  year: 2003
  ident: 10.1016/j.neunet.2018.07.011_b1
  article-title: Restricted decontamination for the imbalanced training sample problem
– start-page: 21
  year: 2006
  ident: 10.1016/j.neunet.2018.07.011_b42
  article-title: The novelty detection approach for different degrees of class imbalance
– ident: 10.1016/j.neunet.2018.07.011_b44
– volume: 37
  start-page: 224
  issue: 4
  year: 2004
  ident: 10.1016/j.neunet.2018.07.011_b53
  article-title: Classification and knowledge discovery in protein databases
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2004.07.008
– ident: 10.1016/j.neunet.2018.07.011_b48
– volume: 7
  year: 2016
  ident: 10.1016/j.neunet.2018.07.011_b25
  article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/2153-3539.186902
– volume: 18
  start-page: 63
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2018.07.011_b67
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.17
– ident: 10.1016/j.neunet.2018.07.011_b9
– start-page: 543
  year: 2004
  ident: 10.1016/j.neunet.2018.07.011_b14
  article-title: An approach to imbalanced data sets based on changing rule strength
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 10.1016/j.neunet.2018.07.011_b28
  article-title: The class imbalance problem: A systematic study
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6504
– ident: 10.1016/j.neunet.2018.07.011_b5
– ident: 10.1016/j.neunet.2018.07.011_b58
– start-page: 675
  year: 2014
  ident: 10.1016/j.neunet.2018.07.011_b29
  article-title: Caffe: Convolutional architecture for fast feature embedding
– ident: 10.1016/j.neunet.2018.07.011_b60
– start-page: 973
  year: 2001
  ident: 10.1016/j.neunet.2018.07.011_b11
  article-title: The foundations of cost-sensitive learning
– volume: 30
  start-page: 195
  issue: 2–3
  year: 1998
  ident: 10.1016/j.neunet.2018.07.011_b36
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Machine Learning
  doi: 10.1023/A:1007452223027
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2018.07.011_b46
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.2007853
– volume: 13
  start-page: 251
  issue: 3
  year: 1981
  ident: 10.1016/j.neunet.2018.07.011_b33
  article-title: On the relation of performance to editing in nearest neighbor rules
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(81)90102-3
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neunet.2018.07.011_b21
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– volume: 6
  start-page: 40
  issue: 1
  year: 2004
  ident: 10.1016/j.neunet.2018.07.011_b30
  article-title: Class imbalances versus small disjuncts
  publication-title: ACM Sigkdd Explorations Newsletter
  doi: 10.1145/1007730.1007737
– ident: 10.1016/j.neunet.2018.07.011_b37
– ident: 10.1016/j.neunet.2018.07.011_b12
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2018.07.011_b56
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 10.1016/j.neunet.2018.07.011_b50
  article-title: Scikit-learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– start-page: 150
  year: 2016
  ident: 10.1016/j.neunet.2018.07.011_b54
  article-title: Towards effective classification of imbalanced data with convolutional neural networks
– ident: 10.1016/j.neunet.2018.07.011_b4
– volume: 20
  start-page: 15
  year: 2014
  ident: 10.1016/j.neunet.2018.07.011_b64
  article-title: A hybrid classifier combining smote with pso to estimate 5-year survivability of breast cancer patients
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.09.014
– ident: 10.1016/j.neunet.2018.07.011_b59
– volume: 21
  start-page: 427
  issue: 2
  year: 2008
  ident: 10.1016/j.neunet.2018.07.011_b49
  article-title: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.12.031
– start-page: 4368
  year: 2016
  ident: 10.1016/j.neunet.2018.07.011_b63
  article-title: Training deep neural networks on imbalanced data sets
– ident: 10.1016/j.neunet.2018.07.011_b32
– ident: 10.1016/j.neunet.2018.07.011_b43
  doi: 10.1109/CVPRW.2015.7301352
– ident: 10.1016/j.neunet.2018.07.011_b13
– year: 2016
  ident: 10.1016/j.neunet.2018.07.011_b17
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2018.07.011_b40
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.4.541
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 10.1016/j.neunet.2018.07.011_b3
  article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(96)00142-2
– ident: 10.1016/j.neunet.2018.07.011_b27
– start-page: 299
  year: 1998
  ident: 10.1016/j.neunet.2018.07.011_b39
  article-title: Neural network classification and prior class probabilities
– ident: 10.1016/j.neunet.2018.07.011_b61
– ident: 10.1016/j.neunet.2018.07.011_b23
– year: 1998
  ident: 10.1016/j.neunet.2018.07.011_b41
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 52
  start-page: 199
  issue: 3
  year: 2003
  ident: 10.1016/j.neunet.2018.07.011_b51
  article-title: Tree induction for probability-based ranking
  publication-title: Machine Learning
  doi: 10.1023/A:1024099825458
– ident: 10.1016/j.neunet.2018.07.011_b10
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: 10.1016/j.neunet.2018.07.011_b52
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(98)00116-6
– start-page: 467
  year: 2016
  ident: 10.1016/j.neunet.2018.07.011_b57
  article-title: Relay backpropagation for effective learning of deep convolutional neural networks
– volume: 35
  start-page: 18
  year: 2017
  ident: 10.1016/j.neunet.2018.07.011_b19
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.05.004
– start-page: 853
  year: 2005
  ident: 10.1016/j.neunet.2018.07.011_b6
  article-title: Data mining for imbalanced datasets: An overview
– volume: 6
  start-page: 30
  issue: 1
  year: 2004
  ident: 10.1016/j.neunet.2018.07.011_b16
  article-title: Learning from imbalanced data sets with boosting and data generation: the databoost-im approach
  publication-title: ACM Sigkdd Explorations Newsletter
  doi: 10.1145/1007730.1007736
– ident: 10.1016/j.neunet.2018.07.011_b45
– start-page: 1170
  year: 2012
  ident: 10.1016/j.neunet.2018.07.011_b2
  article-title: Automated annotation of coral reef survey images
– volume: 12
  start-page: 531
  issue: 3
  year: 2000
  ident: 10.1016/j.neunet.2018.07.011_b26
  article-title: Nonlinear autoassociation is not equivalent to pca
  publication-title: Neural Computation
  doi: 10.1162/089976600300015691
– start-page: 878
  year: 2005
  ident: 10.1016/j.neunet.2018.07.011_b18
  article-title: Borderline-smote: a new over-sampling method in imbalanced data sets learning
  publication-title: Advances in Intelligent Computing
  doi: 10.1007/11538059_91
– start-page: 818
  year: 2014
  ident: 10.1016/j.neunet.2018.07.011_b66
  article-title: Visualizing and understanding convolutional networks
– ident: 10.1016/j.neunet.2018.07.011_b62
SSID ssj0006843
Score 2.708161
Snippet In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Class imbalance
Convolutional neural networks
Deep learning
Humans
Image classification
Machine Learning - trends
Neural Networks (Computer)
Probability
ROC Curve
Title A systematic study of the class imbalance problem in convolutional neural networks
URI https://dx.doi.org/10.1016/j.neunet.2018.07.011
https://www.ncbi.nlm.nih.gov/pubmed/30092410
https://www.proquest.com/docview/2087593601
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235561
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuEC5b0FKiMhbmad-JU9rgrVAqIHKKg3a21PaHhkq3b3ym9nxnG2AoQqcYqSjBVrPPbMxJ-_Yey5cTKi1zYiJZ2ErmEmQgpJVCHAUppkG6D_He-P7eKTfntqTnfY4XgWhmCVZe0f1vS8Wpcn06LN6XnXTT9KdLUWA56KKKyqfKJca0dW_vLnFczDNgNyDoUFSY_H5zLGq4dND4SorJpM4VlV_3JPf4eff3CLZn90tMdulUCSz4e-3mE70N9lt8ciDbzM2Xvsw5xfsTXzzCbLVy3HuI9Hipx59yMQvDECL8VleNdzAqMXo8SPEOllvmTI-OV9dnL0-uRwIUohBRHRn6-F0a0ysMTkIwYbG2NbO0umVbZFjw2w1AqaFrQLmOxFC3UNrpWtSTXt2qWkHrDdftXDI8adblKSCZM2l_QsyRAVOAwxXaNaC3I2YWpUn4-FZJxqXXz3I5rsqx-U7knpXjqPSp8wsW11PpBsXCPvxpHxvxmLRz9wTctn40B6nEe0ObLsYbW5RCHM3MigUObhMMLbvihiptKVnLAXw5Bv3xA596vu89yvLr74b-szXyuqN7r_3x18zG7S3QAXfMJ21xcbeIphzzocZLs-YDfmb94tjn8BzPcDTg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LBd9n5kTw0YdhMi23o4x6Bbka5tDls29CZEEtV5D6dok_8_0pYzbMNQYCcDlgQLJEVS1qePjL3WVgaM2lrEqKJQJUyFjz6KwntYSR1NDfS_43Rh5p_U-zN9tscOhrswBKvMvr_36Z23zm8mWZqTi6aZfJQYag0mPAVRWBV0o3yf2Kn0iO3Pjo7ni51DNnUPnsP-ggYMN-g6mFcL2xYIVFnUHYtnUfwrQv2dgf5BL9qFpMM77FbOJfmsn-5dtgftPXZ7qNPA87K9zz7M-C_CZt4RyvJ14pj68UDJM29-eEI4BuC5vgxvWk549GyX-BHiveweHWr86gFbHr5bHsxFrqUgAob0jdAqVRpWuP8I3oRam2SmUafKJAzaACtVQZ1AWY_7vWCgLMEmmXQs6eAuxuohG7XrFh4zblUdo4y4b7NRTaP0oQKLWaatq2RATsesGsTnQuYZp3IX390AKPvqeqE7ErqT1qHQx0zsRl30PBvX9LeDZtxv9uIwFFwz8tWgSIdLic5HVi2st1fYCTdvZFPY51Gv4d1cKiKnUoUcsze9ynctxM_9tvk8c-vLc_dt88WVFZUcffLfE3zJbsyXpyfu5Ghx_JTdpJYePfiMjTaXW3iOWdDGv8hW_hOm_wX_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+study+of+the+class+imbalance+problem+in+convolutional+neural+networks&rft.jtitle=Neural+networks&rft.au=Buda%2C+Mateusz&rft.au=Maki%2C+Atsuto&rft.au=Mazurowski%2C+Maciej+A.&rft.date=2018-10-01&rft.issn=0893-6080&rft.volume=106&rft.spage=249&rft.epage=259&rft_id=info:doi/10.1016%2Fj.neunet.2018.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2018_07_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon