The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient

Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 si...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 9; no. 6; p. 1422
Main Authors Happé, Chris, Kurakula, Kondababu, Sun, Xiao-Qing, da Silva Goncalves Bos, Denielli, Rol, Nina, Guignabert, Christophe, Tu, Ly, Schalij, Ingrid, Wiesmeijer, Karien C., Tura-Ceide, Olga, Vonk Noordegraaf, Anton, de Man, Frances S., Bogaard, Harm Jan, Goumans, Marie-José
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.06.2020
MDPI
Subjects
Online AccessGet full text
ISSN2073-4409
2073-4409
DOI10.3390/cells9061422

Cover

Abstract Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen–Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
AbstractList Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen–Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen–Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen-Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen-Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen-Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
Author Tura-Ceide, Olga
de Man, Frances S.
Kurakula, Kondababu
Bogaard, Harm Jan
Happé, Chris
da Silva Goncalves Bos, Denielli
Guignabert, Christophe
Schalij, Ingrid
Goumans, Marie-José
Wiesmeijer, Karien C.
Vonk Noordegraaf, Anton
Sun, Xiao-Qing
Rol, Nina
Tu, Ly
AuthorAffiliation 3 INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; christophe.guignabert@inserm.fr (C.G.); lyieng@gmail.com (L.T.)
7 Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Catalonia, Spain
4 Université Paris-Saclay, School of Medicine, 94270 Le Kremlin-Bicêtre, France
1 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands; c.happe@amsterdamumc.nl (C.H.); x.sun@amsterdamumc.nl (X.-Q.S.); dsgbos@gmail.com (D.d.S.G.B.); n.rol@amsterdamumc.nl (N.R.); i.schalij@amsterdamumc.nl (I.S.); a.vonk@amsterdamumc.nl (A.V.N.); fs.deman@amsterdamumc.nl (F.S.d.M.); hj.bogaard@amsterdamumc.nl (H.J.B.)
5 Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spai
AuthorAffiliation_xml – name: 3 INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; christophe.guignabert@inserm.fr (C.G.); lyieng@gmail.com (L.T.)
– name: 7 Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Catalonia, Spain
– name: 1 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands; c.happe@amsterdamumc.nl (C.H.); x.sun@amsterdamumc.nl (X.-Q.S.); dsgbos@gmail.com (D.d.S.G.B.); n.rol@amsterdamumc.nl (N.R.); i.schalij@amsterdamumc.nl (I.S.); a.vonk@amsterdamumc.nl (A.V.N.); fs.deman@amsterdamumc.nl (F.S.d.M.); hj.bogaard@amsterdamumc.nl (H.J.B.)
– name: 6 Biomedical Research Networking center on Respiratory diseases (CIBERES), 28029 Madrid, Spain
– name: 5 Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; TURA@clinic.cat
– name: 2 Laboratory for Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; k.b.kurakula@lumc.nl (K.K.); C.C.Wiesmeijer@lumc.nl (K.C.W.)
– name: 4 Université Paris-Saclay, School of Medicine, 94270 Le Kremlin-Bicêtre, France
Author_xml – sequence: 1
  givenname: Chris
  surname: Happé
  fullname: Happé, Chris
– sequence: 2
  givenname: Kondababu
  surname: Kurakula
  fullname: Kurakula, Kondababu
– sequence: 3
  givenname: Xiao-Qing
  orcidid: 0000-0003-1914-1500
  surname: Sun
  fullname: Sun, Xiao-Qing
– sequence: 4
  givenname: Denielli
  orcidid: 0000-0001-9213-5276
  surname: da Silva Goncalves Bos
  fullname: da Silva Goncalves Bos, Denielli
– sequence: 5
  givenname: Nina
  surname: Rol
  fullname: Rol, Nina
– sequence: 6
  givenname: Christophe
  orcidid: 0000-0002-8545-4452
  surname: Guignabert
  fullname: Guignabert, Christophe
– sequence: 7
  givenname: Ly
  orcidid: 0000-0003-2336-5099
  surname: Tu
  fullname: Tu, Ly
– sequence: 8
  givenname: Ingrid
  surname: Schalij
  fullname: Schalij, Ingrid
– sequence: 9
  givenname: Karien C.
  surname: Wiesmeijer
  fullname: Wiesmeijer, Karien C.
– sequence: 10
  givenname: Olga
  surname: Tura-Ceide
  fullname: Tura-Ceide, Olga
– sequence: 11
  givenname: Anton
  surname: Vonk Noordegraaf
  fullname: Vonk Noordegraaf, Anton
– sequence: 12
  givenname: Frances S.
  surname: de Man
  fullname: de Man, Frances S.
– sequence: 13
  givenname: Harm Jan
  orcidid: 0000-0001-5371-0346
  surname: Bogaard
  fullname: Bogaard, Harm Jan
– sequence: 14
  givenname: Marie-José
  orcidid: 0000-0001-9344-6746
  surname: Goumans
  fullname: Goumans, Marie-José
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32521690$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04526850$$DView record in HAL
BookMark eNptkk1vEzEQhi1UREvpjTNaiQtIBPy13nUPSKECUikVESriaHntSdfRxg72bqX8e7xJi9IIH-zR-J1nZjx-iU588IDQa4I_MibxJwNdlyQWhFP6DJ1RXLEJ51ieHNin6CKlFc6rJoLg8gU6ZbSkREh8hla3LRRfbhbFTzCw6UMsaOF8sRi6dfA6botp7CE63RWz7Qay7ZML_rL43YIvtLejEaHoM2Xq3TrrboKFvOvetJB2FwvdO_D9K_R8qbsEFw_nOfr17evt1Wwy__H9-mo6n5iS0H7CbA2YcWuplI3mFRe1rTDgBiRnQlZGisZWNdFCUoFLykhlKKeNsBU3jBB2jq73XBv0Sm1iripuVdBO7Rwh3ikde2c6UJiWdQNkacE0nGCo5VJDTgHADBCjM-vznrUZmjVYk9uIunsCfXrjXavuwr2qGK-lZBnwfg9oj8Jm07kafZiXVNQlvh8Lf_eQLIY_A6RerV0aJ6w9hCEpygmlhPJKZunbI-kqDNHnZ92pBBekHlVvDqv_l_9x_FlA9wITQ0oRlsq4Pk8rjM24ThGsxm-mDr9ZDvpwFPTI_a_8L1u20eQ
CitedBy_id crossref_primary_10_1007_s10456_021_09812_7
crossref_primary_10_3389_fmolb_2023_1204740
crossref_primary_10_3390_ijms22168600
crossref_primary_10_3389_fphar_2023_1125642
crossref_primary_10_3390_biomedicines9010057
crossref_primary_10_3390_ijms25094728
crossref_primary_10_3390_ijms24065850
crossref_primary_10_3389_fddsv_2022_1022971
crossref_primary_10_3390_cells9112363
crossref_primary_10_1093_cvr_cvad129
crossref_primary_10_1016_j_lfs_2021_120091
crossref_primary_10_1186_s13075_021_02678_6
crossref_primary_10_3390_ani14142072
crossref_primary_10_1038_s41440_020_00543_8
crossref_primary_10_1002_pul2_12231
crossref_primary_10_1038_s42003_023_05193_3
crossref_primary_10_1172_JCI152716
crossref_primary_10_1164_rccm_202006_2169OC
crossref_primary_10_3390_jcm13082444
crossref_primary_10_3390_cells10092306
crossref_primary_10_1016_j_ygeno_2020_11_021
crossref_primary_10_3390_cells10010084
crossref_primary_10_3390_cells12172200
crossref_primary_10_1038_s42003_021_02531_1
crossref_primary_10_3390_jpm13020366
crossref_primary_10_3389_fphar_2024_1369489
Cites_doi 10.1161/ATVBAHA.112.300121
10.1111/resp.12729
10.1164/rccm.202003-0473LE
10.1164/rccm.200311-1602OC
10.1136/jmg.2008.062703
10.7554/eLife.31756
10.1161/CIRCULATIONAHA.108.829713
10.1161/01.RES.0000166926.54293.68
10.1183/13993003.02449-2016
10.1152/ajplung.00023.2016
10.1093/hmg/11.13.1517
10.1186/s12890-016-0183-7
10.1164/rccm.200908-1284OC
10.1007/s00018-017-2510-4
10.1161/CIRCGENETICS.111.961888
10.1183/09031936.00204813
10.1136/jmg.37.10.741
10.1183/09031936.00183008
10.1093/hmg/dds073
10.1086/679704
10.1161/01.CIR.0000012754.72951.3D
10.1183/09031936.00187310
10.1113/expphysiol.2012.069104
10.1183/09031936.03.00038903
10.1152/ajplung.00309.2011
10.1152/ajplung.00309.2006
10.1161/CIRCRESAHA.111.300483
10.1164/rccm.201510-1955OC
10.1161/CIRCULATIONAHA.108.821504
10.1183/13993003.02400-2018
10.1016/j.jacc.2013.10.029
10.1101/cshperspect.a031989
10.1164/rccm.201412-2291OC
10.1186/s12863-016-0384-3
10.1038/nrcardio.2015.156
10.1164/rccm.201812-2275OC
10.1161/CIRCULATIONAHA.114.008777
10.1164/rccm.201408-1509OC
10.1165/rcmb.2013-0100OC
10.1093/emboj/21.7.1743
10.1038/nmeth.2019
10.1016/S2213-2600(15)00544-5
10.1096/fj.00-0343com
10.1172/JCI65592
10.1161/CIRCULATIONAHA.118.033744
10.1371/journal.pone.0100310
10.1136/thx.22.2.176
10.1155/2010/604615
10.1038/79226
10.1161/CIRCULATIONAHA.116.025390
10.1038/nm.3877
10.1093/hmg/ddt216
10.1177/0192623307311402
10.18632/oncotarget.21295
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
1XC
5PM
DOA
DOI 10.3390/cells9061422
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Databases
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Databases
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_0258be1fdecb410e89fae97cee3ce1ca
PMC7348993
oai_HAL_hal_04526850v1
32521690
10_3390_cells9061422
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Netherlands
GeographicLocations_xml – name: Netherlands
– name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
PUEGO
1XC
5PM
ID FETCH-LOGICAL-c512t-3d8e034dd299ba47468d70e0be943697c96bd781a6926052317c242b6d74c3113
IEDL.DBID M48
ISSN 2073-4409
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 18:13:34 EDT 2025
Fri Sep 12 12:30:42 EDT 2025
Thu Sep 04 20:24:01 EDT 2025
Fri Jul 25 12:14:42 EDT 2025
Mon Jul 21 05:48:50 EDT 2025
Tue Jul 01 01:06:04 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords animal models of pulmonary hypertension
BMPR2
BMP and TGF-β signaling
pulmonary arterial hypertension
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-3d8e034dd299ba47468d70e0be943697c96bd781a6926052317c242b6d74c3113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Both authors contributed equally.
ORCID 0000-0001-9344-6746
0000-0003-1914-1500
0000-0001-5371-0346
0000-0003-2336-5099
0000-0002-8545-4452
0000-0001-9213-5276
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells9061422
PMID 32521690
PQID 2412646189
PQPubID 2032536
ParticipantIDs doaj_primary_oai_doaj_org_article_0258be1fdecb410e89fae97cee3ce1ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7348993
hal_primary_oai_HAL_hal_04526850v1
proquest_miscellaneous_2412212479
proquest_journals_2412646189
pubmed_primary_32521690
crossref_citationtrail_10_3390_cells9061422
crossref_primary_10_3390_cells9061422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200608
PublicationDateYYYYMMDD 2020-06-08
PublicationDate_xml – month: 6
  year: 2020
  text: 20200608
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cells (Basel, Switzerland)
PublicationTitleAlternate Cells
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Goumans (ref_20) 2002; 21
Kurakula (ref_54) 2019; 200
ref_10
Dunmore (ref_47) 2013; 22
ref_53
Nasim (ref_16) 2012; 21
Soon (ref_17) 2015; 192
Orriols (ref_51) 2017; 74
Long (ref_37) 2009; 119
Upton (ref_18) 2013; 98
Kay (ref_26) 1967; 22
Perros (ref_19) 2003; 22
Kraskauskas (ref_41) 2015; 5
Austin (ref_5) 2012; 5
Long (ref_39) 2015; 21
Dewachter (ref_11) 2009; 34
Harper (ref_40) 2016; 21
Kurakula (ref_52) 2019; 54
Ramachandran (ref_23) 2018; 7
ref_21
Shintani (ref_8) 2009; 46
Yung (ref_49) 2016; 194
ref_28
Morrell (ref_15) 2016; 13
Atkinson (ref_13) 2002; 105
Ramos (ref_35) 2008; 36
Simonneau (ref_1) 2013; 62
Schalij (ref_29) 2014; 44
Schindelin (ref_32) 2012; 9
Richter (ref_14) 2004; 170
Kasahara (ref_27) 2001; 15
Handoko (ref_30) 2009; 120
Spiekerkoetter (ref_24) 2013; 123
McMurtry (ref_38) 2007; 292
Reynolds (ref_36) 2012; 39
Goumans (ref_44) 2018; 10
Drake (ref_9) 2013; 49
Lane (ref_3) 2000; 26
Yang (ref_48) 2013; 33
Lavoie (ref_12) 2014; 129
Yang (ref_34) 2005; 96
Rudarakanchana (ref_33) 2002; 11
Rol (ref_31) 2016; 310
Nickel (ref_25) 2015; 191
Thomson (ref_2) 2000; 37
Lee (ref_43) 2017; 8
Spiekerkoetter (ref_50) 2017; 50
Long (ref_46) 2013; 112
Evans (ref_4) 2016; 4
Davies (ref_22) 2012; 302
Girerd (ref_7) 2010; 181
Hwangbo (ref_42) 2017; 135
Hautefort (ref_45) 2019; 139
ref_6
References_xml – volume: 33
  start-page: 34
  year: 2013
  ident: ref_48
  article-title: Sildenafil Potentiates Bone Morphogenetic Protein Signaling in Pulmonary Arterial Smooth Muscle Cells and in Experimental Pulmonary Hypertension
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.112.300121
– volume: 21
  start-page: 727
  year: 2016
  ident: ref_40
  article-title: BMPR2 gene therapy for PAH acts via Smad and non-Smad signalling
  publication-title: Respirology
  doi: 10.1111/resp.12729
– ident: ref_53
  doi: 10.1164/rccm.202003-0473LE
– volume: 170
  start-page: 1340
  year: 2004
  ident: ref_14
  article-title: Impaired Transforming Growth Factor-β Signaling in Idiopathic Pulmonary Arterial Hypertension
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200311-1602OC
– volume: 46
  start-page: 331
  year: 2009
  ident: ref_8
  article-title: A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2008.062703
– volume: 7
  start-page: e31756
  year: 2018
  ident: ref_23
  article-title: TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition
  publication-title: eLife
  doi: 10.7554/eLife.31756
– volume: 120
  start-page: 42
  year: 2009
  ident: ref_30
  article-title: Opposite Effects of Training in Rats with Stable and Progressive Pulmonary Hypertension
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.829713
– volume: 96
  start-page: 1053
  year: 2005
  ident: ref_34
  article-title: Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation in Familial Pulmonary Arterial Hypertension
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000166926.54293.68
– volume: 50
  start-page: 1602449
  year: 2017
  ident: ref_50
  article-title: Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02449-2016
– volume: 310
  start-page: L1088
  year: 2016
  ident: ref_31
  article-title: Pneumonectomy combined with SU5416 induces severe pulmonary hypertension in rats
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00023.2016
– volume: 11
  start-page: 1517
  year: 2002
  ident: ref_33
  article-title: Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/11.13.1517
– ident: ref_6
  doi: 10.1186/s12890-016-0183-7
– volume: 181
  start-page: 851
  year: 2010
  ident: ref_7
  article-title: Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200908-1284OC
– volume: 74
  start-page: 2979
  year: 2017
  ident: ref_51
  article-title: BMP type II receptor as a therapeutic target in pulmonary arterial hypertension
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-017-2510-4
– volume: 5
  start-page: 336
  year: 2012
  ident: ref_5
  article-title: Whole Exome Sequencing to Identify a Novel Gene (Caveolin-1) Associated with Human Pulmonary Arterial HypertensionClinical Perspective
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.111.961888
– volume: 44
  start-page: 160
  year: 2014
  ident: ref_29
  article-title: SuHx rat model: Partly reversible pulmonary hypertension and progressive intima obstruction
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00204813
– volume: 37
  start-page: 741
  year: 2000
  ident: ref_2
  article-title: Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.37.10.741
– volume: 34
  start-page: 1100
  year: 2009
  ident: ref_11
  article-title: Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00183008
– volume: 21
  start-page: 2548
  year: 2012
  ident: ref_16
  article-title: BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFβ-TAK1-MAPK pathways in PAH
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds073
– volume: 5
  start-page: 101
  year: 2015
  ident: ref_41
  article-title: Vascular endothelial growth factor receptor 3 signaling contributes to angioobliterative pulmonary hypertension
  publication-title: Pulm. Circ.
  doi: 10.1086/679704
– volume: 105
  start-page: 1672
  year: 2002
  ident: ref_13
  article-title: Primary Pulmonary Hypertension Is Associated with Reduced Pulmonary Vascular Expression of Type II Bone Morphogenetic Protein Receptor
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000012754.72951.3D
– volume: 39
  start-page: 329
  year: 2012
  ident: ref_36
  article-title: Targeted gene delivery of BMPR2 attenuates pulmonary hypertension
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00187310
– volume: 98
  start-page: 1262
  year: 2013
  ident: ref_18
  article-title: The transforming growth factor-β–bone morphogenetic protein type signalling pathway in pulmonary vascular homeostasis and disease
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2012.069104
– volume: 22
  start-page: 358
  year: 2003
  ident: ref_19
  article-title: Inflammation in pulmonary arterial hypertension
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.03.00038903
– volume: 302
  start-page: L604
  year: 2012
  ident: ref_22
  article-title: BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: Role of proinflammatory cytokines
  publication-title: Am. J. Physiol.-Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00309.2011
– volume: 292
  start-page: L872
  year: 2007
  ident: ref_38
  article-title: Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00309.2006
– volume: 112
  start-page: 1159
  year: 2013
  ident: ref_46
  article-title: Chloroquine Prevents Progression of Experimental Pulmonary Hypertension via Inhibition of Autophagy and Lysosomal Bmpr-II Degradation
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.300483
– volume: 194
  start-page: 1140
  year: 2016
  ident: ref_49
  article-title: A Selective TGFβ Ligand Trap Attenuates Pulmonary Hypertension
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201510-1955OC
– volume: 119
  start-page: 566
  year: 2009
  ident: ref_37
  article-title: Altered Bone Morphogenetic Protein and Transforming Growth Factor- Signaling in Rat Models of Pulmonary Hypertension: Potential for Activin Receptor-Like Kinase-5 Inhibition in Prevention and Progression of Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.821504
– volume: 54
  start-page: 1802400
  year: 2019
  ident: ref_52
  article-title: Prevention of Progression of Pulmonary Hypertension by the Nur77 Agonist 6-mercaptopurine: Role of BMP Signalling
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02400-2018
– volume: 62
  start-page: D34
  year: 2013
  ident: ref_1
  article-title: Updated Clinical Classification of Pulmonary Hypertension
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.10.029
– volume: 10
  start-page: a031989
  year: 2018
  ident: ref_44
  article-title: Bone Morphogenetic Proteins in Vascular Homeostasis and Disease
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a031989
– volume: 191
  start-page: 1273
  year: 2015
  ident: ref_25
  article-title: Elafin Reverses Pulmonary Hypertension via Caveolin-1–Dependent Bone Morphogenetic Protein Signaling
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201412-2291OC
– ident: ref_10
  doi: 10.1186/s12863-016-0384-3
– volume: 13
  start-page: 106
  year: 2016
  ident: ref_15
  article-title: Targeting BMP signalling in cardiovascular disease and anaemia
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2015.156
– volume: 200
  start-page: 910
  year: 2019
  ident: ref_54
  article-title: Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201812-2275OC
– volume: 129
  start-page: 2125
  year: 2014
  ident: ref_12
  article-title: Proteomic Analysis Implicates Translationally Controlled Tumor Protein as a Novel Mediator of Occlusive Vascular Remodeling in Pulmonary Arterial Hypertension
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.008777
– volume: 192
  start-page: 859
  year: 2015
  ident: ref_17
  article-title: BMPR-II Deficiency Promotes Pulmonary Hypertension via Increased Inflammatory Cytokine Production
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201408-1509OC
– volume: 49
  start-page: 403
  year: 2013
  ident: ref_9
  article-title: Correction of Nonsense BMPR2 and SMAD9 Mutations by Ataluren in Pulmonary Arterial Hypertension
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2013-0100OC
– volume: 21
  start-page: 1743
  year: 2002
  ident: ref_20
  article-title: Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.7.1743
– volume: 9
  start-page: 676
  year: 2012
  ident: ref_32
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 4
  start-page: 129
  year: 2016
  ident: ref_4
  article-title: BMPR2 mutations and survival in pulmonary arterial hypertension: An individual participant data meta-analysis
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(15)00544-5
– volume: 15
  start-page: 427
  year: 2001
  ident: ref_27
  article-title: Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0343com
– volume: 123
  start-page: 3600
  year: 2013
  ident: ref_24
  article-title: FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI65592
– volume: 139
  start-page: 932
  year: 2019
  ident: ref_45
  article-title: Bmpr2 Mutant Rats Develop Pulmonary and Cardiac Characteristics of Pulmonary Arterial Hypertension
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.033744
– ident: ref_21
  doi: 10.1371/journal.pone.0100310
– volume: 22
  start-page: 176
  year: 1967
  ident: ref_26
  article-title: Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds
  publication-title: Thorax
  doi: 10.1136/thx.22.2.176
– ident: ref_28
  doi: 10.1155/2010/604615
– volume: 26
  start-page: 81
  year: 2000
  ident: ref_3
  article-title: Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension
  publication-title: Nat. Genet.
  doi: 10.1038/79226
– volume: 135
  start-page: 2288
  year: 2017
  ident: ref_42
  article-title: Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.025390
– volume: 21
  start-page: 777
  year: 2015
  ident: ref_39
  article-title: Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension
  publication-title: Nat. Med.
  doi: 10.1038/nm.3877
– volume: 22
  start-page: 3667
  year: 2013
  ident: ref_47
  article-title: The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt216
– volume: 36
  start-page: 311
  year: 2008
  ident: ref_35
  article-title: Smad Signaling in the Rat Model of Monocrotaline Pulmonary Hypertension
  publication-title: Toxicol. Pathol.
  doi: 10.1177/0192623307311402
– volume: 8
  start-page: 84610
  year: 2017
  ident: ref_43
  article-title: VEGFR3 as a novel modulator for PAH
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21295
SSID ssj0000816105
Score 2.2790945
Snippet Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension...
Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In...
Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1422
SubjectTerms Animal models
animal models of pulmonary hypertension
Animals
BMP and TGF-β signaling
BMPR2
Bone morphogenetic protein receptor type II
Bone Morphogenetic Protein Receptors, Type II - metabolism
Catheters
Disease Models, Animal
Experiments
Humans
Hypertension
Hypoxia
Immunofluorescence
Life Sciences
Localization
Lung - blood supply
Lung - metabolism
Lungs
Lysates
Male
Models, Biological
Monocrotaline
Mutation
Patients
Phosphorylation
Proteins
pulmonary arterial hypertension
Pulmonary Arterial Hypertension - metabolism
Pulmonary arteries
Pulmonary hypertension
Rats, Wistar
Smad protein
Smad Proteins - metabolism
Studies
Transforming growth factor-b
Ventilators
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifls9JYo-SbmmSfPh2554LOLJPnhwb6VpZrmVu-yxH8L9984kvWWriC--lNKZtiEzyfwmDL9h7J32pnEenReMDqUSRpdOdlTjLtRcGowSqYvC6Tc9PVNfzpvzvVZfVBOW6YHzxB1hTLYexDxA75WowLp5B87g3i57EH2CRpWr9pKptAdbRDJVkyvdJeb1R3QOvnaU_9T1KAYlqn6MLBdUCPknyvy9WHIv-pw8YPcH2MgnebgP2R2Ij9jd3Ejy5jH7gdbmx6czjigQrjGN5jVfRD7bXqKXdasbejG5Gp9i3rlKVevL-JHjVhx5FwPdrIAjGOSTuLhCPeqRhteOjLpOgllmYH3Czk4-f_80LYcuCmWPwXxTymChkioEDDy-U0ZpG0wFlQenpMaZdNoHY0WnHeU2iPdMj3Hb62BUL4WQT9lBXEZ4zjiiL12DggYap1DsCJyp3tS9AleHrmAfbue17QeKcep0cdliqkFWaPetULD3O-3rTK3xF71jMtFOhwix0wN0k3Zwk_ZfblKwt2jg0Temk68tPSNSeW2b6qco2OGt_dthKa9bhDgIGrWwrmBvdmJchDTGLsJym3UQAyiDOs-yu-x-JWtESNpVBTMjRxqNZSyJi4tE9E3MQ4gfX_yPCXjJ7tV0VEAHSPaQHWxWW3iFeGrjX6el8wsT8h44
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Databases
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgExIviN8EBjIInlC0OHbsmBfUok0VYlOFmLS3KLGvrGg4JW2R9t9zl6RhAcFLVcXX9pI7-_vuerpj7LWuTGYrdF4w2sdKGB1bWVKNu1ALaRAl2ikKJ6d6dqY-nmfnfcJt3ZdV7s7E9qD2taMc-SEiDWK3Frl9v_oR09Qo-ne1H6Fxk-3jEZyjn-9Pj07nn4csC42VQAbRVbxLjO8PKR--thQHpekIi9qW_YgwF1QQ-Tfb_LNo8hoKHd9ld3r6yCedve-xGxDus1vdQMmrB-wbWp1PT-Yc2SCsMJzmKV8GPt9eovplc0UfbF2OzzD-bNrq9Tq843gkB14GT28a4EgK-SQsv6MczUrD15KMu24X5l0n1ofs7Pjoy4dZ3E9TiB2C-iaWPodEKu8RgKpSGaVzbxJIKrBKamuc1ZU3uSi1pRgHeZ9xiN-V9kY5KYR8xPZCHeAJ48jCdAoKMsiswmVLJE05kzoFNvVlxN7unmvh-lbjNPHissCQg6xQXLdCxN4M0quuxcY_5KZkokGGGmO3F-rma9HvswIpXF6BWHhwlRIJ5HZRAt4cgHQgHKr2Cg08-o7Z5FNB16i5vM6z5KeI2MHO_kW_pdfFbweM2MthGTcj6VgGqLedDDqiMijzuHOX4adkikxJ2yRiZuRII13GK2F50Tb8pg5EyCOf_l-tZ-x2SskAShHlB2xv02zhOTKmTfWi3xa_ALlQFMo
  priority: 102
  providerName: ProQuest
Title The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient
URI https://www.ncbi.nlm.nih.gov/pubmed/32521690
https://www.proquest.com/docview/2412646189
https://www.proquest.com/docview/2412212479
https://hal.science/hal-04526850
https://pubmed.ncbi.nlm.nih.gov/PMC7348993
https://doaj.org/article/0258be1fdecb410e89fae97cee3ce1ca
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9NAEF6OOwRfxN9Gz7KKPkk0m2x2s4JIK3cUsUcRC_cWkt2pV6nbM23F_vfObNJy9RR8KSU7TbaZb3e-bxlmGHuhap2bGsELWrlYCq1ik1WU4y7kNNMYJUIXhdGZGk7kx_P8_IBtu412L3D5V2lH_aQmzfz1rx-b97jg35HiRMn-ho64l4akTYqb8RHGJEUybNQR_bAnF8hsQj5jipiOJaqaNgv-2g324lMo449R54KSJK8z0D8TKa9EptPb7FZHKXm_xcAddgD-LrvRNpnc3GPfEAl8MBpzZIhwiRKbp3zm-Xg9RwRWzYZ-GGDIh6hJm5DRvvBvOW7Tnlfe0ZcGOBJF3vez72hH_dPwsyKHL8PAuK3Oep9NTk--fBjGXYeF2GKgX8WZKyDJpHMYlOpKaqkKpxNIajAyU0Zbo2qnC1EpQ7oHuaC2GNNr5bS0mRDZA3boFx4eMY7MTKUgIYfcSBw2RNyk1amVYFJXRezV9r2Wtis_Tl0w5iXKEPJCedULEXu5s75sy278w25ALtrZULHscGHRfC27tVcirStqEFMHtpYigcJMK8A_B5BZEBan9hwdvHePYf9TSdeo4Lwq8uSniNjx1v_lFqUlQg0JpRKFidiz3TAuUJpj5WGxbm2QH0iNNg9buOwelaXInpRJIqb3gLQ3l_0RP7sIRcCpKhFyy8f_8dwn7GZKpwR0dlQcs8NVs4anSKVWdY8dDU7Oxp974SiiF9bMb6QTHK4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CAwxiTyhaErt2jIRQC5s61lYV2qS9ZYl9ZUUjLf0A9Z_ib-QuScMCgre9VFV8TV3f2b_fXS93jL1SmW6bDI0XtHK-DLXyjUgpxz2UY6ERJYouCoOh6p3Ij6ft0y32c_MsDKVVbs7E4qB2U0sx8j1EGsRuFcbm3eybT12j6N_VTQuN0iyOYP0DXbbF28MPqN_dKDrYP37f86uuAr5FcFv6wsUQCOkcHsRZKrVUsdMBBBkYKZTR1qjM6ThMlSGuj_xHW8SxTDktrQhDgfe9xrYlPdHaYtvd_eHoUx3VoTYWyFjKDHshTLBH8feFIb8rihrYV7QIQEQ7pwTMv9ntn0mal1Dv4Da7VdFV3int6w7bgvwuu142sFzfY1_Qynh3MOLIPmGG7juP-CTno9UFLlc6X9MHCxPnPfR350W2_DR_wxECcp7mjt7MgSMJ5Z188hXlqDcbvqZkTItiYFRWfr3PTq5knR-wVj7N4RHjyPpUBBLa0DYShw2RQml1ZCWYyKUee71Z18RWpc2pw8ZFgi4OaSG5rAWP7dbSs7Kkxz_kuqSiWoYKcRcXpvPPSbWvE6SMcQbh2IHNZBhAbMYp4I8DEBZCi1N7iQpu3KPX6Sd0jYrZq7gdfA89trPRf1IdIYvkt8F77EU9jJuf5pjmMF2VMsg9pEaZh6W51F8lImRmygQe0w1DasylOZJPzosC41TxCHnr4_9P6zm70Tse9JP-4fDoCbsZUSCCwlPxDmst5yt4imxtmT2rtghnZ1e9K38B6b5PSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8KAwxiTyhqEjt2jIRQy1Z1bKsqxKS9ZYl9ZUUjKf0A9V_jr-MuScMKgre9VFV8TVzf-X4_X693jL1SmY5MhsYLWjlPBlp5RqSU4x7IsdCIEmUXheOhGpzID6fR6Rb7uf4vDKVVrn1i6ahdYSlG3kGkQexWQWw64zotYrTXfzf95lEHKfqldd1OozKRQ1j9wOPb_O3BHup6Nwz7-5_eD7y6w4BnEegWnnAx-EI6h045S6WWKnbaBz8DI4Uy2hqVOR0HqTLE-5ELaYuYlimnpRVBIPC-19i2RlSULbbd2x-OPjYRHmppgeylyrYXwvgdisXPDZ3BwnADB8t2AYhu55SM-TfT_TNh8xIC9m-zWzV15d3K1u6wLcjvsutVM8vVPfYFLY73jkccmShM8SjPQz7J-Wh5gcuVzlb0wdLc-QDPvrMyc77I33CEg5ynuaM3M-BISHk3n3xFOerThq8pGda8HBhVVWDvs5MrWecHrJUXOTxiHBmgCkFCBJGROGyIIEqrQyvBhC5ts9frdU1sXeacum1cJHjcIS0kl7XQZruN9LQq7_EPuR6pqJGhotzlhWL2Oan3eIL0Mc4gGDuwmQx8iM04BfxyAMJCYHFqL1HBG_cYdI8SukaF7VUc-d-DNttZ6z-p3ck8-W38bfaiGUZHQHNMcyiWlQzyEKlR5mFlLs2jRIgsTRm_zfSGIW3MZXMkn5yXxcap-hFy2Mf_n9ZzdgN3Y3J0MDx8wm6GFJOgSFW8w1qL2RKeInFbZM_qHcLZ2VVvyl98QVN3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+BMP+Receptor+2+in+Pulmonary+Arterial+Hypertension%3A+When+and+Where+the+Animal+Model+Matches+the+Patient&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Happ%C3%A9%2C+Chris&rft.au=Kurakula%2C+Kondababu&rft.au=Sun%2C+Xiao-Qing&rft.au=da+Silva+Goncalves+Bos%2C+Denielli&rft.date=2020-06-08&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Fcells9061422&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon