Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading

The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 16; no. 10; pp. 1113 - 1120
Main Authors He, Yang, Jiang, Lin, Chen, Tianwu, Xu, Yaobin, Jia, Haiping, Yi, Ran, Xue, Dingchuan, Song, Miao, Genc, Arda, Bouchet-Marquis, Cedric, Pullan, Lee, Tessner, Ted, Yoo, Jinkyoung, Li, Xiaolin, Zhang, Ji-Guang, Zhang, Sulin, Wang, Chongmin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes. A correlated structural and chemical evolution of silicon and the solid–electrolyte interphase was unveiled in three dimensions by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy.
AbstractList The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Furthermore, corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.
The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si-SEI spatial configuration evolves from the classic 'core-shell' structure in the first few cycles to a 'plum-pudding' structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si-SEI spatial configuration evolves from the classic 'core-shell' structure in the first few cycles to a 'plum-pudding' structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.
The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si-SEI spatial configuration evolves from the classic 'core-shell' structure in the first few cycles to a 'plum-pudding' structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.
The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.A correlated structural and chemical evolution of silicon and the solid–electrolyte interphase was unveiled in three dimensions by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy.
The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes. A correlated structural and chemical evolution of silicon and the solid–electrolyte interphase was unveiled in three dimensions by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy.
Author Jiang, Lin
Yi, Ran
Song, Miao
Li, Xiaolin
Zhang, Sulin
Zhang, Ji-Guang
Jia, Haiping
Genc, Arda
Wang, Chongmin
Chen, Tianwu
Tessner, Ted
Xue, Dingchuan
Pullan, Lee
Xu, Yaobin
Bouchet-Marquis, Cedric
Yoo, Jinkyoung
He, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: He
  fullname: He, Yang
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Beijing University of Science and Technology
– sequence: 2
  givenname: Lin
  surname: Jiang
  fullname: Jiang, Lin
  organization: Materials and Structural Analysis Division, Thermo Fisher Scientific
– sequence: 3
  givenname: Tianwu
  orcidid: 0000-0002-3183-1507
  surname: Chen
  fullname: Chen, Tianwu
  organization: Department of Engineering Science and Mechanics, Pennsylvania State University
– sequence: 4
  givenname: Yaobin
  orcidid: 0000-0002-9945-3514
  surname: Xu
  fullname: Xu, Yaobin
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
– sequence: 5
  givenname: Haiping
  surname: Jia
  fullname: Jia, Haiping
  organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory
– sequence: 6
  givenname: Ran
  surname: Yi
  fullname: Yi, Ran
  organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory
– sequence: 7
  givenname: Dingchuan
  surname: Xue
  fullname: Xue, Dingchuan
  organization: Department of Engineering Science and Mechanics, Pennsylvania State University
– sequence: 8
  givenname: Miao
  surname: Song
  fullname: Song, Miao
  organization: Physical and Computational Science Directorate, Pacific Northwest National Laboratory
– sequence: 9
  givenname: Arda
  surname: Genc
  fullname: Genc, Arda
  organization: Materials and Structural Analysis Division, Thermo Fisher Scientific
– sequence: 10
  givenname: Cedric
  surname: Bouchet-Marquis
  fullname: Bouchet-Marquis, Cedric
  organization: Materials and Structural Analysis Division, Thermo Fisher Scientific
– sequence: 11
  givenname: Lee
  surname: Pullan
  fullname: Pullan, Lee
  organization: Materials and Structural Analysis Division, Thermo Fisher Scientific
– sequence: 12
  givenname: Ted
  surname: Tessner
  fullname: Tessner, Ted
  organization: Materials and Structural Analysis Division, Thermo Fisher Scientific
– sequence: 13
  givenname: Jinkyoung
  orcidid: 0000-0002-9578-6979
  surname: Yoo
  fullname: Yoo, Jinkyoung
  email: jyoo@lanl.gov
  organization: Center for Integrated Nanotechnologies, Los Alamos National Laboratory
– sequence: 14
  givenname: Xiaolin
  orcidid: 0000-0002-7728-0157
  surname: Li
  fullname: Li, Xiaolin
  email: xiaolin.li@pnnl.gov
  organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory
– sequence: 15
  givenname: Ji-Guang
  orcidid: 0000-0001-7343-4609
  surname: Zhang
  fullname: Zhang, Ji-Guang
  organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory
– sequence: 16
  givenname: Sulin
  orcidid: 0000-0003-4429-8235
  surname: Zhang
  fullname: Zhang, Sulin
  email: suz10@psu.edu
  organization: Department of Engineering Science and Mechanics, Pennsylvania State University
– sequence: 17
  givenname: Chongmin
  orcidid: 0000-0003-3327-0958
  surname: Wang
  fullname: Wang, Chongmin
  email: chongmin.wang@pnnl.gov
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34326526$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1833249$$D View this record in Osti.gov
BookMark eNp9kctuFDEQRS0URB7wAyxQCzZsGvxot91LFPGSIoEErC23XT3jqMceXJ5Es-Mf-EO-BCc9ASmLrMpSnVt1y_eUHMUUgZDnjL5hVOi32DHZy5Zy1lI6dKrVj8gJU51uhRjk0b-3VsfkFPGSUskH3j0hx6ITvJe8PyGbrzmtMiCGK2hWOV2XdZOmpqyhwTQH_-fXb5jBlZzmfYEmxAJ5u7YITUnXNnu8Rb-FxsbkD_2QcuPsDgFr2VoXyr6ZrA9x9ZQ8nuyM8OxQz8iPD--_n39qL758_Hz-7qJ1kvHSCip7p5Ub-eQ9772bBj4IxUfn7ehGbT2n0FPqqJUUnLKD7JR1rhPM6lEJcUZeLnMTlmCwOgC3dinGeolhWgjeDRV6vUDbnH7uAIvZBHQwzzZC2qHhUirOeadoRV_dQy_TLsd6QqU0Y5QKdrP1xYHajRvwZpvDxua9ufvtCugFcDkhZphMdWZLSLFkG2bDqLkJ1izBmhqsuQ3W6Crl96R30x8UiUWEFY4ryP9tP6D6C-CRtyM
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103176
crossref_primary_10_1021_jacs_1c13213
crossref_primary_10_1016_j_electacta_2023_143121
crossref_primary_10_1016_j_matt_2024_101952
crossref_primary_10_1039_D2MH00469K
crossref_primary_10_1002_adma_202306504
crossref_primary_10_1016_j_enconman_2024_119223
crossref_primary_10_1007_s12598_022_01961_y
crossref_primary_10_1002_advs_202205443
crossref_primary_10_1002_aenm_202202780
crossref_primary_10_1021_acs_nanolett_4c01549
crossref_primary_10_1002_cey2_356
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_3390_coatings14050608
crossref_primary_10_1021_acsaem_2c01655
crossref_primary_10_1016_j_est_2023_107913
crossref_primary_10_1002_aenm_202200924
crossref_primary_10_1016_j_mtadv_2022_100215
crossref_primary_10_1002_adfm_202407867
crossref_primary_10_54097_y6xnp393
crossref_primary_10_1016_j_cej_2023_146227
crossref_primary_10_1002_celc_202400614
crossref_primary_10_1088_1674_4926_45_2_020201
crossref_primary_10_1021_acs_jpcc_4c01211
crossref_primary_10_1016_j_est_2024_113774
crossref_primary_10_1021_acsnano_3c07424
crossref_primary_10_1002_smtd_202201623
crossref_primary_10_1002_aenm_202103469
crossref_primary_10_1149_1945_7111_accb72
crossref_primary_10_1002_adfm_202403032
crossref_primary_10_1007_s10853_022_07624_8
crossref_primary_10_1002_adma_202108252
crossref_primary_10_1039_D3SC03514J
crossref_primary_10_1021_acs_energyfuels_4c03140
crossref_primary_10_1038_s43246_024_00599_w
crossref_primary_10_1021_acsnano_1c11098
crossref_primary_10_1016_j_jpowsour_2023_232894
crossref_primary_10_1016_j_ensm_2024_103701
crossref_primary_10_1002_aenm_202302176
crossref_primary_10_1007_s40843_022_2370_1
crossref_primary_10_1021_jacs_4c11217
crossref_primary_10_1063_5_0100062
crossref_primary_10_1021_acsnano_1c05898
crossref_primary_10_1002_smtd_202401786
crossref_primary_10_1016_j_jechem_2024_06_025
crossref_primary_10_1088_2515_7639_ad618e
crossref_primary_10_1002_adma_202203617
crossref_primary_10_1016_j_ensm_2022_10_021
crossref_primary_10_1021_acsaem_5c00131
crossref_primary_10_1039_D4NJ05221H
crossref_primary_10_1002_advs_202407540
crossref_primary_10_1149_1945_7111_acad35
crossref_primary_10_3390_electrochem4020013
crossref_primary_10_1016_j_jpowsour_2024_235039
crossref_primary_10_1016_j_ensm_2025_104090
crossref_primary_10_1088_2053_1583_ac9c6d
crossref_primary_10_3390_nano12040659
crossref_primary_10_1149_1945_7111_ad9993
crossref_primary_10_1016_j_ensm_2024_103939
crossref_primary_10_2139_ssrn_4143083
crossref_primary_10_1016_j_ensm_2025_104108
crossref_primary_10_1002_adfm_202421346
crossref_primary_10_1021_acsenergylett_2c01297
crossref_primary_10_1002_cnl2_33
crossref_primary_10_1038_s41467_023_41867_6
crossref_primary_10_1002_aenm_202303165
crossref_primary_10_1016_j_matdes_2024_112861
crossref_primary_10_1007_s42114_022_00528_w
crossref_primary_10_1021_acs_chemrev_2c00002
crossref_primary_10_3390_batteries9120569
crossref_primary_10_1021_acsenergylett_2c00099
crossref_primary_10_1016_j_cej_2024_151635
crossref_primary_10_1038_s41467_023_39384_7
crossref_primary_10_54097_hset_v46i_7656
crossref_primary_10_1002_batt_202400059
crossref_primary_10_1016_j_carbon_2024_118808
crossref_primary_10_1038_s41893_023_01237_y
crossref_primary_10_1002_admi_202101898
crossref_primary_10_1016_j_etran_2023_100310
crossref_primary_10_1002_adma_202310245
crossref_primary_10_1002_smll_202303804
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1039_D4EE01755B
crossref_primary_10_1021_acsami_2c01460
crossref_primary_10_1002_idm2_12111
crossref_primary_10_1016_j_ensm_2024_103199
crossref_primary_10_1039_D4TA02708F
crossref_primary_10_1021_acsmaterialslett_2c00679
crossref_primary_10_1149_1945_7111_adacb2
crossref_primary_10_1002_aenm_202103565
crossref_primary_10_1002_aenm_202403741
crossref_primary_10_1002_ange_202400761
crossref_primary_10_1093_micmic_ozad067_888
crossref_primary_10_1002_ange_202406198
crossref_primary_10_3390_ma16041584
crossref_primary_10_1039_D4EE01241K
crossref_primary_10_1002_smll_202408457
crossref_primary_10_1016_j_est_2024_114038
crossref_primary_10_1016_j_cej_2025_160846
crossref_primary_10_1021_acs_nanolett_3c04537
crossref_primary_10_1021_acsami_4c03710
crossref_primary_10_1016_j_matt_2021_11_019
crossref_primary_10_1016_j_cej_2024_152828
crossref_primary_10_1021_acsnano_2c08777
crossref_primary_10_1002_adma_202404360
crossref_primary_10_26599_NRE_2022_9120031
crossref_primary_10_1002_batt_202400030
crossref_primary_10_1002_batt_202300186
crossref_primary_10_1002_anie_202406198
crossref_primary_10_1002_anie_202400761
crossref_primary_10_1007_s11581_024_05764_2
crossref_primary_10_1002_aenm_202200398
crossref_primary_10_1002_aenm_202401426
crossref_primary_10_1007_s10338_025_00589_6
crossref_primary_10_1016_j_mattod_2022_06_022
crossref_primary_10_26599_NR_2025_94907230
crossref_primary_10_1038_s41893_024_01393_9
crossref_primary_10_1016_j_cej_2025_161385
crossref_primary_10_1002_adma_202402625
crossref_primary_10_1016_j_electacta_2022_140909
crossref_primary_10_1021_acsami_4c22721
crossref_primary_10_1002_aenm_202300240
crossref_primary_10_1002_smtd_202101052
crossref_primary_10_1016_j_ensm_2025_104029
crossref_primary_10_1038_s41560_024_01619_2
crossref_primary_10_1016_j_jiec_2022_02_037
crossref_primary_10_1002_aenm_202401979
crossref_primary_10_1038_s43246_023_00368_1
crossref_primary_10_1149_1945_7111_ad0757
crossref_primary_10_1016_j_est_2025_115838
crossref_primary_10_1016_j_ensm_2023_102875
crossref_primary_10_1002_aenm_202304295
crossref_primary_10_1002_aenm_202301464
crossref_primary_10_1016_j_device_2024_100501
crossref_primary_10_1016_j_jallcom_2023_169846
crossref_primary_10_1016_j_cej_2022_139397
crossref_primary_10_1021_jacs_3c07908
crossref_primary_10_1002_smll_202407016
crossref_primary_10_1002_adfm_202314822
crossref_primary_10_1039_D3EE01696J
crossref_primary_10_1002_ange_202412214
crossref_primary_10_1002_smll_202301301
crossref_primary_10_1002_aenm_202403142
crossref_primary_10_1016_j_matt_2022_01_015
crossref_primary_10_1002_smtd_202300754
crossref_primary_10_1038_s41467_023_43093_6
crossref_primary_10_1016_j_jmps_2023_105399
crossref_primary_10_1002_adfm_202208329
crossref_primary_10_1016_j_jelechem_2022_116048
crossref_primary_10_1002_smll_202306428
crossref_primary_10_1021_acs_jpcc_2c03394
crossref_primary_10_1016_j_jechem_2023_02_025
crossref_primary_10_1063_5_0117229
crossref_primary_10_1002_aenm_202402048
crossref_primary_10_1021_acsengineeringau_3c00037
crossref_primary_10_1016_j_joule_2022_05_016
crossref_primary_10_1021_acsenergylett_1c02425
crossref_primary_10_1016_j_cej_2021_133572
crossref_primary_10_1016_j_jallcom_2024_175913
crossref_primary_10_1016_j_isci_2021_103402
crossref_primary_10_1016_j_isci_2022_105689
crossref_primary_10_3390_molecules29174114
crossref_primary_10_1016_j_cej_2024_157109
crossref_primary_10_1016_j_jcis_2023_10_031
crossref_primary_10_1021_acsaelm_3c00022
crossref_primary_10_3390_batteries10110381
crossref_primary_10_1016_j_ensm_2021_11_040
crossref_primary_10_1007_s11426_022_1486_1
crossref_primary_10_1002_batt_202300537
crossref_primary_10_1016_j_nanoen_2021_106489
crossref_primary_10_1016_j_nanoen_2022_107993
crossref_primary_10_1016_j_jallcom_2022_166428
crossref_primary_10_1002_aenm_202301139
crossref_primary_10_1002_cnl2_124
crossref_primary_10_1021_acsmaterialslett_2c00013
crossref_primary_10_1017_S1431927622002082
crossref_primary_10_1016_j_cclet_2024_109776
crossref_primary_10_1093_mam_ozae044_116
crossref_primary_10_1002_smll_202407740
crossref_primary_10_1002_adma_202200672
crossref_primary_10_1002_smll_202410118
crossref_primary_10_1002_smll_202303415
crossref_primary_10_1021_acsenergylett_4c00262
crossref_primary_10_1002_adfm_202109682
crossref_primary_10_1002_aenm_202500189
crossref_primary_10_1002_adfm_202111074
crossref_primary_10_1016_j_xcrp_2024_102000
crossref_primary_10_1016_j_jcis_2024_05_081
crossref_primary_10_3389_fphot_2024_1332830
crossref_primary_10_1002_ente_202200319
crossref_primary_10_1149_1945_7111_ada370
crossref_primary_10_1002_batt_202100292
crossref_primary_10_1007_s12598_023_02463_1
crossref_primary_10_1021_acsnano_4c09114
crossref_primary_10_1016_j_xcrp_2022_100868
crossref_primary_10_1039_D2DT01387H
crossref_primary_10_1021_acsami_3c00891
crossref_primary_10_1021_acsami_3c08015
crossref_primary_10_1016_j_jpowsour_2024_235659
crossref_primary_10_1021_acsami_3c18846
crossref_primary_10_1021_acsami_4c12976
crossref_primary_10_1016_j_est_2024_112480
crossref_primary_10_1002_aenm_202303336
crossref_primary_10_1002_ange_202306141
crossref_primary_10_1016_j_coco_2022_101157
crossref_primary_10_1002_adma_202200777
crossref_primary_10_1021_acsami_3c17064
crossref_primary_10_1039_D4EE02202E
crossref_primary_10_1002_adma_202406251
crossref_primary_10_1016_j_mser_2024_100854
crossref_primary_10_1002_smll_202410930
crossref_primary_10_1016_j_ensm_2023_102857
crossref_primary_10_1002_adfm_202106194
crossref_primary_10_1016_j_electacta_2024_143948
crossref_primary_10_1016_j_mtnano_2023_100322
crossref_primary_10_1039_D4TA07201D
crossref_primary_10_1016_j_joule_2025_101874
crossref_primary_10_1016_j_etran_2022_100203
crossref_primary_10_1039_D3TA00183K
crossref_primary_10_1002_adfm_202404192
crossref_primary_10_1002_anie_202306141
crossref_primary_10_1002_anie_202412214
crossref_primary_10_1002_bte2_20220016
crossref_primary_10_1016_j_jechem_2024_01_046
crossref_primary_10_1007_s12209_022_00349_4
crossref_primary_10_1021_acs_jpclett_4c01599
crossref_primary_10_1007_s12274_024_6512_x
crossref_primary_10_1039_D2TA06859A
crossref_primary_10_1016_j_etran_2025_100416
crossref_primary_10_1002_cssc_202400971
crossref_primary_10_1021_acsami_3c02925
crossref_primary_10_1002_smll_202305921
crossref_primary_10_1002_smll_202309600
crossref_primary_10_1021_acs_jpclett_2c02236
crossref_primary_10_1021_acsnano_1c08719
Cites_doi 10.1002/adma.201104923
10.1038/nmat2406
10.1038/ncomms9844
10.1038/s41467-020-17104-9
10.1149/2.0501712jes
10.1021/nl100258p
10.1149/2.0731512jes
10.1038/s41560-020-0601-1
10.1038/s41467-019-09510-5
10.1016/j.jpowsour.2009.01.007
10.1038/nnano.2012.35
10.1021/nl3014814
10.1149/2.1261807jes
10.1021/nn505410q
10.1016/j.jpowsour.2015.09.055
10.1149/1.1644601
10.1016/j.actamat.2013.04.007
10.1038/nenergy.2015.29
10.1038/nmat3741
10.1038/nchem.1802
10.1016/j.matt.2019.09.020
10.1016/j.mattod.2014.05.003
10.1021/acs.nanolett.7b03606
10.1016/j.ultramic.2015.05.002
10.1126/science.aal4373
10.1016/S0076-6879(10)82011-7
10.1038/s41560-018-0191-3
10.1038/nnano.2007.411
10.1021/nl201684d
10.1039/C0EE00281J
10.1021/nl500130e
10.1039/C8EE00239H
10.1038/nnano.2014.6
10.1002/adma.201503978
10.1149/2.020203jes
10.1021/nn204476h
10.1038/s41467-020-14535-2
10.1038/s41586-019-1317-x
10.1038/nmat2725
10.1038/s41524-018-0064-0
10.1126/science.aam6014
10.1021/acs.nanolett.9b01515
10.1038/s41524-017-0009-z
10.1021/acsami.8b20436
10.1038/s41586-018-0397-3
10.1002/anie.200804355
10.1126/sciadv.aax0651
10.1038/nmat1709
10.1021/nl302841y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
OIOZB
OTOTI
DOI 10.1038/s41565-021-00947-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 1120
ExternalDocumentID 1833249
34326526
10_1038_s41565_021_00947_8
Genre Journal Article
GrantInformation_xml – fundername: DOE | SC | Basic Energy Sciences (BES)
  funderid: https://doi.org/10.13039/100006151
– fundername: National Science Foundation (NSF)
  funderid: https://doi.org/10.13039/100000001
– fundername: DOE | Office of Energy Efficiency & Renewable Energy | Vehicle Technologies Office (VTO)
  funderid: https://doi.org/10.13039/100011884
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c512t-3056c87cb2fdd26dcf929372bcdabcb8ad20e600c0a50ec7a9547acc431a8b733
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri May 19 00:40:15 EDT 2023
Thu Jul 10 20:17:50 EDT 2025
Sat Aug 23 13:09:28 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Tue Jul 01 01:56:32 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Fri Feb 21 02:41:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-3056c87cb2fdd26dcf929372bcdabcb8ad20e600c0a50ec7a9547acc431a8b733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
89233218CNA000001; AC05-76RL01830
LA-UR-20-26229
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0002-9945-3514
0000-0003-3327-0958
0000-0002-3183-1507
0000-0003-4429-8235
0000-0002-7728-0157
0000-0002-9578-6979
0000-0001-7343-4609
0000000277280157
0000000333270958
0000000295786979
0000000231831507
0000000173434609
0000000299453514
0000000344298235
OpenAccessLink https://www.osti.gov/servlets/purl/1833249
PMID 34326526
PQID 2581100313
PQPubID 546299
PageCount 8
ParticipantIDs osti_scitechconnect_1833249
proquest_miscellaneous_2557222470
proquest_journals_2581100313
pubmed_primary_34326526
crossref_citationtrail_10_1038_s41565_021_00947_8
crossref_primary_10_1038_s41565_021_00947_8
springer_journals_10_1038_s41565_021_00947_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhou (CR27) 2019; 570
Huang, Fan, Li, Zhang, Zhu (CR13) 2013; 61
Zhang (CR38) 2017; 3
Midgley, Dunin-Borkowski (CR26) 2009; 8
Liu (CR10) 2012; 12
Chen, Sieradzki (CR33) 2013; 12
Pharr, Zhao, Wang, Suo, Vlassak (CR37) 2012; 12
Zhu (CR39) 2019; 11
Chan, Ruffo, Hong, Cui (CR21) 2009; 189
Hu (CR34) 2006; 5
Choi (CR32) 2010; 10
Kim, Lee, Sun (CR4) 2014; 17
Zhao (CR17) 2012; 159
Zhang (CR24) 2018; 11
Wang, Kadam, Li, Shi, Qi (CR35) 2018; 4
Gohier (CR18) 2012; 24
Szczech, Jin (CR12) 2011; 4
Kennedy, Brandon, Ryan (CR15) 2016; 28
Yan (CR46) 2018; 3
Xiao (CR44) 2015; 6
Kim, Han, Choo, Cho (CR14) 2008; 47
Turoňová (CR28) 2020; 11
Chen (CR40) 2020; 11
Lu (CR11) 2015; 9
Wetjen (CR20) 2018; 165
Yoon, Nguyen, Seo, Lucht (CR19) 2015; 162
Magansinski (CR9) 2010; 9
Liu (CR31) 2011; 11
Chen (CR49) 2015; 300
Wang (CR30) 2017; 17
Ploehn, Ramadass, White (CR36) 2004; 151
Sigworth, Doerschuk, Carazo, Scheres (CR47) 2010; 482
Huang (CR25) 2019; 1
Krause, Brandt, Chevrier, Jensen (CR22) 2017; 164
Liu (CR16) 2011; 6
Zachman, Tu, Choudhury, Archer, Kourkoutis (CR42) 2018; 560
Chen (CR1) 2020; 5
Chan (CR3) 2008; 3
Wang (CR45) 2013; 5
Zhu (CR41) 2019; 5
Li (CR6) 2016; 1
Wu (CR2) 2012; 7
Li (CR29) 2017; 358
Cho, Picraux (CR23) 2014; 14
Aarle (CR48) 2015; 157
An (CR8) 2019; 10
Choi, Kwon, Coskun, Choi (CR5) 2017; 357
Liu (CR7) 2014; 9
Huang (CR43) 2019; 19
M Pharr (947_CR37) 2012; 12
XH Liu (947_CR16) 2011; 6
T Kennedy (947_CR15) 2016; 28
HJ Ploehn (947_CR36) 2004; 151
LJ Krause (947_CR22) 2017; 164
WV Aarle (947_CR48) 2015; 157
FJ Sigworth (947_CR47) 2010; 482
Q Chen (947_CR33) 2013; 12
K Zhao (947_CR17) 2012; 159
Y Li (947_CR6) 2016; 1
B Zhu (947_CR41) 2019; 5
Z Lu (947_CR11) 2015; 9
Q Xiao (947_CR44) 2015; 6
J Zhu (947_CR39) 2019; 11
A Gohier (947_CR18) 2012; 24
CK Chan (947_CR3) 2008; 3
T Yoon (947_CR19) 2015; 162
Y Li (947_CR29) 2017; 358
B Turoňová (947_CR28) 2020; 11
A Wang (947_CR35) 2018; 4
J Chen (947_CR1) 2020; 5
S Zhang (947_CR38) 2017; 3
MJ Zachman (947_CR42) 2018; 560
A Magansinski (947_CR9) 2010; 9
S Huang (947_CR13) 2013; 61
JH Cho (947_CR23) 2014; 14
JR Szczech (947_CR12) 2011; 4
C Wang (947_CR45) 2013; 5
L Chen (947_CR49) 2015; 300
H Kim (947_CR14) 2008; 47
YS Hu (947_CR34) 2006; 5
H Wu (947_CR2) 2012; 7
P Yan (947_CR46) 2018; 3
H Kim (947_CR4) 2014; 17
X Wang (947_CR30) 2017; 17
W Huang (947_CR43) 2019; 19
N Liu (947_CR7) 2014; 9
C Chen (947_CR40) 2020; 11
S Choi (947_CR5) 2017; 357
N Liu (947_CR10) 2012; 12
J Zhou (947_CR27) 2019; 570
W An (947_CR8) 2019; 10
W Huang (947_CR25) 2019; 1
Q Zhang (947_CR24) 2018; 11
JW Choi (947_CR32) 2010; 10
M Wetjen (947_CR20) 2018; 165
PA Midgley (947_CR26) 2009; 8
XH Liu (947_CR31) 2011; 11
CK Chan (947_CR21) 2009; 189
References_xml – volume: 24
  start-page: 2592
  year: 2012
  end-page: 2597
  ident: CR18
  article-title: High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104923
– volume: 8
  start-page: 271
  year: 2009
  end-page: 280
  ident: CR26
  article-title: Electron tomography and holography in materials science
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2406
– volume: 6
  year: 2015
  ident: CR44
  article-title: Inward lithium-ion breathing of hierarchically porous silicon anodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9844
– volume: 11
  year: 2020
  ident: CR40
  article-title: Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17104-9
– volume: 164
  start-page: A2277
  year: 2017
  end-page: A2282
  ident: CR22
  article-title: Surface area increase of silicon alloys in Li-ion full cells measured by isothermal heat flow calorimetry
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0501712jes
– volume: 10
  start-page: 1409
  year: 2010
  end-page: 1413
  ident: CR32
  article-title: Stepwise nanopore evolution in one-dimensional nanostructures
  publication-title: Nano Lett.
  doi: 10.1021/nl100258p
– volume: 162
  start-page: A2325
  year: 2015
  end-page: A2330
  ident: CR19
  article-title: Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0731512jes
– volume: 5
  start-page: 386
  year: 2020
  end-page: 397
  ident: CR1
  article-title: Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0601-1
– volume: 10
  year: 2019
  ident: CR8
  article-title: Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09510-5
– volume: 189
  start-page: 1132
  year: 2009
  end-page: 1140
  ident: CR21
  article-title: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.01.007
– volume: 7
  start-page: 310
  year: 2012
  end-page: 315
  ident: CR2
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 12
  start-page: 3315
  year: 2012
  end-page: 3321
  ident: CR10
  article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
  publication-title: Nano Lett.
  doi: 10.1021/nl3014814
– volume: 165
  start-page: A1503
  year: 2018
  end-page: A1514
  ident: CR20
  article-title: Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1261807jes
– volume: 9
  start-page: 2540
  year: 2015
  end-page: 2547
  ident: CR11
  article-title: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn505410q
– volume: 300
  start-page: 376
  year: 2015
  end-page: 385
  ident: CR49
  article-title: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.055
– volume: 151
  start-page: A456
  year: 2004
  end-page: A462
  ident: CR36
  article-title: Solvent diffusion model for aging of lithium-ion battery cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1644601
– volume: 61
  start-page: 4354
  year: 2013
  end-page: 4364
  ident: CR13
  article-title: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.007
– volume: 1
  start-page: 15029
  year: 2016
  ident: CR6
  article-title: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.29
– volume: 12
  start-page: 1102
  year: 2013
  end-page: 1106
  ident: CR33
  article-title: Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3741
– volume: 5
  start-page: 1042
  year: 2013
  end-page: 1048
  ident: CR45
  article-title: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1802
– volume: 1
  start-page: 1232
  year: 2019
  end-page: 1245
  ident: CR25
  article-title: Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy
  publication-title: Matter
  doi: 10.1016/j.matt.2019.09.020
– volume: 17
  start-page: 285
  year: 2014
  end-page: 297
  ident: CR4
  article-title: Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.05.003
– volume: 17
  start-page: 7606
  year: 2017
  end-page: 7612
  ident: CR30
  article-title: New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03606
– volume: 157
  start-page: 35
  year: 2015
  end-page: 47
  ident: CR48
  article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.05.002
– volume: 357
  start-page: 279
  year: 2017
  end-page: 283
  ident: CR5
  article-title: Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
  publication-title: Science
  doi: 10.1126/science.aal4373
– volume: 482
  start-page: 263
  year: 2010
  end-page: 294
  ident: CR47
  article-title: An introduction to maximum-likelihood methods in cryo-EM
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(10)82011-7
– volume: 3
  start-page: 600
  year: 2018
  end-page: 605
  ident: CR46
  article-title: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  ident: CR3
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
– volume: 11
  start-page: 3312
  year: 2011
  end-page: 3318
  ident: CR31
  article-title: Anisotropic swelling and fracture of silicon nanowires during lithiation
  publication-title: Nano Lett.
  doi: 10.1021/nl201684d
– volume: 4
  start-page: 56
  year: 2011
  end-page: 72
  ident: CR12
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00281J
– volume: 14
  start-page: 3088
  year: 2014
  end-page: 3095
  ident: CR23
  article-title: Silicon nanowire degradation and stablization during lithium cycling by SEI layer formation
  publication-title: Nano Lett.
  doi: 10.1021/nl500130e
– volume: 11
  start-page: 669
  year: 2018
  end-page: 681
  ident: CR24
  article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00239H
– volume: 9
  start-page: 187
  year: 2014
  end-page: 192
  ident: CR7
  article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.6
– volume: 28
  start-page: 5696
  year: 2016
  end-page: 5704
  ident: CR15
  article-title: Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503978
– volume: 159
  start-page: A238
  year: 2012
  end-page: A243
  ident: CR17
  article-title: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.020203jes
– volume: 6
  start-page: 1522
  year: 2011
  end-page: 1531
  ident: CR16
  article-title: Size-dependent fracture of silicon nanoparticles during lithiation
  publication-title: ACS Nano
  doi: 10.1021/nn204476h
– volume: 11
  year: 2020
  ident: CR28
  article-title: Benchmarking tomographic acquisition schemes for high-resolution structural biology
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14535-2
– volume: 570
  start-page: 500
  year: 2019
  end-page: 503
  ident: CR27
  article-title: Observing crystal nucleation in four dimensions using atomic electron tomography
  publication-title: Nature
  doi: 10.1038/s41586-019-1317-x
– volume: 9
  start-page: 353
  year: 2010
  end-page: 358
  ident: CR9
  article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2725
– volume: 4
  start-page: 15
  year: 2018
  ident: CR35
  article-title: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0064-0
– volume: 358
  start-page: 506
  year: 2017
  end-page: 510
  ident: CR29
  article-title: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy
  publication-title: Science
  doi: 10.1126/science.aam6014
– volume: 19
  start-page: 5140
  year: 2019
  end-page: 5148
  ident: CR43
  article-title: Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01515
– volume: 3
  start-page: 7
  year: 2017
  ident: CR38
  article-title: Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0009-z
– volume: 11
  start-page: 17313
  year: 2019
  end-page: 18320
  ident: CR39
  article-title: In situ TEM of phosphorus-dopant-induced nanopore formation in delithiated silicon nanowires
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20436
– volume: 560
  start-page: 345
  year: 2018
  end-page: 349
  ident: CR42
  article-title: Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries
  publication-title: Nature
  doi: 10.1038/s41586-018-0397-3
– volume: 47
  start-page: 10151
  year: 2008
  end-page: 10154
  ident: CR14
  article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804355
– volume: 5
  start-page: eaax0651
  year: 2019
  ident: CR41
  article-title: Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0651
– volume: 5
  start-page: 713
  year: 2006
  end-page: 717
  ident: CR34
  article-title: Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1709
– volume: 12
  start-page: 5039
  year: 2012
  end-page: 5047
  ident: CR37
  article-title: Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl302841y
– volume: 61
  start-page: 4354
  year: 2013
  ident: 947_CR13
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.007
– volume: 24
  start-page: 2592
  year: 2012
  ident: 947_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104923
– volume: 300
  start-page: 376
  year: 2015
  ident: 947_CR49
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.055
– volume: 189
  start-page: 1132
  year: 2009
  ident: 947_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.01.007
– volume: 7
  start-page: 310
  year: 2012
  ident: 947_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 3
  start-page: 600
  year: 2018
  ident: 947_CR46
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 9
  start-page: 353
  year: 2010
  ident: 947_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2725
– volume: 12
  start-page: 3315
  year: 2012
  ident: 947_CR10
  publication-title: Nano Lett.
  doi: 10.1021/nl3014814
– volume: 19
  start-page: 5140
  year: 2019
  ident: 947_CR43
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01515
– volume: 8
  start-page: 271
  year: 2009
  ident: 947_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2406
– volume: 5
  start-page: 713
  year: 2006
  ident: 947_CR34
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1709
– volume: 151
  start-page: A456
  year: 2004
  ident: 947_CR36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1644601
– volume: 5
  start-page: 1042
  year: 2013
  ident: 947_CR45
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1802
– volume: 358
  start-page: 506
  year: 2017
  ident: 947_CR29
  publication-title: Science
  doi: 10.1126/science.aam6014
– volume: 164
  start-page: A2277
  year: 2017
  ident: 947_CR22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0501712jes
– volume: 9
  start-page: 187
  year: 2014
  ident: 947_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.6
– volume: 11
  start-page: 3312
  year: 2011
  ident: 947_CR31
  publication-title: Nano Lett.
  doi: 10.1021/nl201684d
– volume: 165
  start-page: A1503
  year: 2018
  ident: 947_CR20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1261807jes
– volume: 560
  start-page: 345
  year: 2018
  ident: 947_CR42
  publication-title: Nature
  doi: 10.1038/s41586-018-0397-3
– volume: 10
  start-page: 1409
  year: 2010
  ident: 947_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl100258p
– volume: 162
  start-page: A2325
  year: 2015
  ident: 947_CR19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0731512jes
– volume: 17
  start-page: 285
  year: 2014
  ident: 947_CR4
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.05.003
– volume: 10
  year: 2019
  ident: 947_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09510-5
– volume: 4
  start-page: 15
  year: 2018
  ident: 947_CR35
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0064-0
– volume: 4
  start-page: 56
  year: 2011
  ident: 947_CR12
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00281J
– volume: 159
  start-page: A238
  year: 2012
  ident: 947_CR17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.020203jes
– volume: 28
  start-page: 5696
  year: 2016
  ident: 947_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503978
– volume: 3
  start-page: 31
  year: 2008
  ident: 947_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
– volume: 357
  start-page: 279
  year: 2017
  ident: 947_CR5
  publication-title: Science
  doi: 10.1126/science.aal4373
– volume: 1
  start-page: 1232
  year: 2019
  ident: 947_CR25
  publication-title: Matter
  doi: 10.1016/j.matt.2019.09.020
– volume: 11
  year: 2020
  ident: 947_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14535-2
– volume: 12
  start-page: 5039
  year: 2012
  ident: 947_CR37
  publication-title: Nano Lett.
  doi: 10.1021/nl302841y
– volume: 3
  start-page: 7
  year: 2017
  ident: 947_CR38
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0009-z
– volume: 570
  start-page: 500
  year: 2019
  ident: 947_CR27
  publication-title: Nature
  doi: 10.1038/s41586-019-1317-x
– volume: 6
  year: 2015
  ident: 947_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9844
– volume: 14
  start-page: 3088
  year: 2014
  ident: 947_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl500130e
– volume: 5
  start-page: eaax0651
  year: 2019
  ident: 947_CR41
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0651
– volume: 11
  start-page: 669
  year: 2018
  ident: 947_CR24
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00239H
– volume: 17
  start-page: 7606
  year: 2017
  ident: 947_CR30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03606
– volume: 482
  start-page: 263
  year: 2010
  ident: 947_CR47
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(10)82011-7
– volume: 12
  start-page: 1102
  year: 2013
  ident: 947_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3741
– volume: 6
  start-page: 1522
  year: 2011
  ident: 947_CR16
  publication-title: ACS Nano
  doi: 10.1021/nn204476h
– volume: 5
  start-page: 386
  year: 2020
  ident: 947_CR1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0601-1
– volume: 9
  start-page: 2540
  year: 2015
  ident: 947_CR11
  publication-title: ACS Nano
  doi: 10.1021/nn505410q
– volume: 11
  start-page: 17313
  year: 2019
  ident: 947_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20436
– volume: 1
  start-page: 15029
  year: 2016
  ident: 947_CR6
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.29
– volume: 47
  start-page: 10151
  year: 2008
  ident: 947_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804355
– volume: 157
  start-page: 35
  year: 2015
  ident: 947_CR48
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.05.002
– volume: 11
  year: 2020
  ident: 947_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17104-9
SSID ssj0052924
Score 2.6986384
Snippet The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs...
The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1113
SubjectTerms 639/301/299/161/891
639/4077/4079/891
Algorithms
batteries
Chemical evolution
Chemical reactions
Chemistry and Materials Science
Condensates
Control stability
Cycles
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Evolution
Fading
Flux density
Interphase
MATERIALS SCIENCE
Nanotechnology
Nanotechnology and Microengineering
Percolation
Scanning electron microscopy
Scanning transmission electron microscopy
Silicon
Tomography
Transmission electron microscopy
Title Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading
URI https://link.springer.com/article/10.1038/s41565-021-00947-8
https://www.ncbi.nlm.nih.gov/pubmed/34326526
https://www.proquest.com/docview/2581100313
https://www.proquest.com/docview/2557222470
https://www.osti.gov/servlets/purl/1833249
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k3aUhmJG0TN2nHsnFAXdamQWFVApb1Zfm27UklKk63Ejf_AP-SXMON4tyCgl_gQx7Iy45lvPC9CXtZc2WpsHNYMFXlZO5tbXosci7EptrCirjDB-cOsOjop38_FPF24dSmsci0To6D2rcM78n0mFFY342P-5uJrjl2j0LuaWmjcJltYugy5Ws43Bpdg9dDUVpYqB1NMpqSZgqv9Dg0XzE0GYxosHJDUfyimUQsH7F-g8y-HadRD0_vkXgKQ9GCg-ANyKzQPyd3fygo-Il-OMegK41uvAj0FO7s_o-2CAtSjwGlL__P7j9T95vxbH-gyxh2egTqjfQyi7eLUT0tqmtan98v2kjqz6kIHA9jZAN7pIsbfPyYn08PPb4_y1FYhd6Dd-xyNBqeks2zhPau8WwBE4pJZ5411VhnPigA4yBVGFMFJU4tSGucAahhlJedPyKhpm_CMUM-Z41XlQCiIMvDS-HHhBKwIMA2RQUbG63-qXao5jq0vznX0fXOlBzpooIOOdNAqI68231wMFTdunL2DpNKAF7DorcPoINdrEFSwhToju2sK6nQ2O33NSRl5sXkNpwpdJaYJ7QrnCAnIqZRFRp4OlN9sBlNxK8GqjLxes8L14v_f6fbNe9khdxhyY4wT3CWj_nIVngPe6e1eZGp4qum7PbJ1MJ1MZjBODmfHH38B9bD_Dw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAcEG9CCxgJThA1a8eJc0AIAcuWPoREK_Vm7LFDVyqb0mRBvfEf-B_8KH4JM3lsQUBvPeVgx7I845lvPC_GHhVSu2xsgWqGqjgtwMVOFiqmYmxalE4VGSU4b-9k07307b7aX2E_hlwYCqscZGIrqH0F9Ea-LpSm6mZyLJ8ffY6paxR5V4cWGh1bbIaTr2iy1c82XiF9Hwsxeb37chr3XQViQOXWxISZQefgROm9yDyUiBBkLhx468Bp60USEAZAYlUSILeFSnMLgJrWapfTAyiK_AupRE1OmemTN4PkV6LomujmqY7R9Mv7JJ1E6vWaDCXKhUbjHS0q1Ax_KMJRhRf6XyD3Lwdtq_cmV9mVHrDyFx2HXWMrYX6dXf6tjOEN9ukdBXlRPO2XwD-iXd8c8KrkCC05cvbM__z2ve-2c3jSBD5r4xwPUH3ypg3ardup72fczivfj8-qYw52UYcaP2jXo7HAyzbe_ybbO5cDv8VG82oe7jDupQCZZYBCSKVBptaPE1C4IsJCQiIRGw9naqCvcU6tNg5N62uX2nR0MEgH09LB6Ig9Wf5z1FX4OHP2KpHKID6hIrtA0UjQGBSMuIUiYmsDBU0vC2pzyrkRe7gcxltMrhk7D9WC5qgckVqaJxG73VF-uRlK_c2UyCL2dGCF08X_v9O7Z-_lAbs43d3eMlsbO5ur7JIgzmxjFNfYqDlehHuItRp3v2Vwzj6c9436BQbKOW4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmbQEjwQmizTpx4hwQAtpVS2G1Air1ZvwKXandlCYL6o3_wL_h5_BLmMljCwJ66ymHOJHlGc98nz0PgEd5LE060pZqhoowya0JTZyLkIqxSV4YkaeU4Px2km7vJa_3xf4K_OhzYSissreJjaF2paUz8iEXkqqbxaN4WHRhEdPN8fPjzyF1kKKb1r6dRqsiu_70K9K36tnOJsr6MefjrQ-vtsOuw0Bo0dHVIeFnKzNreOEcT50tEC3EGTfWaWON1I5HHiGBjbSIvM10LpJMW4teV0uT0WEomv_VjFjRAFZfbk2m73o_IHjettTNEhkiEcy6lJ0olsOKaBNlRiOVR36FfuIPtzgocXv_C_L-dV3beMHxNbjawVf2otW367Di5zfgym9FDW_C0ZRCvii69otnn5Dl1wesLBgCTYZ6PnM_v33veu8cntaezZqoxwN0pqxuQnirZuj7GdPz0nXvZ-UJs3pR-QofyPKROrCiif6_BXsXsuS3YTAv5_4uMBdzG6epRZMkEh8n2o0iK_CPCBIJlwQw6tdU2a7iOTXeOFTNzXssVSsHhXJQjRyUDODJ8pvjtt7HuaPXSVQK0QqV3LUUm2RrhWYSp5AHsNFLUHWWoVJnehzAw-Vr3NN0UaPnvlzQGJEhbkuyKIA7reSXk6FE4FTwNICnvSqc_fz_M107fy4P4BLuJvVmZ7K7Dpc5KWYTsLgBg_pk4e8h8KrN_U7DGXy86E31C-oEPwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+growth+of+the+solid-electrolyte+interphase+towards+the+Si+anode+interior+causes+capacity+fading&rft.jtitle=Nature+nanotechnology&rft.au=He%2C+Yang&rft.au=Jiang%2C+Lin&rft.au=Chen%2C+Tianwu&rft.au=Xu%2C+Yaobin&rft.date=2021-10-01&rft.eissn=1748-3395&rft.volume=16&rft.issue=10&rft.spage=1113&rft_id=info:doi/10.1038%2Fs41565-021-00947-8&rft_id=info%3Apmid%2F34326526&rft.externalDocID=34326526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon