Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading
The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 10; pp. 1113 - 1120 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.
A correlated structural and chemical evolution of silicon and the solid–electrolyte interphase was unveiled in three dimensions by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy. |
---|---|
AbstractList | The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Furthermore, corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes. The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si-SEI spatial configuration evolves from the classic 'core-shell' structure in the first few cycles to a 'plum-pudding' structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si-SEI spatial configuration evolves from the classic 'core-shell' structure in the first few cycles to a 'plum-pudding' structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes. The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si-SEI spatial configuration evolves from the classic 'core-shell' structure in the first few cycles to a 'plum-pudding' structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes. The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes.A correlated structural and chemical evolution of silicon and the solid–electrolyte interphase was unveiled in three dimensions by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy. The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs the battery stability. Active materials, especially those with extremely high energy density, such as silicon (Si), often inevitably undergo a large volume swing upon ion insertion and extraction, raising a critical question as to how the SEI interactively responds to and evolves with the material and consequently controls the cycling stability of the battery. Here, by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy, we unveil, in three dimensions, a correlated structural and chemical evolution of Si and SEI. Corroborated with a chemomechanical model, we demonstrate progressive electrolyte permeation and SEI growth along the percolation channel of the nanovoids due to vacancy injection and condensation during the delithiation process. Consequently, the Si–SEI spatial configuration evolves from the classic ‘core–shell’ structure in the first few cycles to a ‘plum-pudding’ structure following extended cycling, featuring the engulfing of Si domains by the SEI, which leads to the disruption of electron conduction pathways and formation of dead Si, contributing to capacity loss. The spatially coupled interactive evolution model of SEI and active materials, in principle, applies to a broad class of high-capacity electrode materials, leading to a critical insight for remedying the fading of high-capacity electrodes. A correlated structural and chemical evolution of silicon and the solid–electrolyte interphase was unveiled in three dimensions by integrating sensitive elemental tomography, an advanced algorithm and cryogenic scanning transmission electron microscopy. |
Author | Jiang, Lin Yi, Ran Song, Miao Li, Xiaolin Zhang, Sulin Zhang, Ji-Guang Jia, Haiping Genc, Arda Wang, Chongmin Chen, Tianwu Tessner, Ted Xue, Dingchuan Pullan, Lee Xu, Yaobin Bouchet-Marquis, Cedric Yoo, Jinkyoung He, Yang |
Author_xml | – sequence: 1 givenname: Yang surname: He fullname: He, Yang organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Beijing University of Science and Technology – sequence: 2 givenname: Lin surname: Jiang fullname: Jiang, Lin organization: Materials and Structural Analysis Division, Thermo Fisher Scientific – sequence: 3 givenname: Tianwu orcidid: 0000-0002-3183-1507 surname: Chen fullname: Chen, Tianwu organization: Department of Engineering Science and Mechanics, Pennsylvania State University – sequence: 4 givenname: Yaobin orcidid: 0000-0002-9945-3514 surname: Xu fullname: Xu, Yaobin organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory – sequence: 5 givenname: Haiping surname: Jia fullname: Jia, Haiping organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory – sequence: 6 givenname: Ran surname: Yi fullname: Yi, Ran organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory – sequence: 7 givenname: Dingchuan surname: Xue fullname: Xue, Dingchuan organization: Department of Engineering Science and Mechanics, Pennsylvania State University – sequence: 8 givenname: Miao surname: Song fullname: Song, Miao organization: Physical and Computational Science Directorate, Pacific Northwest National Laboratory – sequence: 9 givenname: Arda surname: Genc fullname: Genc, Arda organization: Materials and Structural Analysis Division, Thermo Fisher Scientific – sequence: 10 givenname: Cedric surname: Bouchet-Marquis fullname: Bouchet-Marquis, Cedric organization: Materials and Structural Analysis Division, Thermo Fisher Scientific – sequence: 11 givenname: Lee surname: Pullan fullname: Pullan, Lee organization: Materials and Structural Analysis Division, Thermo Fisher Scientific – sequence: 12 givenname: Ted surname: Tessner fullname: Tessner, Ted organization: Materials and Structural Analysis Division, Thermo Fisher Scientific – sequence: 13 givenname: Jinkyoung orcidid: 0000-0002-9578-6979 surname: Yoo fullname: Yoo, Jinkyoung email: jyoo@lanl.gov organization: Center for Integrated Nanotechnologies, Los Alamos National Laboratory – sequence: 14 givenname: Xiaolin orcidid: 0000-0002-7728-0157 surname: Li fullname: Li, Xiaolin email: xiaolin.li@pnnl.gov organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory – sequence: 15 givenname: Ji-Guang orcidid: 0000-0001-7343-4609 surname: Zhang fullname: Zhang, Ji-Guang organization: Energy and Environmental Directorate, Pacific Northwest National Laboratory – sequence: 16 givenname: Sulin orcidid: 0000-0003-4429-8235 surname: Zhang fullname: Zhang, Sulin email: suz10@psu.edu organization: Department of Engineering Science and Mechanics, Pennsylvania State University – sequence: 17 givenname: Chongmin orcidid: 0000-0003-3327-0958 surname: Wang fullname: Wang, Chongmin email: chongmin.wang@pnnl.gov organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34326526$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1833249$$D View this record in Osti.gov |
BookMark | eNp9kctuFDEQRS0URB7wAyxQCzZsGvxot91LFPGSIoEErC23XT3jqMceXJ5Es-Mf-EO-BCc9ASmLrMpSnVt1y_eUHMUUgZDnjL5hVOi32DHZy5Zy1lI6dKrVj8gJU51uhRjk0b-3VsfkFPGSUskH3j0hx6ITvJe8PyGbrzmtMiCGK2hWOV2XdZOmpqyhwTQH_-fXb5jBlZzmfYEmxAJ5u7YITUnXNnu8Rb-FxsbkD_2QcuPsDgFr2VoXyr6ZrA9x9ZQ8nuyM8OxQz8iPD--_n39qL758_Hz-7qJ1kvHSCip7p5Ub-eQ9772bBj4IxUfn7ehGbT2n0FPqqJUUnLKD7JR1rhPM6lEJcUZeLnMTlmCwOgC3dinGeolhWgjeDRV6vUDbnH7uAIvZBHQwzzZC2qHhUirOeadoRV_dQy_TLsd6QqU0Y5QKdrP1xYHajRvwZpvDxua9ufvtCugFcDkhZphMdWZLSLFkG2bDqLkJ1izBmhqsuQ3W6Crl96R30x8UiUWEFY4ryP9tP6D6C-CRtyM |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103176 crossref_primary_10_1021_jacs_1c13213 crossref_primary_10_1016_j_electacta_2023_143121 crossref_primary_10_1016_j_matt_2024_101952 crossref_primary_10_1039_D2MH00469K crossref_primary_10_1002_adma_202306504 crossref_primary_10_1016_j_enconman_2024_119223 crossref_primary_10_1007_s12598_022_01961_y crossref_primary_10_1002_advs_202205443 crossref_primary_10_1002_aenm_202202780 crossref_primary_10_1021_acs_nanolett_4c01549 crossref_primary_10_1002_cey2_356 crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_3390_coatings14050608 crossref_primary_10_1021_acsaem_2c01655 crossref_primary_10_1016_j_est_2023_107913 crossref_primary_10_1002_aenm_202200924 crossref_primary_10_1016_j_mtadv_2022_100215 crossref_primary_10_1002_adfm_202407867 crossref_primary_10_54097_y6xnp393 crossref_primary_10_1016_j_cej_2023_146227 crossref_primary_10_1002_celc_202400614 crossref_primary_10_1088_1674_4926_45_2_020201 crossref_primary_10_1021_acs_jpcc_4c01211 crossref_primary_10_1016_j_est_2024_113774 crossref_primary_10_1021_acsnano_3c07424 crossref_primary_10_1002_smtd_202201623 crossref_primary_10_1002_aenm_202103469 crossref_primary_10_1149_1945_7111_accb72 crossref_primary_10_1002_adfm_202403032 crossref_primary_10_1007_s10853_022_07624_8 crossref_primary_10_1002_adma_202108252 crossref_primary_10_1039_D3SC03514J crossref_primary_10_1021_acs_energyfuels_4c03140 crossref_primary_10_1038_s43246_024_00599_w crossref_primary_10_1021_acsnano_1c11098 crossref_primary_10_1016_j_jpowsour_2023_232894 crossref_primary_10_1016_j_ensm_2024_103701 crossref_primary_10_1002_aenm_202302176 crossref_primary_10_1007_s40843_022_2370_1 crossref_primary_10_1021_jacs_4c11217 crossref_primary_10_1063_5_0100062 crossref_primary_10_1021_acsnano_1c05898 crossref_primary_10_1002_smtd_202401786 crossref_primary_10_1016_j_jechem_2024_06_025 crossref_primary_10_1088_2515_7639_ad618e crossref_primary_10_1002_adma_202203617 crossref_primary_10_1016_j_ensm_2022_10_021 crossref_primary_10_1021_acsaem_5c00131 crossref_primary_10_1039_D4NJ05221H crossref_primary_10_1002_advs_202407540 crossref_primary_10_1149_1945_7111_acad35 crossref_primary_10_3390_electrochem4020013 crossref_primary_10_1016_j_jpowsour_2024_235039 crossref_primary_10_1016_j_ensm_2025_104090 crossref_primary_10_1088_2053_1583_ac9c6d crossref_primary_10_3390_nano12040659 crossref_primary_10_1149_1945_7111_ad9993 crossref_primary_10_1016_j_ensm_2024_103939 crossref_primary_10_2139_ssrn_4143083 crossref_primary_10_1016_j_ensm_2025_104108 crossref_primary_10_1002_adfm_202421346 crossref_primary_10_1021_acsenergylett_2c01297 crossref_primary_10_1002_cnl2_33 crossref_primary_10_1038_s41467_023_41867_6 crossref_primary_10_1002_aenm_202303165 crossref_primary_10_1016_j_matdes_2024_112861 crossref_primary_10_1007_s42114_022_00528_w crossref_primary_10_1021_acs_chemrev_2c00002 crossref_primary_10_3390_batteries9120569 crossref_primary_10_1021_acsenergylett_2c00099 crossref_primary_10_1016_j_cej_2024_151635 crossref_primary_10_1038_s41467_023_39384_7 crossref_primary_10_54097_hset_v46i_7656 crossref_primary_10_1002_batt_202400059 crossref_primary_10_1016_j_carbon_2024_118808 crossref_primary_10_1038_s41893_023_01237_y crossref_primary_10_1002_admi_202101898 crossref_primary_10_1016_j_etran_2023_100310 crossref_primary_10_1002_adma_202310245 crossref_primary_10_1002_smll_202303804 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1039_D4EE01755B crossref_primary_10_1021_acsami_2c01460 crossref_primary_10_1002_idm2_12111 crossref_primary_10_1016_j_ensm_2024_103199 crossref_primary_10_1039_D4TA02708F crossref_primary_10_1021_acsmaterialslett_2c00679 crossref_primary_10_1149_1945_7111_adacb2 crossref_primary_10_1002_aenm_202103565 crossref_primary_10_1002_aenm_202403741 crossref_primary_10_1002_ange_202400761 crossref_primary_10_1093_micmic_ozad067_888 crossref_primary_10_1002_ange_202406198 crossref_primary_10_3390_ma16041584 crossref_primary_10_1039_D4EE01241K crossref_primary_10_1002_smll_202408457 crossref_primary_10_1016_j_est_2024_114038 crossref_primary_10_1016_j_cej_2025_160846 crossref_primary_10_1021_acs_nanolett_3c04537 crossref_primary_10_1021_acsami_4c03710 crossref_primary_10_1016_j_matt_2021_11_019 crossref_primary_10_1016_j_cej_2024_152828 crossref_primary_10_1021_acsnano_2c08777 crossref_primary_10_1002_adma_202404360 crossref_primary_10_26599_NRE_2022_9120031 crossref_primary_10_1002_batt_202400030 crossref_primary_10_1002_batt_202300186 crossref_primary_10_1002_anie_202406198 crossref_primary_10_1002_anie_202400761 crossref_primary_10_1007_s11581_024_05764_2 crossref_primary_10_1002_aenm_202200398 crossref_primary_10_1002_aenm_202401426 crossref_primary_10_1007_s10338_025_00589_6 crossref_primary_10_1016_j_mattod_2022_06_022 crossref_primary_10_26599_NR_2025_94907230 crossref_primary_10_1038_s41893_024_01393_9 crossref_primary_10_1016_j_cej_2025_161385 crossref_primary_10_1002_adma_202402625 crossref_primary_10_1016_j_electacta_2022_140909 crossref_primary_10_1021_acsami_4c22721 crossref_primary_10_1002_aenm_202300240 crossref_primary_10_1002_smtd_202101052 crossref_primary_10_1016_j_ensm_2025_104029 crossref_primary_10_1038_s41560_024_01619_2 crossref_primary_10_1016_j_jiec_2022_02_037 crossref_primary_10_1002_aenm_202401979 crossref_primary_10_1038_s43246_023_00368_1 crossref_primary_10_1149_1945_7111_ad0757 crossref_primary_10_1016_j_est_2025_115838 crossref_primary_10_1016_j_ensm_2023_102875 crossref_primary_10_1002_aenm_202304295 crossref_primary_10_1002_aenm_202301464 crossref_primary_10_1016_j_device_2024_100501 crossref_primary_10_1016_j_jallcom_2023_169846 crossref_primary_10_1016_j_cej_2022_139397 crossref_primary_10_1021_jacs_3c07908 crossref_primary_10_1002_smll_202407016 crossref_primary_10_1002_adfm_202314822 crossref_primary_10_1039_D3EE01696J crossref_primary_10_1002_ange_202412214 crossref_primary_10_1002_smll_202301301 crossref_primary_10_1002_aenm_202403142 crossref_primary_10_1016_j_matt_2022_01_015 crossref_primary_10_1002_smtd_202300754 crossref_primary_10_1038_s41467_023_43093_6 crossref_primary_10_1016_j_jmps_2023_105399 crossref_primary_10_1002_adfm_202208329 crossref_primary_10_1016_j_jelechem_2022_116048 crossref_primary_10_1002_smll_202306428 crossref_primary_10_1021_acs_jpcc_2c03394 crossref_primary_10_1016_j_jechem_2023_02_025 crossref_primary_10_1063_5_0117229 crossref_primary_10_1002_aenm_202402048 crossref_primary_10_1021_acsengineeringau_3c00037 crossref_primary_10_1016_j_joule_2022_05_016 crossref_primary_10_1021_acsenergylett_1c02425 crossref_primary_10_1016_j_cej_2021_133572 crossref_primary_10_1016_j_jallcom_2024_175913 crossref_primary_10_1016_j_isci_2021_103402 crossref_primary_10_1016_j_isci_2022_105689 crossref_primary_10_3390_molecules29174114 crossref_primary_10_1016_j_cej_2024_157109 crossref_primary_10_1016_j_jcis_2023_10_031 crossref_primary_10_1021_acsaelm_3c00022 crossref_primary_10_3390_batteries10110381 crossref_primary_10_1016_j_ensm_2021_11_040 crossref_primary_10_1007_s11426_022_1486_1 crossref_primary_10_1002_batt_202300537 crossref_primary_10_1016_j_nanoen_2021_106489 crossref_primary_10_1016_j_nanoen_2022_107993 crossref_primary_10_1016_j_jallcom_2022_166428 crossref_primary_10_1002_aenm_202301139 crossref_primary_10_1002_cnl2_124 crossref_primary_10_1021_acsmaterialslett_2c00013 crossref_primary_10_1017_S1431927622002082 crossref_primary_10_1016_j_cclet_2024_109776 crossref_primary_10_1093_mam_ozae044_116 crossref_primary_10_1002_smll_202407740 crossref_primary_10_1002_adma_202200672 crossref_primary_10_1002_smll_202410118 crossref_primary_10_1002_smll_202303415 crossref_primary_10_1021_acsenergylett_4c00262 crossref_primary_10_1002_adfm_202109682 crossref_primary_10_1002_aenm_202500189 crossref_primary_10_1002_adfm_202111074 crossref_primary_10_1016_j_xcrp_2024_102000 crossref_primary_10_1016_j_jcis_2024_05_081 crossref_primary_10_3389_fphot_2024_1332830 crossref_primary_10_1002_ente_202200319 crossref_primary_10_1149_1945_7111_ada370 crossref_primary_10_1002_batt_202100292 crossref_primary_10_1007_s12598_023_02463_1 crossref_primary_10_1021_acsnano_4c09114 crossref_primary_10_1016_j_xcrp_2022_100868 crossref_primary_10_1039_D2DT01387H crossref_primary_10_1021_acsami_3c00891 crossref_primary_10_1021_acsami_3c08015 crossref_primary_10_1016_j_jpowsour_2024_235659 crossref_primary_10_1021_acsami_3c18846 crossref_primary_10_1021_acsami_4c12976 crossref_primary_10_1016_j_est_2024_112480 crossref_primary_10_1002_aenm_202303336 crossref_primary_10_1002_ange_202306141 crossref_primary_10_1016_j_coco_2022_101157 crossref_primary_10_1002_adma_202200777 crossref_primary_10_1021_acsami_3c17064 crossref_primary_10_1039_D4EE02202E crossref_primary_10_1002_adma_202406251 crossref_primary_10_1016_j_mser_2024_100854 crossref_primary_10_1002_smll_202410930 crossref_primary_10_1016_j_ensm_2023_102857 crossref_primary_10_1002_adfm_202106194 crossref_primary_10_1016_j_electacta_2024_143948 crossref_primary_10_1016_j_mtnano_2023_100322 crossref_primary_10_1039_D4TA07201D crossref_primary_10_1016_j_joule_2025_101874 crossref_primary_10_1016_j_etran_2022_100203 crossref_primary_10_1039_D3TA00183K crossref_primary_10_1002_adfm_202404192 crossref_primary_10_1002_anie_202306141 crossref_primary_10_1002_anie_202412214 crossref_primary_10_1002_bte2_20220016 crossref_primary_10_1016_j_jechem_2024_01_046 crossref_primary_10_1007_s12209_022_00349_4 crossref_primary_10_1021_acs_jpclett_4c01599 crossref_primary_10_1007_s12274_024_6512_x crossref_primary_10_1039_D2TA06859A crossref_primary_10_1016_j_etran_2025_100416 crossref_primary_10_1002_cssc_202400971 crossref_primary_10_1021_acsami_3c02925 crossref_primary_10_1002_smll_202305921 crossref_primary_10_1002_smll_202309600 crossref_primary_10_1021_acs_jpclett_2c02236 crossref_primary_10_1021_acsnano_1c08719 |
Cites_doi | 10.1002/adma.201104923 10.1038/nmat2406 10.1038/ncomms9844 10.1038/s41467-020-17104-9 10.1149/2.0501712jes 10.1021/nl100258p 10.1149/2.0731512jes 10.1038/s41560-020-0601-1 10.1038/s41467-019-09510-5 10.1016/j.jpowsour.2009.01.007 10.1038/nnano.2012.35 10.1021/nl3014814 10.1149/2.1261807jes 10.1021/nn505410q 10.1016/j.jpowsour.2015.09.055 10.1149/1.1644601 10.1016/j.actamat.2013.04.007 10.1038/nenergy.2015.29 10.1038/nmat3741 10.1038/nchem.1802 10.1016/j.matt.2019.09.020 10.1016/j.mattod.2014.05.003 10.1021/acs.nanolett.7b03606 10.1016/j.ultramic.2015.05.002 10.1126/science.aal4373 10.1016/S0076-6879(10)82011-7 10.1038/s41560-018-0191-3 10.1038/nnano.2007.411 10.1021/nl201684d 10.1039/C0EE00281J 10.1021/nl500130e 10.1039/C8EE00239H 10.1038/nnano.2014.6 10.1002/adma.201503978 10.1149/2.020203jes 10.1021/nn204476h 10.1038/s41467-020-14535-2 10.1038/s41586-019-1317-x 10.1038/nmat2725 10.1038/s41524-018-0064-0 10.1126/science.aam6014 10.1021/acs.nanolett.9b01515 10.1038/s41524-017-0009-z 10.1021/acsami.8b20436 10.1038/s41586-018-0397-3 10.1002/anie.200804355 10.1126/sciadv.aax0651 10.1038/nmat1709 10.1021/nl302841y |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 OIOZB OTOTI |
DOI | 10.1038/s41565-021-00947-8 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 1120 |
ExternalDocumentID | 1833249 34326526 10_1038_s41565_021_00947_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: DOE | SC | Basic Energy Sciences (BES) funderid: https://doi.org/10.13039/100006151 – fundername: National Science Foundation (NSF) funderid: https://doi.org/10.13039/100000001 – fundername: DOE | Office of Energy Efficiency & Renewable Energy | Vehicle Technologies Office (VTO) funderid: https://doi.org/10.13039/100011884 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
ID | FETCH-LOGICAL-c512t-3056c87cb2fdd26dcf929372bcdabcb8ad20e600c0a50ec7a9547acc431a8b733 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri May 19 00:40:15 EDT 2023 Thu Jul 10 20:17:50 EDT 2025 Sat Aug 23 13:09:28 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Tue Jul 01 01:56:32 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Fri Feb 21 02:41:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-3056c87cb2fdd26dcf929372bcdabcb8ad20e600c0a50ec7a9547acc431a8b733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 89233218CNA000001; AC05-76RL01830 LA-UR-20-26229 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0002-9945-3514 0000-0003-3327-0958 0000-0002-3183-1507 0000-0003-4429-8235 0000-0002-7728-0157 0000-0002-9578-6979 0000-0001-7343-4609 0000000277280157 0000000333270958 0000000295786979 0000000231831507 0000000173434609 0000000299453514 0000000344298235 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1833249 |
PMID | 34326526 |
PQID | 2581100313 |
PQPubID | 546299 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1833249 proquest_miscellaneous_2557222470 proquest_journals_2581100313 pubmed_primary_34326526 crossref_citationtrail_10_1038_s41565_021_00947_8 crossref_primary_10_1038_s41565_021_00947_8 springer_journals_10_1038_s41565_021_00947_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhou (CR27) 2019; 570 Huang, Fan, Li, Zhang, Zhu (CR13) 2013; 61 Zhang (CR38) 2017; 3 Midgley, Dunin-Borkowski (CR26) 2009; 8 Liu (CR10) 2012; 12 Chen, Sieradzki (CR33) 2013; 12 Pharr, Zhao, Wang, Suo, Vlassak (CR37) 2012; 12 Zhu (CR39) 2019; 11 Chan, Ruffo, Hong, Cui (CR21) 2009; 189 Hu (CR34) 2006; 5 Choi (CR32) 2010; 10 Kim, Lee, Sun (CR4) 2014; 17 Zhao (CR17) 2012; 159 Zhang (CR24) 2018; 11 Wang, Kadam, Li, Shi, Qi (CR35) 2018; 4 Gohier (CR18) 2012; 24 Szczech, Jin (CR12) 2011; 4 Kennedy, Brandon, Ryan (CR15) 2016; 28 Yan (CR46) 2018; 3 Xiao (CR44) 2015; 6 Kim, Han, Choo, Cho (CR14) 2008; 47 Turoňová (CR28) 2020; 11 Chen (CR40) 2020; 11 Lu (CR11) 2015; 9 Wetjen (CR20) 2018; 165 Yoon, Nguyen, Seo, Lucht (CR19) 2015; 162 Magansinski (CR9) 2010; 9 Liu (CR31) 2011; 11 Chen (CR49) 2015; 300 Wang (CR30) 2017; 17 Ploehn, Ramadass, White (CR36) 2004; 151 Sigworth, Doerschuk, Carazo, Scheres (CR47) 2010; 482 Huang (CR25) 2019; 1 Krause, Brandt, Chevrier, Jensen (CR22) 2017; 164 Liu (CR16) 2011; 6 Zachman, Tu, Choudhury, Archer, Kourkoutis (CR42) 2018; 560 Chen (CR1) 2020; 5 Chan (CR3) 2008; 3 Wang (CR45) 2013; 5 Zhu (CR41) 2019; 5 Li (CR6) 2016; 1 Wu (CR2) 2012; 7 Li (CR29) 2017; 358 Cho, Picraux (CR23) 2014; 14 Aarle (CR48) 2015; 157 An (CR8) 2019; 10 Choi, Kwon, Coskun, Choi (CR5) 2017; 357 Liu (CR7) 2014; 9 Huang (CR43) 2019; 19 M Pharr (947_CR37) 2012; 12 XH Liu (947_CR16) 2011; 6 T Kennedy (947_CR15) 2016; 28 HJ Ploehn (947_CR36) 2004; 151 LJ Krause (947_CR22) 2017; 164 WV Aarle (947_CR48) 2015; 157 FJ Sigworth (947_CR47) 2010; 482 Q Chen (947_CR33) 2013; 12 K Zhao (947_CR17) 2012; 159 Y Li (947_CR6) 2016; 1 B Zhu (947_CR41) 2019; 5 Z Lu (947_CR11) 2015; 9 Q Xiao (947_CR44) 2015; 6 J Zhu (947_CR39) 2019; 11 A Gohier (947_CR18) 2012; 24 CK Chan (947_CR3) 2008; 3 T Yoon (947_CR19) 2015; 162 Y Li (947_CR29) 2017; 358 B Turoňová (947_CR28) 2020; 11 A Wang (947_CR35) 2018; 4 J Chen (947_CR1) 2020; 5 S Zhang (947_CR38) 2017; 3 MJ Zachman (947_CR42) 2018; 560 A Magansinski (947_CR9) 2010; 9 S Huang (947_CR13) 2013; 61 JH Cho (947_CR23) 2014; 14 JR Szczech (947_CR12) 2011; 4 C Wang (947_CR45) 2013; 5 L Chen (947_CR49) 2015; 300 H Kim (947_CR14) 2008; 47 YS Hu (947_CR34) 2006; 5 H Wu (947_CR2) 2012; 7 P Yan (947_CR46) 2018; 3 H Kim (947_CR4) 2014; 17 X Wang (947_CR30) 2017; 17 W Huang (947_CR43) 2019; 19 N Liu (947_CR7) 2014; 9 C Chen (947_CR40) 2020; 11 S Choi (947_CR5) 2017; 357 N Liu (947_CR10) 2012; 12 J Zhou (947_CR27) 2019; 570 W An (947_CR8) 2019; 10 W Huang (947_CR25) 2019; 1 Q Zhang (947_CR24) 2018; 11 JW Choi (947_CR32) 2010; 10 M Wetjen (947_CR20) 2018; 165 PA Midgley (947_CR26) 2009; 8 XH Liu (947_CR31) 2011; 11 CK Chan (947_CR21) 2009; 189 |
References_xml | – volume: 24 start-page: 2592 year: 2012 end-page: 2597 ident: CR18 article-title: High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201104923 – volume: 8 start-page: 271 year: 2009 end-page: 280 ident: CR26 article-title: Electron tomography and holography in materials science publication-title: Nat. Mater. doi: 10.1038/nmat2406 – volume: 6 year: 2015 ident: CR44 article-title: Inward lithium-ion breathing of hierarchically porous silicon anodes publication-title: Nat. Commun. doi: 10.1038/ncomms9844 – volume: 11 year: 2020 ident: CR40 article-title: Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes publication-title: Nat. Commun. doi: 10.1038/s41467-020-17104-9 – volume: 164 start-page: A2277 year: 2017 end-page: A2282 ident: CR22 article-title: Surface area increase of silicon alloys in Li-ion full cells measured by isothermal heat flow calorimetry publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501712jes – volume: 10 start-page: 1409 year: 2010 end-page: 1413 ident: CR32 article-title: Stepwise nanopore evolution in one-dimensional nanostructures publication-title: Nano Lett. doi: 10.1021/nl100258p – volume: 162 start-page: A2325 year: 2015 end-page: A2330 ident: CR19 article-title: Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0731512jes – volume: 5 start-page: 386 year: 2020 end-page: 397 ident: CR1 article-title: Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0601-1 – volume: 10 year: 2019 ident: CR8 article-title: Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes publication-title: Nat. Commun. doi: 10.1038/s41467-019-09510-5 – volume: 189 start-page: 1132 year: 2009 end-page: 1140 ident: CR21 article-title: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.007 – volume: 7 start-page: 310 year: 2012 end-page: 315 ident: CR2 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 12 start-page: 3315 year: 2012 end-page: 3321 ident: CR10 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. doi: 10.1021/nl3014814 – volume: 165 start-page: A1503 year: 2018 end-page: A1514 ident: CR20 article-title: Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.1261807jes – volume: 9 start-page: 2540 year: 2015 end-page: 2547 ident: CR11 article-title: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes publication-title: ACS Nano doi: 10.1021/nn505410q – volume: 300 start-page: 376 year: 2015 end-page: 385 ident: CR49 article-title: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.055 – volume: 151 start-page: A456 year: 2004 end-page: A462 ident: CR36 article-title: Solvent diffusion model for aging of lithium-ion battery cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1644601 – volume: 61 start-page: 4354 year: 2013 end-page: 4364 ident: CR13 article-title: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.04.007 – volume: 1 start-page: 15029 year: 2016 ident: CR6 article-title: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes publication-title: Nat. Energy doi: 10.1038/nenergy.2015.29 – volume: 12 start-page: 1102 year: 2013 end-page: 1106 ident: CR33 article-title: Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems publication-title: Nat. Mater. doi: 10.1038/nmat3741 – volume: 5 start-page: 1042 year: 2013 end-page: 1048 ident: CR45 article-title: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries publication-title: Nat. Chem. doi: 10.1038/nchem.1802 – volume: 1 start-page: 1232 year: 2019 end-page: 1245 ident: CR25 article-title: Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy publication-title: Matter doi: 10.1016/j.matt.2019.09.020 – volume: 17 start-page: 285 year: 2014 end-page: 297 ident: CR4 article-title: Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries publication-title: Mater. Today doi: 10.1016/j.mattod.2014.05.003 – volume: 17 start-page: 7606 year: 2017 end-page: 7612 ident: CR30 article-title: New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03606 – volume: 157 start-page: 35 year: 2015 end-page: 47 ident: CR48 article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.05.002 – volume: 357 start-page: 279 year: 2017 end-page: 283 ident: CR5 article-title: Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries publication-title: Science doi: 10.1126/science.aal4373 – volume: 482 start-page: 263 year: 2010 end-page: 294 ident: CR47 article-title: An introduction to maximum-likelihood methods in cryo-EM publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)82011-7 – volume: 3 start-page: 600 year: 2018 end-page: 605 ident: CR46 article-title: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0191-3 – volume: 3 start-page: 31 year: 2008 end-page: 35 ident: CR3 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 – volume: 11 start-page: 3312 year: 2011 end-page: 3318 ident: CR31 article-title: Anisotropic swelling and fracture of silicon nanowires during lithiation publication-title: Nano Lett. doi: 10.1021/nl201684d – volume: 4 start-page: 56 year: 2011 end-page: 72 ident: CR12 article-title: Nanostructured silicon for high capacity lithium battery anodes publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00281J – volume: 14 start-page: 3088 year: 2014 end-page: 3095 ident: CR23 article-title: Silicon nanowire degradation and stablization during lithium cycling by SEI layer formation publication-title: Nano Lett. doi: 10.1021/nl500130e – volume: 11 start-page: 669 year: 2018 end-page: 681 ident: CR24 article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00239H – volume: 9 start-page: 187 year: 2014 end-page: 192 ident: CR7 article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.6 – volume: 28 start-page: 5696 year: 2016 end-page: 5704 ident: CR15 article-title: Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201503978 – volume: 159 start-page: A238 year: 2012 end-page: A243 ident: CR17 article-title: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.020203jes – volume: 6 start-page: 1522 year: 2011 end-page: 1531 ident: CR16 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano doi: 10.1021/nn204476h – volume: 11 year: 2020 ident: CR28 article-title: Benchmarking tomographic acquisition schemes for high-resolution structural biology publication-title: Nat. Commun. doi: 10.1038/s41467-020-14535-2 – volume: 570 start-page: 500 year: 2019 end-page: 503 ident: CR27 article-title: Observing crystal nucleation in four dimensions using atomic electron tomography publication-title: Nature doi: 10.1038/s41586-019-1317-x – volume: 9 start-page: 353 year: 2010 end-page: 358 ident: CR9 article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach publication-title: Nat. Mater. doi: 10.1038/nmat2725 – volume: 4 start-page: 15 year: 2018 ident: CR35 article-title: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0064-0 – volume: 358 start-page: 506 year: 2017 end-page: 510 ident: CR29 article-title: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy publication-title: Science doi: 10.1126/science.aam6014 – volume: 19 start-page: 5140 year: 2019 end-page: 5148 ident: CR43 article-title: Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01515 – volume: 3 start-page: 7 year: 2017 ident: CR38 article-title: Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0009-z – volume: 11 start-page: 17313 year: 2019 end-page: 18320 ident: CR39 article-title: In situ TEM of phosphorus-dopant-induced nanopore formation in delithiated silicon nanowires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20436 – volume: 560 start-page: 345 year: 2018 end-page: 349 ident: CR42 article-title: Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries publication-title: Nature doi: 10.1038/s41586-018-0397-3 – volume: 47 start-page: 10151 year: 2008 end-page: 10154 ident: CR14 article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804355 – volume: 5 start-page: eaax0651 year: 2019 ident: CR41 article-title: Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0651 – volume: 5 start-page: 713 year: 2006 end-page: 717 ident: CR34 article-title: Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity publication-title: Nat. Mater. doi: 10.1038/nmat1709 – volume: 12 start-page: 5039 year: 2012 end-page: 5047 ident: CR37 article-title: Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/nl302841y – volume: 61 start-page: 4354 year: 2013 ident: 947_CR13 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.04.007 – volume: 24 start-page: 2592 year: 2012 ident: 947_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201104923 – volume: 300 start-page: 376 year: 2015 ident: 947_CR49 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.055 – volume: 189 start-page: 1132 year: 2009 ident: 947_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.007 – volume: 7 start-page: 310 year: 2012 ident: 947_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 3 start-page: 600 year: 2018 ident: 947_CR46 publication-title: Nat. Energy doi: 10.1038/s41560-018-0191-3 – volume: 9 start-page: 353 year: 2010 ident: 947_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat2725 – volume: 12 start-page: 3315 year: 2012 ident: 947_CR10 publication-title: Nano Lett. doi: 10.1021/nl3014814 – volume: 19 start-page: 5140 year: 2019 ident: 947_CR43 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01515 – volume: 8 start-page: 271 year: 2009 ident: 947_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat2406 – volume: 5 start-page: 713 year: 2006 ident: 947_CR34 publication-title: Nat. Mater. doi: 10.1038/nmat1709 – volume: 151 start-page: A456 year: 2004 ident: 947_CR36 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1644601 – volume: 5 start-page: 1042 year: 2013 ident: 947_CR45 publication-title: Nat. Chem. doi: 10.1038/nchem.1802 – volume: 358 start-page: 506 year: 2017 ident: 947_CR29 publication-title: Science doi: 10.1126/science.aam6014 – volume: 164 start-page: A2277 year: 2017 ident: 947_CR22 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501712jes – volume: 9 start-page: 187 year: 2014 ident: 947_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.6 – volume: 11 start-page: 3312 year: 2011 ident: 947_CR31 publication-title: Nano Lett. doi: 10.1021/nl201684d – volume: 165 start-page: A1503 year: 2018 ident: 947_CR20 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1261807jes – volume: 560 start-page: 345 year: 2018 ident: 947_CR42 publication-title: Nature doi: 10.1038/s41586-018-0397-3 – volume: 10 start-page: 1409 year: 2010 ident: 947_CR32 publication-title: Nano Lett. doi: 10.1021/nl100258p – volume: 162 start-page: A2325 year: 2015 ident: 947_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0731512jes – volume: 17 start-page: 285 year: 2014 ident: 947_CR4 publication-title: Mater. Today doi: 10.1016/j.mattod.2014.05.003 – volume: 10 year: 2019 ident: 947_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09510-5 – volume: 4 start-page: 15 year: 2018 ident: 947_CR35 publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0064-0 – volume: 4 start-page: 56 year: 2011 ident: 947_CR12 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00281J – volume: 159 start-page: A238 year: 2012 ident: 947_CR17 publication-title: J. Electrochem. Soc. doi: 10.1149/2.020203jes – volume: 28 start-page: 5696 year: 2016 ident: 947_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201503978 – volume: 3 start-page: 31 year: 2008 ident: 947_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 – volume: 357 start-page: 279 year: 2017 ident: 947_CR5 publication-title: Science doi: 10.1126/science.aal4373 – volume: 1 start-page: 1232 year: 2019 ident: 947_CR25 publication-title: Matter doi: 10.1016/j.matt.2019.09.020 – volume: 11 year: 2020 ident: 947_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14535-2 – volume: 12 start-page: 5039 year: 2012 ident: 947_CR37 publication-title: Nano Lett. doi: 10.1021/nl302841y – volume: 3 start-page: 7 year: 2017 ident: 947_CR38 publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0009-z – volume: 570 start-page: 500 year: 2019 ident: 947_CR27 publication-title: Nature doi: 10.1038/s41586-019-1317-x – volume: 6 year: 2015 ident: 947_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms9844 – volume: 14 start-page: 3088 year: 2014 ident: 947_CR23 publication-title: Nano Lett. doi: 10.1021/nl500130e – volume: 5 start-page: eaax0651 year: 2019 ident: 947_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0651 – volume: 11 start-page: 669 year: 2018 ident: 947_CR24 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00239H – volume: 17 start-page: 7606 year: 2017 ident: 947_CR30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03606 – volume: 482 start-page: 263 year: 2010 ident: 947_CR47 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)82011-7 – volume: 12 start-page: 1102 year: 2013 ident: 947_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat3741 – volume: 6 start-page: 1522 year: 2011 ident: 947_CR16 publication-title: ACS Nano doi: 10.1021/nn204476h – volume: 5 start-page: 386 year: 2020 ident: 947_CR1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0601-1 – volume: 9 start-page: 2540 year: 2015 ident: 947_CR11 publication-title: ACS Nano doi: 10.1021/nn505410q – volume: 11 start-page: 17313 year: 2019 ident: 947_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20436 – volume: 1 start-page: 15029 year: 2016 ident: 947_CR6 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.29 – volume: 47 start-page: 10151 year: 2008 ident: 947_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804355 – volume: 157 start-page: 35 year: 2015 ident: 947_CR48 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.05.002 – volume: 11 year: 2020 ident: 947_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17104-9 |
SSID | ssj0052924 |
Score | 2.6986384 |
Snippet | The solid–electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs... The solid-electrolyte interphase (SEI), a layer formed on the electrode surface, is essential for electrochemical reactions in batteries and critically governs... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1113 |
SubjectTerms | 639/301/299/161/891 639/4077/4079/891 Algorithms batteries Chemical evolution Chemical reactions Chemistry and Materials Science Condensates Control stability Cycles Electrochemistry Electrode materials Electrodes Electrolytes Evolution Fading Flux density Interphase MATERIALS SCIENCE Nanotechnology Nanotechnology and Microengineering Percolation Scanning electron microscopy Scanning transmission electron microscopy Silicon Tomography Transmission electron microscopy |
Title | Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading |
URI | https://link.springer.com/article/10.1038/s41565-021-00947-8 https://www.ncbi.nlm.nih.gov/pubmed/34326526 https://www.proquest.com/docview/2581100313 https://www.proquest.com/docview/2557222470 https://www.osti.gov/servlets/purl/1833249 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k3aUhmJG0TN2nHsnFAXdamQWFVApb1Zfm27UklKk63Ejf_AP-SXMON4tyCgl_gQx7Iy45lvPC9CXtZc2WpsHNYMFXlZO5tbXosci7EptrCirjDB-cOsOjop38_FPF24dSmsci0To6D2rcM78n0mFFY342P-5uJrjl2j0LuaWmjcJltYugy5Ws43Bpdg9dDUVpYqB1NMpqSZgqv9Dg0XzE0GYxosHJDUfyimUQsH7F-g8y-HadRD0_vkXgKQ9GCg-ANyKzQPyd3fygo-Il-OMegK41uvAj0FO7s_o-2CAtSjwGlL__P7j9T95vxbH-gyxh2egTqjfQyi7eLUT0tqmtan98v2kjqz6kIHA9jZAN7pIsbfPyYn08PPb4_y1FYhd6Dd-xyNBqeks2zhPau8WwBE4pJZ5411VhnPigA4yBVGFMFJU4tSGucAahhlJedPyKhpm_CMUM-Z41XlQCiIMvDS-HHhBKwIMA2RQUbG63-qXao5jq0vznX0fXOlBzpooIOOdNAqI68231wMFTdunL2DpNKAF7DorcPoINdrEFSwhToju2sK6nQ2O33NSRl5sXkNpwpdJaYJ7QrnCAnIqZRFRp4OlN9sBlNxK8GqjLxes8L14v_f6fbNe9khdxhyY4wT3CWj_nIVngPe6e1eZGp4qum7PbJ1MJ1MZjBODmfHH38B9bD_Dw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAcEG9CCxgJThA1a8eJc0AIAcuWPoREK_Vm7LFDVyqb0mRBvfEf-B_8KH4JM3lsQUBvPeVgx7I845lvPC_GHhVSu2xsgWqGqjgtwMVOFiqmYmxalE4VGSU4b-9k07307b7aX2E_hlwYCqscZGIrqH0F9Ea-LpSm6mZyLJ8ffY6paxR5V4cWGh1bbIaTr2iy1c82XiF9Hwsxeb37chr3XQViQOXWxISZQefgROm9yDyUiBBkLhx468Bp60USEAZAYlUSILeFSnMLgJrWapfTAyiK_AupRE1OmemTN4PkV6LomujmqY7R9Mv7JJ1E6vWaDCXKhUbjHS0q1Ax_KMJRhRf6XyD3Lwdtq_cmV9mVHrDyFx2HXWMrYX6dXf6tjOEN9ukdBXlRPO2XwD-iXd8c8KrkCC05cvbM__z2ve-2c3jSBD5r4xwPUH3ypg3ardup72fczivfj8-qYw52UYcaP2jXo7HAyzbe_ybbO5cDv8VG82oe7jDupQCZZYBCSKVBptaPE1C4IsJCQiIRGw9naqCvcU6tNg5N62uX2nR0MEgH09LB6Ig9Wf5z1FX4OHP2KpHKID6hIrtA0UjQGBSMuIUiYmsDBU0vC2pzyrkRe7gcxltMrhk7D9WC5qgckVqaJxG73VF-uRlK_c2UyCL2dGCF08X_v9O7Z-_lAbs43d3eMlsbO5ur7JIgzmxjFNfYqDlehHuItRp3v2Vwzj6c9436BQbKOW4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmbQEjwQmizTpx4hwQAtpVS2G1Air1ZvwKXandlCYL6o3_wL_h5_BLmMljCwJ66ymHOJHlGc98nz0PgEd5LE060pZqhoowya0JTZyLkIqxSV4YkaeU4Px2km7vJa_3xf4K_OhzYSissreJjaF2paUz8iEXkqqbxaN4WHRhEdPN8fPjzyF1kKKb1r6dRqsiu_70K9K36tnOJsr6MefjrQ-vtsOuw0Bo0dHVIeFnKzNreOEcT50tEC3EGTfWaWON1I5HHiGBjbSIvM10LpJMW4teV0uT0WEomv_VjFjRAFZfbk2m73o_IHjettTNEhkiEcy6lJ0olsOKaBNlRiOVR36FfuIPtzgocXv_C_L-dV3beMHxNbjawVf2otW367Di5zfgym9FDW_C0ZRCvii69otnn5Dl1wesLBgCTYZ6PnM_v33veu8cntaezZqoxwN0pqxuQnirZuj7GdPz0nXvZ-UJs3pR-QofyPKROrCiif6_BXsXsuS3YTAv5_4uMBdzG6epRZMkEh8n2o0iK_CPCBIJlwQw6tdU2a7iOTXeOFTNzXssVSsHhXJQjRyUDODJ8pvjtt7HuaPXSVQK0QqV3LUUm2RrhWYSp5AHsNFLUHWWoVJnehzAw-Vr3NN0UaPnvlzQGJEhbkuyKIA7reSXk6FE4FTwNICnvSqc_fz_M107fy4P4BLuJvVmZ7K7Dpc5KWYTsLgBg_pk4e8h8KrN_U7DGXy86E31C-oEPwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+growth+of+the+solid-electrolyte+interphase+towards+the+Si+anode+interior+causes+capacity+fading&rft.jtitle=Nature+nanotechnology&rft.au=He%2C+Yang&rft.au=Jiang%2C+Lin&rft.au=Chen%2C+Tianwu&rft.au=Xu%2C+Yaobin&rft.date=2021-10-01&rft.eissn=1748-3395&rft.volume=16&rft.issue=10&rft.spage=1113&rft_id=info:doi/10.1038%2Fs41565-021-00947-8&rft_id=info%3Apmid%2F34326526&rft.externalDocID=34326526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |