Interleukin-6 Causes Myocardial Failure and Skeletal Muscle Atrophy in Rats
Background— The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy. Methods and Results— The effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 μg · kg −1 · d −1 , in rats. Skeletal muscle mass dec...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 111; no. 8; pp. 996 - 1005 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.03.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background—
The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy.
Methods and Results—
The effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 μg · kg
−1
· d
−1
, in rats. Skeletal muscle mass decreased dose-dependently (with increasing dose: in the diaphragm, −10%,
P
=NS; −15%,
P
=0.0561; and −15%
P
<0.05; and in the gastrocnemius, −9%,
P
=NS; −9%,
P
=NS; and −18%,
P
<0.005) because of decreases in cross-sectional area of all fiber types without alterations in diaphragm contractile properties. Cardiovascular variables showed a dose-dependent heart dilatation (for end-diastolic volume: control, 78 μL; moderate dose, 123 μL; and high dose, 137 μL,
P
<0.001), reduced end-systolic pressure (control, 113 mm Hg; moderate dose, 87 mm Hg; and high dose, 90 mm Hg;
P
=0.037), and decreased myocardial contractility (for preload recruitable stroke work: control, 79 mm Hg; moderate dose, 67 mm Hg; and high dose, 48 mm Hg;
P
<0.001). Lung edema was confirmed by an increased wet-to-dry ratio (control, 4.2; moderate dose, 4.6; and high dose, 4.5;
P
<0.001) and microscopy findings. These cardiovascular alterations led to decreases in organ blood flow, particularly in the diaphragm (control, 0.56 mL · min
−1
· g
−1
; moderate dose, 0.21 mL · min
−1
· g
−1
; and high dose, 0.23 mL · min
−1
· g
−1
;
P
=0.037). In vitro recombinant human IL-6 administration did not cause any alterations in diaphragm force or endurance capacity.
Conclusions—
IL-6 clearly caused ventilatory and peripheral skeletal muscle atrophy, even after short-term administration. Blood flow redistribution, resulting from the myocardial failure induced by IL-6, was likely responsible for this muscle atrophy, because IL-6 did not exert any direct effect on the diaphragm. |
---|---|
AbstractList | BACKGROUND: The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy. METHOD:S: and Results-The effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 kg . kg super(-1) . d super(-1), in rats. Skeletal muscle mass decreased dose-dependently (with increasing dose: in the diaphragm, -10%, P=NS; -15%, P=0.0561; and -15% P<0.05; and in the gastrocnemius, -9%, P=NS; -9%, P=NS; and -18%, P<0.005) because of decreases in cross-sectional area of all fiber types without alterations in diaphragm contractile properties. Cardiovascular variables showed a dose-dependent heart dilatation (for end-diastolic volume: control, 78 kL; moderate dose, 123 kL; and high dose, 137 kL, P<0.001), reduced end-systolic pressure (control, 113 mm Hg; moderate dose, 87 mm Hg; and high dose, 90 mm Hg; P=0.037), and decreased myocardial contractility (for preload recruitable stroke work: control, 79 mm Hg; moderate dose, 67 mm Hg; and high dose, 48 mm Hg; P<0.001). Lung edema was confirmed by an increased wet-to- dry ratio (control, 4.2; moderate dose, 4.6; and high dose, 4.5; P<0.001) and microscopy findings. These cardiovascular alterations led to decreases in organ blood flow, particularly in the diaphragm (control, 0.56 mL . min super(-1) . g super(- 1); moderate dose, 0.21 mL . min super(-1) . g super(-1); and high dose, 0.23 mL . min super(-1) . g super(-1); P=0.037). In vitro recombinant human IL-6 administration did not cause any alterations in diaphragm force or endurance capacity. CONCLUSIONS: IL-6 clearly caused ventilatory and peripheral skeletal muscle atrophy, even after short-term administration. Blood flow redistribution, resulting from the myocardial failure induced by IL-6, was likely responsible for this muscle atrophy, because IL-6 did not exert any direct effect on the diaphragm. The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy.BACKGROUNDThe impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy.The effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 microg x kg(-1) x d(-1), in rats. Skeletal muscle mass decreased dose-dependently (with increasing dose: in the diaphragm, -10%, P=NS; -15%, P=0.0561; and -15% P<0.05; and in the gastrocnemius, -9%, P=NS; -9%, P=NS; and -18%, P<0.005) because of decreases in cross-sectional area of all fiber types without alterations in diaphragm contractile properties. Cardiovascular variables showed a dose-dependent heart dilatation (for end-diastolic volume: control, 78 microL; moderate dose, 123 microL; and high dose, 137 microL, P<0.001), reduced end-systolic pressure (control, 113 mm Hg; moderate dose, 87 mm Hg; and high dose, 90 mm Hg; P=0.037), and decreased myocardial contractility (for preload recruitable stroke work: control, 79 mm Hg; moderate dose, 67 mm Hg; and high dose, 48 mm Hg; P<0.001). Lung edema was confirmed by an increased wet-to-dry ratio (control, 4.2; moderate dose, 4.6; and high dose, 4.5; P<0.001) and microscopy findings. These cardiovascular alterations led to decreases in organ blood flow, particularly in the diaphragm (control, 0.56 mL x min(-1) x g(-1); moderate dose, 0.21 mL x min(-1) x g(-1); and high dose, 0.23 mL x min(-1) x g(-1); P=0.037). In vitro recombinant human IL-6 administration did not cause any alterations in diaphragm force or endurance capacity.METHODS AND RESULTSThe effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 microg x kg(-1) x d(-1), in rats. Skeletal muscle mass decreased dose-dependently (with increasing dose: in the diaphragm, -10%, P=NS; -15%, P=0.0561; and -15% P<0.05; and in the gastrocnemius, -9%, P=NS; -9%, P=NS; and -18%, P<0.005) because of decreases in cross-sectional area of all fiber types without alterations in diaphragm contractile properties. Cardiovascular variables showed a dose-dependent heart dilatation (for end-diastolic volume: control, 78 microL; moderate dose, 123 microL; and high dose, 137 microL, P<0.001), reduced end-systolic pressure (control, 113 mm Hg; moderate dose, 87 mm Hg; and high dose, 90 mm Hg; P=0.037), and decreased myocardial contractility (for preload recruitable stroke work: control, 79 mm Hg; moderate dose, 67 mm Hg; and high dose, 48 mm Hg; P<0.001). Lung edema was confirmed by an increased wet-to-dry ratio (control, 4.2; moderate dose, 4.6; and high dose, 4.5; P<0.001) and microscopy findings. These cardiovascular alterations led to decreases in organ blood flow, particularly in the diaphragm (control, 0.56 mL x min(-1) x g(-1); moderate dose, 0.21 mL x min(-1) x g(-1); and high dose, 0.23 mL x min(-1) x g(-1); P=0.037). In vitro recombinant human IL-6 administration did not cause any alterations in diaphragm force or endurance capacity.IL-6 clearly caused ventilatory and peripheral skeletal muscle atrophy, even after short-term administration. Blood flow redistribution, resulting from the myocardial failure induced by IL-6, was likely responsible for this muscle atrophy, because IL-6 did not exert any direct effect on the diaphragm.CONCLUSIONSIL-6 clearly caused ventilatory and peripheral skeletal muscle atrophy, even after short-term administration. Blood flow redistribution, resulting from the myocardial failure induced by IL-6, was likely responsible for this muscle atrophy, because IL-6 did not exert any direct effect on the diaphragm. The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy. The effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 microg x kg(-1) x d(-1), in rats. Skeletal muscle mass decreased dose-dependently (with increasing dose: in the diaphragm, -10%, P=NS; -15%, P=0.0561; and -15% P<0.05; and in the gastrocnemius, -9%, P=NS; -9%, P=NS; and -18%, P<0.005) because of decreases in cross-sectional area of all fiber types without alterations in diaphragm contractile properties. Cardiovascular variables showed a dose-dependent heart dilatation (for end-diastolic volume: control, 78 microL; moderate dose, 123 microL; and high dose, 137 microL, P<0.001), reduced end-systolic pressure (control, 113 mm Hg; moderate dose, 87 mm Hg; and high dose, 90 mm Hg; P=0.037), and decreased myocardial contractility (for preload recruitable stroke work: control, 79 mm Hg; moderate dose, 67 mm Hg; and high dose, 48 mm Hg; P<0.001). Lung edema was confirmed by an increased wet-to-dry ratio (control, 4.2; moderate dose, 4.6; and high dose, 4.5; P<0.001) and microscopy findings. These cardiovascular alterations led to decreases in organ blood flow, particularly in the diaphragm (control, 0.56 mL x min(-1) x g(-1); moderate dose, 0.21 mL x min(-1) x g(-1); and high dose, 0.23 mL x min(-1) x g(-1); P=0.037). In vitro recombinant human IL-6 administration did not cause any alterations in diaphragm force or endurance capacity. IL-6 clearly caused ventilatory and peripheral skeletal muscle atrophy, even after short-term administration. Blood flow redistribution, resulting from the myocardial failure induced by IL-6, was likely responsible for this muscle atrophy, because IL-6 did not exert any direct effect on the diaphragm. Background— The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy. Methods and Results— The effects of 7-day subcutaneous administration of recombinant human IL-6 were examined at 3 doses, 50, 100, or 250 μg · kg −1 · d −1 , in rats. Skeletal muscle mass decreased dose-dependently (with increasing dose: in the diaphragm, −10%, P =NS; −15%, P =0.0561; and −15% P <0.05; and in the gastrocnemius, −9%, P =NS; −9%, P =NS; and −18%, P <0.005) because of decreases in cross-sectional area of all fiber types without alterations in diaphragm contractile properties. Cardiovascular variables showed a dose-dependent heart dilatation (for end-diastolic volume: control, 78 μL; moderate dose, 123 μL; and high dose, 137 μL, P <0.001), reduced end-systolic pressure (control, 113 mm Hg; moderate dose, 87 mm Hg; and high dose, 90 mm Hg; P =0.037), and decreased myocardial contractility (for preload recruitable stroke work: control, 79 mm Hg; moderate dose, 67 mm Hg; and high dose, 48 mm Hg; P <0.001). Lung edema was confirmed by an increased wet-to-dry ratio (control, 4.2; moderate dose, 4.6; and high dose, 4.5; P <0.001) and microscopy findings. These cardiovascular alterations led to decreases in organ blood flow, particularly in the diaphragm (control, 0.56 mL · min −1 · g −1 ; moderate dose, 0.21 mL · min −1 · g −1 ; and high dose, 0.23 mL · min −1 · g −1 ; P =0.037). In vitro recombinant human IL-6 administration did not cause any alterations in diaphragm force or endurance capacity. Conclusions— IL-6 clearly caused ventilatory and peripheral skeletal muscle atrophy, even after short-term administration. Blood flow redistribution, resulting from the myocardial failure induced by IL-6, was likely responsible for this muscle atrophy, because IL-6 did not exert any direct effect on the diaphragm. |
Author | Van Den Bergh, An Decramer, Marc Janssen, Sofie P.M. Herijgers, Paul Verbeken, Erik Gayan-Ramirez, Ghislaine Maes, Karen |
Author_xml | – sequence: 1 givenname: Sofie P.M. surname: Janssen fullname: Janssen, Sofie P.M. organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 2 givenname: Ghislaine surname: Gayan-Ramirez fullname: Gayan-Ramirez, Ghislaine organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 3 givenname: An surname: Van Den Bergh fullname: Van Den Bergh, An organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 4 givenname: Paul surname: Herijgers fullname: Herijgers, Paul organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 5 givenname: Karen surname: Maes fullname: Maes, Karen organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 6 givenname: Erik surname: Verbeken fullname: Verbeken, Erik organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium – sequence: 7 givenname: Marc surname: Decramer fullname: Decramer, Marc organization: From the Laboratory of Pneumology (S.P.M.J., G.G.-R., K.M., M.D.), Respiratory Muscle Research Unit; the Center for Experimental Surgery and Anesthesiology (A.V.D.B., P.H.), Cardiovascular Research Unit; and the Department of Pathology (E.V.), Katholieke Universiteit Leuven, Leuven, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16585827$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15710765$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1vFCEcBnBiauy2-hXMxEQ9zcg7gyebra0b25hUPROGl4hlmRWYw357sV1t4kG5EMiPh-T_nICjNCcHwAsEB4Q4egPRsN7cDLAtxDjlcpAcETbA80dghRimPWVEHoFVA7IXBONjcFLK93bkRLAn4BgxgaDgbAU-blJ1ObrlNqSed2u9FFe66_1sdLZBx-5Ch7hk1-lku8-3LrraLq-XYqLrzmqed9_2XUjdja7lKXjsdSzu2WE_BV8v3n9Zf-ivPl1u1mdXvWEI1x6PmkxCa02FtZRyj5F1fqKWIYqJ9Whk0Lhpgt77ERomLaZ6lIZgMRkBLTkFr-9zd3n-sbhS1TYU42LUyc1LUaKFSkk4afLVPyUXVLSZyAafH-AybZ1Vuxy2Ou_V70E18PIAdDE6-qyTCeXBcTayEYvm3t07k-dSsvPKhKprmFPNbZIKQfWrQwWRah2qhw7VXYcKnreIt39F_Pnl_49_AnHnn-c |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1152_physrev_00028_2014 crossref_primary_10_1159_000509940 crossref_primary_10_1096_fj_11_183236 crossref_primary_10_1111_febs_12338 crossref_primary_10_1007_s00380_019_01538_3 crossref_primary_10_3389_fendo_2025_1554617 crossref_primary_10_3390_ijms19082265 crossref_primary_10_1007_s10741_020_10031_3 crossref_primary_10_3389_fped_2023_1123939 crossref_primary_10_1016_j_lfs_2015_06_021 crossref_primary_10_1016_j_bbadis_2008_10_011 crossref_primary_10_1165_rcmb_2006_0038OC crossref_primary_10_3390_cancers11121867 crossref_primary_10_1016_j_ejheart_2007_11_003 crossref_primary_10_1080_03009742_2017_1418424 crossref_primary_10_1038_labinvest_2012_97 crossref_primary_10_1111_bph_12399 crossref_primary_10_1016_j_cyto_2007_05_015 crossref_primary_10_1007_s11897_014_0185_9 crossref_primary_10_1111_j_1527_5299_2006_05595_x crossref_primary_10_1097_ALN_0b013e31829b3692 crossref_primary_10_1074_jbc_M115_638411 crossref_primary_10_1016_j_jacc_2009_12_045 crossref_primary_10_1016_j_rec_2012_07_019 crossref_primary_10_1136_heartjnl_2016_309561 crossref_primary_10_1007_s10875_010_9474_6 crossref_primary_10_3389_fspor_2024_1487862 crossref_primary_10_1017_S1047951121000342 crossref_primary_10_1111_j_1744_9987_2008_00566_x crossref_primary_10_1016_j_ijcard_2007_07_128 crossref_primary_10_1016_j_jchf_2023_11_016 crossref_primary_10_7717_peerj_12595 crossref_primary_10_1155_2017_4191365 crossref_primary_10_1016_j_bjpt_2017_09_004 crossref_primary_10_1080_14789450_2016_1209416 crossref_primary_10_1186_1476_9255_9_25 crossref_primary_10_1093_qjmed_hct205 crossref_primary_10_1155_2017_1389475 crossref_primary_10_1016_j_biocel_2013_07_005 crossref_primary_10_1164_rccm_200605_713OC crossref_primary_10_1007_s11904_018_0372_5 crossref_primary_10_1038_s41598_021_85859_2 crossref_primary_10_1111_j_1748_1716_2009_02029_x crossref_primary_10_1128_JVI_02077_14 crossref_primary_10_4103_ijp_ijp_1001_20 crossref_primary_10_1016_j_celrep_2017_10_018 crossref_primary_10_1016_j_cyto_2006_10_015 crossref_primary_10_1165_rcmb_2013_0107OC crossref_primary_10_4187_respcare_06766 crossref_primary_10_1016_j_semnephrol_2011_01_005 crossref_primary_10_1113_jphysiol_2005_086686 crossref_primary_10_1016_j_heliyon_2021_e08522 crossref_primary_10_1155_2019_3159283 crossref_primary_10_1161_JAHA_117_008145 crossref_primary_10_1371_journal_ppat_1002426 crossref_primary_10_1186_s12872_015_0017_1 crossref_primary_10_1007_s11033_018_4293_6 crossref_primary_10_1111_j_1742_1241_2007_01295_x crossref_primary_10_1016_j_imbio_2015_05_003 crossref_primary_10_36660_ijcs_20200266 crossref_primary_10_3389_fphar_2022_1031906 crossref_primary_10_1002_mus_25246 crossref_primary_10_1042_CS20190728 crossref_primary_10_1016_j_hrthm_2009_10_004 crossref_primary_10_1113_JP276746 crossref_primary_10_1164_ajrccm_173_8_934 crossref_primary_10_1152_japplphysiol_00562_2005 crossref_primary_10_1164_rccm_200604_511OC crossref_primary_10_1371_journal_pone_0006945 crossref_primary_10_1152_ajpregu_00147_2019 crossref_primary_10_1161_JAHA_117_007849 crossref_primary_10_1086_682431 crossref_primary_10_14814_phy2_14155 crossref_primary_10_1093_eurjhf_hfr122 crossref_primary_10_1186_1471_2474_12_15 crossref_primary_10_1016_j_recesp_2012_07_027 crossref_primary_10_1113_JP283569 crossref_primary_10_1038_s41584_019_0243_5 crossref_primary_10_1016_j_jmii_2012_01_017 crossref_primary_10_1093_gerona_62_10_1082 crossref_primary_10_1152_japplphysiol_00962_2010 crossref_primary_10_1080_15412550802237531 crossref_primary_10_1373_clinchem_2007_090613 crossref_primary_10_1183_09031936_00128008 crossref_primary_10_1016_j_amjcard_2021_11_045 crossref_primary_10_1016_j_yjmcc_2018_04_003 crossref_primary_10_1097_SHK_0000000000002029 crossref_primary_10_1093_cvr_cvx159 crossref_primary_10_1164_rccm_201003_0354OC crossref_primary_10_1371_journal_pone_0177684 crossref_primary_10_1111_1756_185X_13942 crossref_primary_10_1096_fj_201701465RR crossref_primary_10_1007_s00380_008_1111_4 crossref_primary_10_4046_trd_2010_68_3_125 crossref_primary_10_1093_eurheartj_ehp454 crossref_primary_10_3839_jabc_2022_050 crossref_primary_10_4330_wjc_v15_i5_217 crossref_primary_10_1002_rmv_2348 crossref_primary_10_1097_JES_0b013e3181f44f11 crossref_primary_10_1038_s41397_019_0068_2 crossref_primary_10_3390_ijms24076454 crossref_primary_10_1152_japplphysiol_00847_2012 crossref_primary_10_2174_1389557522666220309161245 crossref_primary_10_1111_j_1365_2362_2007_01867_x crossref_primary_10_1093_cvr_cvy016 crossref_primary_10_3390_ijms25168653 crossref_primary_10_1002_jbmr_2905 crossref_primary_10_1038_cr_2007_48 crossref_primary_10_1093_eurheartj_ehq014 crossref_primary_10_1111_j_1600_0838_2012_01484_x crossref_primary_10_1007_s12012_010_9087_6 crossref_primary_10_1134_S0022093021040177 crossref_primary_10_1186_1479_5876_9_28 crossref_primary_10_1097_00000441_200511000_00004 crossref_primary_10_1007_s13539_012_0074_6 crossref_primary_10_2217_fca_13_74 crossref_primary_10_1016_j_pcad_2012_07_003 crossref_primary_10_1007_s10741_016_9549_4 crossref_primary_10_1159_000507264 crossref_primary_10_3389_fphys_2019_01335 crossref_primary_10_1097_HJH_0000000000000358 crossref_primary_10_1097_01_CCM_0000203108_60429_DF crossref_primary_10_1093_cvr_cvad088 crossref_primary_10_1111_resp_13141 crossref_primary_10_3109_08820139_2010_502949 crossref_primary_10_1016_j_ahj_2006_02_038 crossref_primary_10_1161_CIRCULATIONAHA_118_033603 crossref_primary_10_1152_ajpregu_00490_2005 crossref_primary_10_1155_2018_2063179 crossref_primary_10_1007_s00540_007_0572_4 crossref_primary_10_1111_j_1365_2613_2009_00683_x crossref_primary_10_1016_j_ahj_2005_07_004 crossref_primary_10_1016_j_ccm_2013_10_004 crossref_primary_10_1007_s00380_012_0285_y crossref_primary_10_1128_CMR_00062_09 crossref_primary_10_1007_s11427_023_2552_7 crossref_primary_10_3389_fphys_2018_00382 crossref_primary_10_1016_j_jacc_2023_02_035 crossref_primary_10_1016_j_metabol_2010_03_021 crossref_primary_10_1016_j_micinf_2008_06_006 crossref_primary_10_1536_ihj_16_236 crossref_primary_10_1519_JSC_0b013e318239f837 crossref_primary_10_1152_japplphysiol_00778_2005 crossref_primary_10_1186_1465_9921_14_53 crossref_primary_10_1016_j_cyto_2011_02_012 crossref_primary_10_1152_ajpregu_00297_2010 crossref_primary_10_1007_s10741_012_9353_8 crossref_primary_10_1016_j_ijcard_2020_06_055 |
Cites_doi | 10.2337/diabetes.52.11.2784 10.1164/ajrccm.159.1.9803109 10.1172/JCI118398 10.1183/09031936.96.09091858 10.1164/ajrccm.158.6.9710028 10.1111/j.1365-2184.1996.tb00104.x 10.1097/00003246-199512000-00005 10.1055/s-0037-1613998 10.1016/0735-1097(95)00589-7 10.1016/j.healun.2003.07.023 10.1007/s003950050007 10.1006/cyto.1996.0123 10.1152/jappl.1989.67.6.2420 10.1097/00004630-199920060-00007 10.1093/oxfordjournals.eurheartj.a015042 10.1016/0003-4975(93)90740-9 10.3181/00379727-205-43695 10.1016/S0305-4179(96)00052-6 10.1097/00002371-200009000-00005 10.1378/chest.98.5.1091 10.1006/cyto.1997.0241 10.1172/JCI116732 10.1046/j.1365-2249.2001.01521.x 10.1056/NEJMoa022450 10.1073/pnas.92.11.4862 10.1016/0167-5273(88)90164-7 10.1073/pnas.92.4.1142 10.1152/jappl.1995.79.2.389 10.1126/science.1631560 10.3109/00365549609037926 10.1007/s004240100612 10.1097/00007890-199608150-00005 10.1164/ajrccm.153.6.8665051 10.1097/00003246-199608000-00022 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 |
DOI | 10.1161/01.CIR.0000156469.96135.0D |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1005 |
ExternalDocumentID | 15710765 16585827 10_1161_01_CIR_0000156469_96135_0D |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 0ZK 18M 1CY 1J1 29B 2FS 2WC 354 40H 41~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAEJM AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO AAYOK AAYXX ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFCHL AFDTB AFEXH AFFNX AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJJEV AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BS7 BYPQX C1A C45 CITATION CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FEDTE FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HVGLF HZ~ H~9 IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 MVM N4W N9A NEJ N~7 N~B N~M O9- OAG OAH OBH OCB OCUKA ODA ODMTH OGEVE OHH OHT OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WHG WOQ WOW X3V X3W X7M XXN XYM YFH YOC YQJ YSK YXB YYM YYP YZZ ZFV ZGI ZXP ZY1 ZZMQN ~H1 IQODW ACIJW ACRZS AWKKM CGR CUY CVF ECM EIF NPM OJAPA OLW PKN RHF 7X8 7T5 H94 |
ID | FETCH-LOGICAL-c512t-28a3b7aaa47dd446f21defb4d51423df1850cebb0fff80c59d24a89c327bc70d3 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Fri Jul 11 09:40:18 EDT 2025 Thu Jul 10 18:53:34 EDT 2025 Wed Feb 19 01:44:00 EST 2025 Mon Jul 21 09:11:17 EDT 2025 Tue Jul 01 02:05:03 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Rat Cardiomyopathy Cytokine Rodentia Contractility Cardiovascular disease Striated muscle Myocardial disease Blood flow interleukins Atrophy Interleukin 6 Vertebrata Mammalia muscles Heart disease Animal Hemodynamics |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c512t-28a3b7aaa47dd446f21defb4d51423df1850cebb0fff80c59d24a89c327bc70d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15710765 |
PQID | 67470639 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_744699363 proquest_miscellaneous_67470639 pubmed_primary_15710765 pascalfrancis_primary_16585827 crossref_citationtrail_10_1161_01_CIR_0000156469_96135_0D crossref_primary_10_1161_01_CIR_0000156469_96135_0D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03-01 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2005 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | (e_1_3_3_12_2) 1996; 28 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 (e_1_3_3_29_2) 1995; 151 e_1_3_3_6_2 e_1_3_3_5_2 (e_1_3_3_27_2) 1997; 23 e_1_3_3_8_2 (e_1_3_3_7_2) 1999; 54 (e_1_3_3_35_2) 1989; 66 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_34_2 doi: 10.2337/diabetes.52.11.2784 – ident: e_1_3_3_10_2 doi: 10.1164/ajrccm.159.1.9803109 – ident: e_1_3_3_13_2 doi: 10.1172/JCI118398 – ident: e_1_3_3_4_2 doi: 10.1183/09031936.96.09091858 – ident: e_1_3_3_6_2 doi: 10.1164/ajrccm.158.6.9710028 – ident: e_1_3_3_15_2 doi: 10.1111/j.1365-2184.1996.tb00104.x – ident: e_1_3_3_40_2 doi: 10.1097/00003246-199512000-00005 – ident: e_1_3_3_5_2 doi: 10.1055/s-0037-1613998 – volume: 54 start-page: 150 year: 1999 ident: e_1_3_3_7_2 publication-title: Monaldi Arch Chest Dis – volume: 23 start-page: 16 year: 1997 ident: e_1_3_3_27_2 publication-title: Equine Vet J Suppl – ident: e_1_3_3_1_2 doi: 10.1016/0735-1097(95)00589-7 – ident: e_1_3_3_38_2 doi: 10.1016/j.healun.2003.07.023 – ident: e_1_3_3_21_2 doi: 10.1007/s003950050007 – ident: e_1_3_3_17_2 doi: 10.1006/cyto.1996.0123 – ident: e_1_3_3_24_2 doi: 10.1152/jappl.1989.67.6.2420 – ident: e_1_3_3_9_2 doi: 10.1097/00004630-199920060-00007 – ident: e_1_3_3_28_2 doi: 10.1093/oxfordjournals.eurheartj.a015042 – ident: e_1_3_3_39_2 doi: 10.1016/0003-4975(93)90740-9 – volume: 28 start-page: 361 year: 1996 ident: e_1_3_3_12_2 publication-title: Eur Surg Res – ident: e_1_3_3_14_2 doi: 10.3181/00379727-205-43695 – ident: e_1_3_3_3_2 doi: 10.1016/S0305-4179(96)00052-6 – ident: e_1_3_3_36_2 doi: 10.1097/00002371-200009000-00005 – volume: 151 start-page: 1101 year: 1995 ident: e_1_3_3_29_2 publication-title: Am J Respir Crit Care Med – ident: e_1_3_3_30_2 doi: 10.1378/chest.98.5.1091 – ident: e_1_3_3_18_2 doi: 10.1006/cyto.1997.0241 – ident: e_1_3_3_23_2 doi: 10.1172/JCI116732 – ident: e_1_3_3_37_2 doi: 10.1046/j.1365-2249.2001.01521.x – ident: e_1_3_3_25_2 – ident: e_1_3_3_11_2 doi: 10.1056/NEJMoa022450 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.92.11.4862 – ident: e_1_3_3_32_2 doi: 10.1016/0167-5273(88)90164-7 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.92.4.1142 – ident: e_1_3_3_31_2 doi: 10.1152/jappl.1995.79.2.389 – ident: e_1_3_3_20_2 doi: 10.1126/science.1631560 – volume: 66 start-page: 968 year: 1989 ident: e_1_3_3_35_2 publication-title: J Appl Physiol – ident: e_1_3_3_2_2 doi: 10.3109/00365549609037926 – ident: e_1_3_3_22_2 doi: 10.1007/s004240100612 – ident: e_1_3_3_26_2 doi: 10.1097/00007890-199608150-00005 – ident: e_1_3_3_33_2 doi: 10.1164/ajrccm.153.6.8665051 – ident: e_1_3_3_8_2 doi: 10.1097/00003246-199608000-00022 |
SSID | ssj0006375 |
Score | 2.264984 |
Snippet | Background—
The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy.
Methods and Results—
The effects of 7-day... The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy. The effects of 7-day subcutaneous administration of... The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy.BACKGROUNDThe impact of interleukin (IL)-6 on skeletal muscle... BACKGROUND: The impact of interleukin (IL)-6 on skeletal muscle function remains the subject of controversy. METHOD:S: and Results-The effects of 7-day... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 996 |
SubjectTerms | Animals Antihypertensive agents Biological and medical sciences Blood and lymphatic vessels Blood vessels and receptors Body Weight - drug effects Cardiology. Vascular system Cardiomyopathies - chemically induced Cardiovascular system Cardiovascular System - drug effects Cardiovascular System - physiopathology Coronary Vessels - drug effects Coronary Vessels - physiopathology Diaphragm - blood supply Diaphragm - metabolism Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Dose-Response Relationship, Drug Eating - drug effects Eating - physiology Fundamental and applied biological sciences. Psychology Heart Failure - chemically induced In Vitro Techniques Interleukin-6 - administration & dosage Interleukin-6 - blood Interleukin-6 - pharmacology Liver - blood supply Liver - metabolism Lung - blood supply Lung - metabolism Male Medical sciences Motor Activity - drug effects Motor Activity - physiology Muscle Contraction - drug effects Muscle Contraction - physiology Muscle, Skeletal - blood supply Muscle, Skeletal - drug effects Muscle, Skeletal - physiopathology Muscular Atrophy - chemically induced Myocardial Contraction - drug effects Myocardial Contraction - physiology Myocardium - pathology Organ Size - drug effects Pharmacology. Drug treatments Rats Rats, Wistar Recombinant Proteins - administration & dosage Regional Blood Flow - drug effects Regional Blood Flow - physiology Vertebrates: cardiovascular system |
Title | Interleukin-6 Causes Myocardial Failure and Skeletal Muscle Atrophy in Rats |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15710765 https://www.proquest.com/docview/67470639 https://www.proquest.com/docview/744699363 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSAgJIdi4lMvwA-KlSnFix0keyy4tYww0WtQ3y3FsKGvTqWkfyq_nxLm1ohWDl6iyaqc957N97gehN4ErA5oY4vihUg4zRjugqyQO0SShRieMSxttccH7Q3Y28keNMcdmlyzijvq1Na_kf7gKY8DXPEv2HzhbLwoD8Bn4C0_gMDxvxGNrzpvo5dU4dXhbyWWms_Z0BdfT3OaDGDmeVA6C7AoumDzzcbrMYJl2bgMHEtt8FlmUc6orFoznquzqta1Zz5rx4AwuutKE8xX-iW5_aayrPbmSqXMpp3CoWit178cY8Lfmx_8m80jctP1el56ebo3UPpDv5_eyf1sdvVhZJ_wmPKs6UD3mML8oWNTRW8aqU9h11-AWrp2pUdHy9s-znrs2f6Fz9OHSlqHM697wqBOBhOJ3yHFzw1Ve_YvP4nR4fi4GJ6PBbXTHA80ib3rRGzVRQZza2sz1Tyzr1MK73u1-04ZMc_9aZrC9TNEXZbfiYgWYwUP0oNQ8cLeA0SN0S6f76KCbysVsusJvsY0Ftk6WfXT3UxlycYA-boAMFyDDDchwCTIMIMMVyHABMlyCDI9TnIPsMRqengyO-k7ZgcNRIAguHC-UNA6klCxIEsa48dxEm5glIGZ7sMVB2CNKxzExxoRE-VHiMRlGinpBrALY7U_QXjpL9TOEJYl5rEKXhlwySmVMgoCYUDFFqYp00kJRRUOhyvL0eZeUibBqKncFcQXQXzT0F5b-ghy3EK3nXhdFWm4063CDVc1UkMr90Ata6HXFOwGHbu5Jk6meLTPBQQnPZfsWwju-EQC1QPTntIWeFlxvlvdBqg-4__yvy79A95o99RLtLeZL_Qpk4EV8aFH7G94Cq4s |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interleukin-6+causes+myocardial+failure+and+skeletal+muscle+atrophy+in+rats&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Janssen%2C+Sofie+P+M&rft.au=Gayan-Ramirez%2C+Ghislaine&rft.au=Van+den+Bergh%2C+An&rft.au=Herijgers%2C+Paul&rft.date=2005-03-01&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=111&rft.issue=8&rft.spage=996&rft_id=info:doi/10.1161%2F01.CIR.0000156469.96135.0D&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |