Hydrogen Dissociation Reaction on First-Row Transition Metal Doped Nanobelts
Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H -N -belt[6]arene nanobelt are investigated for...
Saved in:
Published in | Materials Vol. 16; no. 7; p. 2792 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H
-N
-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts. |
---|---|
AbstractList | Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H[sub.6]-N[sub.3]-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts. Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H -N -belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts. Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO–LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts. Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H 6 -N 3 -belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO–LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts. Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts. |
Audience | Academic |
Author | Sarfaraz, Sehrish Bayach, Imene Sheikh, Nadeem S Alamer, Kawther Almutlaq, Nadiah Ayub, Khurshid |
AuthorAffiliation | 1 Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia 2 Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan 3 Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei |
AuthorAffiliation_xml | – name: 3 Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei – name: 2 Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan – name: 1 Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Imene orcidid: 0000-0003-1375-0612 surname: Bayach fullname: Bayach, Imene organization: Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia – sequence: 2 givenname: Sehrish surname: Sarfaraz fullname: Sarfaraz, Sehrish organization: Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan – sequence: 3 givenname: Nadeem S orcidid: 0000-0002-0716-7562 surname: Sheikh fullname: Sheikh, Nadeem S organization: Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei – sequence: 4 givenname: Kawther surname: Alamer fullname: Alamer, Kawther organization: Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia – sequence: 5 givenname: Nadiah surname: Almutlaq fullname: Almutlaq, Nadiah organization: Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia – sequence: 6 givenname: Khurshid surname: Ayub fullname: Ayub, Khurshid organization: Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37049085$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkm1vFCEQx4mpsbX2jR_AbOKbxmQrTwvLK9O01jY5NWnqazIHsyeXPThhT9NvL971USBhMvOfHwzMa7IXU0RC3jJ6IoShH1fAFNVcG_6CHDBjVMuMlHtP7H1yVMqS1iEE67l5RfaFptLQvjsgs8tbn9MCY3MeSkkuwBRSbK4R3Nao6yLkMrXX6U9zkyGWsPV_xQnG5jyt0TffIKY5jlN5Q14OMBY8utsPyY-Lzzdnl-3s-5ers9NZ6zrGp5YJKnoPAx0001Rw6HvmPPiO6U4MknrDO6-VMB30g-87LbXRHGsEqTLGiUNyteP6BEu7zmEF-dYmCHbrSHlhIU_BjWjZHNHVLCblXHKgoKRUGn1lewVSV9anHWu9ma_QO4xThvEZ9Hkkhp92kX5bRqlRQolKOL4j5PRrg2Wyq1AcjiNETJtieU-p4pxxXqXv_5Mu0ybH-la2_qBRnVBdV1UnO9UCagUhDqke7Or0uAqufv8Qqv9US2VqLUrVhA-7BJdTKRmHh-szav91iX3skip-97TgB-l9T4i_f4u3BA |
CitedBy_id | crossref_primary_10_1016_j_molliq_2024_124649 crossref_primary_10_3390_cryst13060974 crossref_primary_10_1016_j_ijhydene_2024_01_144 crossref_primary_10_1016_j_molstruc_2023_137449 crossref_primary_10_3390_app132011282 crossref_primary_10_1016_j_molliq_2024_124436 |
Cites_doi | 10.1038/s41929-019-0404-6 10.1016/j.ijhydene.2016.05.293 10.3390/catal9020135 10.1021/acs.accounts.8b00175 10.1016/j.matchemphys.2017.04.002 10.1016/j.ijhydene.2008.11.109 10.1016/j.mssp.2019.01.039 10.1002/cctc.201500363 10.3390/nano13010029 10.1016/j.joule.2018.06.019 10.1021/acs.orglett.1c02643 10.1021/acsomega.0c01686 10.1007/s40974-016-0005-z 10.1007/s41918-019-00050-6 10.1007/s12274-019-2345-4 10.1103/PhysRevLett.103.246102 10.1016/j.cej.2021.132226 10.1016/j.molstruc.2017.07.093 10.1021/acsnano.7b02060 10.1016/j.mssp.2021.106269 10.1021/jacs.9b12181 10.1021/jp909689a 10.1039/D1RA08738J 10.1021/jp4099254 10.1021/acs.jpcc.9b00609 10.1055/s-0040-1718934 10.1016/j.ijhydene.2021.09.063 10.1016/j.ijhydene.2017.11.004 10.1038/s41560-019-0355-9 10.1038/s41557-020-00627-5 10.1002/jccs.202200392 10.1016/j.susc.2017.11.020 10.1038/nchem.1095 10.1002/cctc.201200799 10.1016/j.molliq.2022.118652 10.1007/s10562-019-02709-7 10.1039/c2dt12232d 10.1016/j.ijhydene.2023.01.154 10.1063/1.4872036 10.1002/anie.201402118 10.1002/slct.201802732 10.1002/ange.202006231 10.1016/j.apcatb.2019.118404 10.1021/la300305m 10.31635/ccschem.020.202000287 10.1039/b810189b 10.1016/j.ijhydene.2019.10.051 10.1016/j.enconman.2022.115246 10.1002/jcc.22885 10.1016/j.apcatb.2017.10.025 10.1016/j.ijhydene.2016.05.244 10.1016/j.apcatb.2019.01.094 10.1016/j.comptc.2021.113191 10.1016/S1872-2067(17)62903-6 10.1007/s10876-022-02294-7 10.1016/j.ijhydene.2017.02.202 10.3390/molecules22020190 10.1021/acs.nanolett.5b05149 10.1021/jp052804c 10.1016/j.mseb.2021.115365 10.1039/c2ob26689j 10.1016/j.rser.2015.05.011 10.1016/j.mssp.2021.106334 10.1021/jp952860l 10.1021/jp8058849 10.1016/j.ijhydene.2022.03.208 10.1016/j.cej.2021.134073 10.1016/j.carbon.2015.09.008 10.1007/s11467-019-0950-z 10.1016/j.ijhydene.2016.08.158 10.1142/S2737416521500186 10.1016/j.ijhydene.2019.04.207 10.3390/molecules201119661 10.1039/C6CY00672H 10.1016/j.jcat.2005.05.009 10.1016/j.mssp.2022.107164 10.1002/anie.200905380 10.1039/D0CS00835D 10.1016/j.apcatb.2021.120389 10.1016/S1872-2067(18)63047-5 10.1039/D2RA03399B 10.1016/j.ijhydene.2022.06.216 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ma16072792 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | oai_doaj_org_article_1beec069144b42a0a64467ed95ad6a47 A746946766 10_3390_ma16072792 37049085 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deputyship for Research and Innovation, Ministry of Education grantid: INST132 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E NPM OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS AAYXX CITATION 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c512t-13038daf0f717032a881cdad51753f40d925d76395a8fd85747972ef40e0699c3 |
IEDL.DBID | RPM |
ISSN | 1996-1944 |
IngestDate | Tue Oct 22 15:07:07 EDT 2024 Tue Sep 17 21:32:50 EDT 2024 Sat Oct 26 04:00:43 EDT 2024 Thu Oct 10 19:00:11 EDT 2024 Fri Feb 02 04:34:09 EST 2024 Thu Sep 26 19:21:08 EDT 2024 Sat Nov 02 11:56:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | dissociation barrier hydrogen molecule transition metal density functional theory molecular nanobelts |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-13038daf0f717032a881cdad51753f40d925d76395a8fd85747972ef40e0699c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-0716-7562 0000-0003-1375-0612 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096363/ |
PMID | 37049085 |
PQID | 2799653655 |
PQPubID | 2032366 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1beec069144b42a0a64467ed95ad6a47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10096363 proquest_miscellaneous_2800622122 proquest_journals_2799653655 gale_infotracacademiconefile_A746946766 crossref_primary_10_3390_ma16072792 pubmed_primary_37049085 |
PublicationCentury | 2000 |
PublicationDate | 20230331 |
PublicationDateYYYYMMDD | 2023-03-31 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230331 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sun (ref_8) 2005; 233 Jindal (ref_62) 2022; 47 DiLabio (ref_83) 2014; 140 Zhang (ref_45) 2020; 142 Sarfaraz (ref_59) 2022; 139 ref_14 Zhou (ref_7) 2016; 16 ref_57 ref_56 ref_11 Xu (ref_49) 2020; 268 Rosen (ref_2) 2016; 1 ref_10 Arsad (ref_1) 2022; 47 Rad (ref_67) 2017; 194 Rad (ref_37) 2016; 41 Ghosh (ref_27) 2013; 5 Wang (ref_70) 2022; 254 Shi (ref_42) 2020; 2 Zhang (ref_3) 2016; 41 Tierney (ref_15) 2009; 103 Sarfaraz (ref_60) 2022; 352 Pozzo (ref_32) 2009; 34 Hussain (ref_53) 2020; 5 Ans (ref_64) 2019; 94 Lei (ref_74) 2017; 11 ref_25 Cheng (ref_29) 2019; 2 Chai (ref_61) 2008; 10 Du (ref_77) 2005; 109 Liu (ref_50) 2019; 247 Chen (ref_23) 2018; 2 Wang (ref_51) 2022; 429 Chen (ref_21) 2018; 39 Ahmed (ref_54) 2019; 44 Qiao (ref_26) 2011; 3 Ayub (ref_40) 2017; 42 Zara (ref_66) 2017; 1149 Zhang (ref_75) 2018; 43 Salman (ref_79) 2012; 10 Mehboob (ref_12) 2021; 20 Franco (ref_39) 2020; 49 Yanxing (ref_4) 2019; 44 Feyereisen (ref_84) 1996; 100 Ullah (ref_34) 2021; 46 Huang (ref_52) 2019; 4 Zha (ref_17) 2018; 669 Kosar (ref_72) 2022; 138 Zhang (ref_47) 2020; 132 Lu (ref_71) 2012; 33 Noreen (ref_78) 2015; 20 Islam (ref_81) 2008; 112 Righi (ref_24) 2019; 123 Liang (ref_30) 2016; 6 Cheng (ref_22) 2017; 38 Minenkov (ref_65) 2012; 41 (ref_16) 2010; 114 Chandrasekaran (ref_48) 2022; 431 Fu (ref_36) 2020; 15 Liu (ref_19) 2021; 297 Cheung (ref_46) 2021; 13 Sajid (ref_55) 2021; 1199 Sarfaraz (ref_58) 2022; 12 Shi (ref_43) 2021; 3 Papa (ref_38) 2020; 3 Zhang (ref_44) 2021; 23 Ans (ref_63) 2018; 3 ref_80 Weng (ref_18) 2012; 28 Niaz (ref_5) 2015; 50 Shah (ref_41) 2023; 13 Sun (ref_76) 2014; 118 Hassan (ref_82) 2021; 272 Jing (ref_13) 2018; 224 Mukhtar (ref_69) 2022; 12 Fujitani (ref_9) 2009; 48 Liang (ref_20) 2015; 7 Parkinson (ref_28) 2019; 149 Rusman (ref_6) 2016; 41 Ma (ref_33) 2015; 95 Allangawi (ref_68) 2023; 153 Zhu (ref_73) 2018; 51 Thiel (ref_31) 2014; 53 Sun (ref_35) 2019; 12 |
References_xml | – volume: 3 start-page: 135 year: 2020 ident: ref_38 article-title: Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes publication-title: Nat. Catal. doi: 10.1038/s41929-019-0404-6 contributor: fullname: Papa – volume: 41 start-page: 14535 year: 2016 ident: ref_3 article-title: The survey of key technologies in hydrogen energy storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.293 contributor: fullname: Zhang – ident: ref_25 doi: 10.3390/catal9020135 – volume: 51 start-page: 1691 year: 2018 ident: ref_73 article-title: Carbolong chemistry: A story of carbon chain ligands and transition metals publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00175 contributor: fullname: Zhu – volume: 194 start-page: 337 year: 2017 ident: ref_67 article-title: Adsorption properties of acetylene and ethylene molecules onto pristine and nickel-decorated Al12N12 nanoclusters publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.04.002 contributor: fullname: Rad – volume: 34 start-page: 1922 year: 2009 ident: ref_32 article-title: Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.109 contributor: fullname: Pozzo – volume: 94 start-page: 97 year: 2019 ident: ref_64 article-title: Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2019.01.039 contributor: fullname: Ans – volume: 7 start-page: 2559 year: 2015 ident: ref_20 article-title: The power of single-atom catalysis publication-title: ChemCatChem doi: 10.1002/cctc.201500363 contributor: fullname: Liang – volume: 13 start-page: 29 year: 2023 ident: ref_41 article-title: Remarkable Single Atom Catalyst of Transition Metal (Fe, Co & Ni) Doped on C2N Surface for Hydrogen Dissociation Reaction publication-title: Nanomaterials doi: 10.3390/nano13010029 contributor: fullname: Shah – volume: 2 start-page: 1242 year: 2018 ident: ref_23 article-title: Single-atom catalysts: Synthetic strategies and electrochemical applications publication-title: Joule doi: 10.1016/j.joule.2018.06.019 contributor: fullname: Chen – volume: 23 start-page: 7259 year: 2021 ident: ref_44 article-title: Selective Oxidation of Belt [4] arene [4] tropilidene and Its Application to Construct Hydrocarbon Belts of Truncated Cone Structure with Expand Cavity publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c02643 contributor: fullname: Zhang – volume: 5 start-page: 15547 year: 2020 ident: ref_53 article-title: Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: A step forward toward efficient CO2 sensing materials publication-title: ACS Omega doi: 10.1021/acsomega.0c01686 contributor: fullname: Hussain – volume: 1 start-page: 10 year: 2016 ident: ref_2 article-title: The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems publication-title: Energy Ecol. Environ. doi: 10.1007/s40974-016-0005-z contributor: fullname: Rosen – volume: 2 start-page: 539 year: 2019 ident: ref_29 article-title: Single-atom catalysts: From design to application publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00050-6 contributor: fullname: Cheng – volume: 12 start-page: 2067 year: 2019 ident: ref_35 article-title: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion publication-title: Nano Res. doi: 10.1007/s12274-019-2345-4 contributor: fullname: Sun – volume: 103 start-page: 246102 year: 2009 ident: ref_15 article-title: Hydrogen dissociation and spillover on individual isolated palladium atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.246102 contributor: fullname: Tierney – volume: 429 start-page: 132226 year: 2022 ident: ref_51 article-title: Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132226 contributor: fullname: Wang – volume: 1149 start-page: 282 year: 2017 ident: ref_66 article-title: A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.07.093 contributor: fullname: Zara – volume: 11 start-page: 5103 year: 2017 ident: ref_74 article-title: Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (Wx Mo1–x S2) and graphene with superior catalytic performance for hydrogen evolution publication-title: ACS Nano doi: 10.1021/acsnano.7b02060 contributor: fullname: Lei – volume: 138 start-page: 106269 year: 2022 ident: ref_72 article-title: Remarkable nonlinear optical response of Mn@C20 (M = Na & K and n = 1–6); a DFT outcome publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.106269 contributor: fullname: Kosar – volume: 142 start-page: 1196 year: 2020 ident: ref_45 article-title: Hydrocarbon belts with truncated cone structures publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12181 contributor: fullname: Zhang – volume: 114 start-page: 5932 year: 2010 ident: ref_16 article-title: A DFT study of hydrogen dissociation on CO-and C-precovered Fe (100) surfaces publication-title: J. Phys. Chem. C doi: 10.1021/jp909689a – volume: 12 start-page: 3909 year: 2022 ident: ref_58 article-title: Computational investigation of a covalent triazine framework (CTF-0) as an efficient electrochemical sensor publication-title: RSC Adv. doi: 10.1039/D1RA08738J contributor: fullname: Sarfaraz – ident: ref_56 – volume: 118 start-page: 1611 year: 2014 ident: ref_76 article-title: A study on the mechanism for H2 dissociation on Au/TiO2 catalysts publication-title: J. Phys. Chem. C doi: 10.1021/jp4099254 contributor: fullname: Sun – volume: 123 start-page: 9875 year: 2019 ident: ref_24 article-title: H2 Dissociation on Noble Metal Single Atom Catalysts Adsorbed on and Doped into CeO2 (111) publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b00609 contributor: fullname: Righi – volume: 2 start-page: 300 year: 2020 ident: ref_42 article-title: A Theoretical Study on the Macrocyclic Strain of Zigzag Molecular Belts publication-title: Org. Mater. doi: 10.1055/s-0040-1718934 contributor: fullname: Shi – volume: 46 start-page: 37814 year: 2021 ident: ref_34 article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: A DFT insight publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.063 contributor: fullname: Ullah – volume: 43 start-page: 793 year: 2018 ident: ref_75 article-title: Hydrogen adsorption and dissociation on nickel-adsorbed and -substituted Mg17Al12 (100) surface: A density functional theory study publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.11.004 contributor: fullname: Zhang – volume: 4 start-page: 329 year: 2019 ident: ref_52 article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0355-9 contributor: fullname: Huang – volume: 13 start-page: 255 year: 2021 ident: ref_46 article-title: Synthesis of a zigzag carbon nanobelt publication-title: Nat. Chem. doi: 10.1038/s41557-020-00627-5 contributor: fullname: Cheung – ident: ref_14 doi: 10.1002/jccs.202200392 – volume: 669 start-page: 114 year: 2018 ident: ref_17 article-title: Hydrogen-assisted versus hydroxyl-assisted CO dissociation over Co-doped Cu (111): A DFT study publication-title: Surf. Sci. doi: 10.1016/j.susc.2017.11.020 contributor: fullname: Zha – volume: 3 start-page: 634 year: 2011 ident: ref_26 article-title: Single-atom catalysis of CO oxidation using Pt 1/FeOx publication-title: Nat. Chem. doi: 10.1038/nchem.1095 contributor: fullname: Qiao – volume: 5 start-page: 1811 year: 2013 ident: ref_27 article-title: Rh1/γ-Al2O3 Single-Atom Catalysis of O2 Activation and CO Oxidation: Mechanism, Effects of Hydration, Oxidation State, and Cluster Size publication-title: ChemCatChem doi: 10.1002/cctc.201200799 contributor: fullname: Ghosh – volume: 352 start-page: 118652 year: 2022 ident: ref_60 article-title: DFT investigation of adsorption of nitro-explosives over C2N surface: Highly selective towards trinitro benzene publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.118652 contributor: fullname: Sarfaraz – volume: 149 start-page: 1137 year: 2019 ident: ref_28 article-title: Single-atom catalysis: How structure influences catalytic performance publication-title: Catal. Lett. doi: 10.1007/s10562-019-02709-7 contributor: fullname: Parkinson – volume: 41 start-page: 5526 year: 2012 ident: ref_65 article-title: The accuracy of DFT-optimized geometries of functional transition metal compounds: A validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase publication-title: Dalton Trans. doi: 10.1039/c2dt12232d contributor: fullname: Minenkov – ident: ref_10 doi: 10.1016/j.ijhydene.2023.01.154 – volume: 140 start-page: 18A542 year: 2014 ident: ref_83 article-title: Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory publication-title: J. Chem. Phys. doi: 10.1063/1.4872036 contributor: fullname: DiLabio – volume: 53 start-page: 8605 year: 2014 ident: ref_31 article-title: Computational catalysis—Past, present, and future publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402118 contributor: fullname: Thiel – volume: 3 start-page: 12797 year: 2018 ident: ref_63 article-title: Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters publication-title: ChemistrySelect doi: 10.1002/slct.201802732 contributor: fullname: Ans – volume: 132 start-page: 18308 year: 2020 ident: ref_47 article-title: Synthesis and structure of functionalized zigzag hydrocarbon belts publication-title: Angew. Chem. doi: 10.1002/ange.202006231 contributor: fullname: Zhang – volume: 268 start-page: 118404 year: 2020 ident: ref_49 article-title: Charge Transfer Engineering via Multiple Heteroatom Doping in Dual Carbon-Coupled Cobalt Phosphides for Highly Efficient Overall Water Splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118404 contributor: fullname: Xu – volume: 28 start-page: 5596 year: 2012 ident: ref_18 article-title: Kinetics and mechanisms for the adsorption, dissociation, and diffusion of hydrogen in Ni and Ni/YSZ slabs: A DFT study publication-title: Langmuir doi: 10.1021/la300305m contributor: fullname: Weng – volume: 3 start-page: 916 year: 2021 ident: ref_43 article-title: Zigzag hydrocarbon belts publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000287 contributor: fullname: Shi – volume: 10 start-page: 6615 year: 2008 ident: ref_61 article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b810189b contributor: fullname: Chai – volume: 44 start-page: 31141 year: 2019 ident: ref_54 article-title: External stimulus controlled recombination of hydrogen in photochromic dithienylethene frustrated lewis pairs publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.051 contributor: fullname: Ahmed – volume: 254 start-page: 115246 year: 2022 ident: ref_70 article-title: Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115246 contributor: fullname: Wang – volume: 33 start-page: 580 year: 2012 ident: ref_71 article-title: Multiwfn: A multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 contributor: fullname: Lu – volume: 224 start-page: 533 year: 2018 ident: ref_13 article-title: N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.10.025 contributor: fullname: Jing – volume: 41 start-page: 12108 year: 2016 ident: ref_6 article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.244 contributor: fullname: Rusman – volume: 247 start-page: 107 year: 2019 ident: ref_50 article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.094 contributor: fullname: Liu – volume: 1199 start-page: 113191 year: 2021 ident: ref_55 article-title: Hydrogen adsorption on Ge52−, Ge92− and Sn92− Zintl clusters: A DFT study publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2021.113191 contributor: fullname: Sajid – volume: 38 start-page: 1508 year: 2017 ident: ref_22 article-title: Single atom catalyst by atomic layer deposition technique publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62903-6 contributor: fullname: Cheng – ident: ref_11 doi: 10.1007/s10876-022-02294-7 – volume: 42 start-page: 11439 year: 2017 ident: ref_40 article-title: Transportation of hydrogen atom and molecule through X12Y12 nano-cages publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.202 contributor: fullname: Ayub – ident: ref_80 doi: 10.3390/molecules22020190 – volume: 16 start-page: 1478 year: 2016 ident: ref_7 article-title: Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05149 contributor: fullname: Zhou – volume: 109 start-page: 18037 year: 2005 ident: ref_77 article-title: The role of Ti as a catalyst for the dissociation of hydrogen on a Mg (0001) surface publication-title: J. Phys. Chem. B doi: 10.1021/jp052804c contributor: fullname: Du – volume: 272 start-page: 115365 year: 2021 ident: ref_82 article-title: h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2021.115365 contributor: fullname: Hassan – volume: 10 start-page: 9464 year: 2012 ident: ref_79 article-title: Pyrrole versus quinoline formation in the palladium catalyzed reaction of 2-alkynyl-3-bromothiophenes and 2-alkynyl-3-bromofurans with anilines. A combined experimental and computational study publication-title: Org. Biomol. Chem. doi: 10.1039/c2ob26689j contributor: fullname: Salman – volume: 50 start-page: 457 year: 2015 ident: ref_5 article-title: Hydrogen storage: Materials, methods and perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.011 contributor: fullname: Niaz – volume: 139 start-page: 106334 year: 2022 ident: ref_59 article-title: Covalent triazine framework (CTF-0) surface as a smart sensing material for the detection of CWAs and industrial pollutants publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.106334 contributor: fullname: Sarfaraz – volume: 100 start-page: 2993 year: 1996 ident: ref_84 article-title: Hydrogen Bond Energy of the Water Dimer publication-title: J. Phys. Chem. doi: 10.1021/jp952860l contributor: fullname: Feyereisen – volume: 112 start-page: 16568 year: 2008 ident: ref_81 article-title: Electrical double-layer structure in ionic liquids: A corroboration of the theoretical model by experimental results publication-title: J. Phys. Chem. C doi: 10.1021/jp8058849 contributor: fullname: Islam – volume: 47 start-page: 17285 year: 2022 ident: ref_1 article-title: Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.208 contributor: fullname: Arsad – volume: 431 start-page: 134073 year: 2022 ident: ref_48 article-title: Interface charge density modulation of a lamellar-like spatially separated Ni9S8 nanosheet/Nb2O5 nanobelt heterostructure catalyst coupled with nitrogen and metal (M = Co, Fe, or Cu) atoms to accelerate acidic and alkaline hydrogen evolution reactions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134073 contributor: fullname: Chandrasekaran – volume: 95 start-page: 756 year: 2015 ident: ref_33 article-title: Graphyne as a promising substrate for the noble-metal single-atom catalysts publication-title: Carbon doi: 10.1016/j.carbon.2015.09.008 contributor: fullname: Ma – volume: 15 start-page: 33201 year: 2020 ident: ref_36 article-title: Graphitic carbon nitride based single-atom photocatalysts publication-title: Front. Phys. doi: 10.1007/s11467-019-0950-z contributor: fullname: Fu – volume: 41 start-page: 22182 year: 2016 ident: ref_37 article-title: Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.158 contributor: fullname: Rad – volume: 20 start-page: 359 year: 2021 ident: ref_12 article-title: Designing of Inorganic Al12N12 Nanocluster with Fe, Co, Ni, Cu and Zn Metals for Efficient Hydrogen Storage Materials publication-title: J. Comput. Biophys. Chem. doi: 10.1142/S2737416521500186 contributor: fullname: Mehboob – volume: 44 start-page: 16833 year: 2019 ident: ref_4 article-title: Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.207 contributor: fullname: Yanxing – volume: 20 start-page: 19914 year: 2015 ident: ref_78 article-title: Synthesis, density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties publication-title: Molecules doi: 10.3390/molecules201119661 contributor: fullname: Noreen – volume: 6 start-page: 6886 year: 2016 ident: ref_30 article-title: Theoretical investigations of non-noble metal single-atom catalysis: Ni 1/FeOx for CO oxidation publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00672H contributor: fullname: Liang – volume: 233 start-page: 411 year: 2005 ident: ref_8 article-title: Ab initio DFT study of hydrogen dissociation on MoS2, NiMoS, and CoMoS: Mechanism, kinetics, and vibrational frequencies publication-title: J. Catal. doi: 10.1016/j.jcat.2005.05.009 contributor: fullname: Sun – volume: 153 start-page: 107164 year: 2023 ident: ref_68 article-title: Anchoring the late first row transition metals with B12P12 nanocage to act as single atom catalysts toward oxygen evolution reaction (OER) publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.107164 contributor: fullname: Allangawi – volume: 48 start-page: 9515 year: 2009 ident: ref_9 article-title: Hydrogen dissociation by gold clusters publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200905380 contributor: fullname: Fujitani – volume: 49 start-page: 6884 year: 2020 ident: ref_39 article-title: Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00835D contributor: fullname: Franco – volume: 297 start-page: 120389 year: 2021 ident: ref_19 article-title: Single noble metal atoms doped 2D materials for catalysis applications publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120389 contributor: fullname: Liu – volume: 39 start-page: 893 year: 2018 ident: ref_21 article-title: Single-atom catalysis: Bridging the homo-and heterogeneous catalysis publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63047-5 contributor: fullname: Chen – ident: ref_57 – volume: 12 start-page: 24397 year: 2022 ident: ref_69 article-title: Organic transformations in the confined space of porous organic cage CC2; catalysis or inhibition publication-title: RSC Adv. doi: 10.1039/D2RA03399B contributor: fullname: Mukhtar – volume: 47 start-page: 41783 year: 2022 ident: ref_62 article-title: Density functional theory study of the hydrogen evolution reaction in haeckelite boron nitride quantum dots publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.216 contributor: fullname: Jindal |
SSID | ssj0000331829 |
Score | 2.4266331 |
Snippet | Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities,... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2792 |
SubjectTerms | Adsorbents Adsorption Catalysis Catalysts Catalytic activity Comparative analysis density functional theory Dissociation dissociation barrier Efficiency Electronic properties Energy gap Hydrocarbons Hydrogen hydrogen molecule Hydrogenation Investigations Metals molecular nanobelts Molecular orbitals Nitrogen Perturbation Stability analysis transition metal Transition metal compounds Transition metals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAaCmwtEVGrcQpajZOHPvYUlYrRHuoqNSb5a-IlSCp2q0Q_543cbpNxIELUk5xIk3e2J55seeZsWPrZBlBjrNAG59KW9jMWVtnTvsa4TYE7-iH_sWlXF6XX26qm9FRX7QnLMkDJ-BO5i5Gn0uNxN-Vhc0tArisY9CVDdKWqY481yMy1c_BAn210EmPVIDXn_y0JKVGcnmTCNQL9f89HY_i0XSv5Cj4LF6yF0PWyE-TtTvsWWx32fORluAr9nX5O9x16A78fPUEOb-KqXKB41qskOplV90v3keofrMWv4hIv_l5dxsDx1Tbufhjfb_Hrhefv31aZsNRCZlHxKYD5XOhgm3yBvQsF4VVau6DDRUJcTZlHnRRBUwlQE01QVUgEbouIloisNVevGZbbdfGt4w7FZA0AmFPi3xzpX3wEmmWalwswU5m7OgRPnObFDEMmASBbJ5AnrEzQnbzBKlY9zfgWzP41vzLtzP2kfxiaKwBfG-HkgEYSqpV5rQGuccbEkYdPLrODIPw3sAOLSshq2rGPmyaMXxoTcS2sXvAM4qqSBG_YfGb5OmNzaLul0Xxtpr0gclHTVva1fdeontO1FBI8e5_wLDPtumQ-1QJecC21ncP8RCp0Nq973v9H81UBqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF5a59IeQt91mxaVFnoSkbXSavdUkibGlCYU00Buy76UGFLJsR1K_n2-keSHKBR00kpoNDs7M98-vmHsi7EiCwDHsaeNT5lJTWyNKWKrXIFw672zNKF_di4mF9mPy_yym3Bbdtsq1z6xcdS-djRHfpgWyMxzLvL82_w2pqpRtLraldB4zPZSIIVkwPaOT89_TTezLAmHzaaq5SXlwPeHfwxRqhFtXi8SNYT9_7rlnbjU3zO5E4TGz9h-lz1GR213P2ePQvWCPd3hFHzJfk7u_aKGWUQns63qo2loTzBEuMYzpHzxtP4bNZGq2bQVnQWk4dFJPQ8-gsutbbhZLV-xi_Hp7--TuCuZEDtEbiosn3DpTZmUgGkJT42UI-eNz4mQs8wSr9Lcw6Wo3MjSyxxgQhVpQEtIhFKOv2aDqq7CWxZZ6ZE8FvhjWuwbSeW8E0i3ZGlDBpQyZJ_X6tPzlhlDA1GQkvVWyUN2TJrdPEFs1s2NenGlu8GhRzYEfEUB3NksNYlBkibwZUjphcmKIftK_aJpzEH5znRHByAosVfpowIgH28ICHWw7jrdDcal3prOkH3aNGMY0dqIqUJ9h2cknSZFHIfEb9qe3sjMi2Z5FG_Lng30fqrfUs2uG6ruEUFELvi7_8v1nj2hMvbtWccDNlgt7sIHJDsr-7Gz6Acdcf-B priority: 102 providerName: ProQuest |
Title | Hydrogen Dissociation Reaction on First-Row Transition Metal Doped Nanobelts |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37049085 https://www.proquest.com/docview/2799653655 https://www.proquest.com/docview/2800622122 https://pubmed.ncbi.nlm.nih.gov/PMC10096363 https://doaj.org/article/1beec069144b42a0a64467ed95ad6a47 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBab7aU9lL6bdhtUWujJGz9l6bivbCjNsoQu5Gb08jawsUM2S-m_7yfZzsb0Vgg-RBYej0aa-ayZT4R8lYqlFuA4MC7xKZWxDJSUeaCEzuFujdHKfdCfXbHpTfp9kS0OCOtqYXzSvlbL4-pudVwtf_ncyvVKj7s8sfH17CxygXfCkvGADGChexjdr78J7DQWDRdpAkw_XklHo-ao8nrex5P0_7sU7_mifp7knuOZvCDP24iRnjSSvSQHtnpFnu3xCL4mP6Z_zKaGKdDz5aO66dw2VQsUv8kSYV4wr39T7518ohadWYTe9LxeW0OxzNbK3m3v35CbycXPs2nQHpMQaHhrd5h8mHAjy7AENAuTWHIeaSNN5kg4yzQ0Is4MlhGRSV4angFAiDy2aLEhE0Inb8lhVVf2PaGKGwSMOd7YbfBFXGijGUIsXiqbApkMyZdOfcW6YcMogCKckotHJQ_JqdPs7g7HYO3_qDe3RTuORaSsxVMEAJ1KYxlKBGYMT4aUhsk0H5JvblwKN8-gfC3bcgEI6hiripMcwB49GIQ66oauaCfgfQE5BMsSlmVD8nnXjKnj9kNkZesH3MNdBSl8NyR-14z0TuYk91ui6M17NtB7qX4LrNXTc3fW-eH_u34kT92x9k3t4xE53G4e7CcEP1s1IgM-uRyRJ6cXV9fzkf-EgOvlIhr5WfAXxn4KGQ |
link.rule.ids | 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHIADKu-FAkEgcYqajRPHPlWFsiyw20PVSr1ZfoWuVJJldyvEv-ebJPuIkJByimN5Mh7Pw_Z8w9h7Y0UWEBzHni4-ZSY1sTWmiK1yBcyt987Shv70VIwvsm-X-WW34bbsrlWudWKjqH3taI_8MC3gmedc5PnR_FdMVaPodLUroXGb3ck4bDVlio--bPZYEg6JTVWLSsoR3R_-NASoRqB5PTvUwPX_q5R3rFL_xuSOCRrtswed7xgdt5P9kN0K1SN2fwdR8DGbjP_4RQ2hiE5mW8ZHZ6HNX4jwjGZw-OKz-nfU2KnmylY0DXDCo5N6HnwEhVvbcL1aPmEXo8_nn8ZxVzAhdrDbVFY-4dKbMikRpCU8NVIOnTc-JzjOMku8SnMPhaJyI0svc4QSqkgDWkIilHL8Kdur6io8Z5GVHq5jgT-mo76hVM47AWdLljZkiFEG7N2afXre4mJoxBPEZL1l8oB9JM5uviAs6-ZFvfihu6WhhzYEjKIQ2tksNYmBiyYwMqj0wmTFgH2gedG04sB8Z7rEARBK2FX6uECIjx4CRB2sp053S3Gpt4IzYG83zVhEdDJiqlDf4BtJuaSw4qD4WTvTG5p50RyOorfsyUDvp_ot1eyqAeoeUoDIBX_xf7resLvj8-lET76efn_J7lFB-zbr8YDtrRY34RXcnpV93cj2X_42ARs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyF4QHyOjgFGIPEUNY0Tx35CG11VYKumikl7s-zYgUqQdG0nxH_PXeJ-REhIeYoT5XJ3vg_7_DuA98aK1GNyHDkqfEpNYiJrTB5ZVeTobp0rLC3oX0zF5Cr9cp1dh_qnVSir3NjExlC7uqA18kGSY2SecZFlgzKURVyOxh8XNxF1kKKd1tBO4y4c5KngcQ8OTs-ml7PtikvMUX8T1WKUcsz1B78MwasRhF7HKzXg_f-a6D0f1a2f3HNI40fwMESS7KQV_WO446sn8GAPX_ApnE_-uGWNKsJG850Y2My3pxkYXuM5hn_RrP7NGq_VFHCxC48hORvVC-8Ymt_a-p_r1TO4Gp99-zSJQvuEqEAvTk3mYy6dKeMSU7aYJ0bKYeGMywics0xjp5LMoXlRmZGlkxkmFipPPI74WChV8OfQq-rKvwBmpcNAMsc_po2_oVSFKwSGXrK0PsWMpQ_vNuzTixYlQ2N2QUzWOyb34ZQ4u32CkK2bG_Xyuw4TRQ-t9_gVhYmeTRMTGwzYBH4ZqXTCpHkfPpBcNM0_ZH5hwjECJJSQrPQJCl_hGwKJOt6IToeJudI7NerD2-0wTinaJzGVr2_xGUknS9GnI8WHraS3NPO82SrFt2VHBzo_1R2p5j8a2O4hpYtc8KP_0_UG7qFi6_PP068v4T51t2-PQB5Db7289a8wBlrb10G5_wJsYAa4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Dissociation+Reaction+on+First-Row+Transition+Metal+Doped+Nanobelts&rft.jtitle=Materials&rft.au=Bayach%2C+Imene&rft.au=Sarfaraz%2C+Sehrish&rft.au=Sheikh%2C+Nadeem+S&rft.au=Alamer%2C+Kawther&rft.date=2023-03-31&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=16&rft.issue=7&rft.spage=2792&rft_id=info:doi/10.3390%2Fma16072792&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |