Hydrogen Dissociation Reaction on First-Row Transition Metal Doped Nanobelts

Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H -N -belt[6]arene nanobelt are investigated for...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 7; p. 2792
Main Authors Bayach, Imene, Sarfaraz, Sehrish, Sheikh, Nadeem S, Alamer, Kawther, Almutlaq, Nadiah, Ayub, Khurshid
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H -N -belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.
AbstractList Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H[sub.6]-N[sub.3]-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.
Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H -N -belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.
Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO–LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.
Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H 6 -N 3 -belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO–LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.
Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated through interaction energy analysis, which reveals the significant thermodynamic stability of TM-doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping. The highest reduction in the HOMO-LUMO energy gap compared to the bare nanobelt is seen in the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst (0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key findings of this study enhance the understanding of the relative stability, electronic features, and catalytic bindings of various TM@NB catalysts.
Audience Academic
Author Sarfaraz, Sehrish
Bayach, Imene
Sheikh, Nadeem S
Alamer, Kawther
Almutlaq, Nadiah
Ayub, Khurshid
AuthorAffiliation 1 Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
2 Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
3 Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
AuthorAffiliation_xml – name: 3 Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
– name: 2 Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
– name: 1 Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
Author_xml – sequence: 1
  givenname: Imene
  orcidid: 0000-0003-1375-0612
  surname: Bayach
  fullname: Bayach, Imene
  organization: Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
– sequence: 2
  givenname: Sehrish
  surname: Sarfaraz
  fullname: Sarfaraz, Sehrish
  organization: Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
– sequence: 3
  givenname: Nadeem S
  orcidid: 0000-0002-0716-7562
  surname: Sheikh
  fullname: Sheikh, Nadeem S
  organization: Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
– sequence: 4
  givenname: Kawther
  surname: Alamer
  fullname: Alamer, Kawther
  organization: Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
– sequence: 5
  givenname: Nadiah
  surname: Almutlaq
  fullname: Almutlaq, Nadiah
  organization: Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
– sequence: 6
  givenname: Khurshid
  surname: Ayub
  fullname: Ayub, Khurshid
  organization: Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37049085$$D View this record in MEDLINE/PubMed
BookMark eNpdkm1vFCEQx4mpsbX2jR_AbOKbxmQrTwvLK9O01jY5NWnqazIHsyeXPThhT9NvL971USBhMvOfHwzMa7IXU0RC3jJ6IoShH1fAFNVcG_6CHDBjVMuMlHtP7H1yVMqS1iEE67l5RfaFptLQvjsgs8tbn9MCY3MeSkkuwBRSbK4R3Nao6yLkMrXX6U9zkyGWsPV_xQnG5jyt0TffIKY5jlN5Q14OMBY8utsPyY-Lzzdnl-3s-5ers9NZ6zrGp5YJKnoPAx0001Rw6HvmPPiO6U4MknrDO6-VMB30g-87LbXRHGsEqTLGiUNyteP6BEu7zmEF-dYmCHbrSHlhIU_BjWjZHNHVLCblXHKgoKRUGn1lewVSV9anHWu9ma_QO4xThvEZ9Hkkhp92kX5bRqlRQolKOL4j5PRrg2Wyq1AcjiNETJtieU-p4pxxXqXv_5Mu0ybH-la2_qBRnVBdV1UnO9UCagUhDqke7Or0uAqufv8Qqv9US2VqLUrVhA-7BJdTKRmHh-szav91iX3skip-97TgB-l9T4i_f4u3BA
CitedBy_id crossref_primary_10_1016_j_molliq_2024_124649
crossref_primary_10_3390_cryst13060974
crossref_primary_10_1016_j_ijhydene_2024_01_144
crossref_primary_10_1016_j_molstruc_2023_137449
crossref_primary_10_3390_app132011282
crossref_primary_10_1016_j_molliq_2024_124436
Cites_doi 10.1038/s41929-019-0404-6
10.1016/j.ijhydene.2016.05.293
10.3390/catal9020135
10.1021/acs.accounts.8b00175
10.1016/j.matchemphys.2017.04.002
10.1016/j.ijhydene.2008.11.109
10.1016/j.mssp.2019.01.039
10.1002/cctc.201500363
10.3390/nano13010029
10.1016/j.joule.2018.06.019
10.1021/acs.orglett.1c02643
10.1021/acsomega.0c01686
10.1007/s40974-016-0005-z
10.1007/s41918-019-00050-6
10.1007/s12274-019-2345-4
10.1103/PhysRevLett.103.246102
10.1016/j.cej.2021.132226
10.1016/j.molstruc.2017.07.093
10.1021/acsnano.7b02060
10.1016/j.mssp.2021.106269
10.1021/jacs.9b12181
10.1021/jp909689a
10.1039/D1RA08738J
10.1021/jp4099254
10.1021/acs.jpcc.9b00609
10.1055/s-0040-1718934
10.1016/j.ijhydene.2021.09.063
10.1016/j.ijhydene.2017.11.004
10.1038/s41560-019-0355-9
10.1038/s41557-020-00627-5
10.1002/jccs.202200392
10.1016/j.susc.2017.11.020
10.1038/nchem.1095
10.1002/cctc.201200799
10.1016/j.molliq.2022.118652
10.1007/s10562-019-02709-7
10.1039/c2dt12232d
10.1016/j.ijhydene.2023.01.154
10.1063/1.4872036
10.1002/anie.201402118
10.1002/slct.201802732
10.1002/ange.202006231
10.1016/j.apcatb.2019.118404
10.1021/la300305m
10.31635/ccschem.020.202000287
10.1039/b810189b
10.1016/j.ijhydene.2019.10.051
10.1016/j.enconman.2022.115246
10.1002/jcc.22885
10.1016/j.apcatb.2017.10.025
10.1016/j.ijhydene.2016.05.244
10.1016/j.apcatb.2019.01.094
10.1016/j.comptc.2021.113191
10.1016/S1872-2067(17)62903-6
10.1007/s10876-022-02294-7
10.1016/j.ijhydene.2017.02.202
10.3390/molecules22020190
10.1021/acs.nanolett.5b05149
10.1021/jp052804c
10.1016/j.mseb.2021.115365
10.1039/c2ob26689j
10.1016/j.rser.2015.05.011
10.1016/j.mssp.2021.106334
10.1021/jp952860l
10.1021/jp8058849
10.1016/j.ijhydene.2022.03.208
10.1016/j.cej.2021.134073
10.1016/j.carbon.2015.09.008
10.1007/s11467-019-0950-z
10.1016/j.ijhydene.2016.08.158
10.1142/S2737416521500186
10.1016/j.ijhydene.2019.04.207
10.3390/molecules201119661
10.1039/C6CY00672H
10.1016/j.jcat.2005.05.009
10.1016/j.mssp.2022.107164
10.1002/anie.200905380
10.1039/D0CS00835D
10.1016/j.apcatb.2021.120389
10.1016/S1872-2067(18)63047-5
10.1039/D2RA03399B
10.1016/j.ijhydene.2022.06.216
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ma16072792
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID oai_doaj_org_article_1beec069144b42a0a64467ed95ad6a47
A746946766
10_3390_ma16072792
37049085
Genre Journal Article
GrantInformation_xml – fundername: Deputyship for Research and Innovation, Ministry of Education
  grantid: INST132
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
NPM
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
AAYXX
CITATION
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c512t-13038daf0f717032a881cdad51753f40d925d76395a8fd85747972ef40e0699c3
IEDL.DBID RPM
ISSN 1996-1944
IngestDate Tue Oct 22 15:07:07 EDT 2024
Tue Sep 17 21:32:50 EDT 2024
Sat Oct 26 04:00:43 EDT 2024
Thu Oct 10 19:00:11 EDT 2024
Fri Feb 02 04:34:09 EST 2024
Thu Sep 26 19:21:08 EDT 2024
Sat Nov 02 11:56:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords dissociation barrier
hydrogen molecule
transition metal
density functional theory
molecular nanobelts
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-13038daf0f717032a881cdad51753f40d925d76395a8fd85747972ef40e0699c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-0716-7562
0000-0003-1375-0612
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096363/
PMID 37049085
PQID 2799653655
PQPubID 2032366
ParticipantIDs doaj_primary_oai_doaj_org_article_1beec069144b42a0a64467ed95ad6a47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10096363
proquest_miscellaneous_2800622122
proquest_journals_2799653655
gale_infotracacademiconefile_A746946766
crossref_primary_10_3390_ma16072792
pubmed_primary_37049085
PublicationCentury 2000
PublicationDate 20230331
PublicationDateYYYYMMDD 2023-03-31
PublicationDate_xml – month: 3
  year: 2023
  text: 20230331
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sun (ref_8) 2005; 233
Jindal (ref_62) 2022; 47
DiLabio (ref_83) 2014; 140
Zhang (ref_45) 2020; 142
Sarfaraz (ref_59) 2022; 139
ref_14
Zhou (ref_7) 2016; 16
ref_57
ref_56
ref_11
Xu (ref_49) 2020; 268
Rosen (ref_2) 2016; 1
ref_10
Arsad (ref_1) 2022; 47
Rad (ref_67) 2017; 194
Rad (ref_37) 2016; 41
Ghosh (ref_27) 2013; 5
Wang (ref_70) 2022; 254
Shi (ref_42) 2020; 2
Zhang (ref_3) 2016; 41
Tierney (ref_15) 2009; 103
Sarfaraz (ref_60) 2022; 352
Pozzo (ref_32) 2009; 34
Hussain (ref_53) 2020; 5
Ans (ref_64) 2019; 94
Lei (ref_74) 2017; 11
ref_25
Cheng (ref_29) 2019; 2
Chai (ref_61) 2008; 10
Du (ref_77) 2005; 109
Liu (ref_50) 2019; 247
Chen (ref_23) 2018; 2
Wang (ref_51) 2022; 429
Chen (ref_21) 2018; 39
Ahmed (ref_54) 2019; 44
Qiao (ref_26) 2011; 3
Ayub (ref_40) 2017; 42
Zara (ref_66) 2017; 1149
Zhang (ref_75) 2018; 43
Salman (ref_79) 2012; 10
Mehboob (ref_12) 2021; 20
Franco (ref_39) 2020; 49
Yanxing (ref_4) 2019; 44
Feyereisen (ref_84) 1996; 100
Ullah (ref_34) 2021; 46
Huang (ref_52) 2019; 4
Zha (ref_17) 2018; 669
Kosar (ref_72) 2022; 138
Zhang (ref_47) 2020; 132
Lu (ref_71) 2012; 33
Noreen (ref_78) 2015; 20
Islam (ref_81) 2008; 112
Righi (ref_24) 2019; 123
Liang (ref_30) 2016; 6
Cheng (ref_22) 2017; 38
Minenkov (ref_65) 2012; 41
(ref_16) 2010; 114
Chandrasekaran (ref_48) 2022; 431
Fu (ref_36) 2020; 15
Liu (ref_19) 2021; 297
Cheung (ref_46) 2021; 13
Sajid (ref_55) 2021; 1199
Sarfaraz (ref_58) 2022; 12
Shi (ref_43) 2021; 3
Papa (ref_38) 2020; 3
Zhang (ref_44) 2021; 23
Ans (ref_63) 2018; 3
ref_80
Weng (ref_18) 2012; 28
Niaz (ref_5) 2015; 50
Shah (ref_41) 2023; 13
Sun (ref_76) 2014; 118
Hassan (ref_82) 2021; 272
Jing (ref_13) 2018; 224
Mukhtar (ref_69) 2022; 12
Fujitani (ref_9) 2009; 48
Liang (ref_20) 2015; 7
Parkinson (ref_28) 2019; 149
Rusman (ref_6) 2016; 41
Ma (ref_33) 2015; 95
Allangawi (ref_68) 2023; 153
Zhu (ref_73) 2018; 51
Thiel (ref_31) 2014; 53
Sun (ref_35) 2019; 12
References_xml – volume: 3
  start-page: 135
  year: 2020
  ident: ref_38
  article-title: Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0404-6
  contributor:
    fullname: Papa
– volume: 41
  start-page: 14535
  year: 2016
  ident: ref_3
  article-title: The survey of key technologies in hydrogen energy storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.293
  contributor:
    fullname: Zhang
– ident: ref_25
  doi: 10.3390/catal9020135
– volume: 51
  start-page: 1691
  year: 2018
  ident: ref_73
  article-title: Carbolong chemistry: A story of carbon chain ligands and transition metals
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00175
  contributor:
    fullname: Zhu
– volume: 194
  start-page: 337
  year: 2017
  ident: ref_67
  article-title: Adsorption properties of acetylene and ethylene molecules onto pristine and nickel-decorated Al12N12 nanoclusters
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.04.002
  contributor:
    fullname: Rad
– volume: 34
  start-page: 1922
  year: 2009
  ident: ref_32
  article-title: Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.109
  contributor:
    fullname: Pozzo
– volume: 94
  start-page: 97
  year: 2019
  ident: ref_64
  article-title: Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2019.01.039
  contributor:
    fullname: Ans
– volume: 7
  start-page: 2559
  year: 2015
  ident: ref_20
  article-title: The power of single-atom catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500363
  contributor:
    fullname: Liang
– volume: 13
  start-page: 29
  year: 2023
  ident: ref_41
  article-title: Remarkable Single Atom Catalyst of Transition Metal (Fe, Co & Ni) Doped on C2N Surface for Hydrogen Dissociation Reaction
  publication-title: Nanomaterials
  doi: 10.3390/nano13010029
  contributor:
    fullname: Shah
– volume: 2
  start-page: 1242
  year: 2018
  ident: ref_23
  article-title: Single-atom catalysts: Synthetic strategies and electrochemical applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
  contributor:
    fullname: Chen
– volume: 23
  start-page: 7259
  year: 2021
  ident: ref_44
  article-title: Selective Oxidation of Belt [4] arene [4] tropilidene and Its Application to Construct Hydrocarbon Belts of Truncated Cone Structure with Expand Cavity
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c02643
  contributor:
    fullname: Zhang
– volume: 5
  start-page: 15547
  year: 2020
  ident: ref_53
  article-title: Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: A step forward toward efficient CO2 sensing materials
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01686
  contributor:
    fullname: Hussain
– volume: 1
  start-page: 10
  year: 2016
  ident: ref_2
  article-title: The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems
  publication-title: Energy Ecol. Environ.
  doi: 10.1007/s40974-016-0005-z
  contributor:
    fullname: Rosen
– volume: 2
  start-page: 539
  year: 2019
  ident: ref_29
  article-title: Single-atom catalysts: From design to application
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-019-00050-6
  contributor:
    fullname: Cheng
– volume: 12
  start-page: 2067
  year: 2019
  ident: ref_35
  article-title: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2345-4
  contributor:
    fullname: Sun
– volume: 103
  start-page: 246102
  year: 2009
  ident: ref_15
  article-title: Hydrogen dissociation and spillover on individual isolated palladium atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246102
  contributor:
    fullname: Tierney
– volume: 429
  start-page: 132226
  year: 2022
  ident: ref_51
  article-title: Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132226
  contributor:
    fullname: Wang
– volume: 1149
  start-page: 282
  year: 2017
  ident: ref_66
  article-title: A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2017.07.093
  contributor:
    fullname: Zara
– volume: 11
  start-page: 5103
  year: 2017
  ident: ref_74
  article-title: Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (Wx Mo1–x S2) and graphene with superior catalytic performance for hydrogen evolution
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02060
  contributor:
    fullname: Lei
– volume: 138
  start-page: 106269
  year: 2022
  ident: ref_72
  article-title: Remarkable nonlinear optical response of Mn@C20 (M = Na & K and n = 1–6); a DFT outcome
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.106269
  contributor:
    fullname: Kosar
– volume: 142
  start-page: 1196
  year: 2020
  ident: ref_45
  article-title: Hydrocarbon belts with truncated cone structures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12181
  contributor:
    fullname: Zhang
– volume: 114
  start-page: 5932
  year: 2010
  ident: ref_16
  article-title: A DFT study of hydrogen dissociation on CO-and C-precovered Fe (100) surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp909689a
– volume: 12
  start-page: 3909
  year: 2022
  ident: ref_58
  article-title: Computational investigation of a covalent triazine framework (CTF-0) as an efficient electrochemical sensor
  publication-title: RSC Adv.
  doi: 10.1039/D1RA08738J
  contributor:
    fullname: Sarfaraz
– ident: ref_56
– volume: 118
  start-page: 1611
  year: 2014
  ident: ref_76
  article-title: A study on the mechanism for H2 dissociation on Au/TiO2 catalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4099254
  contributor:
    fullname: Sun
– volume: 123
  start-page: 9875
  year: 2019
  ident: ref_24
  article-title: H2 Dissociation on Noble Metal Single Atom Catalysts Adsorbed on and Doped into CeO2 (111)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b00609
  contributor:
    fullname: Righi
– volume: 2
  start-page: 300
  year: 2020
  ident: ref_42
  article-title: A Theoretical Study on the Macrocyclic Strain of Zigzag Molecular Belts
  publication-title: Org. Mater.
  doi: 10.1055/s-0040-1718934
  contributor:
    fullname: Shi
– volume: 46
  start-page: 37814
  year: 2021
  ident: ref_34
  article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: A DFT insight
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.063
  contributor:
    fullname: Ullah
– volume: 43
  start-page: 793
  year: 2018
  ident: ref_75
  article-title: Hydrogen adsorption and dissociation on nickel-adsorbed and -substituted Mg17Al12 (100) surface: A density functional theory study
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.11.004
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 329
  year: 2019
  ident: ref_52
  article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
  contributor:
    fullname: Huang
– volume: 13
  start-page: 255
  year: 2021
  ident: ref_46
  article-title: Synthesis of a zigzag carbon nanobelt
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00627-5
  contributor:
    fullname: Cheung
– ident: ref_14
  doi: 10.1002/jccs.202200392
– volume: 669
  start-page: 114
  year: 2018
  ident: ref_17
  article-title: Hydrogen-assisted versus hydroxyl-assisted CO dissociation over Co-doped Cu (111): A DFT study
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2017.11.020
  contributor:
    fullname: Zha
– volume: 3
  start-page: 634
  year: 2011
  ident: ref_26
  article-title: Single-atom catalysis of CO oxidation using Pt 1/FeOx
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
  contributor:
    fullname: Qiao
– volume: 5
  start-page: 1811
  year: 2013
  ident: ref_27
  article-title: Rh1/γ-Al2O3 Single-Atom Catalysis of O2 Activation and CO Oxidation: Mechanism, Effects of Hydration, Oxidation State, and Cluster Size
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200799
  contributor:
    fullname: Ghosh
– volume: 352
  start-page: 118652
  year: 2022
  ident: ref_60
  article-title: DFT investigation of adsorption of nitro-explosives over C2N surface: Highly selective towards trinitro benzene
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.118652
  contributor:
    fullname: Sarfaraz
– volume: 149
  start-page: 1137
  year: 2019
  ident: ref_28
  article-title: Single-atom catalysis: How structure influences catalytic performance
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-019-02709-7
  contributor:
    fullname: Parkinson
– volume: 41
  start-page: 5526
  year: 2012
  ident: ref_65
  article-title: The accuracy of DFT-optimized geometries of functional transition metal compounds: A validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt12232d
  contributor:
    fullname: Minenkov
– ident: ref_10
  doi: 10.1016/j.ijhydene.2023.01.154
– volume: 140
  start-page: 18A542
  year: 2014
  ident: ref_83
  article-title: Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4872036
  contributor:
    fullname: DiLabio
– volume: 53
  start-page: 8605
  year: 2014
  ident: ref_31
  article-title: Computational catalysis—Past, present, and future
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402118
  contributor:
    fullname: Thiel
– volume: 3
  start-page: 12797
  year: 2018
  ident: ref_63
  article-title: Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201802732
  contributor:
    fullname: Ans
– volume: 132
  start-page: 18308
  year: 2020
  ident: ref_47
  article-title: Synthesis and structure of functionalized zigzag hydrocarbon belts
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202006231
  contributor:
    fullname: Zhang
– volume: 268
  start-page: 118404
  year: 2020
  ident: ref_49
  article-title: Charge Transfer Engineering via Multiple Heteroatom Doping in Dual Carbon-Coupled Cobalt Phosphides for Highly Efficient Overall Water Splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118404
  contributor:
    fullname: Xu
– volume: 28
  start-page: 5596
  year: 2012
  ident: ref_18
  article-title: Kinetics and mechanisms for the adsorption, dissociation, and diffusion of hydrogen in Ni and Ni/YSZ slabs: A DFT study
  publication-title: Langmuir
  doi: 10.1021/la300305m
  contributor:
    fullname: Weng
– volume: 3
  start-page: 916
  year: 2021
  ident: ref_43
  article-title: Zigzag hydrocarbon belts
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000287
  contributor:
    fullname: Shi
– volume: 10
  start-page: 6615
  year: 2008
  ident: ref_61
  article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b810189b
  contributor:
    fullname: Chai
– volume: 44
  start-page: 31141
  year: 2019
  ident: ref_54
  article-title: External stimulus controlled recombination of hydrogen in photochromic dithienylethene frustrated lewis pairs
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.051
  contributor:
    fullname: Ahmed
– volume: 254
  start-page: 115246
  year: 2022
  ident: ref_70
  article-title: Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115246
  contributor:
    fullname: Wang
– volume: 33
  start-page: 580
  year: 2012
  ident: ref_71
  article-title: Multiwfn: A multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
  contributor:
    fullname: Lu
– volume: 224
  start-page: 533
  year: 2018
  ident: ref_13
  article-title: N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.10.025
  contributor:
    fullname: Jing
– volume: 41
  start-page: 12108
  year: 2016
  ident: ref_6
  article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.244
  contributor:
    fullname: Rusman
– volume: 247
  start-page: 107
  year: 2019
  ident: ref_50
  article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.094
  contributor:
    fullname: Liu
– volume: 1199
  start-page: 113191
  year: 2021
  ident: ref_55
  article-title: Hydrogen adsorption on Ge52−, Ge92− and Sn92− Zintl clusters: A DFT study
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2021.113191
  contributor:
    fullname: Sajid
– volume: 38
  start-page: 1508
  year: 2017
  ident: ref_22
  article-title: Single atom catalyst by atomic layer deposition technique
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62903-6
  contributor:
    fullname: Cheng
– ident: ref_11
  doi: 10.1007/s10876-022-02294-7
– volume: 42
  start-page: 11439
  year: 2017
  ident: ref_40
  article-title: Transportation of hydrogen atom and molecule through X12Y12 nano-cages
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.202
  contributor:
    fullname: Ayub
– ident: ref_80
  doi: 10.3390/molecules22020190
– volume: 16
  start-page: 1478
  year: 2016
  ident: ref_7
  article-title: Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05149
  contributor:
    fullname: Zhou
– volume: 109
  start-page: 18037
  year: 2005
  ident: ref_77
  article-title: The role of Ti as a catalyst for the dissociation of hydrogen on a Mg (0001) surface
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052804c
  contributor:
    fullname: Du
– volume: 272
  start-page: 115365
  year: 2021
  ident: ref_82
  article-title: h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2021.115365
  contributor:
    fullname: Hassan
– volume: 10
  start-page: 9464
  year: 2012
  ident: ref_79
  article-title: Pyrrole versus quinoline formation in the palladium catalyzed reaction of 2-alkynyl-3-bromothiophenes and 2-alkynyl-3-bromofurans with anilines. A combined experimental and computational study
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c2ob26689j
  contributor:
    fullname: Salman
– volume: 50
  start-page: 457
  year: 2015
  ident: ref_5
  article-title: Hydrogen storage: Materials, methods and perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.05.011
  contributor:
    fullname: Niaz
– volume: 139
  start-page: 106334
  year: 2022
  ident: ref_59
  article-title: Covalent triazine framework (CTF-0) surface as a smart sensing material for the detection of CWAs and industrial pollutants
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.106334
  contributor:
    fullname: Sarfaraz
– volume: 100
  start-page: 2993
  year: 1996
  ident: ref_84
  article-title: Hydrogen Bond Energy of the Water Dimer
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952860l
  contributor:
    fullname: Feyereisen
– volume: 112
  start-page: 16568
  year: 2008
  ident: ref_81
  article-title: Electrical double-layer structure in ionic liquids: A corroboration of the theoretical model by experimental results
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8058849
  contributor:
    fullname: Islam
– volume: 47
  start-page: 17285
  year: 2022
  ident: ref_1
  article-title: Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.208
  contributor:
    fullname: Arsad
– volume: 431
  start-page: 134073
  year: 2022
  ident: ref_48
  article-title: Interface charge density modulation of a lamellar-like spatially separated Ni9S8 nanosheet/Nb2O5 nanobelt heterostructure catalyst coupled with nitrogen and metal (M = Co, Fe, or Cu) atoms to accelerate acidic and alkaline hydrogen evolution reactions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134073
  contributor:
    fullname: Chandrasekaran
– volume: 95
  start-page: 756
  year: 2015
  ident: ref_33
  article-title: Graphyne as a promising substrate for the noble-metal single-atom catalysts
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.008
  contributor:
    fullname: Ma
– volume: 15
  start-page: 33201
  year: 2020
  ident: ref_36
  article-title: Graphitic carbon nitride based single-atom photocatalysts
  publication-title: Front. Phys.
  doi: 10.1007/s11467-019-0950-z
  contributor:
    fullname: Fu
– volume: 41
  start-page: 22182
  year: 2016
  ident: ref_37
  article-title: Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.158
  contributor:
    fullname: Rad
– volume: 20
  start-page: 359
  year: 2021
  ident: ref_12
  article-title: Designing of Inorganic Al12N12 Nanocluster with Fe, Co, Ni, Cu and Zn Metals for Efficient Hydrogen Storage Materials
  publication-title: J. Comput. Biophys. Chem.
  doi: 10.1142/S2737416521500186
  contributor:
    fullname: Mehboob
– volume: 44
  start-page: 16833
  year: 2019
  ident: ref_4
  article-title: Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.207
  contributor:
    fullname: Yanxing
– volume: 20
  start-page: 19914
  year: 2015
  ident: ref_78
  article-title: Synthesis, density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties
  publication-title: Molecules
  doi: 10.3390/molecules201119661
  contributor:
    fullname: Noreen
– volume: 6
  start-page: 6886
  year: 2016
  ident: ref_30
  article-title: Theoretical investigations of non-noble metal single-atom catalysis: Ni 1/FeOx for CO oxidation
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00672H
  contributor:
    fullname: Liang
– volume: 233
  start-page: 411
  year: 2005
  ident: ref_8
  article-title: Ab initio DFT study of hydrogen dissociation on MoS2, NiMoS, and CoMoS: Mechanism, kinetics, and vibrational frequencies
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.05.009
  contributor:
    fullname: Sun
– volume: 153
  start-page: 107164
  year: 2023
  ident: ref_68
  article-title: Anchoring the late first row transition metals with B12P12 nanocage to act as single atom catalysts toward oxygen evolution reaction (OER)
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.107164
  contributor:
    fullname: Allangawi
– volume: 48
  start-page: 9515
  year: 2009
  ident: ref_9
  article-title: Hydrogen dissociation by gold clusters
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200905380
  contributor:
    fullname: Fujitani
– volume: 49
  start-page: 6884
  year: 2020
  ident: ref_39
  article-title: Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00835D
  contributor:
    fullname: Franco
– volume: 297
  start-page: 120389
  year: 2021
  ident: ref_19
  article-title: Single noble metal atoms doped 2D materials for catalysis applications
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120389
  contributor:
    fullname: Liu
– volume: 39
  start-page: 893
  year: 2018
  ident: ref_21
  article-title: Single-atom catalysis: Bridging the homo-and heterogeneous catalysis
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(18)63047-5
  contributor:
    fullname: Chen
– ident: ref_57
– volume: 12
  start-page: 24397
  year: 2022
  ident: ref_69
  article-title: Organic transformations in the confined space of porous organic cage CC2; catalysis or inhibition
  publication-title: RSC Adv.
  doi: 10.1039/D2RA03399B
  contributor:
    fullname: Mukhtar
– volume: 47
  start-page: 41783
  year: 2022
  ident: ref_62
  article-title: Density functional theory study of the hydrogen evolution reaction in haeckelite boron nitride quantum dots
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.216
  contributor:
    fullname: Jindal
SSID ssj0000331829
Score 2.4266331
Snippet Zigzag molecular nanobelts have recently captured the interest of scientists because of their appealing aesthetic structures, intriguing chemical reactivities,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2792
SubjectTerms Adsorbents
Adsorption
Catalysis
Catalysts
Catalytic activity
Comparative analysis
density functional theory
Dissociation
dissociation barrier
Efficiency
Electronic properties
Energy gap
Hydrocarbons
Hydrogen
hydrogen molecule
Hydrogenation
Investigations
Metals
molecular nanobelts
Molecular orbitals
Nitrogen
Perturbation
Stability analysis
transition metal
Transition metal compounds
Transition metals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAaCmwtEVGrcQpajZOHPvYUlYrRHuoqNSb5a-IlSCp2q0Q_543cbpNxIELUk5xIk3e2J55seeZsWPrZBlBjrNAG59KW9jMWVtnTvsa4TYE7-iH_sWlXF6XX26qm9FRX7QnLMkDJ-BO5i5Gn0uNxN-Vhc0tArisY9CVDdKWqY481yMy1c_BAn210EmPVIDXn_y0JKVGcnmTCNQL9f89HY_i0XSv5Cj4LF6yF0PWyE-TtTvsWWx32fORluAr9nX5O9x16A78fPUEOb-KqXKB41qskOplV90v3keofrMWv4hIv_l5dxsDx1Tbufhjfb_Hrhefv31aZsNRCZlHxKYD5XOhgm3yBvQsF4VVau6DDRUJcTZlHnRRBUwlQE01QVUgEbouIloisNVevGZbbdfGt4w7FZA0AmFPi3xzpX3wEmmWalwswU5m7OgRPnObFDEMmASBbJ5AnrEzQnbzBKlY9zfgWzP41vzLtzP2kfxiaKwBfG-HkgEYSqpV5rQGuccbEkYdPLrODIPw3sAOLSshq2rGPmyaMXxoTcS2sXvAM4qqSBG_YfGb5OmNzaLul0Xxtpr0gclHTVva1fdeontO1FBI8e5_wLDPtumQ-1QJecC21ncP8RCp0Nq973v9H81UBqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF5a59IeQt91mxaVFnoSkbXSavdUkibGlCYU00Buy76UGFLJsR1K_n2-keSHKBR00kpoNDs7M98-vmHsi7EiCwDHsaeNT5lJTWyNKWKrXIFw672zNKF_di4mF9mPy_yym3Bbdtsq1z6xcdS-djRHfpgWyMxzLvL82_w2pqpRtLraldB4zPZSIIVkwPaOT89_TTezLAmHzaaq5SXlwPeHfwxRqhFtXi8SNYT9_7rlnbjU3zO5E4TGz9h-lz1GR213P2ePQvWCPd3hFHzJfk7u_aKGWUQns63qo2loTzBEuMYzpHzxtP4bNZGq2bQVnQWk4dFJPQ8-gsutbbhZLV-xi_Hp7--TuCuZEDtEbiosn3DpTZmUgGkJT42UI-eNz4mQs8wSr9Lcw6Wo3MjSyxxgQhVpQEtIhFKOv2aDqq7CWxZZ6ZE8FvhjWuwbSeW8E0i3ZGlDBpQyZJ_X6tPzlhlDA1GQkvVWyUN2TJrdPEFs1s2NenGlu8GhRzYEfEUB3NksNYlBkibwZUjphcmKIftK_aJpzEH5znRHByAosVfpowIgH28ICHWw7jrdDcal3prOkH3aNGMY0dqIqUJ9h2cknSZFHIfEb9qe3sjMi2Z5FG_Lng30fqrfUs2uG6ruEUFELvi7_8v1nj2hMvbtWccDNlgt7sIHJDsr-7Gz6Acdcf-B
  priority: 102
  providerName: ProQuest
Title Hydrogen Dissociation Reaction on First-Row Transition Metal Doped Nanobelts
URI https://www.ncbi.nlm.nih.gov/pubmed/37049085
https://www.proquest.com/docview/2799653655
https://www.proquest.com/docview/2800622122
https://pubmed.ncbi.nlm.nih.gov/PMC10096363
https://doaj.org/article/1beec069144b42a0a64467ed95ad6a47
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBab7aU9lL6bdhtUWujJGz9l6bivbCjNsoQu5Gb08jawsUM2S-m_7yfZzsb0Vgg-RBYej0aa-ayZT4R8lYqlFuA4MC7xKZWxDJSUeaCEzuFujdHKfdCfXbHpTfp9kS0OCOtqYXzSvlbL4-pudVwtf_ncyvVKj7s8sfH17CxygXfCkvGADGChexjdr78J7DQWDRdpAkw_XklHo-ao8nrex5P0_7sU7_mifp7knuOZvCDP24iRnjSSvSQHtnpFnu3xCL4mP6Z_zKaGKdDz5aO66dw2VQsUv8kSYV4wr39T7518ohadWYTe9LxeW0OxzNbK3m3v35CbycXPs2nQHpMQaHhrd5h8mHAjy7AENAuTWHIeaSNN5kg4yzQ0Is4MlhGRSV4angFAiDy2aLEhE0Inb8lhVVf2PaGKGwSMOd7YbfBFXGijGUIsXiqbApkMyZdOfcW6YcMogCKckotHJQ_JqdPs7g7HYO3_qDe3RTuORaSsxVMEAJ1KYxlKBGYMT4aUhsk0H5JvblwKN8-gfC3bcgEI6hiripMcwB49GIQ66oauaCfgfQE5BMsSlmVD8nnXjKnj9kNkZesH3MNdBSl8NyR-14z0TuYk91ui6M17NtB7qX4LrNXTc3fW-eH_u34kT92x9k3t4xE53G4e7CcEP1s1IgM-uRyRJ6cXV9fzkf-EgOvlIhr5WfAXxn4KGQ
link.rule.ids 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHIADKu-FAkEgcYqajRPHPlWFsiyw20PVSr1ZfoWuVJJldyvEv-ebJPuIkJByimN5Mh7Pw_Z8w9h7Y0UWEBzHni4-ZSY1sTWmiK1yBcyt987Shv70VIwvsm-X-WW34bbsrlWudWKjqH3taI_8MC3gmedc5PnR_FdMVaPodLUroXGb3ck4bDVlio--bPZYEg6JTVWLSsoR3R_-NASoRqB5PTvUwPX_q5R3rFL_xuSOCRrtswed7xgdt5P9kN0K1SN2fwdR8DGbjP_4RQ2hiE5mW8ZHZ6HNX4jwjGZw-OKz-nfU2KnmylY0DXDCo5N6HnwEhVvbcL1aPmEXo8_nn8ZxVzAhdrDbVFY-4dKbMikRpCU8NVIOnTc-JzjOMku8SnMPhaJyI0svc4QSqkgDWkIilHL8Kdur6io8Z5GVHq5jgT-mo76hVM47AWdLljZkiFEG7N2afXre4mJoxBPEZL1l8oB9JM5uviAs6-ZFvfihu6WhhzYEjKIQ2tksNYmBiyYwMqj0wmTFgH2gedG04sB8Z7rEARBK2FX6uECIjx4CRB2sp053S3Gpt4IzYG83zVhEdDJiqlDf4BtJuaSw4qD4WTvTG5p50RyOorfsyUDvp_ot1eyqAeoeUoDIBX_xf7resLvj8-lET76efn_J7lFB-zbr8YDtrRY34RXcnpV93cj2X_42ARs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyF4QHyOjgFGIPEUNY0Tx35CG11VYKumikl7s-zYgUqQdG0nxH_PXeJ-REhIeYoT5XJ3vg_7_DuA98aK1GNyHDkqfEpNYiJrTB5ZVeTobp0rLC3oX0zF5Cr9cp1dh_qnVSir3NjExlC7uqA18kGSY2SecZFlgzKURVyOxh8XNxF1kKKd1tBO4y4c5KngcQ8OTs-ml7PtikvMUX8T1WKUcsz1B78MwasRhF7HKzXg_f-a6D0f1a2f3HNI40fwMESS7KQV_WO446sn8GAPX_ApnE_-uGWNKsJG850Y2My3pxkYXuM5hn_RrP7NGq_VFHCxC48hORvVC-8Ymt_a-p_r1TO4Gp99-zSJQvuEqEAvTk3mYy6dKeMSU7aYJ0bKYeGMywics0xjp5LMoXlRmZGlkxkmFipPPI74WChV8OfQq-rKvwBmpcNAMsc_po2_oVSFKwSGXrK0PsWMpQ_vNuzTixYlQ2N2QUzWOyb34ZQ4u32CkK2bG_Xyuw4TRQ-t9_gVhYmeTRMTGwzYBH4ZqXTCpHkfPpBcNM0_ZH5hwjECJJSQrPQJCl_hGwKJOt6IToeJudI7NerD2-0wTinaJzGVr2_xGUknS9GnI8WHraS3NPO82SrFt2VHBzo_1R2p5j8a2O4hpYtc8KP_0_UG7qFi6_PP068v4T51t2-PQB5Db7289a8wBlrb10G5_wJsYAa4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Dissociation+Reaction+on+First-Row+Transition+Metal+Doped+Nanobelts&rft.jtitle=Materials&rft.au=Bayach%2C+Imene&rft.au=Sarfaraz%2C+Sehrish&rft.au=Sheikh%2C+Nadeem+S&rft.au=Alamer%2C+Kawther&rft.date=2023-03-31&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=16&rft.issue=7&rft.spage=2792&rft_id=info:doi/10.3390%2Fma16072792&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon