Thermal processing influence on mechanical, thermal, and biodegradation behavior in poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends: A descriptive model

ABSTRACT Poly(β‐hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has been blended with other polymers. Compression‐molded blends of PHB and poly(ε‐caprolactone) [PCL] (70/30 mass ratio) were cooled to room te...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 133; no. 27; pp. np - n/a
Main Authors Vergara-Porras, Berenice, Gracida-Rodríguez, Jorge Noel, Pérez-Guevara, Fermín
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 15.07.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Poly(β‐hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has been blended with other polymers. Compression‐molded blends of PHB and poly(ε‐caprolactone) [PCL] (70/30 mass ratio) were cooled to room temperature following five different thermal treatments after molding at 180 °C. Blends processed with higher cooling rates were easier to biodegrade, nevertheless elongation at break and tensile strength decreased. Slower cooling kinetics and isothermal treatments increased perfection of crystals, as seen in differential scanning calorimetry and X‐ray diffraction and spherulites size. A descriptive model is proposed herein where thermal, biodegradation, tensile properties, and crystal features were related to cooling kinetics applied. It is proposed that properties of 70/30 (PHB/PCL) blends can be predetermined by an adequate control of thermal conditions during processing. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43569.
AbstractList ABSTRACT Poly(β‐hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has been blended with other polymers. Compression‐molded blends of PHB and poly(ε‐caprolactone) [PCL] (70/30 mass ratio) were cooled to room temperature following five different thermal treatments after molding at 180 °C. Blends processed with higher cooling rates were easier to biodegrade, nevertheless elongation at break and tensile strength decreased. Slower cooling kinetics and isothermal treatments increased perfection of crystals, as seen in differential scanning calorimetry and X‐ray diffraction and spherulites size. A descriptive model is proposed herein where thermal, biodegradation, tensile properties, and crystal features were related to cooling kinetics applied. It is proposed that properties of 70/30 (PHB/PCL) blends can be predetermined by an adequate control of thermal conditions during processing. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43569.
Poly( beta -hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has been blended with other polymers. Compression-molded blends of PHB and poly( epsilon -caprolactone) [PCL] (70/30 mass ratio) were cooled to room temperature following five different thermal treatments after molding at 180 degree C. Blends processed with higher cooling rates were easier to biodegrade, nevertheless elongation at break and tensile strength decreased. Slower cooling kinetics and isothermal treatments increased perfection of crystals, as seen in differential scanning calorimetry and X-ray diffraction and spherulites size. A descriptive model is proposed herein where thermal, biodegradation, tensile properties, and crystal features were related to cooling kinetics applied. It is proposed that properties of 70/30 (PHB/PCL) blends can be predetermined by an adequate control of thermal conditions during processing. J. Appl. Polym. Sci. 2016, 133, 43569.
Poly([beta]-hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has been blended with other polymers. Compression-molded blends of PHB and poly([epsi]-caprolactone) [PCL] (70/30 mass ratio) were cooled to room temperature following five different thermal treatments after molding at 180°C. Blends processed with higher cooling rates were easier to biodegrade, nevertheless elongation at break and tensile strength decreased. Slower cooling kinetics and isothermal treatments increased perfection of crystals, as seen in differential scanning calorimetry and X-ray diffraction and spherulites size. A descriptive model is proposed herein where thermal, biodegradation, tensile properties, and crystal features were related to cooling kinetics applied. It is proposed that properties of 70/30 (PHB/PCL) blends can be predetermined by an adequate control of thermal conditions during processing. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43569.
ABSTRACT Poly(β‐hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has been blended with other polymers. Compression‐molded blends of PHB and poly(ε‐caprolactone) [PCL] (70/30 mass ratio) were cooled to room temperature following five different thermal treatments after molding at 180 °C. Blends processed with higher cooling rates were easier to biodegrade, nevertheless elongation at break and tensile strength decreased. Slower cooling kinetics and isothermal treatments increased perfection of crystals, as seen in differential scanning calorimetry and X‐ray diffraction and spherulites size. A descriptive model is proposed herein where thermal, biodegradation, tensile properties, and crystal features were related to cooling kinetics applied. It is proposed that properties of 70/30 (PHB/PCL) blends can be predetermined by an adequate control of thermal conditions during processing. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43569.
Author Gracida-Rodríguez, Jorge Noel
Vergara-Porras, Berenice
Pérez-Guevara, Fermín
Author_xml – sequence: 1
  givenname: Berenice
  surname: Vergara-Porras
  fullname: Vergara-Porras, Berenice
  organization: Departamento de Biotecnología e Ingeniería Química, Escuela de Ingeniería y Ciencias. Tecnológico de Monterrey, Campus Estado de México, Carretera Lago de Guadalupe Km 3.5, Margarita Maza de Juárez. Atizapán de Zaragoza, Estado de México, México
– sequence: 2
  givenname: Jorge Noel
  surname: Gracida-Rodríguez
  fullname: Gracida-Rodríguez, Jorge Noel
  email: gracidaj@netscape.net
  organization: Biotecnología, Facultad de Química, Universidad Autónoma de Querétaro. Cerro de las campanas s/n, Las Campanas, Qro, Querétaro, México
– sequence: 3
  givenname: Fermín
  surname: Pérez-Guevara
  fullname: Pérez-Guevara, Fermín
  organization: Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Avenida IPN 2508, Zacatenco. Gustavo a. Madero, México D.F., México
BookMark eNqNkcFu1DAQhiNUJLaFA29giUtXarp2Escxt6WCgrSCPSxU4mI59mzXxbGDnZTmZXgIJF6DZ8IQ4ICExGmkme-f-Uf_cXbkvIMse0zwOcG4WMm-P69KWvN72YJgzvKqLpqjbJFmJG84pw-y4xhvMCaE4nqRfd4dIHTSoj54BTEad42M29sRnALkHepAHaQzStozNMzsGZJOo9Z4DddBajmYxLVwkLfGh6RGvbfT6bcv-WHSwd9N7ThMQQ6wXM2Dr7mS6ZyVakjml6i14HR8itZIQ1TB9IO5BdSl9fZhdn8vbYRHv-pJ9vbF893Fy3zz5vLVxXqTK0oKntNCU8VJXRIgDdON0lq1Bda8krUmqVG0UFCAUlXQtDXVvGw1KaGVpGKqgfIkO533Jl8fR4iD6ExUYK104McoSIMbzNIB_j8orTirSZHQJ3-hN34MLj0iCGtIzVnFq0QtZ0oFH2OAveiD6WSYBMHiR6gihSp-hprY1cx-Mhamf4Nivd3-VuSzwsQB7v4oZPggalYyKq5eX4r3V7t3bLN9JoryOzqMuLQ
CODEN JAPNAB
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2022_07_139
crossref_primary_10_1080_25740881_2022_2113890
crossref_primary_10_1016_j_msec_2017_11_006
crossref_primary_10_1002_app_52240
crossref_primary_10_1016_j_fpsl_2019_01_001
crossref_primary_10_1002_app_44810
crossref_primary_10_1002_pcr2_10204
crossref_primary_10_1002_marc_202000563
crossref_primary_10_1016_j_reactfunctpolym_2018_04_006
crossref_primary_10_1016_j_bej_2022_108588
crossref_primary_10_1016_j_eurpolymj_2019_08_016
crossref_primary_10_1016_j_jmbbm_2023_105668
crossref_primary_10_1016_j_eurpolymj_2018_04_036
crossref_primary_10_3139_217_3971
crossref_primary_10_1016_j_ijbiomac_2023_126076
crossref_primary_10_1007_s00289_020_03129_z
Cites_doi 10.1007/s10924-011-0367-4
10.1007/s10924-005-4758-2
10.1007/BF00356322
10.1016/S0032-3861(03)00348-3
10.1021/bm0000844
10.1016/j.tca.2010.08.023
10.1016/j.polymdegradstab.2004.09.013
10.1007/s10973-012-2503-3
10.1002/polb.20676
10.1016/S0079-6700(01)00050-8
10.1007/s00396-012-2882-9
10.1111/jam.12581
10.1016/0032-3861(92)90139-N
10.1016/0141-3910(92)90062-A
10.1016/j.tca.2014.08.023
10.1002/app.32645
10.1016/j.jmb.2005.12.028
10.1016/j.biotechadv.2007.12.005
10.1016/j.msea.2010.11.012
10.1590/S0104-14282005000200014
10.1007/s10924-014-0654-y
10.1016/0032-3861(94)90258-5
10.1016/j.polymer.2009.08.003
10.1021/ma971559v
10.1007/s10924-010-0209-9
10.1016/j.polymer.2005.10.058
10.1016/j.tca.2005.01.060
10.1021/ma00182a021
10.1128/aem.56.6.1875-1881.1990
10.1021/bm0501151
10.1016/j.polymer.2003.09.029
10.1021/bm015604p
10.1002/app.1981.070261124
10.1007/BF00980744
10.1016/j.polymer.2007.08.033
10.1007/s10973-005-6872-8
10.1016/j.tca.2004.05.003
10.1016/j.polymdegradstab.2012.05.036
10.1016/j.eurpolymj.2005.06.015
10.1007/BF01026954
10.1002/polb.1993.090310201
10.1016/S0032-3861(02)00588-8
10.1021/bm0497670
10.1002/macp.200700011
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SR
8FD
JG9
7QO
FR3
P64
DOI 10.1002/app.43569
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Materials Research Database
Materials Research Database
CrossRef
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 4026627051
10_1002_app_43569
APP43569
ark_67375_WNG_ZWTV7LPB_2
Genre article
GrantInformation_xml – fundername: CONACyT
  funderid: 203514
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7SR
8FD
JG9
7QO
FR3
P64
ID FETCH-LOGICAL-c5129-52d5c91631e187d8cddcb20d94a6d17d82be25ee3c4e8b65d93bd13eba147c8e3
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Aug 16 01:46:22 EDT 2024
Fri Aug 16 07:56:27 EDT 2024
Thu Oct 10 16:53:30 EDT 2024
Fri Aug 23 04:07:00 EDT 2024
Sat Aug 24 01:00:51 EDT 2024
Wed Oct 30 09:46:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5129-52d5c91631e187d8cddcb20d94a6d17d82be25ee3c4e8b65d93bd13eba147c8e3
Notes ArticleID:APP43569
ark:/67375/WNG-ZWTV7LPB-2
istex:A4B28984208E97FF71AE6ECD1B143249272087AB
CONACyT - No. 203514
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1781697494
PQPubID 1006379
PageCount 12
ParticipantIDs proquest_miscellaneous_1808071639
proquest_miscellaneous_1805497612
proquest_journals_1781697494
crossref_primary_10_1002_app_43569
wiley_primary_10_1002_app_43569_APP43569
istex_primary_ark_67375_WNG_ZWTV7LPB_2
PublicationCentury 2000
PublicationDate July 15, 2016
PublicationDateYYYYMMDD 2016-07-15
PublicationDate_xml – month: 07
  year: 2016
  text: July 15, 2016
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationTitleAlternate J. Appl. Polym. Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Ha, C. S.; Cho, W. J. Progr. Polym. Sci. 2002, 27, 759.
Numata, K.; Kikkawa, Y.; Tsuge, T.; Iwata, T.; Doi, Y.; Abe, H. Biomacromolecules 2005, 6, 2008.
Gunaratne, L.; Shanks, R. A.; Amarasinghe, G. Thermochim. Acta 2004, 423, 127.
Barham, P. J.; Keller, A.; Otun, E. L.; Holmes, P. A. J. Mater. Sci. 1984, 19, 2781.
Gassner, F.; Owen, A. J. Polymer 1994, 35, 2233.
Birley, C.; Briddon, J.; Sykes, K. E.; Barker, P. A.; Organ, S. J.; Barham, P. J. J. Mater. Sci. 1995, 30, 633.
Yamashita, K.; Aoyagi, Y.; Abe, H.; Doi, Y. Biomacromolecules 2001, 2, 25.
Hisano, T.; Kasuya, K. I.; Tezuka, Y.; Ishii, N.; Kobayashi, T.; Shiraki, M.; Oroudjev, E.; Hansma, H.; Iwata, T.; Doi, Y.; Saito, T.; Miki, K. J. Mol. Biol. 2006, 356, 993.
Ding, G.; Liu, J. Colloids Polym. Sci. 2013, 291, 1547.
Murase, T.; Suzuki, Y.; Doi, Y.; Iwata, T. Biomacromolecules 2002, 3, 312.
Pitt, C. G.; Chasalow, F. I.; Hibionada, Y. M.; Klimas, D. M.; Schindler, A. J. Appl. Polym. Sci. 1981, 3779. p
Lovera, D.; Marquez, L.; Balsamo, V.; Taddei, A.; Castelli, C.; Muller, A. J. Macromol. Chem. Phys. 2007, 208, 924.
Qiu, Z. B.; Ikehara, T.; Nishi, T. Polymer 2003, 44, 7519.
D'Amico, D. A.; Cyras, V. P.; Manfredi, L. B. Thermochim. Acta 2014, 594, 80.
Qiu, Z. B.; Yang, W. T.; Ikehara, T.; Nishi, T. Polymer 2005, 46, 11814.
Ling, G. H.; Shaw, M. T. Polymer 2009, 50, 4917.
Abe, H.; Doi, Y.; Aoki, H.; Akehata, T. Macromolecules 1998, 31, 1791.
Gunaratne, L.; Shanks, R. A. Eur. Polym. J. 2005, 41, 2980.
Shah, A. A.; Hasan, F.; Hameed, A.; Ahmed, S. Biotechnol. Adv. 2008, 26, 246.
Lovinger, A. J.; Han, B. J.; Padden, F. J.; Mirau, P. A. J. Polym. Sci. B: Polym. Phys. 1993, 31, 115.
Jenkins, M. J.; Cao, Y.; Howell, L.; Leeke, G. A. Polymer 2007, 48, 6304.
Gunaratne, L.; Shanks, R. A. J. Polym. Sci. B: Polym. Phys. 2006, 44, 70.
Kumagai, Y.; Doi, Y. Polym. Degrad. Stab. 1992, 36, 241.
Bouquey, M.; Loux, C.; Muller, R.; Bouchet, G. J. Appl. Polym. Sci. 2011, 119, 482.
Goncalves, S. P. C.; Martins-Franchetti, S. M. J. Polym. Environ. 2010, 18, 714.
Alig, I.; Steinhoff, B.; Lellinger, D. Measurement Sci. Technol. 2010, 21.
Jiang-Wen, Y.; Hsiu-Jung, C.; Trong-Ming, D. Polymer 2003, 44, 4355.
Abo El Maaty, M. I. Polymer 2002, 43, 6535.
Barham, P. J. J. Mater. Sci. 1984, 19, 3826.
Arrieta, M. P.; Samper, M. D.; Lopez, J.; Jimenez, A. J. Polym. Environ. 2014, 22, 460.
Jayasekara, R.; Harding, I.; Bowater, I.; Lonergan, G. J. Polym. Environ. 2005, 13, 231.
Antunes, M. C. M.; Felisberti, M. I. Polímeros: Ciência e Tecnologia 2005, 15, 134.
Zwietering, M. H.; Jongenburger, I.; Rombouts, F. M.; Vantriet, K. Appl. Environ. Microbiol. 1990, 56, 1875.
Owen, A. J.; Heinzel, J.; Skrbic, Z.; Divjakovic, V. Polymer 1992, 33, 1563.
Pandey, J. K.; Reddy, K. R.; Kumar, A. P.; Singh, R. P. Polym. Degrad. Stabil. 2005, 88, 234.
Hong, S.-G.; Chen, W.-M. e-Polymers 2006, 44, 310.
Gasser, E.; Ballmann, P.; Droege, S.; Bohn, J.; Koenig, H. J. Appl. Microbiol. 2014, 117, 1035.
Del Gaudio, C.; Ercolani, E.; Nanni, F.; Bianco, A. Mater. Sci. Eng. A 2011, 528, 1764.
Abdelwahab, M. A.; Flynn, A.; Chiou, B. S.; Imam, S.; Orts, W.; Chiellini, E. Polym. Degrad. Stabil. 2012, 97, 1822.
Gunaratne, L.; Shanks, R. A. Thermochim. Acta 2005, 430, 183.
Hong, S. G.; Hsu, H. W.; Ye, M. T. J. Therm. Anal. Calorim. 2013, 111, 1243.
Gunaratne, L.; Shanks, R. A. J. Therm. Anal. Calorim. 2006, 83, 313.
Righetti, M. C.; Di Lorenzo, M. L. Thermochim. Acta 2011, 512, 59.
Vergara-Porras, B.; Gracida-Rodriguez, J.N.; Perez-Guevara, F. J. Polym. Environ. 2011, 19, 834.
Numata, K.; Hirota, T.; Kikkawa, Y.; Tsuge, T.; Iwata, T.; Abe, H.; Doi, Y. Biomacromolecules 2004, 5, 2186.
Bruckner, S.; Meille, S. V.; Malpezzi, L.; Cesaro, A.; Navarini, L.; Tombolini, R. Macromolecules 1988, 21, 967.
2011; 512
1995; 30
2014; 117
2011; 119
1990; 56
2004; 423
2005; 430
2010; 18
2010
2005; 41
2002; 3
2004; 5
1992; 36
2014; 594
2011; 19
2007; 208
1992; 33
2005; 88
2014; 22
2012; 97
2005; 46
2006; 356
2002; 27
2006; 83
2009; 50
2011; 528
2006; 44
1993; 31
2002; 43
1988; 21
2013; 111
2008; 26
1994; 35
2005; 6
1984; 19
2001; 2
1981
2013
2005; 15
2013; 291
1998; 31
2007; 48
2003; 44
2005; 13
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Hong S.‐G. (e_1_2_6_36_1) 2006; 44
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
Alig I. (e_1_2_6_21_1) 2010
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 44
  start-page: 310
  year: 2006
  publication-title: e‐Polymers
– volume: 18
  start-page: 714
  year: 2010
  publication-title: J. Polym. Environ.
– volume: 48
  start-page: 6304
  year: 2007
  publication-title: Polymer
– volume: 594
  start-page: 80
  year: 2014
  publication-title: Thermochim. Acta
– volume: 356
  start-page: 993
  year: 2006
  publication-title: J. Mol. Biol.
– volume: 528
  start-page: 1764
  year: 2011
  publication-title: Mater. Sci. Eng. A
– volume: 31
  start-page: 115
  year: 1993
  publication-title: J. Polym. Sci. B: Polym. Phys.
– volume: 22
  start-page: 460
  year: 2014
  publication-title: J. Polym. Environ.
– volume: 19
  start-page: 834
  year: 2011
  publication-title: J. Polym. Environ.
– volume: 430
  start-page: 183
  year: 2005
  publication-title: Thermochim. Acta
– volume: 83
  start-page: 313
  year: 2006
  publication-title: J. Therm. Anal. Calorim.
– volume: 36
  start-page: 241
  year: 1992
  publication-title: Polym. Degrad. Stab.
– volume: 30
  start-page: 633
  year: 1995
  publication-title: J. Mater. Sci.
– volume: 31
  start-page: 1791
  year: 1998
  publication-title: Macromolecules
– volume: 27
  start-page: 759
  year: 2002
  publication-title: Progr. Polym. Sci.
– volume: 44
  start-page: 4355
  year: 2003
  publication-title: Polymer
– volume: 291
  start-page: 1547
  year: 2013
  publication-title: Colloids Polym. Sci.
– volume: 44
  start-page: 70
  year: 2006
  publication-title: J. Polym. Sci. B: Polym. Phys.
– volume: 97
  start-page: 1822
  year: 2012
  publication-title: Polym. Degrad. Stabil.
– start-page: 3779
  year: 1981
  publication-title: J. Appl. Polym. Sci.
– volume: 56
  start-page: 1875
  year: 1990
  publication-title: Appl. Environ. Microbiol.
– volume: 43
  start-page: 6535
  year: 2002
  publication-title: Polymer
– volume: 117
  start-page: 1035
  year: 2014
  publication-title: J. Appl. Microbiol.
– volume: 13
  start-page: 231
  year: 2005
  publication-title: J. Polym. Environ.
– volume: 19
  start-page: 3826
  year: 1984
  publication-title: J. Mater. Sci.
– volume: 50
  start-page: 4917
  year: 2009
  publication-title: Polymer
– volume: 44
  start-page: 7519
  year: 2003
  publication-title: Polymer
– volume: 26
  start-page: 246
  year: 2008
  publication-title: Biotechnol. Adv.
– volume: 111
  start-page: 1243
  year: 2013
  publication-title: J. Therm. Anal. Calorim.
– start-page: 21
  year: 2010
  publication-title: Measurement Sci. Technol.
– volume: 41
  start-page: 2980
  year: 2005
  publication-title: Eur. Polym. J.
– volume: 2
  start-page: 25
  year: 2001
  publication-title: Biomacromolecules
– volume: 5
  start-page: 2186
  year: 2004
  publication-title: Biomacromolecules
– volume: 6
  start-page: 2008
  year: 2005
  publication-title: Biomacromolecules
– volume: 88
  start-page: 234
  year: 2005
  publication-title: Polym. Degrad. Stabil.
– volume: 21
  start-page: 967
  year: 1988
  publication-title: Macromolecules
– volume: 19
  start-page: 2781
  year: 1984
  publication-title: J. Mater. Sci.
– volume: 512
  start-page: 59
  year: 2011
  publication-title: Thermochim. Acta
– volume: 15
  start-page: 134
  year: 2005
  publication-title: Polímeros: Ciência e Tecnologia
– volume: 35
  start-page: 2233
  year: 1994
  publication-title: Polymer
– volume: 3
  start-page: 312
  year: 2002
  publication-title: Biomacromolecules
– volume: 423
  start-page: 127
  year: 2004
  publication-title: Thermochim. Acta
– volume: 33
  start-page: 1563
  year: 1992
  publication-title: Polymer
– volume: 46
  start-page: 11814
  year: 2005
  publication-title: Polymer
– volume: 208
  start-page: 924
  year: 2007
  publication-title: Macromol. Chem. Phys.
– volume: 119
  start-page: 482
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– year: 2013
– ident: e_1_2_6_12_1
  doi: 10.1007/s10924-011-0367-4
– ident: e_1_2_6_47_1
  doi: 10.1007/s10924-005-4758-2
– ident: e_1_2_6_19_1
  doi: 10.1007/BF00356322
– ident: e_1_2_6_23_1
  doi: 10.1016/S0032-3861(03)00348-3
– ident: e_1_2_6_44_1
  doi: 10.1021/bm0000844
– ident: e_1_2_6_18_1
  doi: 10.1016/j.tca.2010.08.023
– ident: e_1_2_6_48_1
  doi: 10.1016/j.polymdegradstab.2004.09.013
– ident: e_1_2_6_37_1
  doi: 10.1007/s10973-012-2503-3
– ident: e_1_2_6_38_1
  doi: 10.1002/polb.20676
– ident: e_1_2_6_6_1
  doi: 10.1016/S0079-6700(01)00050-8
– ident: e_1_2_6_15_1
  doi: 10.1007/s00396-012-2882-9
– ident: e_1_2_6_5_1
  doi: 10.1111/jam.12581
– start-page: 21
  year: 2010
  ident: e_1_2_6_21_1
  publication-title: Measurement Sci. Technol.
  contributor:
    fullname: Alig I.
– ident: e_1_2_6_40_1
  doi: 10.1016/0032-3861(92)90139-N
– ident: e_1_2_6_8_1
  doi: 10.1016/0141-3910(92)90062-A
– ident: e_1_2_6_43_1
  doi: 10.1016/j.tca.2014.08.023
– ident: e_1_2_6_20_1
  doi: 10.1002/app.32645
– ident: e_1_2_6_45_1
  doi: 10.1016/j.jmb.2005.12.028
– ident: e_1_2_6_46_1
  doi: 10.1016/j.biotechadv.2007.12.005
– ident: e_1_2_6_7_1
  doi: 10.1016/j.msea.2010.11.012
– ident: e_1_2_6_10_1
  doi: 10.1590/S0104-14282005000200014
– ident: e_1_2_6_4_1
  doi: 10.1007/s10924-014-0654-y
– ident: e_1_2_6_9_1
  doi: 10.1016/0032-3861(94)90258-5
– ident: e_1_2_6_22_1
  doi: 10.1016/j.polymer.2009.08.003
– ident: e_1_2_6_26_1
  doi: 10.1021/ma971559v
– ident: e_1_2_6_11_1
  doi: 10.1007/s10924-010-0209-9
– ident: e_1_2_6_24_1
  doi: 10.1016/j.polymer.2005.10.058
– ident: e_1_2_6_33_1
  doi: 10.1016/j.tca.2005.01.060
– ident: e_1_2_6_41_1
  doi: 10.1021/ma00182a021
– ident: e_1_2_6_31_1
  doi: 10.1128/aem.56.6.1875-1881.1990
– ident: e_1_2_6_2_1
– ident: e_1_2_6_28_1
  doi: 10.1021/bm0501151
– ident: e_1_2_6_25_1
  doi: 10.1016/j.polymer.2003.09.029
– ident: e_1_2_6_27_1
  doi: 10.1021/bm015604p
– ident: e_1_2_6_3_1
– ident: e_1_2_6_30_1
  doi: 10.1002/app.1981.070261124
– ident: e_1_2_6_16_1
  doi: 10.1007/BF00980744
– ident: e_1_2_6_13_1
  doi: 10.1016/j.polymer.2007.08.033
– ident: e_1_2_6_35_1
  doi: 10.1007/s10973-005-6872-8
– ident: e_1_2_6_32_1
  doi: 10.1016/j.tca.2004.05.003
– ident: e_1_2_6_39_1
  doi: 10.1016/j.polymdegradstab.2012.05.036
– ident: e_1_2_6_34_1
  doi: 10.1016/j.eurpolymj.2005.06.015
– ident: e_1_2_6_17_1
  doi: 10.1007/BF01026954
– ident: e_1_2_6_42_1
  doi: 10.1002/polb.1993.090310201
– ident: e_1_2_6_49_1
  doi: 10.1016/S0032-3861(02)00588-8
– ident: e_1_2_6_29_1
  doi: 10.1021/bm0497670
– volume: 44
  start-page: 310
  year: 2006
  ident: e_1_2_6_36_1
  publication-title: e‐Polymers
  contributor:
    fullname: Hong S.‐G.
– ident: e_1_2_6_14_1
  doi: 10.1002/macp.200700011
SSID ssj0011506
Score 2.3222532
Snippet ABSTRACT Poly(β‐hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB...
Poly([beta]-hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has...
Poly( beta -hydroxybutyrate) [PHB] is a biodegradable and biocompatible polymer produced by some bacteria genders. To improve mechanical properties, PHB has...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage np
SubjectTerms Bacteria
biodegradable
Biodegradation
Blends
Controllers
Cooling
Materials science
Mathematical models
molding
phase behavior
Polyhydroxybutyrate
Polymers
Programmable logic devices
properties and characterization
Title Thermal processing influence on mechanical, thermal, and biodegradation behavior in poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends: A descriptive model
URI https://api.istex.fr/ark:/67375/WNG-ZWTV7LPB-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.43569
https://www.proquest.com/docview/1781697494
https://search.proquest.com/docview/1805497612
https://search.proquest.com/docview/1808071639
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dbtQwEB5V5QUe-EcECjIIoVZquuvETmJ4Wn5KhaBaoZZWFZJlx66oumRXbRaxPHEEzsARkLgGh-AkzMSb0CKBEG9RPJYde8b-xhl_A3Cvb9w-Omwy5kaJWAjPY-VQl12RqcwYYdU-nUO-3Mw2tsXzXbm7AA_buzCBH6I7cCPLaNZrMnBjj3u_SEMpDRbu9Rld3uNpTuFcT1511FEEdLIQ3sFj9ClkyyrUT3pdzVN70Rka1g-ngOZJuNrsN-sX4E3b0xBmcrg2re1a-fE3Esf__JSLcH6OQ9kgKM4lWPDVZTh3gp3wCnxBFcJle8Qm4TIBvmQHbU4TNq7YO0_XhmmWV1kdZFeZqRyzB2NHJBQhXxNrqQCwNpuMR7Pl719_fPr8dubo2-y0nhFdxUovFH3DotJgkyPKBFT5FWZHFLb7gA2Y8_NF7r1nTQqfq7C9_nTr8UY8T-kQl4Qs0O11skREmnLPi5wyJ7nSJn2nhMkcxxeJ9Yn0Pi2FL2wmnUqt46m3hou8LHx6DRYrbPs6MKzk0NnJC6OMkJabNEdRUSqJmBU1LYK77eTqSWDu0IGjOdE44LoZ8AjuN9PeSZijQwp1y6Xe2Xym93a2Xucvho90EsFSqxd6buXHmucFz9AhUyKCO10x2if9dDGVH09RpkBQjJiPJ3-VKRDqIViMYLlRlD_3WA-Gw-bhxr-L3oSziPMyOpLmcgkW66Opv4VYqra3G6P5CcRmIXE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGdgG74B8tMMAghDZpWevETmLETfkZBbqqQh2bkJBlx56YVtJqpIhyxSPwDDwCEq_BQ_AknBM3YUMCIe4i-1j-O8f-jmN_h5A7bW33wWETIdOSh5w7FkoLumyzRCZacyP38Rxyu590d_izPbG3QO7Xb2E8P0Rz4IaWUa3XaOB4IN36xRqKcbBgs0_kKbIE5h5j4IZHLxryKIQ6ib_gwULwKkTNK9SOWk3RE7vREg7shxNQ8zhgrXacrXPkdd1Wf9HkcHNams384280jv_bmfPk7ByK0o7XnQtkwRUXyfIxgsJL5AtoEazcIzrx7wkgkR7UYU3ouKBvHb4cxoneoKWX3aC6sNQcjC3yUPiQTbRmA4DSdDIezda-f_3x6fObmcXOmWk5Q8aK9ZbP-gZZuYYqRxgMqHDr1Izw5u492qHWzde5945WUXwuk52tx8OH3XAe1SHMEVyA52tFDqA0Zo5lKQZPsrmJ2lZynVgGCZFxkXAuzrnLTCKsjI1lsTOa8TTPXHyFLBZQ9wqhUMiCv5NmWmouDNNxCqI8lwJgKyhbQG7Xs6smnrxDeZrmSMGAq2rAA3K3mvdGQh8d4m23VKjd_hP1anf4Mu0NHqgoIKu1Yqi5ob9TLM1YAj6Z5AG51WSDieJ_F1248RRkMsDFAPtY9FeZDNAe4MWArFWa8ucWq85gUH1c_XfRm-R0d7jdU72n_efXyBmAfQmeUDOxShbLo6m7DtCqNDcqC_oJntAliQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rahQxFD7UFkR_eBdHq0YRaaHT3cwkmYn-Wi9r1bos0hsihGSSxdJ1dqm74vrLR_AZfATB1_AhfBJPJjtjKyjivyE5Ibdzku9kku8A3GlrO0CHjcdUSxYz5mgsLeqyzYUUWjMjB_4c8kVPbGyzZ3t8bwHu129hAj9Ec-DmLaNar72Bj-2g9Ys01IfBwr1eyBOwxAQiX4-IXjbcUR7piHC_g8boVPCaVqidtJqixzajJT-uH44hzaN4tdpwumfhdd3UcM_kYH06MevFx99YHP-zL-fgzByIkk7QnPOw4MoLcPoIPeFF-II6hOv2kIzDawJMJPt1UBMyKslb598N-2leI5Mgu0Z0aYnZH1nPQhECNpGaCwBLk_FoOFv5_vXHp89vZtb3zUwnM89XsdoKWd8wq9BY5dCHAirdKjFDf2_3HukQ6-ar3HtHqhg-l2C7-3jr4UY8j-kQFx5aoN9reYGQNKWO5pkPnWQLk7StZFpYigmJcQl3Li2Yy43gVqbG0tQZTVlW5C69DIsl1n0FCBay6O1kuZaacUN1mqEoKyRH0IqqFsHtenLVOFB3qEDSnCgccFUNeAR3q2lvJPThgb_rlnG123uiXu1u7WSb_QcqiWC51gs1N_N3imY5FeiRSRbBrSYbDdT_ddGlG01RJkdUjKCPJn-VyRHrIVqMYKVSlD-3WHX6_erj6r-L3oST_Uddtfm09_wanELMJ_zxNOXLsDg5nLrriKsm5kZlPz8BJ3okOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+processing+influence+on+mechanical%2C+thermal%2C+and+biodegradation+behavior+in+poly%28%CE%B2-hydroxybutyrate%29%2Fpoly%28%CE%B5-caprolactone%29+blends%3A+A+descriptive+model&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Vergara-Porras%2C+Berenice&rft.au=Gracida-Rodr%C3%ADguez%2C+Jorge+Noel&rft.au=P%C3%A9rez-Guevara%2C+Ferm%C3%ADn&rft.date=2016-07-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=133&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.43569&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZWTV7LPB_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon