Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area

Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surfac...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 27; no. 12; pp. 994 - 1003
Main Authors Im, Kiho, Lee, Jong-Min, Yoon, Uicheul, Shin, Yong-Wook, Hong, Soon Beom, Kim, In Young, Kwon, Jun Soo, Kim, Sun I.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2006
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.
AbstractList Abstract Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.
Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc.
Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development.
Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006.
Author Hong, Soon Beom
Im, Kiho
Kim, In Young
Lee, Jong-Min
Shin, Yong-Wook
Yoon, Uicheul
Kwon, Jun Soo
Kim, Sun I.
AuthorAffiliation 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
AuthorAffiliation_xml – name: 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
– name: 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
Author_xml – sequence: 1
  givenname: Kiho
  surname: Im
  fullname: Im, Kiho
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea
– sequence: 2
  givenname: Jong-Min
  surname: Lee
  fullname: Lee, Jong-Min
  email: ljm@hanyang.ac.kr
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea
– sequence: 3
  givenname: Uicheul
  surname: Yoon
  fullname: Yoon, Uicheul
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea
– sequence: 4
  givenname: Yong-Wook
  surname: Shin
  fullname: Shin, Yong-Wook
  organization: Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
– sequence: 5
  givenname: Soon Beom
  surname: Hong
  fullname: Hong, Soon Beom
  organization: Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
– sequence: 6
  givenname: In Young
  surname: Kim
  fullname: Kim, In Young
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea
– sequence: 7
  givenname: Jun Soo
  surname: Kwon
  fullname: Kwon, Jun Soo
  organization: Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
– sequence: 8
  givenname: Sun I.
  surname: Kim
  fullname: Kim, Sun I.
  organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18317016$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16671080$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gwB9AuYCE1LSepHHsHpBgxXYRLSAB4mg5_tiYOs5iJ5Q98s_xNksXDoiTR57nnXk17yHa873XCD0GfAIYF6dt050UuCjpPXQAmNU5BlbubWpS5eyshn10GONXjAEqDA_QPhBSA6b4AP2cByEH4TJlO-2j7X1mfdaOnfCZ7MNgZerFMRgh9Xl2NbrBrpzOgl4GHW9x4YVbRxuzGzu0O83QWnntE3Oc5G7zo_RqaI8TrzLTO2X9MhNBi4fovhEu6kfb9wh9nr_-NFvkl-8v3sxeXuaygoLmFdZEnWFJy0qYosGsMIw1VVU0pGKKamVYowrBlKybDUaAKUOUMTQdAENTHqEX09zV2HRaSe2HIBxfBduJsOa9sPzvjrctX_bfOaE1lIykAc-2A0L_bdRx4J2NUjsnvO7HmDigBMP_QWAEaEolgc8nUIY-xqDNnRvAfJMsT8ny22QT--RP-ztyG2UCnm4BEdO5TRBe2rjjaAn15O504m6s0-t_b-SLV1e_V-eTwsZB_7hTiHDNSV3WFf_y7oLTt7P5jCw-8g_lL4cbzmI
CitedBy_id crossref_primary_10_1016_j_neuroimage_2010_02_016
crossref_primary_10_1371_journal_pone_0118828
crossref_primary_10_1002_hbm_20381
crossref_primary_10_3390_brainsci10120956
crossref_primary_10_1002_hbm_23773
crossref_primary_10_1016_j_neuroimage_2016_04_029
crossref_primary_10_1038_s41598_020_73961_w
crossref_primary_10_1002_ajmg_a_32337
crossref_primary_10_1038_s41598_021_95811_z
crossref_primary_10_1016_j_neuroimage_2017_11_068
crossref_primary_10_1111_ejn_15631
crossref_primary_10_18632_aging_103402
crossref_primary_10_1007_s10072_024_07353_7
crossref_primary_10_1016_j_neuroimage_2017_10_010
crossref_primary_10_1088_0031_9155_60_6_2355
crossref_primary_10_1093_psyrad_kkaa002
crossref_primary_10_1007_s11682_022_00683_0
crossref_primary_10_1016_j_neuroimage_2018_08_041
crossref_primary_10_1016_j_cortex_2023_07_005
crossref_primary_10_1109_TMI_2007_903576
crossref_primary_10_1073_pnas_2220200120
crossref_primary_10_1038_s41598_021_87124_y
crossref_primary_10_1016_j_neuroimage_2011_02_007
crossref_primary_10_1016_j_neuroimage_2018_03_057
crossref_primary_10_7554_eLife_33977
crossref_primary_10_1002_hbm_26076
crossref_primary_10_1016_j_neuropsychologia_2019_107293
crossref_primary_10_1016_j_wneu_2011_09_006
crossref_primary_10_1515_revneuro_2015_0011
crossref_primary_10_1103_PhysRevE_92_032701
crossref_primary_10_1093_cercor_bhr221
crossref_primary_10_1016_j_tria_2023_100263
crossref_primary_10_1016_j_nicl_2021_102682
crossref_primary_10_1038_s41597_023_02421_7
crossref_primary_10_1016_j_parkreldis_2015_01_015
crossref_primary_10_1016_j_jpsychires_2023_01_030
crossref_primary_10_1002_ima_20230
crossref_primary_10_1016_j_jneumeth_2008_04_018
crossref_primary_10_4236_am_2014_512166
crossref_primary_10_1093_brain_awp105
crossref_primary_10_1097_PSY_0b013e3182a151a7
crossref_primary_10_1111_adb_12240
crossref_primary_10_1007_s12021_022_09601_7
crossref_primary_10_2139_ssrn_3991629
crossref_primary_10_1016_j_mri_2010_03_020
crossref_primary_10_1016_j_neuroimage_2014_07_057
crossref_primary_10_1097_WNR_0000000000001448
crossref_primary_10_1111_jon_12534
crossref_primary_10_1016_j_neuroimage_2022_119309
crossref_primary_10_1016_j_neuroimage_2010_12_080
crossref_primary_10_1016_j_neuroimage_2020_117049
crossref_primary_10_1073_pnas_1610175113
crossref_primary_10_1016_j_pscychresns_2020_111239
crossref_primary_10_1002_hbm_24599
crossref_primary_10_1002_hbm_25969
crossref_primary_10_3389_fpsyt_2021_721720
crossref_primary_10_1002_hbm_23262
crossref_primary_10_1109_ACCESS_2021_3077370
crossref_primary_10_1016_j_intell_2011_02_004
crossref_primary_10_1016_j_neuroimage_2011_06_041
crossref_primary_10_1002_erv_2685
crossref_primary_10_1016_j_neuroscience_2022_05_007
crossref_primary_10_1038_s41398_021_01719_7
crossref_primary_10_1371_journal_pone_0055977
crossref_primary_10_1002_brb3_2894
crossref_primary_10_1016_j_neurobiolaging_2016_10_023
crossref_primary_10_1016_j_ijdevneu_2015_06_003
crossref_primary_10_3233_JAD_220377
crossref_primary_10_1017_S0033291721001082
crossref_primary_10_1016_j_arr_2022_101651
crossref_primary_10_1038_srep14477
crossref_primary_10_1016_j_neuroimage_2018_04_035
crossref_primary_10_1016_j_neuroimage_2010_01_007
crossref_primary_10_1038_s41598_022_15208_4
crossref_primary_10_1097_WCO_0b013e32833a0afc
crossref_primary_10_3346_jkms_2022_37_e86
crossref_primary_10_1021_acsomega_0c05736
crossref_primary_10_1016_j_medntd_2020_100035
crossref_primary_10_3389_fnagi_2021_765185
crossref_primary_10_1016_j_neuroimage_2013_06_078
crossref_primary_10_1016_j_neuroscience_2013_04_051
crossref_primary_10_18678_dtfd_1180625
crossref_primary_10_1016_j_neuroimage_2019_116438
crossref_primary_10_1016_j_colsurfb_2016_03_011
crossref_primary_10_1016_j_neuroimage_2024_120671
crossref_primary_10_1016_j_neuron_2008_08_011
crossref_primary_10_1016_j_brainresbull_2023_110771
crossref_primary_10_3389_fnhum_2023_1231513
crossref_primary_10_1016_j_alcohol_2023_08_011
crossref_primary_10_1016_j_neuroimage_2008_07_016
crossref_primary_10_1111_acps_12243
crossref_primary_10_1016_j_nicl_2019_101913
crossref_primary_10_1142_S0219519412400155
crossref_primary_10_1016_j_compbiomed_2014_02_003
crossref_primary_10_3390_s24051584
crossref_primary_10_1016_j_acra_2024_04_013
crossref_primary_10_1016_j_neuroimage_2013_06_072
crossref_primary_10_1016_j_neuroimage_2011_04_062
crossref_primary_10_1155_2020_7364649
crossref_primary_10_1007_s11307_018_1236_5
crossref_primary_10_1371_journal_pone_0223812
crossref_primary_10_1007_s11682_008_9057_9
crossref_primary_10_19066_cogsci_2017_28_4_004
crossref_primary_10_1007_s00330_009_1605_1
crossref_primary_10_3389_fnins_2022_971010
crossref_primary_10_1007_s10803_021_05368_z
crossref_primary_10_1007_s00062_013_0273_3
crossref_primary_10_1016_j_neuroimage_2007_10_043
crossref_primary_10_1093_cercor_bhs226
crossref_primary_10_1177_03057356221110634
crossref_primary_10_1093_cercor_bhm244
crossref_primary_10_1109_TIM_2010_2050969
crossref_primary_10_1002_hbm_21378
crossref_primary_10_1016_j_neuroimage_2023_120434
crossref_primary_10_1088_1741_2552_ac7003
crossref_primary_10_21802_e_GMJ2024_A11
crossref_primary_10_1016_j_compmedimag_2007_10_005
crossref_primary_10_1038_s41598_023_38185_8
crossref_primary_10_1093_sleep_zsz216
crossref_primary_10_1016_j_neuroimage_2022_119226
crossref_primary_10_1016_j_neuroimage_2012_03_088
crossref_primary_10_1016_j_neurobiolaging_2010_12_003
crossref_primary_10_1111_ene_12485
crossref_primary_10_1007_s00330_019_06165_0
crossref_primary_10_1142_S0218348X21502327
crossref_primary_10_3390_fractalfract8010035
crossref_primary_10_1109_ACCESS_2022_3221458
crossref_primary_10_1186_1744_9081_10_44
crossref_primary_10_1162_imag_a_00143
crossref_primary_10_1016_j_neuroimage_2014_06_054
crossref_primary_10_1186_s12868_021_00672_x
crossref_primary_10_1371_journal_pone_0293886
crossref_primary_10_1111_pcn_12485
crossref_primary_10_3389_fnana_2021_712862
crossref_primary_10_1007_s10472_023_09885_8
crossref_primary_10_1212_WNL_0000000000200829
crossref_primary_10_1002_ima_20138
crossref_primary_10_1371_journal_pone_0041148
crossref_primary_10_1186_s13195_018_0432_5
crossref_primary_10_1002_hbm_21311
crossref_primary_10_3389_fnagi_2017_00405
crossref_primary_10_1002_hbm_22369
crossref_primary_10_1016_j_neuroscience_2012_06_030
crossref_primary_10_1016_j_compmedimag_2021_101939
crossref_primary_10_1002_alz_13570
Cites_doi 10.1006/nimg.2000.0543
10.1016/0140-6736(91)92726-I
10.1097/00004728-199403000-00005
10.1038/nn1277
10.1016/j.biopsych.2003.12.027
10.1109/TMI.2003.814781
10.1016/S1361-8415(02)00052-X
10.1093/cercor/6.6.830
10.1016/j.neuroimage.2004.01.023
10.1159/000117155
10.1016/0375-9601(89)90854-2
10.1016/j.neulet.2005.04.078
10.1016/j.mri.2005.06.010
10.1001/archpsyc.1992.01820080032005
10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1109/42.668698
10.1016/S1053-8119(03)00380-X
10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K
10.1177/0013164494054001010
10.1016/S0006-3495(03)74817-6
10.1007/BFb0046984
10.1016/S1053-8119(01)91441-7
10.1162/jocn.1996.8.6.566
10.1016/j.neuroimage.2004.07.045
10.1016/j.neuroimage.2003.07.008
10.1038/427311a
10.1038/431757a
10.1109/TBME.2004.831543
10.1176/appi.ajp.158.2.244
10.1162/jocn.1992.4.4.352
10.1017/S0033291700027926
10.1073/pnas.200033797
10.1016/S0167-8655(01)00083-6
10.1111/j.2044-8295.1970.tb01248.x
10.1016/S0925-4927(01)00091-9
10.1006/nimg.1999.0489
10.1016/j.neuroimage.2005.03.036
10.1109/42.363096
10.1016/0960-0779(95)80025-C
10.1006/nimg.2000.0652
10.1016/j.neuroimage.2004.04.025
10.1006/nimg.1999.0534
10.1038/385313a0
10.1007/BFb0056229
ContentType Journal Article
Copyright Copyright © 2006 Wiley‐Liss, Inc.
2007 INIST-CNRS
(c) 2006 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2006 Wiley‐Liss, Inc.
– notice: 2007 INIST-CNRS
– notice: (c) 2006 Wiley-Liss, Inc.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
DOI 10.1002/hbm.20238
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Fractal Dimension in Human Cortical Surface
EISSN 1097-0193
EndPage 1003
ExternalDocumentID 10_1002_hbm_20238
16671080
18317016
HBM20238
ark_67375_WNG_8KCFC6HS_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Brain Research Center of the 21st Century Frontier Research Program, Ministry of Science and Technology of the Republic of Korea
  funderid: M103KV01001404K220101420
– fundername: Brain Research Center of the 21st Century Frontier Research Program, Ministry of Science and Technology of the Republic of Korea
  grantid: M103KV01001404K220101420
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAPBV
ABHUG
ACXME
ADAWD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
ID FETCH-LOGICAL-c5128-50e6d40c835af2b092f99b552b659d8edf9bd2a9dc7b40c8619df6dff894701b3
IEDL.DBID RPM
ISSN 1065-9471
IngestDate Tue Sep 17 21:18:58 EDT 2024
Fri Aug 16 10:03:06 EDT 2024
Sat Aug 17 00:51:02 EDT 2024
Thu Sep 26 16:09:10 EDT 2024
Sat Sep 28 07:45:21 EDT 2024
Sun Oct 22 16:07:47 EDT 2023
Sat Aug 24 01:02:17 EDT 2024
Wed Oct 30 09:56:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Human
Nervous system diseases
sulcal depth
Fractal dimension
Radiodiagnosis
cortical thickness
folding area
multiple regression
Regression analysis
Surface analysis
Depth
Language English
License CC BY 4.0
(c) 2006 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5128-50e6d40c835af2b092f99b552b659d8edf9bd2a9dc7b40c8619df6dff894701b3
Notes ArticleID:HBM20238
istex:28D8BBE84C9C944A6A004182F06AC5AED1A8E977
Brain Research Center of the 21st Century Frontier Research Program, Ministry of Science and Technology of the Republic of Korea - No. M103KV01001404K220101420
ark:/67375/WNG-8KCFC6HS-P
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc6871396?pdf=render
PMID 16671080
PQID 19618471
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871396
proquest_miscellaneous_68186016
proquest_miscellaneous_19618471
crossref_primary_10_1002_hbm_20238
pubmed_primary_16671080
pascalfrancis_primary_18317016
wiley_primary_10_1002_hbm_20238_HBM20238
istex_primary_ark_67375_WNG_8KCFC6HS_P
PublicationCentury 2000
PublicationDate December 2006
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: December 2006
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Narr K, Thompson P, Sharma T, Moussai J, Zoumalan C, Rayman J, Toga A (2001): Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects. Am J Psychiatry 158: 244-255.
Collins DL, Neelin P, Peters TM, Evans AC (1994): Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192-205.
Ma C-M, Wan S-Y (2001): A medial-surface oriented 3-D two-subfield thinning algorithm. Pattern Recogn Lett 22: 1439-1446.
Zijdenbos AP, Forghani R, Evans AC (1998): Automatic quantification of MS Lesions in 3D MRI brain data sets: validation of INSECT. MICCAI, Lecture Notes Comput Sci 1496: 439-448.
Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995): Fractals in biology and medicine. Chaos Solitons Fractals 6: 171-201.
Narr KL, Bilder RM, Kim S, Thompson PM, Szeszko P, Robinson D, Luders E, Toga AW (2004): Abnormal gyral complexity in first-episode schizophrenia. Biol Psychiatry 55: 859-867.
Lerch JP, Evans AC (2005): Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24: 163-173.
Liu JZ, Zhang LD, Yue GH (2003): Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys J 85: 4041-4046.
Cook MJ, Free SL, Manford MR, Fish DR, Shorvon SD, Stevens JM (1995): Fractal description of cerebral cortical patterns in frontal lobe epilepsy. Eur Neurol 35: 327-335.
MacDonald D, Kabani N, Avis D, Evans AC (2000): Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340-356.
Mechelli A, Crinion JT, Noppeney U, O'Doherty J, Ashburner J, Frackowiak RS, Price CJ (2004): Neurolinguistics: structural plasticity in the bilingual brain. Nature 431: 757.
Bullmore E, Brammer M, Harvey I, Persaud R, Murray R, Ron M (1994): Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients. Psychol Med 24: 771-781.
Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994): Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13: 716-724.
Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Steinmetz H, Toga AW (2004): Gender differences in cortical complexity. Nat Neurosci 7: 799-800.
Van Essen DC (1997): A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385: 313-318.
Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2004): Structural brain variation and general intelligence. Neuroimage 23: 425-433.
Cointepas Y, Mangin JF, Garnero L, Poline JB, Benali H (2001): BrainVISA: software platform for visualization and analysis of multi-modality brain data. Neuroimage 13: S98.
Fischl B, Dale AM (2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97: 11050-11055.
Sarraille JJ, Myers LS (1994): FD3: a program for measuring fractal dimension. Educ Psychol Meas 54: 94-97.
Blanton RE, Levitt JG, Thompson PM, Narr KL, Capetillo-Cunliffe L, Nobel A, Singerman JD, McCracken JT, Toga AW (2001): Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Res 107: 29-43.
Riviere D, Mangin JF, Papadopoulos-Orfanos D, Martinez JM, Frouin V, Regis J (2002): Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med Image Anal 6: 77-92.
Cachia A, Mangin JF, Riviere D, Kherif F, Boddaert N, Andrade A, Papadopoulos-Orfanos D, Poline JB, Bloch I, Zilbovicius M (2003): A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans Med Imaging 22: 754-765.
Editorial L (1991): Fractals and medicine. Lancet 338: 1425-1426.
Toro R, Burnod Y (2003): Geometric atlas: modeling the cortex as an organized surface. Neuroimage 20: 1468-1484.
Cox RW, Hyde JS (1997): Software tools for analysis and visualization of fMRI data. NMR Biomed 10: 171-178.
Jones SE, Buchbinder BR, Aharon I (2000): Three-dimensional mapping of cortical thickness using Laplace's equation. Hum Brain Mapp 11: 12-32.
Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004): Neuroplasticity: changes in grey matter induced by training. Nature 427: 311-312.
Wechsler D (1981): Adult intelligence scale-revised: manual. New York: Psychological Corp.
Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87-97.
Spitzer RL, Williams JB, Gibbon M, First MB (1992): The structured clinical interview for DSM-III-R (SCID). I. History, rationale, and description. Arch Gen Psychiatry 49: 624-629.
Koo BB, Lee JM, Kim HP, Shin YW, Kim IY, Kwon JS, Kim SI (2005): Representative brain selection using a group-specific tissue probability map. Magn Reson Imaging 23: 809-815.
Kim JJ, Crespo-Facorro B, Andreasen NC, O'Leary DS, Zhang B, Harris G, Magnotta VA (2000): An MRI-based parcellation method for the temporal lobe. Neuroimage 11: 271-288.
Kabani N, Le Goualher G, MacDonald D, Evans AC (2001): Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13: 375-380.
Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005): Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27: 210-221.
Ochiai T, Grimault S, Scavarda D, Roch G, Hori T, Riviere D, Mangin JF, Regis J (2004): Sulcal pattern and morphology of the superior temporal sulcus. Neuroimage 22: 706-719.
Free SL, Sisodiya SM, Cook MJ, Fish DR, Shorvon SD (1996): Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cereb Cortex 6: 830-836.
Ha TH, Yoon U, Lee KJ, Shin YW, Lee JM, Kim IY, Ha KS, Kim SI, Kwon JS (2005): Fractal dimension of cerebral cortical surface in schizophrenia and obsessive-compulsive disorder. Neurosci Lett 384: 172-176.
Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS (1992): Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4: 352-374.
Kiselev VG, Hahn KR, Auer DP (2003): Is the brain cortex a fractal? Neuroimage 20: 1765-1774.
Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, Harris G, Magnotta VA (1999): Human frontal cortex: an MRI-based parcellation method. Neuroimage 10: 500-519.
Caviness VS, Meyer J, Makris N, Kennedy DN (1996): MRI-based parcellation of human neocortex: an automatically specified method with estimate of reliability. J Cogn Neurosci 8: 566-588.
Liebovitch LS, Toth TI (1989): A fast algorithm to determine fractal dimensions by box counting. Phys Lett A 141: 386-390.
Annett M (1970): A classification of hand preference by association analysis. Br J Psychol 61: 303-321.
Lee JM, Yoon U, Kim JJ, Kim IY, Lee DS, Kwon JS, Kim SI (2004): Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface. IEEE Trans Biomed Eng 51: 1494-1498.
2004; 22
1995; 35
2004; 7
2002; 6
2004; 23
1998
1996
1994; 24
1991; 338
2001; 22
2001; 107
2004; 427
2005; 27
1995; 6
2005; 23
2005; 24
1998; 1496
2004; 431
2004; 55
1998; 17
2004; 51
2005; 384
1997; 10
2000; 12
1989; 141
2000; 11
1997; 385
2000; 97
1999; 10
1994; 13
1970; 61
1994; 18
1981
1992; 49
2001; 13
2003; 85
1996; 8
2003; 20
2001; 158
2003; 22
1996; 6
1992; 4
1994; 54
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
Wechsler D (e_1_2_6_44_1) 1981
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 141
  start-page: 386
  year: 1989
  end-page: 390
  article-title: A fast algorithm to determine fractal dimensions by box counting
  publication-title: Phys Lett A
– volume: 23
  start-page: 425
  year: 2004
  end-page: 433
  article-title: Structural brain variation and general intelligence
  publication-title: Neuroimage
– volume: 6
  start-page: 77
  year: 2002
  end-page: 92
  article-title: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks
  publication-title: Med Image Anal
– volume: 54
  start-page: 94
  year: 1994
  end-page: 97
  article-title: FD3: a program for measuring fractal dimension
  publication-title: Educ Psychol Meas
– year: 1981
– volume: 6
  start-page: 171
  year: 1995
  end-page: 201
  article-title: Fractals in biology and medicine
  publication-title: Chaos Solitons Fractals
– volume: 7
  start-page: 799
  year: 2004
  end-page: 800
  article-title: Gender differences in cortical complexity
  publication-title: Nat Neurosci
– volume: 11
  start-page: 271
  year: 2000
  end-page: 288
  article-title: An MRI‐based parcellation method for the temporal lobe
  publication-title: Neuroimage
– volume: 35
  start-page: 327
  year: 1995
  end-page: 335
  article-title: Fractal description of cerebral cortical patterns in frontal lobe epilepsy
  publication-title: Eur Neurol
– volume: 4
  start-page: 352
  year: 1992
  end-page: 374
  article-title: Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging
  publication-title: J Cogn Neurosci
– volume: 8
  start-page: 566
  year: 1996
  end-page: 588
  article-title: MRI‐based parcellation of human neocortex: an automatically specified method with estimate of reliability
  publication-title: J Cogn Neurosci
– volume: 384
  start-page: 172
  year: 2005
  end-page: 176
  article-title: Fractal dimension of cerebral cortical surface in schizophrenia and obsessive‐compulsive disorder
  publication-title: Neurosci Lett
– volume: 385
  start-page: 313
  year: 1997
  end-page: 318
  article-title: A tension‐based theory of morphogenesis and compact wiring in the central nervous system
  publication-title: Nature
– volume: 51
  start-page: 1494
  year: 2004
  end-page: 1498
  article-title: Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface
  publication-title: IEEE Trans Biomed Eng
– volume: 6
  start-page: 830
  year: 1996
  end-page: 836
  article-title: Three‐dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain
  publication-title: Cereb Cortex
– volume: 23
  start-page: 809
  year: 2005
  end-page: 815
  article-title: Representative brain selection using a group‐specific tissue probability map
  publication-title: Magn Reson Imaging
– volume: 13
  start-page: 375
  year: 2001
  end-page: 380
  article-title: Measurement of cortical thickness using an automated 3‐D algorithm: a validation study
  publication-title: Neuroimage
– volume: 13
  start-page: 716
  year: 1994
  end-page: 724
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– volume: 85
  start-page: 4041
  year: 2003
  end-page: 4046
  article-title: Fractal dimension in human cerebellum measured by magnetic resonance imaging
  publication-title: Biophys J
– volume: 13
  start-page: S98
  year: 2001
  article-title: BrainVISA: software platform for visualization and analysis of multi‐modality brain data
  publication-title: Neuroimage
– volume: 10
  start-page: 500
  year: 1999
  end-page: 519
  article-title: Human frontal cortex: an MRI‐based parcellation method
  publication-title: Neuroimage
– year: 1998
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci U S A
– volume: 22
  start-page: 1439
  year: 2001
  end-page: 1446
  article-title: A medial‐surface oriented 3‐D two‐subfield thinning algorithm
  publication-title: Pattern Recogn Lett
– volume: 22
  start-page: 754
  year: 2003
  end-page: 765
  article-title: A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns
  publication-title: IEEE Trans Med Imaging
– volume: 24
  start-page: 163
  year: 2005
  end-page: 173
  article-title: Cortical thickness analysis examined through power analysis and a population simulation
  publication-title: Neuroimage
– volume: 27
  start-page: 210
  year: 2005
  end-page: 221
  article-title: Automated 3‐D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification
  publication-title: Neuroimage
– volume: 24
  start-page: 771
  year: 1994
  end-page: 781
  article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic‐depressive patients
  publication-title: Psychol Med
– volume: 338
  start-page: 1425
  year: 1991
  end-page: 1426
  article-title: Fractals and medicine
  publication-title: Lancet
– volume: 11
  start-page: 12
  year: 2000
  end-page: 32
  article-title: Three‐dimensional mapping of cortical thickness using Laplace's equation
  publication-title: Hum Brain Mapp
– volume: 20
  start-page: 1765
  year: 2003
  end-page: 1774
  article-title: Is the brain cortex a fractal?
  publication-title: Neuroimage
– volume: 22
  start-page: 706
  year: 2004
  end-page: 719
  article-title: Sulcal pattern and morphology of the superior temporal sulcus
  publication-title: Neuroimage
– volume: 12
  start-page: 340
  year: 2000
  end-page: 356
  article-title: Automated 3‐D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: Neuroimage
– volume: 49
  start-page: 624
  year: 1992
  end-page: 629
  article-title: The structured clinical interview for DSM‐III‐R (SCID). I. History, rationale, and description
  publication-title: Arch Gen Psychiatry
– volume: 158
  start-page: 244
  year: 2001
  end-page: 255
  article-title: Three‐dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects
  publication-title: Am J Psychiatry
– volume: 10
  start-page: 171
  year: 1997
  end-page: 178
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR Biomed
– volume: 431
  start-page: 757
  year: 2004
  article-title: Neurolinguistics: structural plasticity in the bilingual brain
  publication-title: Nature
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 61
  start-page: 303
  year: 1970
  end-page: 321
  article-title: A classification of hand preference by association analysis
  publication-title: Br J Psychol
– volume: 20
  start-page: 1468
  year: 2003
  end-page: 1484
  article-title: Geometric atlas: modeling the cortex as an organized surface
  publication-title: Neuroimage
– volume: 427
  start-page: 311
  year: 2004
  end-page: 312
  article-title: Neuroplasticity: changes in grey matter induced by training
  publication-title: Nature
– volume: 55
  start-page: 859
  year: 2004
  end-page: 867
  article-title: Abnormal gyral complexity in first‐episode schizophrenia
  publication-title: Biol Psychiatry
– volume: 107
  start-page: 29
  year: 2001
  end-page: 43
  article-title: Mapping cortical asymmetry and complexity patterns in normal children
  publication-title: Psychiatry Res
– start-page: 439
  year: 1996
  end-page: 448
– volume: 1496
  start-page: 439
  year: 1998
  end-page: 448
  article-title: Automatic quantification of MS Lesions in 3D MRI brain data sets: validation of INSECT
  publication-title: MICCAI, Lecture Notes Comput Sci
– ident: e_1_2_6_21_1
  doi: 10.1006/nimg.2000.0543
– ident: e_1_2_6_13_1
  doi: 10.1016/0140-6736(91)92726-I
– ident: e_1_2_6_31_1
– ident: e_1_2_6_8_1
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_6_29_1
  doi: 10.1038/nn1277
– ident: e_1_2_6_35_1
  doi: 10.1016/j.biopsych.2003.12.027
– ident: e_1_2_6_5_1
  doi: 10.1109/TMI.2003.814781
– ident: e_1_2_6_38_1
  doi: 10.1016/S1361-8415(02)00052-X
– ident: e_1_2_6_15_1
  doi: 10.1093/cercor/6.6.830
– ident: e_1_2_6_36_1
  doi: 10.1016/j.neuroimage.2004.01.023
– ident: e_1_2_6_9_1
  doi: 10.1159/000117155
– ident: e_1_2_6_27_1
  doi: 10.1016/0375-9601(89)90854-2
– ident: e_1_2_6_16_1
  doi: 10.1016/j.neulet.2005.04.078
– ident: e_1_2_6_24_1
  doi: 10.1016/j.mri.2005.06.010
– ident: e_1_2_6_41_1
  doi: 10.1001/archpsyc.1992.01820080032005
– ident: e_1_2_6_10_1
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
– ident: e_1_2_6_40_1
  doi: 10.1109/42.668698
– ident: e_1_2_6_23_1
  doi: 10.1016/S1053-8119(03)00380-X
– ident: e_1_2_6_19_1
  doi: 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K
– ident: e_1_2_6_39_1
  doi: 10.1177/0013164494054001010
– ident: e_1_2_6_28_1
  doi: 10.1016/S0006-3495(03)74817-6
– ident: e_1_2_6_46_1
  doi: 10.1007/BFb0046984
– ident: e_1_2_6_7_1
  doi: 10.1016/S1053-8119(01)91441-7
– ident: e_1_2_6_6_1
  doi: 10.1162/jocn.1996.8.6.566
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroimage.2004.07.045
– ident: e_1_2_6_42_1
  doi: 10.1016/j.neuroimage.2003.07.008
– ident: e_1_2_6_12_1
  doi: 10.1038/427311a
– ident: e_1_2_6_33_1
  doi: 10.1038/431757a
– ident: e_1_2_6_25_1
  doi: 10.1109/TBME.2004.831543
– ident: e_1_2_6_34_1
  doi: 10.1176/appi.ajp.158.2.244
– ident: e_1_2_6_37_1
  doi: 10.1162/jocn.1992.4.4.352
– ident: e_1_2_6_4_1
  doi: 10.1017/S0033291700027926
– ident: e_1_2_6_14_1
  doi: 10.1073/pnas.200033797
– ident: e_1_2_6_30_1
  doi: 10.1016/S0167-8655(01)00083-6
– ident: e_1_2_6_2_1
  doi: 10.1111/j.2044-8295.1970.tb01248.x
– ident: e_1_2_6_3_1
  doi: 10.1016/S0925-4927(01)00091-9
– ident: e_1_2_6_11_1
  doi: 10.1006/nimg.1999.0489
– ident: e_1_2_6_22_1
  doi: 10.1016/j.neuroimage.2005.03.036
– ident: e_1_2_6_45_1
  doi: 10.1109/42.363096
– ident: e_1_2_6_18_1
  doi: 10.1016/0960-0779(95)80025-C
– ident: e_1_2_6_20_1
  doi: 10.1006/nimg.2000.0652
– volume-title: Adult intelligence scale‐revised: manual
  year: 1981
  ident: e_1_2_6_44_1
  contributor:
    fullname: Wechsler D
– ident: e_1_2_6_17_1
  doi: 10.1016/j.neuroimage.2004.04.025
– ident: e_1_2_6_32_1
  doi: 10.1006/nimg.1999.0534
– ident: e_1_2_6_43_1
  doi: 10.1038/385313a0
– ident: e_1_2_6_47_1
  doi: 10.1007/BFb0056229
SSID ssj0011501
Score 2.3182373
Snippet Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact...
Abstract Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 994
SubjectTerms Adult
Biological and medical sciences
Brain Mapping
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
cortical thickness
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Educational Status
Electrocardiography. Vectocardiography
Electrodiagnosis. Electric activity recording
Female
folding area
fractal dimension
Fractals
Functional Laterality - physiology
Fundamental and applied biological sciences. Psychology
Humans
Imaging, Three-Dimensional - methods
Intelligence
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
multiple regression
Nervous system
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Regression Analysis
sulcal depth
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEG5CAuKLR-IxGmMjEnzIJHP2TJunZHVdlA2iBvMQaPp0wyaTsAeob_5zq3qOddWA-DbMVDdMdXV3VfXXXxHyXKZZWljtwjyyNsycykOZKx2yEtzR0mXc-pEeHrHBcfb2JD9ZIfvtXZiaH6JLuOHM8Os1TnCppnsL0tCRwovksOPA-hunBcK5Xn3oqKPQ0fHBFmyxIYcVuGUVipK9ruXSXrSGav2K2Eg5BfW4uq7F3xzPP_GTv_q1fmPq3yan7S_VeJTx7nymdvX339ge__Of75BbjcNKD2oLu0tWbLVONg4qCNYvvtFt6iGkPje_Tm4Mm5P6DfKjj9evoKHB8gGYkqNnFfUVASkEvD6DTqfziZPavqTDBtZIJ_ZLDcytqGzoUiimihdtEJ8_xvV5B5qf4xtjr2ajHZA31NVnaVSCK3yPHPdff-oNwqbcQ6jB6yjRWpjJIg0-oXSJinjiOFd5niiWc1Na47gyieRGFwrFIPQzjhnnShjfKFbpfbJaXVb2IaE6d4VWMPauYEipr0pnTJIabjOTKqYD8qwdeHFVs3qImr85EaBj4XUckG1vEp2EnIwRBlfk4vPRG1G-6_V7bPBRvA_I1pLNLLosU6S7ZwF52hqRgNmLRzKyspfzqYh9wZ0ivl6CIeWg7-NBbXSL3hkrECEakGLJHDsBZA5f_lKdjTyDOIMwOeXQ5wtvbdfrQAwOh_7h0b-LPiY3k6a6UxRvktXZZG6fgOc2U1t-iv4E0P5Crg
  priority: 102
  providerName: Wiley-Blackwell
Title Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area
URI https://api.istex.fr/ark:/67375/WNG-8KCFC6HS-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20238
https://www.ncbi.nlm.nih.gov/pubmed/16671080
https://search.proquest.com/docview/19618471
https://search.proquest.com/docview/68186016
https://pubmed.ncbi.nlm.nih.gov/PMC6871396
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUJcUGl5hMJiIVRxaLp52Ym5lRXLCpSqAip6s-IXu2o3Xe1DgiP_nLGTdLuCXritsmMn8kzib-zP3wC8qdIszY2yIY2MCTMraVhRqUJWIBwtbMaN93R5ykbn2acLerEFtDsL40n7Sk6O66vpcT0Ze27lbKr6HU-sf1YOGKL8lLP-NmxjgHYpert1gAjHZ1k4t4YcP72dnFCU9MfSnT3HScpJhTKWx14N8tZ8dM8N7U_Hj6wWOES2qW3xL_D5N4fyNrb1k9NwFx62qJKcNE__CLZMvQf7JzVm1NNf5JB4nqdfQN-D-2W7nb4Pv4fujBQ21E7j362bkUlNfNk-glmpX-Ymi9XcVsq8I2XLPSRz86Nhz9akajVNiFvPXbdxJPpL9xE9wuZX7oo2s-X4CO01sc2GF6kQrz6G8-GHb4NR2NZkCBVCg8K5lOksUgjcKpvIiCeWc0lpIhnlujDacqmTimuVS2eG-Zm2TFtboC-iWKZPYKe-rs0zIIraXEn0k82Z072XhdU6STU3mU4lUwG87jwjZo30hmhElhOBnhTekwEcep_dWFTzS8dVy6n4fvpRFJ8HwwEbfRVnAfQ2nLruskidJj0L4FXnZYGvmNs3qWpzvVqI2FfFyeO7LZjTBfR9PG2iYt17G2YB5BvxcmPg5L03_8Go9zLfbZQH8NZH1t1jIEbvS__j-X_f5AAeJG1Fpih-ATvL-cq8RLS1lD3MM74kPf-O_QEyoyyt
link.rule.ids 230,315,730,783,787,888,1378,27938,27939,46308,46732,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVgJeOFqOcLQWQhUPTZvN4SSIl7KwBNqsELSiL8iKY5utFtJqDwl4458z4xzLApUQb1EytpQ57Jnx-BuAx0UQBrEujRt5WruhkZFbRLJ0eYLuaGLCVFtJ50OeHYdvTqKTFXjW3oWp8SG6hBtZhl2vycApIb23QA0dSbpJjlvOJVhDcw-of8GLdx14FLk6NtzCTdZNcQ1ucYU8f68burQbrRFjv1J1ZDFFBpm6s8XfXM8_Kyh_9Wzt1jS4Dh_bn6orUsa785ncLb__hvf4v399A641Pivbr5XsJqzoah029iuM1798Y9vMVpHa9Pw6XM6bw_oN-DGgG1g4UFEHAcrKsdOK2aaADGNem0Rn0_nEFKV-yvKmspFN9Ke6NrdiRYOYwihbvBhDJfpjWqJ3cPhneqP0-Wy0g_SKmfo4jRXoDd-C48HLo37mNh0f3BIdj4QUhqvQK9EtLIwvvdQ3aSqjyJc8SlWilUml8otUlbEkMoz-lOHKmAQF7PVkcBtWq7NK3wVWRiYuJQrfxJxQ9WVilPIDlepQBZKXDjxqJS_Oa2APUUM4-wJ5LCyPHdi2OtFRFJMxVcLFkfgwfCWSg_6gz7P34q0Dm0tKs5gyCQjxnjuw1WqRQAOmU5mi0mfzqejZnjtx72IKTqiDdo47tdYtZuc8piJRB-IlfewICDx8-Ut1OrIg4hwj5SDFOZ9YdbuYByJ7ntuHe_9OugVXsqP8UBy-Hh7ch6t-0-zJ6z2A1dlkrh-iIzeTm9ZefwK9DkbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVqp44Wg5wtFaCFU8NG02h5PAU7slLJRdVUBFH5CsOLbZaiFd7SEBb_zzzjjHskAlxFuUjC1lPLZnxp-_AXiaB2EQ68K4kae1GxoZuXkkC5cn6I4mJky1Hen-gPdOwzdn0dkKvGjuwlT8EG3CjWaGXa9pgo-V2V-Qhg4lXSTHHecarIU88AjPdfSu5Y4iT8dGW7jHuikuwQ2tkOfvt02XNqM10us3AkfmU9SPqQpb_M3z_BNA-atja3em7CZ8av6pAqSM9uYzuVf8-I3u8T9_-hbcqD1WdlCZ2G1Y0eUGbB6UGK1__c52mMWQ2uT8Bqz366P6TfiZ0f0rbKiofgDl5Nh5yWxJQIYRr02hs-l8YvJCP2f9GtfIJvpzhcwtWV7zpTDKFS_aEEB_RAv0Ljb_Qm-UHs-GuyivmKkO01iOvvAdOM1efuj23Lreg1ug25GQuXAVegU6hbnxpZf6Jk1lFPmSR6lKtDKpVH6eqiKWJIaxnzJcGZPg-HodGdyF1fKi1PeBFZGJC4ljb2JOnPoyMUr5gUp1qALJCweeNAMvxhWth6gInH2BOhZWxw7sWJNoJfLJiHBwcSQ-Dl6J5LibdXnvvThxYGvJZhZdJgHx3XMHthsjEjh96UwmL_XFfCo6tuJO3LlaghPnoO3jXmV0i945jwki6kC8ZI6tAFGHL38pz4eWQpxjnByk2Ocza21X60D0Dvv24cG_i27D-slRJt6-Hhw_hOt-XenJ6zyC1dlkrh-jFzeTW3a2XgLBWkV3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+dimension+in+human+cortical+surface%3A+Multiple+regression+analysis+with+cortical+thickness%2C+sulcal+depth%2C+and+folding+area&rft.jtitle=Human+brain+mapping&rft.au=Im%2C+Kiho&rft.au=Lee%2C+Jong%E2%80%90Min&rft.au=Yoon%2C+Uicheul&rft.au=Shin%2C+Yong%E2%80%90Wook&rft.date=2006-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=27&rft.issue=12&rft.spage=994&rft.epage=1003&rft_id=info:doi/10.1002%2Fhbm.20238&rft.externalDBID=10.1002%252Fhbm.20238&rft.externalDocID=HBM20238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon