Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area
Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surfac...
Saved in:
Published in | Human brain mapping Vol. 27; no. 12; pp. 994 - 1003 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2006
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc. |
---|---|
AbstractList | Abstract
Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc. Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. © 2006 Wiley‐Liss, Inc. Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact measure of shape complexity, condensing all details into a single numeric value. We interpreted the variation of the FD in the cortical surface of normal controls through multiple regression analysis with cortical thickness, sulcal depth, and folding area related to cortical complexity. We used a cortical surface showing a reliable representation of folded gyri and manually parcellated it into frontal, parietal, temporal, and occipital regions for regional analysis. In both hemispheres the mean cortical thickness and folding area showed significant combination effects on cortical complexity and accounted for about 50% of its variance. The folding area was significant in accounting for the FD of the cortical surface, with positive coefficients in both hemispheres and several lobe regions, while sulcal depth was significant only in the left temporal region. The results may suggest that human cortex develops a complex structure through the thinning of cortical thickness and by increasing the frequency of folds and the convolution of gyral shape rather than by deepening sulcal regions. Through correlation analysis of FD with IQ and the number of years of education, the results showed that a complex shape of the cortical surface has a significant relationship with intelligence and education. Our findings may indicate the structural characteristics that are revealed in the cerebral cortex when the FD in human brain is increased, and provide important information about brain development. Hum Brain Mapp, 2006. |
Author | Hong, Soon Beom Im, Kiho Kim, In Young Lee, Jong-Min Shin, Yong-Wook Yoon, Uicheul Kwon, Jun Soo Kim, Sun I. |
AuthorAffiliation | 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea |
AuthorAffiliation_xml | – name: 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea – name: 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea |
Author_xml | – sequence: 1 givenname: Kiho surname: Im fullname: Im, Kiho organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea – sequence: 2 givenname: Jong-Min surname: Lee fullname: Lee, Jong-Min email: ljm@hanyang.ac.kr organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea – sequence: 3 givenname: Uicheul surname: Yoon fullname: Yoon, Uicheul organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea – sequence: 4 givenname: Yong-Wook surname: Shin fullname: Shin, Yong-Wook organization: Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea – sequence: 5 givenname: Soon Beom surname: Hong fullname: Hong, Soon Beom organization: Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea – sequence: 6 givenname: In Young surname: Kim fullname: Kim, In Young organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea – sequence: 7 givenname: Jun Soo surname: Kwon fullname: Kwon, Jun Soo organization: Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea – sequence: 8 givenname: Sun I. surname: Kim fullname: Kim, Sun I. organization: Department of Biomedical Engineering, Hanyang University, Seoul, Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18317016$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16671080$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gwB9AuYCE1LSepHHsHpBgxXYRLSAB4mg5_tiYOs5iJ5Q98s_xNksXDoiTR57nnXk17yHa873XCD0GfAIYF6dt050UuCjpPXQAmNU5BlbubWpS5eyshn10GONXjAEqDA_QPhBSA6b4AP2cByEH4TJlO-2j7X1mfdaOnfCZ7MNgZerFMRgh9Xl2NbrBrpzOgl4GHW9x4YVbRxuzGzu0O83QWnntE3Oc5G7zo_RqaI8TrzLTO2X9MhNBi4fovhEu6kfb9wh9nr_-NFvkl-8v3sxeXuaygoLmFdZEnWFJy0qYosGsMIw1VVU0pGKKamVYowrBlKybDUaAKUOUMTQdAENTHqEX09zV2HRaSe2HIBxfBduJsOa9sPzvjrctX_bfOaE1lIykAc-2A0L_bdRx4J2NUjsnvO7HmDigBMP_QWAEaEolgc8nUIY-xqDNnRvAfJMsT8ny22QT--RP-ztyG2UCnm4BEdO5TRBe2rjjaAn15O504m6s0-t_b-SLV1e_V-eTwsZB_7hTiHDNSV3WFf_y7oLTt7P5jCw-8g_lL4cbzmI |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2010_02_016 crossref_primary_10_1371_journal_pone_0118828 crossref_primary_10_1002_hbm_20381 crossref_primary_10_3390_brainsci10120956 crossref_primary_10_1002_hbm_23773 crossref_primary_10_1016_j_neuroimage_2016_04_029 crossref_primary_10_1038_s41598_020_73961_w crossref_primary_10_1002_ajmg_a_32337 crossref_primary_10_1038_s41598_021_95811_z crossref_primary_10_1016_j_neuroimage_2017_11_068 crossref_primary_10_1111_ejn_15631 crossref_primary_10_18632_aging_103402 crossref_primary_10_1007_s10072_024_07353_7 crossref_primary_10_1016_j_neuroimage_2017_10_010 crossref_primary_10_1088_0031_9155_60_6_2355 crossref_primary_10_1093_psyrad_kkaa002 crossref_primary_10_1007_s11682_022_00683_0 crossref_primary_10_1016_j_neuroimage_2018_08_041 crossref_primary_10_1016_j_cortex_2023_07_005 crossref_primary_10_1109_TMI_2007_903576 crossref_primary_10_1073_pnas_2220200120 crossref_primary_10_1038_s41598_021_87124_y crossref_primary_10_1016_j_neuroimage_2011_02_007 crossref_primary_10_1016_j_neuroimage_2018_03_057 crossref_primary_10_7554_eLife_33977 crossref_primary_10_1002_hbm_26076 crossref_primary_10_1016_j_neuropsychologia_2019_107293 crossref_primary_10_1016_j_wneu_2011_09_006 crossref_primary_10_1515_revneuro_2015_0011 crossref_primary_10_1103_PhysRevE_92_032701 crossref_primary_10_1093_cercor_bhr221 crossref_primary_10_1016_j_tria_2023_100263 crossref_primary_10_1016_j_nicl_2021_102682 crossref_primary_10_1038_s41597_023_02421_7 crossref_primary_10_1016_j_parkreldis_2015_01_015 crossref_primary_10_1016_j_jpsychires_2023_01_030 crossref_primary_10_1002_ima_20230 crossref_primary_10_1016_j_jneumeth_2008_04_018 crossref_primary_10_4236_am_2014_512166 crossref_primary_10_1093_brain_awp105 crossref_primary_10_1097_PSY_0b013e3182a151a7 crossref_primary_10_1111_adb_12240 crossref_primary_10_1007_s12021_022_09601_7 crossref_primary_10_2139_ssrn_3991629 crossref_primary_10_1016_j_mri_2010_03_020 crossref_primary_10_1016_j_neuroimage_2014_07_057 crossref_primary_10_1097_WNR_0000000000001448 crossref_primary_10_1111_jon_12534 crossref_primary_10_1016_j_neuroimage_2022_119309 crossref_primary_10_1016_j_neuroimage_2010_12_080 crossref_primary_10_1016_j_neuroimage_2020_117049 crossref_primary_10_1073_pnas_1610175113 crossref_primary_10_1016_j_pscychresns_2020_111239 crossref_primary_10_1002_hbm_24599 crossref_primary_10_1002_hbm_25969 crossref_primary_10_3389_fpsyt_2021_721720 crossref_primary_10_1002_hbm_23262 crossref_primary_10_1109_ACCESS_2021_3077370 crossref_primary_10_1016_j_intell_2011_02_004 crossref_primary_10_1016_j_neuroimage_2011_06_041 crossref_primary_10_1002_erv_2685 crossref_primary_10_1016_j_neuroscience_2022_05_007 crossref_primary_10_1038_s41398_021_01719_7 crossref_primary_10_1371_journal_pone_0055977 crossref_primary_10_1002_brb3_2894 crossref_primary_10_1016_j_neurobiolaging_2016_10_023 crossref_primary_10_1016_j_ijdevneu_2015_06_003 crossref_primary_10_3233_JAD_220377 crossref_primary_10_1017_S0033291721001082 crossref_primary_10_1016_j_arr_2022_101651 crossref_primary_10_1038_srep14477 crossref_primary_10_1016_j_neuroimage_2018_04_035 crossref_primary_10_1016_j_neuroimage_2010_01_007 crossref_primary_10_1038_s41598_022_15208_4 crossref_primary_10_1097_WCO_0b013e32833a0afc crossref_primary_10_3346_jkms_2022_37_e86 crossref_primary_10_1021_acsomega_0c05736 crossref_primary_10_1016_j_medntd_2020_100035 crossref_primary_10_3389_fnagi_2021_765185 crossref_primary_10_1016_j_neuroimage_2013_06_078 crossref_primary_10_1016_j_neuroscience_2013_04_051 crossref_primary_10_18678_dtfd_1180625 crossref_primary_10_1016_j_neuroimage_2019_116438 crossref_primary_10_1016_j_colsurfb_2016_03_011 crossref_primary_10_1016_j_neuroimage_2024_120671 crossref_primary_10_1016_j_neuron_2008_08_011 crossref_primary_10_1016_j_brainresbull_2023_110771 crossref_primary_10_3389_fnhum_2023_1231513 crossref_primary_10_1016_j_alcohol_2023_08_011 crossref_primary_10_1016_j_neuroimage_2008_07_016 crossref_primary_10_1111_acps_12243 crossref_primary_10_1016_j_nicl_2019_101913 crossref_primary_10_1142_S0219519412400155 crossref_primary_10_1016_j_compbiomed_2014_02_003 crossref_primary_10_3390_s24051584 crossref_primary_10_1016_j_acra_2024_04_013 crossref_primary_10_1016_j_neuroimage_2013_06_072 crossref_primary_10_1016_j_neuroimage_2011_04_062 crossref_primary_10_1155_2020_7364649 crossref_primary_10_1007_s11307_018_1236_5 crossref_primary_10_1371_journal_pone_0223812 crossref_primary_10_1007_s11682_008_9057_9 crossref_primary_10_19066_cogsci_2017_28_4_004 crossref_primary_10_1007_s00330_009_1605_1 crossref_primary_10_3389_fnins_2022_971010 crossref_primary_10_1007_s10803_021_05368_z crossref_primary_10_1007_s00062_013_0273_3 crossref_primary_10_1016_j_neuroimage_2007_10_043 crossref_primary_10_1093_cercor_bhs226 crossref_primary_10_1177_03057356221110634 crossref_primary_10_1093_cercor_bhm244 crossref_primary_10_1109_TIM_2010_2050969 crossref_primary_10_1002_hbm_21378 crossref_primary_10_1016_j_neuroimage_2023_120434 crossref_primary_10_1088_1741_2552_ac7003 crossref_primary_10_21802_e_GMJ2024_A11 crossref_primary_10_1016_j_compmedimag_2007_10_005 crossref_primary_10_1038_s41598_023_38185_8 crossref_primary_10_1093_sleep_zsz216 crossref_primary_10_1016_j_neuroimage_2022_119226 crossref_primary_10_1016_j_neuroimage_2012_03_088 crossref_primary_10_1016_j_neurobiolaging_2010_12_003 crossref_primary_10_1111_ene_12485 crossref_primary_10_1007_s00330_019_06165_0 crossref_primary_10_1142_S0218348X21502327 crossref_primary_10_3390_fractalfract8010035 crossref_primary_10_1109_ACCESS_2022_3221458 crossref_primary_10_1186_1744_9081_10_44 crossref_primary_10_1162_imag_a_00143 crossref_primary_10_1016_j_neuroimage_2014_06_054 crossref_primary_10_1186_s12868_021_00672_x crossref_primary_10_1371_journal_pone_0293886 crossref_primary_10_1111_pcn_12485 crossref_primary_10_3389_fnana_2021_712862 crossref_primary_10_1007_s10472_023_09885_8 crossref_primary_10_1212_WNL_0000000000200829 crossref_primary_10_1002_ima_20138 crossref_primary_10_1371_journal_pone_0041148 crossref_primary_10_1186_s13195_018_0432_5 crossref_primary_10_1002_hbm_21311 crossref_primary_10_3389_fnagi_2017_00405 crossref_primary_10_1002_hbm_22369 crossref_primary_10_1016_j_neuroscience_2012_06_030 crossref_primary_10_1016_j_compmedimag_2021_101939 crossref_primary_10_1002_alz_13570 |
Cites_doi | 10.1006/nimg.2000.0543 10.1016/0140-6736(91)92726-I 10.1097/00004728-199403000-00005 10.1038/nn1277 10.1016/j.biopsych.2003.12.027 10.1109/TMI.2003.814781 10.1016/S1361-8415(02)00052-X 10.1093/cercor/6.6.830 10.1016/j.neuroimage.2004.01.023 10.1159/000117155 10.1016/0375-9601(89)90854-2 10.1016/j.neulet.2005.04.078 10.1016/j.mri.2005.06.010 10.1001/archpsyc.1992.01820080032005 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 10.1109/42.668698 10.1016/S1053-8119(03)00380-X 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K 10.1177/0013164494054001010 10.1016/S0006-3495(03)74817-6 10.1007/BFb0046984 10.1016/S1053-8119(01)91441-7 10.1162/jocn.1996.8.6.566 10.1016/j.neuroimage.2004.07.045 10.1016/j.neuroimage.2003.07.008 10.1038/427311a 10.1038/431757a 10.1109/TBME.2004.831543 10.1176/appi.ajp.158.2.244 10.1162/jocn.1992.4.4.352 10.1017/S0033291700027926 10.1073/pnas.200033797 10.1016/S0167-8655(01)00083-6 10.1111/j.2044-8295.1970.tb01248.x 10.1016/S0925-4927(01)00091-9 10.1006/nimg.1999.0489 10.1016/j.neuroimage.2005.03.036 10.1109/42.363096 10.1016/0960-0779(95)80025-C 10.1006/nimg.2000.0652 10.1016/j.neuroimage.2004.04.025 10.1006/nimg.1999.0534 10.1038/385313a0 10.1007/BFb0056229 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley‐Liss, Inc. 2007 INIST-CNRS (c) 2006 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2006 Wiley‐Liss, Inc. – notice: 2007 INIST-CNRS – notice: (c) 2006 Wiley-Liss, Inc. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
DOI | 10.1002/hbm.20238 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Fractal Dimension in Human Cortical Surface |
EISSN | 1097-0193 |
EndPage | 1003 |
ExternalDocumentID | 10_1002_hbm_20238 16671080 18317016 HBM20238 ark_67375_WNG_8KCFC6HS_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Brain Research Center of the 21st Century Frontier Research Program, Ministry of Science and Technology of the Republic of Korea funderid: M103KV01001404K220101420 – fundername: Brain Research Center of the 21st Century Frontier Research Program, Ministry of Science and Technology of the Republic of Korea grantid: M103KV01001404K220101420 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAPBV ABHUG ACXME ADAWD AFVGU AGJLS IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5128-50e6d40c835af2b092f99b552b659d8edf9bd2a9dc7b40c8619df6dff894701b3 |
IEDL.DBID | RPM |
ISSN | 1065-9471 |
IngestDate | Tue Sep 17 21:18:58 EDT 2024 Fri Aug 16 10:03:06 EDT 2024 Sat Aug 17 00:51:02 EDT 2024 Thu Sep 26 16:09:10 EDT 2024 Sat Sep 28 07:45:21 EDT 2024 Sun Oct 22 16:07:47 EDT 2023 Sat Aug 24 01:02:17 EDT 2024 Wed Oct 30 09:56:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Human Nervous system diseases sulcal depth Fractal dimension Radiodiagnosis cortical thickness folding area multiple regression Regression analysis Surface analysis Depth |
Language | English |
License | CC BY 4.0 (c) 2006 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5128-50e6d40c835af2b092f99b552b659d8edf9bd2a9dc7b40c8619df6dff894701b3 |
Notes | ArticleID:HBM20238 istex:28D8BBE84C9C944A6A004182F06AC5AED1A8E977 Brain Research Center of the 21st Century Frontier Research Program, Ministry of Science and Technology of the Republic of Korea - No. M103KV01001404K220101420 ark:/67375/WNG-8KCFC6HS-P ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc6871396?pdf=render |
PMID | 16671080 |
PQID | 19618471 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871396 proquest_miscellaneous_68186016 proquest_miscellaneous_19618471 crossref_primary_10_1002_hbm_20238 pubmed_primary_16671080 pascalfrancis_primary_18317016 wiley_primary_10_1002_hbm_20238_HBM20238 istex_primary_ark_67375_WNG_8KCFC6HS_P |
PublicationCentury | 2000 |
PublicationDate | December 2006 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: December 2006 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Narr K, Thompson P, Sharma T, Moussai J, Zoumalan C, Rayman J, Toga A (2001): Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects. Am J Psychiatry 158: 244-255. Collins DL, Neelin P, Peters TM, Evans AC (1994): Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192-205. Ma C-M, Wan S-Y (2001): A medial-surface oriented 3-D two-subfield thinning algorithm. Pattern Recogn Lett 22: 1439-1446. Zijdenbos AP, Forghani R, Evans AC (1998): Automatic quantification of MS Lesions in 3D MRI brain data sets: validation of INSECT. MICCAI, Lecture Notes Comput Sci 1496: 439-448. Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995): Fractals in biology and medicine. Chaos Solitons Fractals 6: 171-201. Narr KL, Bilder RM, Kim S, Thompson PM, Szeszko P, Robinson D, Luders E, Toga AW (2004): Abnormal gyral complexity in first-episode schizophrenia. Biol Psychiatry 55: 859-867. Lerch JP, Evans AC (2005): Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24: 163-173. Liu JZ, Zhang LD, Yue GH (2003): Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys J 85: 4041-4046. Cook MJ, Free SL, Manford MR, Fish DR, Shorvon SD, Stevens JM (1995): Fractal description of cerebral cortical patterns in frontal lobe epilepsy. Eur Neurol 35: 327-335. MacDonald D, Kabani N, Avis D, Evans AC (2000): Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340-356. Mechelli A, Crinion JT, Noppeney U, O'Doherty J, Ashburner J, Frackowiak RS, Price CJ (2004): Neurolinguistics: structural plasticity in the bilingual brain. Nature 431: 757. Bullmore E, Brammer M, Harvey I, Persaud R, Murray R, Ron M (1994): Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients. Psychol Med 24: 771-781. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994): Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13: 716-724. Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Steinmetz H, Toga AW (2004): Gender differences in cortical complexity. Nat Neurosci 7: 799-800. Van Essen DC (1997): A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385: 313-318. Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2004): Structural brain variation and general intelligence. Neuroimage 23: 425-433. Cointepas Y, Mangin JF, Garnero L, Poline JB, Benali H (2001): BrainVISA: software platform for visualization and analysis of multi-modality brain data. Neuroimage 13: S98. Fischl B, Dale AM (2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97: 11050-11055. Sarraille JJ, Myers LS (1994): FD3: a program for measuring fractal dimension. Educ Psychol Meas 54: 94-97. Blanton RE, Levitt JG, Thompson PM, Narr KL, Capetillo-Cunliffe L, Nobel A, Singerman JD, McCracken JT, Toga AW (2001): Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Res 107: 29-43. Riviere D, Mangin JF, Papadopoulos-Orfanos D, Martinez JM, Frouin V, Regis J (2002): Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med Image Anal 6: 77-92. Cachia A, Mangin JF, Riviere D, Kherif F, Boddaert N, Andrade A, Papadopoulos-Orfanos D, Poline JB, Bloch I, Zilbovicius M (2003): A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans Med Imaging 22: 754-765. Editorial L (1991): Fractals and medicine. Lancet 338: 1425-1426. Toro R, Burnod Y (2003): Geometric atlas: modeling the cortex as an organized surface. Neuroimage 20: 1468-1484. Cox RW, Hyde JS (1997): Software tools for analysis and visualization of fMRI data. NMR Biomed 10: 171-178. Jones SE, Buchbinder BR, Aharon I (2000): Three-dimensional mapping of cortical thickness using Laplace's equation. Hum Brain Mapp 11: 12-32. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004): Neuroplasticity: changes in grey matter induced by training. Nature 427: 311-312. Wechsler D (1981): Adult intelligence scale-revised: manual. New York: Psychological Corp. Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87-97. Spitzer RL, Williams JB, Gibbon M, First MB (1992): The structured clinical interview for DSM-III-R (SCID). I. History, rationale, and description. Arch Gen Psychiatry 49: 624-629. Koo BB, Lee JM, Kim HP, Shin YW, Kim IY, Kwon JS, Kim SI (2005): Representative brain selection using a group-specific tissue probability map. Magn Reson Imaging 23: 809-815. Kim JJ, Crespo-Facorro B, Andreasen NC, O'Leary DS, Zhang B, Harris G, Magnotta VA (2000): An MRI-based parcellation method for the temporal lobe. Neuroimage 11: 271-288. Kabani N, Le Goualher G, MacDonald D, Evans AC (2001): Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13: 375-380. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005): Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27: 210-221. Ochiai T, Grimault S, Scavarda D, Roch G, Hori T, Riviere D, Mangin JF, Regis J (2004): Sulcal pattern and morphology of the superior temporal sulcus. Neuroimage 22: 706-719. Free SL, Sisodiya SM, Cook MJ, Fish DR, Shorvon SD (1996): Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cereb Cortex 6: 830-836. Ha TH, Yoon U, Lee KJ, Shin YW, Lee JM, Kim IY, Ha KS, Kim SI, Kwon JS (2005): Fractal dimension of cerebral cortical surface in schizophrenia and obsessive-compulsive disorder. Neurosci Lett 384: 172-176. Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS (1992): Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4: 352-374. Kiselev VG, Hahn KR, Auer DP (2003): Is the brain cortex a fractal? Neuroimage 20: 1765-1774. Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, Harris G, Magnotta VA (1999): Human frontal cortex: an MRI-based parcellation method. Neuroimage 10: 500-519. Caviness VS, Meyer J, Makris N, Kennedy DN (1996): MRI-based parcellation of human neocortex: an automatically specified method with estimate of reliability. J Cogn Neurosci 8: 566-588. Liebovitch LS, Toth TI (1989): A fast algorithm to determine fractal dimensions by box counting. Phys Lett A 141: 386-390. Annett M (1970): A classification of hand preference by association analysis. Br J Psychol 61: 303-321. Lee JM, Yoon U, Kim JJ, Kim IY, Lee DS, Kwon JS, Kim SI (2004): Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface. IEEE Trans Biomed Eng 51: 1494-1498. 2004; 22 1995; 35 2004; 7 2002; 6 2004; 23 1998 1996 1994; 24 1991; 338 2001; 22 2001; 107 2004; 427 2005; 27 1995; 6 2005; 23 2005; 24 1998; 1496 2004; 431 2004; 55 1998; 17 2004; 51 2005; 384 1997; 10 2000; 12 1989; 141 2000; 11 1997; 385 2000; 97 1999; 10 1994; 13 1970; 61 1994; 18 1981 1992; 49 2001; 13 2003; 85 1996; 8 2003; 20 2001; 158 2003; 22 1996; 6 1992; 4 1994; 54 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 Wechsler D (e_1_2_6_44_1) 1981 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 141 start-page: 386 year: 1989 end-page: 390 article-title: A fast algorithm to determine fractal dimensions by box counting publication-title: Phys Lett A – volume: 23 start-page: 425 year: 2004 end-page: 433 article-title: Structural brain variation and general intelligence publication-title: Neuroimage – volume: 6 start-page: 77 year: 2002 end-page: 92 article-title: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks publication-title: Med Image Anal – volume: 54 start-page: 94 year: 1994 end-page: 97 article-title: FD3: a program for measuring fractal dimension publication-title: Educ Psychol Meas – year: 1981 – volume: 6 start-page: 171 year: 1995 end-page: 201 article-title: Fractals in biology and medicine publication-title: Chaos Solitons Fractals – volume: 7 start-page: 799 year: 2004 end-page: 800 article-title: Gender differences in cortical complexity publication-title: Nat Neurosci – volume: 11 start-page: 271 year: 2000 end-page: 288 article-title: An MRI‐based parcellation method for the temporal lobe publication-title: Neuroimage – volume: 35 start-page: 327 year: 1995 end-page: 335 article-title: Fractal description of cerebral cortical patterns in frontal lobe epilepsy publication-title: Eur Neurol – volume: 4 start-page: 352 year: 1992 end-page: 374 article-title: Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging publication-title: J Cogn Neurosci – volume: 8 start-page: 566 year: 1996 end-page: 588 article-title: MRI‐based parcellation of human neocortex: an automatically specified method with estimate of reliability publication-title: J Cogn Neurosci – volume: 384 start-page: 172 year: 2005 end-page: 176 article-title: Fractal dimension of cerebral cortical surface in schizophrenia and obsessive‐compulsive disorder publication-title: Neurosci Lett – volume: 385 start-page: 313 year: 1997 end-page: 318 article-title: A tension‐based theory of morphogenesis and compact wiring in the central nervous system publication-title: Nature – volume: 51 start-page: 1494 year: 2004 end-page: 1498 article-title: Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface publication-title: IEEE Trans Biomed Eng – volume: 6 start-page: 830 year: 1996 end-page: 836 article-title: Three‐dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain publication-title: Cereb Cortex – volume: 23 start-page: 809 year: 2005 end-page: 815 article-title: Representative brain selection using a group‐specific tissue probability map publication-title: Magn Reson Imaging – volume: 13 start-page: 375 year: 2001 end-page: 380 article-title: Measurement of cortical thickness using an automated 3‐D algorithm: a validation study publication-title: Neuroimage – volume: 13 start-page: 716 year: 1994 end-page: 724 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 192 year: 1994 end-page: 205 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J Comput Assist Tomogr – volume: 85 start-page: 4041 year: 2003 end-page: 4046 article-title: Fractal dimension in human cerebellum measured by magnetic resonance imaging publication-title: Biophys J – volume: 13 start-page: S98 year: 2001 article-title: BrainVISA: software platform for visualization and analysis of multi‐modality brain data publication-title: Neuroimage – volume: 10 start-page: 500 year: 1999 end-page: 519 article-title: Human frontal cortex: an MRI‐based parcellation method publication-title: Neuroimage – year: 1998 – volume: 97 start-page: 11050 year: 2000 end-page: 11055 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Natl Acad Sci U S A – volume: 22 start-page: 1439 year: 2001 end-page: 1446 article-title: A medial‐surface oriented 3‐D two‐subfield thinning algorithm publication-title: Pattern Recogn Lett – volume: 22 start-page: 754 year: 2003 end-page: 765 article-title: A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns publication-title: IEEE Trans Med Imaging – volume: 24 start-page: 163 year: 2005 end-page: 173 article-title: Cortical thickness analysis examined through power analysis and a population simulation publication-title: Neuroimage – volume: 27 start-page: 210 year: 2005 end-page: 221 article-title: Automated 3‐D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification publication-title: Neuroimage – volume: 24 start-page: 771 year: 1994 end-page: 781 article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic‐depressive patients publication-title: Psychol Med – volume: 338 start-page: 1425 year: 1991 end-page: 1426 article-title: Fractals and medicine publication-title: Lancet – volume: 11 start-page: 12 year: 2000 end-page: 32 article-title: Three‐dimensional mapping of cortical thickness using Laplace's equation publication-title: Hum Brain Mapp – volume: 20 start-page: 1765 year: 2003 end-page: 1774 article-title: Is the brain cortex a fractal? publication-title: Neuroimage – volume: 22 start-page: 706 year: 2004 end-page: 719 article-title: Sulcal pattern and morphology of the superior temporal sulcus publication-title: Neuroimage – volume: 12 start-page: 340 year: 2000 end-page: 356 article-title: Automated 3‐D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: Neuroimage – volume: 49 start-page: 624 year: 1992 end-page: 629 article-title: The structured clinical interview for DSM‐III‐R (SCID). I. History, rationale, and description publication-title: Arch Gen Psychiatry – volume: 158 start-page: 244 year: 2001 end-page: 255 article-title: Three‐dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects publication-title: Am J Psychiatry – volume: 10 start-page: 171 year: 1997 end-page: 178 article-title: Software tools for analysis and visualization of fMRI data publication-title: NMR Biomed – volume: 431 start-page: 757 year: 2004 article-title: Neurolinguistics: structural plasticity in the bilingual brain publication-title: Nature – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 61 start-page: 303 year: 1970 end-page: 321 article-title: A classification of hand preference by association analysis publication-title: Br J Psychol – volume: 20 start-page: 1468 year: 2003 end-page: 1484 article-title: Geometric atlas: modeling the cortex as an organized surface publication-title: Neuroimage – volume: 427 start-page: 311 year: 2004 end-page: 312 article-title: Neuroplasticity: changes in grey matter induced by training publication-title: Nature – volume: 55 start-page: 859 year: 2004 end-page: 867 article-title: Abnormal gyral complexity in first‐episode schizophrenia publication-title: Biol Psychiatry – volume: 107 start-page: 29 year: 2001 end-page: 43 article-title: Mapping cortical asymmetry and complexity patterns in normal children publication-title: Psychiatry Res – start-page: 439 year: 1996 end-page: 448 – volume: 1496 start-page: 439 year: 1998 end-page: 448 article-title: Automatic quantification of MS Lesions in 3D MRI brain data sets: validation of INSECT publication-title: MICCAI, Lecture Notes Comput Sci – ident: e_1_2_6_21_1 doi: 10.1006/nimg.2000.0543 – ident: e_1_2_6_13_1 doi: 10.1016/0140-6736(91)92726-I – ident: e_1_2_6_31_1 – ident: e_1_2_6_8_1 doi: 10.1097/00004728-199403000-00005 – ident: e_1_2_6_29_1 doi: 10.1038/nn1277 – ident: e_1_2_6_35_1 doi: 10.1016/j.biopsych.2003.12.027 – ident: e_1_2_6_5_1 doi: 10.1109/TMI.2003.814781 – ident: e_1_2_6_38_1 doi: 10.1016/S1361-8415(02)00052-X – ident: e_1_2_6_15_1 doi: 10.1093/cercor/6.6.830 – ident: e_1_2_6_36_1 doi: 10.1016/j.neuroimage.2004.01.023 – ident: e_1_2_6_9_1 doi: 10.1159/000117155 – ident: e_1_2_6_27_1 doi: 10.1016/0375-9601(89)90854-2 – ident: e_1_2_6_16_1 doi: 10.1016/j.neulet.2005.04.078 – ident: e_1_2_6_24_1 doi: 10.1016/j.mri.2005.06.010 – ident: e_1_2_6_41_1 doi: 10.1001/archpsyc.1992.01820080032005 – ident: e_1_2_6_10_1 doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L – ident: e_1_2_6_40_1 doi: 10.1109/42.668698 – ident: e_1_2_6_23_1 doi: 10.1016/S1053-8119(03)00380-X – ident: e_1_2_6_19_1 doi: 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K – ident: e_1_2_6_39_1 doi: 10.1177/0013164494054001010 – ident: e_1_2_6_28_1 doi: 10.1016/S0006-3495(03)74817-6 – ident: e_1_2_6_46_1 doi: 10.1007/BFb0046984 – ident: e_1_2_6_7_1 doi: 10.1016/S1053-8119(01)91441-7 – ident: e_1_2_6_6_1 doi: 10.1162/jocn.1996.8.6.566 – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroimage.2004.07.045 – ident: e_1_2_6_42_1 doi: 10.1016/j.neuroimage.2003.07.008 – ident: e_1_2_6_12_1 doi: 10.1038/427311a – ident: e_1_2_6_33_1 doi: 10.1038/431757a – ident: e_1_2_6_25_1 doi: 10.1109/TBME.2004.831543 – ident: e_1_2_6_34_1 doi: 10.1176/appi.ajp.158.2.244 – ident: e_1_2_6_37_1 doi: 10.1162/jocn.1992.4.4.352 – ident: e_1_2_6_4_1 doi: 10.1017/S0033291700027926 – ident: e_1_2_6_14_1 doi: 10.1073/pnas.200033797 – ident: e_1_2_6_30_1 doi: 10.1016/S0167-8655(01)00083-6 – ident: e_1_2_6_2_1 doi: 10.1111/j.2044-8295.1970.tb01248.x – ident: e_1_2_6_3_1 doi: 10.1016/S0925-4927(01)00091-9 – ident: e_1_2_6_11_1 doi: 10.1006/nimg.1999.0489 – ident: e_1_2_6_22_1 doi: 10.1016/j.neuroimage.2005.03.036 – ident: e_1_2_6_45_1 doi: 10.1109/42.363096 – ident: e_1_2_6_18_1 doi: 10.1016/0960-0779(95)80025-C – ident: e_1_2_6_20_1 doi: 10.1006/nimg.2000.0652 – volume-title: Adult intelligence scale‐revised: manual year: 1981 ident: e_1_2_6_44_1 contributor: fullname: Wechsler D – ident: e_1_2_6_17_1 doi: 10.1016/j.neuroimage.2004.04.025 – ident: e_1_2_6_32_1 doi: 10.1006/nimg.1999.0534 – ident: e_1_2_6_43_1 doi: 10.1038/385313a0 – ident: e_1_2_6_47_1 doi: 10.1007/BFb0056229 |
SSID | ssj0011501 |
Score | 2.3182373 |
Snippet | Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely compact... Abstract Fractal dimension (FD) has been widely used to provide a quantitative description of structural complexity in the cerebral cortex. FD is an extremely... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 994 |
SubjectTerms | Adult Biological and medical sciences Brain Mapping Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology cortical thickness Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation Educational Status Electrocardiography. Vectocardiography Electrodiagnosis. Electric activity recording Female folding area fractal dimension Fractals Functional Laterality - physiology Fundamental and applied biological sciences. Psychology Humans Imaging, Three-Dimensional - methods Intelligence Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences multiple regression Nervous system Radiodiagnosis. Nmr imagery. Nmr spectrometry Regression Analysis sulcal depth Vertebrates: nervous system and sense organs |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEG5CAuKLR-IxGmMjEnzIJHP2TJunZHVdlA2iBvMQaPp0wyaTsAeob_5zq3qOddWA-DbMVDdMdXV3VfXXXxHyXKZZWljtwjyyNsycykOZKx2yEtzR0mXc-pEeHrHBcfb2JD9ZIfvtXZiaH6JLuOHM8Os1TnCppnsL0tCRwovksOPA-hunBcK5Xn3oqKPQ0fHBFmyxIYcVuGUVipK9ruXSXrSGav2K2Eg5BfW4uq7F3xzPP_GTv_q1fmPq3yan7S_VeJTx7nymdvX339ge__Of75BbjcNKD2oLu0tWbLVONg4qCNYvvtFt6iGkPje_Tm4Mm5P6DfKjj9evoKHB8gGYkqNnFfUVASkEvD6DTqfziZPavqTDBtZIJ_ZLDcytqGzoUiimihdtEJ8_xvV5B5qf4xtjr2ajHZA31NVnaVSCK3yPHPdff-oNwqbcQ6jB6yjRWpjJIg0-oXSJinjiOFd5niiWc1Na47gyieRGFwrFIPQzjhnnShjfKFbpfbJaXVb2IaE6d4VWMPauYEipr0pnTJIabjOTKqYD8qwdeHFVs3qImr85EaBj4XUckG1vEp2EnIwRBlfk4vPRG1G-6_V7bPBRvA_I1pLNLLosU6S7ZwF52hqRgNmLRzKyspfzqYh9wZ0ivl6CIeWg7-NBbXSL3hkrECEakGLJHDsBZA5f_lKdjTyDOIMwOeXQ5wtvbdfrQAwOh_7h0b-LPiY3k6a6UxRvktXZZG6fgOc2U1t-iv4E0P5Crg priority: 102 providerName: Wiley-Blackwell |
Title | Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area |
URI | https://api.istex.fr/ark:/67375/WNG-8KCFC6HS-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20238 https://www.ncbi.nlm.nih.gov/pubmed/16671080 https://search.proquest.com/docview/19618471 https://search.proquest.com/docview/68186016 https://pubmed.ncbi.nlm.nih.gov/PMC6871396 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUJcUGl5hMJiIVRxaLp52Ym5lRXLCpSqAip6s-IXu2o3Xe1DgiP_nLGTdLuCXritsmMn8kzib-zP3wC8qdIszY2yIY2MCTMraVhRqUJWIBwtbMaN93R5ykbn2acLerEFtDsL40n7Sk6O66vpcT0Ze27lbKr6HU-sf1YOGKL8lLP-NmxjgHYpert1gAjHZ1k4t4YcP72dnFCU9MfSnT3HScpJhTKWx14N8tZ8dM8N7U_Hj6wWOES2qW3xL_D5N4fyNrb1k9NwFx62qJKcNE__CLZMvQf7JzVm1NNf5JB4nqdfQN-D-2W7nb4Pv4fujBQ21E7j362bkUlNfNk-glmpX-Ymi9XcVsq8I2XLPSRz86Nhz9akajVNiFvPXbdxJPpL9xE9wuZX7oo2s-X4CO01sc2GF6kQrz6G8-GHb4NR2NZkCBVCg8K5lOksUgjcKpvIiCeWc0lpIhnlujDacqmTimuVS2eG-Zm2TFtboC-iWKZPYKe-rs0zIIraXEn0k82Z072XhdU6STU3mU4lUwG87jwjZo30hmhElhOBnhTekwEcep_dWFTzS8dVy6n4fvpRFJ8HwwEbfRVnAfQ2nLruskidJj0L4FXnZYGvmNs3qWpzvVqI2FfFyeO7LZjTBfR9PG2iYt17G2YB5BvxcmPg5L03_8Go9zLfbZQH8NZH1t1jIEbvS__j-X_f5AAeJG1Fpih-ATvL-cq8RLS1lD3MM74kPf-O_QEyoyyt |
link.rule.ids | 230,315,730,783,787,888,1378,27938,27939,46308,46732,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVgJeOFqOcLQWQhUPTZvN4SSIl7KwBNqsELSiL8iKY5utFtJqDwl4458z4xzLApUQb1EytpQ57Jnx-BuAx0UQBrEujRt5WruhkZFbRLJ0eYLuaGLCVFtJ50OeHYdvTqKTFXjW3oWp8SG6hBtZhl2vycApIb23QA0dSbpJjlvOJVhDcw-of8GLdx14FLk6NtzCTdZNcQ1ucYU8f68burQbrRFjv1J1ZDFFBpm6s8XfXM8_Kyh_9Wzt1jS4Dh_bn6orUsa785ncLb__hvf4v399A641Pivbr5XsJqzoah029iuM1798Y9vMVpHa9Pw6XM6bw_oN-DGgG1g4UFEHAcrKsdOK2aaADGNem0Rn0_nEFKV-yvKmspFN9Ke6NrdiRYOYwihbvBhDJfpjWqJ3cPhneqP0-Wy0g_SKmfo4jRXoDd-C48HLo37mNh0f3BIdj4QUhqvQK9EtLIwvvdQ3aSqjyJc8SlWilUml8otUlbEkMoz-lOHKmAQF7PVkcBtWq7NK3wVWRiYuJQrfxJxQ9WVilPIDlepQBZKXDjxqJS_Oa2APUUM4-wJ5LCyPHdi2OtFRFJMxVcLFkfgwfCWSg_6gz7P34q0Dm0tKs5gyCQjxnjuw1WqRQAOmU5mi0mfzqejZnjtx72IKTqiDdo47tdYtZuc8piJRB-IlfewICDx8-Ut1OrIg4hwj5SDFOZ9YdbuYByJ7ntuHe_9OugVXsqP8UBy-Hh7ch6t-0-zJ6z2A1dlkrh-iIzeTm9ZefwK9DkbI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVqp44Wg5wtFaCFU8NG02h5PAU7slLJRdVUBFH5CsOLbZaiFd7SEBb_zzzjjHskAlxFuUjC1lPLZnxp-_AXiaB2EQ68K4kae1GxoZuXkkC5cn6I4mJky1Hen-gPdOwzdn0dkKvGjuwlT8EG3CjWaGXa9pgo-V2V-Qhg4lXSTHHecarIU88AjPdfSu5Y4iT8dGW7jHuikuwQ2tkOfvt02XNqM10us3AkfmU9SPqQpb_M3z_BNA-atja3em7CZ8av6pAqSM9uYzuVf8-I3u8T9_-hbcqD1WdlCZ2G1Y0eUGbB6UGK1__c52mMWQ2uT8Bqz366P6TfiZ0f0rbKiofgDl5Nh5yWxJQIYRr02hs-l8YvJCP2f9GtfIJvpzhcwtWV7zpTDKFS_aEEB_RAv0Ljb_Qm-UHs-GuyivmKkO01iOvvAdOM1efuj23Lreg1ug25GQuXAVegU6hbnxpZf6Jk1lFPmSR6lKtDKpVH6eqiKWJIaxnzJcGZPg-HodGdyF1fKi1PeBFZGJC4ljb2JOnPoyMUr5gUp1qALJCweeNAMvxhWth6gInH2BOhZWxw7sWJNoJfLJiHBwcSQ-Dl6J5LibdXnvvThxYGvJZhZdJgHx3XMHthsjEjh96UwmL_XFfCo6tuJO3LlaghPnoO3jXmV0i945jwki6kC8ZI6tAFGHL38pz4eWQpxjnByk2Ocza21X60D0Dvv24cG_i27D-slRJt6-Hhw_hOt-XenJ6zyC1dlkrh-jFzeTW3a2XgLBWkV3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+dimension+in+human+cortical+surface%3A+Multiple+regression+analysis+with+cortical+thickness%2C+sulcal+depth%2C+and+folding+area&rft.jtitle=Human+brain+mapping&rft.au=Im%2C+Kiho&rft.au=Lee%2C+Jong%E2%80%90Min&rft.au=Yoon%2C+Uicheul&rft.au=Shin%2C+Yong%E2%80%90Wook&rft.date=2006-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=27&rft.issue=12&rft.spage=994&rft.epage=1003&rft_id=info:doi/10.1002%2Fhbm.20238&rft.externalDBID=10.1002%252Fhbm.20238&rft.externalDocID=HBM20238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |