Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress

Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factor...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 20; no. 1; pp. 175 - 14
Main Authors Khan, Muhammad Aaqil, Asaf, Sajjad, Khan, Abdul Latif, Jan, Rahmatullah, Kang, Sang-Mo, Kim, Kyung-Min, Lee, In-Jung
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.06.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
AbstractList Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress.BACKGROUNDIncidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress.We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress.RESULTSWe isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress.The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.CONCLUSIONThe current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Abstract Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. Keywords: B. cereus SA1, Heat stress, Phytohormone, Amino acid, HSP expression, Soybean
Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
ArticleNumber 175
Audience Academic
Author Kang, Sang-Mo
Jan, Rahmatullah
Khan, Muhammad Aaqil
Kim, Kyung-Min
Khan, Abdul Latif
Asaf, Sajjad
Lee, In-Jung
Author_xml – sequence: 1
  givenname: Muhammad Aaqil
  surname: Khan
  fullname: Khan, Muhammad Aaqil
– sequence: 2
  givenname: Sajjad
  surname: Asaf
  fullname: Asaf, Sajjad
– sequence: 3
  givenname: Abdul Latif
  surname: Khan
  fullname: Khan, Abdul Latif
– sequence: 4
  givenname: Rahmatullah
  surname: Jan
  fullname: Jan, Rahmatullah
– sequence: 5
  givenname: Sang-Mo
  surname: Kang
  fullname: Kang, Sang-Mo
– sequence: 6
  givenname: Kyung-Min
  surname: Kim
  fullname: Kim, Kyung-Min
– sequence: 7
  givenname: In-Jung
  surname: Lee
  fullname: Lee, In-Jung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32571217$$D View this record in MEDLINE/PubMed
BookMark eNp9kltvFCEcxSemxl70C_hgJvFFH6ZyG2BeTNbGyyZNTGx9JgzzZ5ZmFlZgqv32st1au40xPEDgdw7hcI6rAx88VNVLjE4xlvxdwkRy3iCCGoQlIY14Uh1hJnBDsEQHD9aH1XFKVwhhIal4Vh1S0gpMsDiq-ssVxHXIYYKovYEarAWT62DrzaR9rscYfuZVs4mhUM6P9Qdt3DTNqTYQoUwXC1wHX6dw04P29TDHLbUCneuUI6T0vHpq9ZTgxd18Un3_9PHy7Etz_vXz8mxx3pgWE9Ewzi3lgCi1A2q17KnWVBLGbNd10Omupxwxw5EBaixDnR0KwVvT2o7KHtOTarnzHYK-Upvo1jreqKCdut0IcVQ6ZmcmUIPltMN4YEYbRsTQt8j0ktoOta2huC9e73dem7lfw2DA56inPdP9E-9WagzXSlCMSIuKwZs7gxh-zJCyWrtkYCqZQpiTIgxzwhmVtKCvH6FXYY6-RFUoUr5QcNT-pUZdHuC8DeVeszVVC05Ey2R5SKFO_0GVMcDamVIf68r-nuDtnqAwGX7lUc8pqeXFt3321cNQ7tP406YCkB1gYkgpgr1HMFLbyqpdZVWprLqtrNqK5CORcVlnF7bBuul_0t9yVe3I
CitedBy_id crossref_primary_10_1134_S0003683823040075
crossref_primary_10_1007_s13199_025_01037_2
crossref_primary_10_3390_microorganisms11020454
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_1186_s12934_023_02167_2
crossref_primary_10_3389_fpls_2022_948260
crossref_primary_10_1016_j_sajb_2024_04_012
crossref_primary_10_1007_s11104_022_05369_6
crossref_primary_10_1016_j_agwat_2022_107831
crossref_primary_10_1016_j_stress_2024_100714
crossref_primary_10_3390_horticulturae8040336
crossref_primary_10_1016_j_chemosphere_2022_136635
crossref_primary_10_1016_j_stress_2024_100435
crossref_primary_10_1093_lambio_ovac067
crossref_primary_10_1186_s12870_024_04767_5
crossref_primary_10_3389_fmicb_2022_958300
crossref_primary_10_1038_s41598_024_52535_0
crossref_primary_10_48022_mbl_2204_04007
crossref_primary_10_1016_j_apsoil_2024_105379
crossref_primary_10_3390_biology11121838
crossref_primary_10_3390_agronomy13030873
crossref_primary_10_3934_agrfood_2021029
crossref_primary_10_1016_j_stress_2024_100681
crossref_primary_10_3390_microorganisms10071386
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_1007_s00122_024_04656_3
crossref_primary_10_1016_j_stress_2024_100725
crossref_primary_10_1007_s00425_021_03695_0
crossref_primary_10_1079_cabireviews_2023_0001
crossref_primary_10_1007_s00284_023_03466_y
crossref_primary_10_3389_fpls_2024_1274964
crossref_primary_10_3390_cells11203292
crossref_primary_10_3389_fpls_2024_1423949
crossref_primary_10_3390_plants13152022
crossref_primary_10_1007_s00344_024_11586_3
crossref_primary_10_3390_biology11121763
crossref_primary_10_1007_s00284_023_03368_z
crossref_primary_10_5937_ZemBilj2402014B
crossref_primary_10_1002_jobm_202400666
crossref_primary_10_1016_j_sjbs_2021_02_073
crossref_primary_10_1007_s11738_024_03699_9
crossref_primary_10_1016_j_apsoil_2022_104578
crossref_primary_10_3390_agronomy13071804
crossref_primary_10_3390_plants12234037
crossref_primary_10_1007_s10668_024_05706_y
crossref_primary_10_3390_agronomy12102304
crossref_primary_10_1186_s12870_024_05752_8
crossref_primary_10_1007_s12298_024_01417_w
crossref_primary_10_1016_j_chemosphere_2022_133982
crossref_primary_10_2166_wcc_2023_539
crossref_primary_10_1016_j_heliyon_2022_e11269
crossref_primary_10_1007_s00344_024_11280_4
crossref_primary_10_1016_S1002_0160_21_60051_6
crossref_primary_10_3390_cells10102537
crossref_primary_10_3390_microorganisms10071286
crossref_primary_10_3390_microorganisms13010187
crossref_primary_10_31857_S0555109923040074
crossref_primary_10_1016_j_crsust_2021_100063
crossref_primary_10_3390_su14063480
crossref_primary_10_3389_fpls_2021_665590
crossref_primary_10_1007_s00284_022_02853_1
crossref_primary_10_1016_j_isci_2022_104755
crossref_primary_10_1016_j_crbiot_2023_100128
crossref_primary_10_1111_pce_14266
crossref_primary_10_26898_0370_8799_2023_5_3
crossref_primary_10_3390_ijms24119759
crossref_primary_10_1007_s00284_023_03273_5
crossref_primary_10_3389_fpls_2021_796847
crossref_primary_10_1007_s00344_024_11394_9
crossref_primary_10_3389_fpls_2023_1141538
crossref_primary_10_14202_IJOH_2024_45_55
crossref_primary_10_1007_s00344_021_10571_4
crossref_primary_10_1134_S1021443723600435
crossref_primary_10_1371_journal_pone_0248200
crossref_primary_10_1186_s12870_024_05534_2
crossref_primary_10_3390_agronomy11061167
crossref_primary_10_3390_agronomy14091891
crossref_primary_10_1007_s00344_024_11251_9
crossref_primary_10_3389_fpls_2024_1500894
crossref_primary_10_3390_agriculture11030272
crossref_primary_10_1080_01904167_2022_2046084
crossref_primary_10_3389_fpls_2022_1108276
crossref_primary_10_32350_BSR_0401_03
crossref_primary_10_32615_bp_2023_001
crossref_primary_10_1007_s00284_022_03012_2
crossref_primary_10_3389_fpls_2022_867531
crossref_primary_10_3390_plants11151927
crossref_primary_10_1111_ppl_14202
crossref_primary_10_1016_j_plaphy_2023_01_036
crossref_primary_10_3389_fpls_2024_1482739
crossref_primary_10_1002_ldr_4064
crossref_primary_10_3390_agriculture11060485
crossref_primary_10_3389_fmicb_2022_833566
crossref_primary_10_1186_s12870_021_02937_3
crossref_primary_10_3389_fpls_2023_1041413
crossref_primary_10_1016_j_tplants_2022_02_008
crossref_primary_10_69650_ahstr_2024_1280
crossref_primary_10_3390_plants12112083
crossref_primary_10_1002_sae2_70032
crossref_primary_10_1016_j_rhisph_2022_100472
crossref_primary_10_1094_PBIOMES_5_2
crossref_primary_10_1111_ppl_14458
crossref_primary_10_3390_horticulturae9121306
crossref_primary_10_1016_j_envexpbot_2022_105071
crossref_primary_10_1007_s42729_024_01996_3
crossref_primary_10_1016_j_stress_2023_100226
crossref_primary_10_1007_s41748_024_00552_4
crossref_primary_10_3390_w14050799
crossref_primary_10_1016_j_rhisph_2024_100905
crossref_primary_10_1016_j_envres_2023_116357
crossref_primary_10_1002_sae2_70026
crossref_primary_10_1016_j_jbiotec_2022_05_002
crossref_primary_10_1007_s42729_022_00937_2
crossref_primary_10_3390_antiox12091710
crossref_primary_10_1016_j_indcrop_2025_120720
crossref_primary_10_1186_s12870_024_05634_z
crossref_primary_10_3390_microorganisms8091256
crossref_primary_10_1186_s13007_023_01022_0
crossref_primary_10_1016_j_plaphy_2023_02_024
crossref_primary_10_3390_antiox11050917
crossref_primary_10_2166_wcc_2022_134
crossref_primary_10_32615_bp_2023_022
crossref_primary_10_3390_plants13121639
crossref_primary_10_1016_j_stress_2024_100458
crossref_primary_10_1080_01904167_2025_2461279
crossref_primary_10_18006_2024_12_3__335_353
crossref_primary_10_1016_j_heliyon_2023_e12953
crossref_primary_10_1007_s11105_021_01308_4
crossref_primary_10_1016_j_envexpbot_2021_104511
crossref_primary_10_3390_resources11020021
crossref_primary_10_3390_agronomy11020404
crossref_primary_10_3389_fmicb_2022_1008451
crossref_primary_10_1007_s40626_022_00237_1
crossref_primary_10_1016_j_heliyon_2024_e40517
crossref_primary_10_1007_s44372_024_00022_1
crossref_primary_10_1007_s00203_022_03043_0
crossref_primary_10_1016_j_heliyon_2022_e09893
crossref_primary_10_1007_s13205_022_03278_0
crossref_primary_10_3390_environments8080086
crossref_primary_10_1007_s12298_024_01470_5
crossref_primary_10_1111_ppl_13545
crossref_primary_10_3389_fpls_2022_993189
crossref_primary_10_3390_agriculture13051021
crossref_primary_10_1016_j_pmpp_2021_101679
crossref_primary_10_1016_j_scitotenv_2022_160542
crossref_primary_10_3389_fmicb_2022_928967
crossref_primary_10_1094_PBIOMES_07_20_0052_R
crossref_primary_10_3389_fmars_2024_1379439
crossref_primary_10_1007_s12892_022_00148_2
crossref_primary_10_3389_fpls_2021_767150
Cites_doi 10.1023/B:JAPH.0000047782.20940.de
10.1007/s00374-009-0404-9
10.1007/978-3-319-08216-5_9
10.1007/s11103-016-0503-6
10.1016/0003-9861(59)90090-6
10.9787/PBB.2016.4.4.398
10.1002/jobm.201500459
10.1186/1471-2229-14-154
10.1128/AEM.68.8.3795-3801.2002
10.3389/fpls.2018.01397
10.1073/pnas.1701762114
10.1016/S0734-9750(99)00014-2
10.1016/j.molp.2015.09.005
10.1007/s11104-014-2063-3
10.1007/s13213-019-01470-x
10.3390/ijms14059643
10.1007/s13205-017-0739-0
10.1186/s12870-016-0771-y
10.3390/agronomy8030031
10.1104/pp.112.208298
10.1104/pp.105.063149
10.1016/j.plantsci.2005.09.005
10.1071/FP03024
10.1016/j.envexpbot.2007.06.007
10.1111/jpi.12167
10.1007/3-540-26609-7_9
10.3390/plants8100363
10.3390/ijms131215706
10.1199/tab.0036.1
10.1104/pp.116.1.387
10.4014/jmb.1906.06010
10.2135/cropsci2003.0678
10.1007/978-94-007-2220-0_8
10.1023/A:1006386800974
10.1111/j.1365-3040.2005.01324.x
10.1104/pp.111.175810
10.1007/s00344-009-9114-7
10.1016/j.pbi.2011.02.001
10.1007/s13213-010-0033-4
10.1186/1471-2229-10-34
10.1186/1471-2180-12-3
10.3389/fchem.2018.00026
10.1016/S1049-9644(02)00108-1
10.1023/A:1022304332313
10.1111/j.1432-1033.1974.tb03714.x
10.1007/BF02895849
10.3389/fpls.2016.00584
10.1080/17429145.2017.1310941
10.2478/s11756-008-0089-9
10.1093/jxb/49.321.713
10.1007/s00018-006-6321-2
10.5586/asbp.3554
10.1007/s11274-013-1378-1
10.1016/0003-2697(87)90612-9
10.1007/s11103-018-0767-0
10.1007/s11306-015-0941-1
10.1007/s00425-002-0895-1
10.1080/17429145.2010.545147
10.1016/j.tplants.2008.10.004
10.1016/j.ejbt.2016.02.001
10.1007/s00253-004-1696-1
10.1016/j.envexpbot.2017.01.010
10.1104/pp.102.017145
10.1016/S0304-4165(89)80016-9
10.3389/fpls.2013.00273
10.1016/j.plaphy.2016.05.006
10.1016/j.soilbio.2007.06.017
10.3389/fmicb.2018.00284
10.1016/j.micres.2017.08.009
10.3390/microorganisms5030041
10.3389/fpls.2017.01510
10.1093/oxfordjournals.pcp.a029575
10.1105/tpc.12.4.479
10.1007/s00284-008-9105-0
10.15406/mojbm.2017.02.00042
10.1007/s13199-018-0562-3
10.1023/A:1014780630479
10.1016/j.agee.2008.01.019
10.1034/j.1399-3054.2000.100114.x
10.1093/molbev/mst197
10.3389/fenvs.2015.00011
10.3389/fpls.2018.00998
10.1007/978-3-319-78283-6_10
10.1111/ppl.12220
10.1016/S0038-0717(97)00026-6
10.1111/j.1365-313X.2004.02054.x
10.1104/pp.109.139352
10.4014/jmb.1101.01031
10.1023/B:EUPH.0000046806.68554.5b
10.3390/agronomy9030144
10.1111/pbi.12556
10.3389/fmicb.2017.02104
10.3390/agronomy9020043
10.1016/j.jare.2017.09.001
10.1016/j.sjbs.2015.06.002
10.1016/j.bjm.2018.01.007
10.3389/fpls.2018.01705
10.1016/j.plantsci.2014.11.005
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7T7
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12866-020-01822-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Agriculture
EISSN 1471-2180
EndPage 14
ExternalDocumentID oai_doaj_org_article_df63911d4cac427db50cb83f9055c31b
PMC7310250
A627548427
32571217
10_1186_s12866_020_01822_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2017R1D1A1B04035601
– fundername: ;
  grantid: 2017R1D1A1B04035601
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK5
LK8
M1P
M48
M7P
M7R
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
~02
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QL
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5127-466f36e033fd05a8b3aa38244f999e9a9b3604c60ce3cf409fd3aa65c5f938b13
IEDL.DBID M48
ISSN 1471-2180
IngestDate Wed Aug 27 01:20:08 EDT 2025
Thu Aug 21 14:06:07 EDT 2025
Thu Jul 10 18:10:14 EDT 2025
Fri Jul 25 19:12:46 EDT 2025
Tue Jun 17 21:18:03 EDT 2025
Tue Jun 10 20:27:39 EDT 2025
Fri Jun 27 04:23:39 EDT 2025
Mon Jul 21 06:02:20 EDT 2025
Tue Jul 01 04:31:33 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HSP expression
Amino acid
Heat stress
Phytohormone
Soybean
B. cereus SA1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5127-466f36e033fd05a8b3aa38244f999e9a9b3604c60ce3cf409fd3aa65c5f938b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12866-020-01822-7
PMID 32571217
PQID 2424717605
PQPubID 42585
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_df63911d4cac427db50cb83f9055c31b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7310250
proquest_miscellaneous_2416264383
proquest_journals_2424717605
gale_infotracmisc_A627548427
gale_infotracacademiconefile_A627548427
gale_incontextgauss_ISR_A627548427
pubmed_primary_32571217
crossref_primary_10_1186_s12866_020_01822_7
crossref_citationtrail_10_1186_s12866_020_01822_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-22
PublicationDateYYYYMMDD 2020-06-22
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC microbiology
PublicationTitleAlternate BMC Microbiol
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References M Hasanuzzaman (1822_CR6) 2013; 14
C Bita (1822_CR4) 2013; 4
R Grene (1822_CR8) 2002; 1
R Awasthi (1822_CR7) 2015; 3
T Hisamatsu (1822_CR58) 2000; 109
JA de Ronde (1822_CR84) 2004; 138
M Ghani (1822_CR30) 2016; 4
A Deubel (1822_CR40) 2005
P Verma (1822_CR45) 2016; 56
MA Khan (1822_CR105) 2019; 7
SZ Ali (1822_CR19) 2009; 46
C-X Chan (1822_CR112) 2004; 16
L Yuan (1822_CR87) 2017; 86
SM Kang (1822_CR102) 2012; 44
R Bottini (1822_CR62) 2004; 65
H Rodriguez (1822_CR43) 1999; 17
S Tiwari (1822_CR18) 2017; 8
R Shahzad (1822_CR76) 2016; 106
L Zhou (1822_CR92) 2014; 14
M Hasanuzzaman (1822_CR13) 2018; 8
S-W Hong (1822_CR89) 2003; 132
Y Kim (1822_CR108) 2018; 13
B Mohite (1822_CR38) 2013; 13
K Tamura (1822_CR99) 2013; 30
MH Siddiqui (1822_CR52) 2017; 12
DB Lobell (1822_CR1) 2012; 160
WI Kim (1822_CR36) 2011; 21
R Ortiz (1822_CR3) 2008; 126
H Khurshid (1822_CR26) 2017; 2
MA Khan (1822_CR27) 2019; 69
C Chai (1822_CR90) 2016; 7
HJ Zhang (1822_CR63) 2014; 57
GJ Ahammed (1822_CR47) 2018; 9
T Senaratna (1822_CR72) 2000; 30
Y-G Park (1822_CR17) 2017; 12
KK Chebrolu (1822_CR31) 2016; 12
F Gagné-Bourque (1822_CR81) 2016; 7
GL Ellman (1822_CR110) 1959; 82
TM Hildebrandt (1822_CR78) 2018; 98
M Lamaoui (1822_CR15) 2018; 6
CL Patten (1822_CR94) 2002; 68
Q-J Wang (1822_CR69) 2016; 14
A Adhikari (1822_CR95) 2020; 30
KK Bhise (1822_CR83) 2017; 7
NN Vettakkorumakankav (1822_CR54) 1999; 40
S Marklund (1822_CR109) 1974; 47
JA Curá (1822_CR67) 2017; 5
M Thuzar (1822_CR33) 2010; 2
S Bensalim (1822_CR24) 1998; 75
SE-D Hassan (1822_CR37) 2017; 8
J Dobrá (1822_CR49) 2015; 231
KK Bashar (1822_CR64) 2019; 9
C Zhao (1822_CR34) 2017; 114
AL Khan (1822_CR101) 2012; 12
IA Abd El-Daim (1822_CR22) 2014; 379
K-E Lee (1822_CR61) 2019; 9
M Hasanuzzaman (1822_CR9) 2012
J Yang (1822_CR53) 2009; 14
A Alonso-Ramírez (1822_CR60) 2009; 150
H Jooyandeh (1822_CR29) 2011; 7
MH Siddiqui (1822_CR5) 2015; 22
R Othman (1822_CR41) 2014
S Srivastava (1822_CR21) 2008; 56
B Schwyn (1822_CR96) 1987; 160
SM Clarke (1822_CR73) 2004; 38
AA Santos (1822_CR82) 2018; 49
R Jan (1822_CR113) 2019; 8
A Maggio (1822_CR56) 2010; 29
L-J Wang (1822_CR74) 2006; 170
N Jan (1822_CR14) 2018
MA Khan (1822_CR97) 2019
SZ Ali (1822_CR20) 2011; 6
GJ Ahammed (1822_CR51) 2016
W-T Lv (1822_CR86) 2011; 156
JA Stavang (1822_CR59) 2005; 138
E Pérez (1822_CR44) 2007; 39
Z-S Xu (1822_CR11) 2012; 13
TD Sharkey (1822_CR46) 2005; 28
MA Khan (1822_CR93) 2020; 15
JI Vílchez (1822_CR80) 2018; 9
B Genty (1822_CR104) 1989; 990
AL Khan (1822_CR107) 2013; 29
MA Khan (1822_CR28) 2019; 77
A Sgobba (1822_CR32) 2015; 153
MAM Barbosa (1822_CR79) 2013; 7
T Vimala (1822_CR103) 2013; 4
K Georgieva (1822_CR85) 2003; 30
BR Glick (1822_CR48) 1997; 29
D Egamberdieva (1822_CR25) 2017; 8
H Lopez-Delgado (1822_CR71) 1998; 49
M Ashraf (1822_CR57) 2002; 36
Y He (1822_CR16) 2005; 45
V Verma (1822_CR65) 2016; 16
A Sehgal (1822_CR35) 2018; 9
R Deeken (1822_CR91) 2002; 216
AL Tuna (1822_CR55) 2008; 62
S Zhang (1822_CR68) 2002; 25
M Seskar (1822_CR106) 1998; 116
C de Ollas (1822_CR66) 2016; 91
R Shahzad (1822_CR75) 2017; 136
C Queitsch (1822_CR12) 2000; 12
IPCC (1822_CR2) 2007
J Sambrook (1822_CR98) 2001
M Yildiz (1822_CR10) 2008; 63
H Nakamoto (1822_CR88) 2007; 64
D Jones (1822_CR39) 2003; 248
U Iqbal (1822_CR42) 2010; 60
AL Khan (1822_CR100) 2016; 21
Z Peleg (1822_CR50) 2011; 14
S Asaf (1822_CR111) 2017; 205
A Issa (1822_CR23) 2018; 9
LJ Wang (1822_CR70) 2010; 10
M Hildebrandt Tatjana (1822_CR77) 2015; 8
References_xml – volume: 16
  start-page: 297
  issue: 4
  year: 2004
  ident: 1822_CR112
  publication-title: J Appl Phycol
  doi: 10.1023/B:JAPH.0000047782.20940.de
– volume: 46
  start-page: 45
  issue: 1
  year: 2009
  ident: 1822_CR19
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-009-0404-9
– start-page: 207
  volume-title: Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology
  year: 2014
  ident: 1822_CR41
  doi: 10.1007/978-3-319-08216-5_9
– volume: 91
  start-page: 641
  issue: 6
  year: 2016
  ident: 1822_CR66
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-016-0503-6
– volume: 82
  start-page: 70
  issue: 1
  year: 1959
  ident: 1822_CR110
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(59)90090-6
– volume: 4
  start-page: 398
  issue: 4
  year: 2016
  ident: 1822_CR30
  publication-title: Plant Breeding Biotechnol
  doi: 10.9787/PBB.2016.4.4.398
– volume: 56
  start-page: 44
  issue: 1
  year: 2016
  ident: 1822_CR45
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.201500459
– volume: 14
  start-page: 154
  year: 2014
  ident: 1822_CR92
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-14-154
– volume: 68
  start-page: 3795
  issue: 8
  year: 2002
  ident: 1822_CR94
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.8.3795-3801.2002
– volume: 9
  start-page: 1397
  year: 2018
  ident: 1822_CR23
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01397
– volume: 114
  start-page: 9326
  issue: 35
  year: 2017
  ident: 1822_CR34
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1701762114
– volume: 17
  start-page: 319
  issue: 4–5
  year: 1999
  ident: 1822_CR43
  publication-title: Biotechnol Adv
  doi: 10.1016/S0734-9750(99)00014-2
– volume: 8
  start-page: 1563
  issue: 11
  year: 2015
  ident: 1822_CR77
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2015.09.005
– volume-title: Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings BioMed research international
  year: 2019
  ident: 1822_CR97
– volume: 379
  start-page: 337
  issue: 1
  year: 2014
  ident: 1822_CR22
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2063-3
– volume: 69
  start-page: 797
  year: 2019
  ident: 1822_CR27
  publication-title: Ann Microbiol
  doi: 10.1007/s13213-019-01470-x
– volume: 14
  start-page: 9643
  issue: 5
  year: 2013
  ident: 1822_CR6
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms14059643
– volume: 7
  start-page: 105
  issue: 2
  year: 2017
  ident: 1822_CR83
  publication-title: 3 Biotech
  doi: 10.1007/s13205-017-0739-0
– volume: 16
  start-page: 86
  year: 2016
  ident: 1822_CR65
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-016-0771-y
– volume: 7
  start-page: 1983
  issue: 13
  year: 2013
  ident: 1822_CR79
  publication-title: Aust J Crop Sci
– volume: 8
  start-page: 31
  issue: 3
  year: 2018
  ident: 1822_CR13
  publication-title: Agronomy
  doi: 10.3390/agronomy8030031
– volume: 160
  start-page: 1686
  issue: 4
  year: 2012
  ident: 1822_CR1
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.208298
– volume: 2
  start-page: 172
  year: 2010
  ident: 1822_CR33
  publication-title: J Agric Sci
– volume: 138
  start-page: 2344
  issue: 4
  year: 2005
  ident: 1822_CR59
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.063149
– volume: 44
  start-page: 365
  issue: 1
  year: 2012
  ident: 1822_CR102
  publication-title: Pakistan J Botany
– volume: 170
  start-page: 685
  issue: 4
  year: 2006
  ident: 1822_CR74
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2005.09.005
– volume: 30
  start-page: 515
  issue: 5
  year: 2003
  ident: 1822_CR85
  publication-title: Funct Plant Biol
  doi: 10.1071/FP03024
– volume: 62
  start-page: 1
  issue: 1
  year: 2008
  ident: 1822_CR55
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2007.06.007
– volume: 57
  start-page: 269
  issue: 3
  year: 2014
  ident: 1822_CR63
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12167
– start-page: 177
  volume-title: Microorganisms in soils: roles in genesis and functions. Influence of Microorganisms on Phosphorus Bioavailability in Soils
  year: 2005
  ident: 1822_CR40
  doi: 10.1007/3-540-26609-7_9
– volume: 8
  start-page: 363
  issue: 10
  year: 2019
  ident: 1822_CR113
  publication-title: Plants
  doi: 10.3390/plants8100363
– volume: 13
  start-page: 15706
  issue: 12
  year: 2012
  ident: 1822_CR11
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms131215706
– volume: 7
  year: 2019
  ident: 1822_CR105
  publication-title: PeerJ
– volume: 1
  start-page: e0036
  year: 2002
  ident: 1822_CR8
  publication-title: Arabidopsis Book
  doi: 10.1199/tab.0036.1
– volume: 116
  start-page: 387
  issue: 1
  year: 1998
  ident: 1822_CR106
  publication-title: Plant Physiol
  doi: 10.1104/pp.116.1.387
– volume: 30
  start-page: 118
  issue: 1
  year: 2020
  ident: 1822_CR95
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1906.06010
– volume: 45
  start-page: 988
  year: 2005
  ident: 1822_CR16
  publication-title: Crop Sci
  doi: 10.2135/cropsci2003.0678
– start-page: 261
  volume-title: Crop Stress and its Management: Perspectives and Strategies
  year: 2012
  ident: 1822_CR9
  doi: 10.1007/978-94-007-2220-0_8
– volume: 30
  start-page: 157
  issue: 2
  year: 2000
  ident: 1822_CR72
  publication-title: Plant Growth Regul
  doi: 10.1023/A:1006386800974
– volume: 28
  start-page: 269
  issue: 3
  year: 2005
  ident: 1822_CR46
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01324.x
– volume: 156
  start-page: 1921
  issue: 4
  year: 2011
  ident: 1822_CR86
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175810
– volume: 29
  start-page: 63
  issue: 1
  year: 2010
  ident: 1822_CR56
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-009-9114-7
– volume: 14
  start-page: 290
  issue: 3
  year: 2011
  ident: 1822_CR50
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2011.02.001
– volume: 60
  start-page: 243
  issue: 2
  year: 2010
  ident: 1822_CR42
  publication-title: Ann Microbiol
  doi: 10.1007/s13213-010-0033-4
– volume: 10
  start-page: 34
  year: 2010
  ident: 1822_CR70
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-34
– volume: 12
  start-page: 3
  issue: 1
  year: 2012
  ident: 1822_CR101
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-12-3
– volume-title: Molecular cloning: a laboratory manual
  year: 2001
  ident: 1822_CR98
– volume: 6
  start-page: 26
  year: 2018
  ident: 1822_CR15
  publication-title: Front Chem
  doi: 10.3389/fchem.2018.00026
– volume: 12
  issue: 3
  year: 2017
  ident: 1822_CR17
  publication-title: PLoS One
– start-page: 1
  volume-title: Plant Hormones under Challenging Environmental Factors
  year: 2016
  ident: 1822_CR51
– volume-title: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: 1822_CR2
– volume: 25
  start-page: 288
  issue: 3
  year: 2002
  ident: 1822_CR68
  publication-title: Biol Control
  doi: 10.1016/S1049-9644(02)00108-1
– volume: 248
  start-page: 31
  issue: 1–2
  year: 2003
  ident: 1822_CR39
  publication-title: Plant Soil
  doi: 10.1023/A:1022304332313
– volume: 47
  start-page: 469
  issue: 3
  year: 1974
  ident: 1822_CR109
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1974.tb03714.x
– volume: 7
  start-page: 71
  issue: 1
  year: 2011
  ident: 1822_CR29
  publication-title: Middle-East J Sci Res
– volume: 75
  start-page: 145
  issue: 3
  year: 1998
  ident: 1822_CR24
  publication-title: Am J Potato Res
  doi: 10.1007/BF02895849
– volume: 7
  start-page: 584
  year: 2016
  ident: 1822_CR81
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00584
– volume: 12
  start-page: 177
  issue: 1
  year: 2017
  ident: 1822_CR52
  publication-title: J Plant Interact
  doi: 10.1080/17429145.2017.1310941
– volume: 63
  start-page: 521
  issue: 4
  year: 2008
  ident: 1822_CR10
  publication-title: Biologia
  doi: 10.2478/s11756-008-0089-9
– volume: 49
  start-page: 713
  issue: 321
  year: 1998
  ident: 1822_CR71
  publication-title: J Exp Bot
  doi: 10.1093/jxb/49.321.713
– volume: 64
  start-page: 294
  issue: 3
  year: 2007
  ident: 1822_CR88
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-006-6321-2
– volume: 86
  start-page: 1
  year: 2017
  ident: 1822_CR87
  publication-title: Acta Soc Bot Pol
  doi: 10.5586/asbp.3554
– volume: 29
  start-page: 2133
  issue: 11
  year: 2013
  ident: 1822_CR107
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-013-1378-1
– volume: 160
  start-page: 47
  issue: 1
  year: 1987
  ident: 1822_CR96
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(87)90612-9
– volume: 98
  start-page: 121
  issue: 1–2
  year: 2018
  ident: 1822_CR78
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-018-0767-0
– volume: 12
  start-page: 28
  issue: 2
  year: 2016
  ident: 1822_CR31
  publication-title: Metabolomics
  doi: 10.1007/s11306-015-0941-1
– volume: 216
  start-page: 334
  issue: 2
  year: 2002
  ident: 1822_CR91
  publication-title: Planta
  doi: 10.1007/s00425-002-0895-1
– volume: 6
  start-page: 239
  issue: 4
  year: 2011
  ident: 1822_CR20
  publication-title: J Plant Interact
  doi: 10.1080/17429145.2010.545147
– volume: 14
  start-page: 1
  issue: 1
  year: 2009
  ident: 1822_CR53
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2008.10.004
– volume: 21
  start-page: 58
  year: 2016
  ident: 1822_CR100
  publication-title: Electron J Biotechnol
  doi: 10.1016/j.ejbt.2016.02.001
– volume: 65
  start-page: 497
  issue: 5
  year: 2004
  ident: 1822_CR62
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-004-1696-1
– volume: 136
  start-page: 68
  year: 2017
  ident: 1822_CR75
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2017.01.010
– volume: 132
  start-page: 757
  issue: 2
  year: 2003
  ident: 1822_CR89
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.017145
– volume: 990
  start-page: 87
  issue: 1
  year: 1989
  ident: 1822_CR104
  publication-title: Biochim Biophys Acta Gen Subj
  doi: 10.1016/S0304-4165(89)80016-9
– volume: 4
  start-page: 273
  year: 2013
  ident: 1822_CR4
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00273
– volume: 106
  start-page: 236
  year: 2016
  ident: 1822_CR76
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2016.05.006
– volume: 39
  start-page: 2905
  issue: 11
  year: 2007
  ident: 1822_CR44
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.06.017
– volume: 9
  start-page: 284
  year: 2018
  ident: 1822_CR80
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00284
– volume: 205
  start-page: 135
  year: 2017
  ident: 1822_CR111
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2017.08.009
– volume: 5
  start-page: 41
  issue: 3
  year: 2017
  ident: 1822_CR67
  publication-title: Microorganisms
  doi: 10.3390/microorganisms5030041
– volume: 8
  start-page: 1510
  year: 2017
  ident: 1822_CR18
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01510
– volume: 4
  start-page: 1850
  issue: 10
  year: 2013
  ident: 1822_CR103
  publication-title: Int J Sci Res
– volume: 40
  start-page: 542
  issue: 5
  year: 1999
  ident: 1822_CR54
  publication-title: Plant Cell Physiol
  doi: 10.1093/oxfordjournals.pcp.a029575
– volume: 12
  start-page: 479
  issue: 4
  year: 2000
  ident: 1822_CR12
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.4.479
– volume: 56
  start-page: 453
  issue: 5
  year: 2008
  ident: 1822_CR21
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-008-9105-0
– volume: 2
  start-page: 189
  issue: 1
  year: 2017
  ident: 1822_CR26
  publication-title: MOJ Biol Med
  doi: 10.15406/mojbm.2017.02.00042
– volume: 15
  issue: 4
  year: 2020
  ident: 1822_CR93
  publication-title: PLoS One
– volume: 77
  start-page: 9
  issue: 1
  year: 2019
  ident: 1822_CR28
  publication-title: Symbiosis
  doi: 10.1007/s13199-018-0562-3
– volume: 36
  start-page: 49
  issue: 1
  year: 2002
  ident: 1822_CR57
  publication-title: Plant Growth Regul
  doi: 10.1023/A:1014780630479
– volume: 126
  start-page: 46
  issue: 1
  year: 2008
  ident: 1822_CR3
  publication-title: Agric Ecosystems Environ
  doi: 10.1016/j.agee.2008.01.019
– volume: 109
  start-page: 97
  issue: 1
  year: 2000
  ident: 1822_CR58
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.2000.100114.x
– volume: 30
  start-page: 2725
  issue: 12
  year: 2013
  ident: 1822_CR99
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 3
  start-page: 11
  year: 2015
  ident: 1822_CR7
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00011
– volume: 7
  start-page: 282
  year: 2016
  ident: 1822_CR90
  publication-title: Front Plant Sci
– volume: 13
  issue: 3
  year: 2018
  ident: 1822_CR108
  publication-title: PLoS One
– volume: 9
  start-page: 998
  year: 2018
  ident: 1822_CR47
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00998
– start-page: 327
  volume-title: Biotechnologies of Crop Improvement, Volume 1: Cellular Approaches
  year: 2018
  ident: 1822_CR14
  doi: 10.1007/978-3-319-78283-6_10
– volume: 153
  start-page: 68
  issue: 1
  year: 2015
  ident: 1822_CR32
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12220
– volume: 29
  start-page: 1233
  issue: 8
  year: 1997
  ident: 1822_CR48
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00026-6
– volume: 38
  start-page: 432
  issue: 3
  year: 2004
  ident: 1822_CR73
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02054.x
– volume: 150
  start-page: 1335
  issue: 3
  year: 2009
  ident: 1822_CR60
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.139352
– volume: 21
  start-page: 777
  issue: 8
  year: 2011
  ident: 1822_CR36
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1101.01031
– volume: 138
  start-page: 123
  issue: 2
  year: 2004
  ident: 1822_CR84
  publication-title: Euphytica
  doi: 10.1023/B:EUPH.0000046806.68554.5b
– volume: 9
  start-page: 144
  issue: 3
  year: 2019
  ident: 1822_CR61
  publication-title: Agronomy
  doi: 10.3390/agronomy9030144
– volume: 14
  start-page: 1986
  issue: 10
  year: 2016
  ident: 1822_CR69
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12556
– volume: 8
  start-page: 2104
  year: 2017
  ident: 1822_CR25
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02104
– volume: 9
  start-page: 43
  issue: 2
  year: 2019
  ident: 1822_CR64
  publication-title: Agronomy
  doi: 10.3390/agronomy9020043
– volume: 13
  start-page: 638
  issue: 3
  year: 2013
  ident: 1822_CR38
  publication-title: J Soil Sci Plant Nutr
– volume: 8
  start-page: 687
  issue: 6
  year: 2017
  ident: 1822_CR37
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2017.09.001
– volume: 22
  start-page: 656
  issue: 5
  year: 2015
  ident: 1822_CR5
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2015.06.002
– volume: 49
  start-page: 685
  issue: 4
  year: 2018
  ident: 1822_CR82
  publication-title: Braz J Microbiol
  doi: 10.1016/j.bjm.2018.01.007
– volume: 9
  start-page: 1705
  year: 2018
  ident: 1822_CR35
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01705
– volume: 231
  start-page: 52
  year: 2015
  ident: 1822_CR49
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2014.11.005
SSID ssj0017837
Score 2.6384573
Snippet Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety,...
Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as...
Abstract Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 175
SubjectTerms Abscisic acid
Abscisic Acid - metabolism
Acetic acid
Agricultural production
Agriculture
Amino acid
Amino acids
Analysis
Antioxidants
Antioxidants (Nutrients)
Ascorbic acid
Auxins
B. cereus SA1
Bacillus cereus - isolation & purification
Bacillus cereus - metabolism
Bacillus cereus - physiology
Bacteria
Biofertilizers
Biological activity
Biomass
Carotenoids
Chlorophyll
Climate change
Commercialization
Crop production
Crop yields
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Crops, Agricultural - microbiology
Endophytes
Endophytes - physiology
Fluorescence
Gene Expression Regulation, Plant - drug effects
Genes
Genetic engineering
Gibberellins
Global climate
Glutathione
Glycine max - genetics
Glycine max - growth & development
Glycine max - microbiology
Growth
Heat
Heat shock proteins
Heat stress
Heat tolerance
Heat-Shock Proteins - genetics
Heat-Shock Response
HSP expression
Indoleacetic acid
Inoculation
L-Ascorbate peroxidase
Lipids
Metabolites
Organic acids
Peroxidase
Physiological aspects
Physiological effects
Phytohormone
Plant growth
Plant Proteins - genetics
Productivity
Proteins
Reactive oxygen species
Salicylic acid
Salicylic Acid - metabolism
Soil Microbiology
Soybean
Soybeans
Stress response
Superoxide dismutase
Superoxides
Temperature tolerance
Thermotolerance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltOnLaVrUUuihmNjW08dNaUh76KFpIDchydImYOxlvXvIv--M5V3WFNpLTwZrZOyZ0TzwzDeEfFRMNxX3RQ7eoc65iz6vY8Xy2ITSVw1DxBOstvghr27491txezDqC2vCEjxwYtx5E8GHlmXDvfW8Uo0ThXeaxboQwrPSofUFn7dLpqb_Bwryrl2LjJbnA1hhicW2WIQFLjFXMzc0ovX_aZMPnNK8YPLAA10-JU-m0JEu0is_I49Cd0KO0zDJh-fEgcTXwPi-DTgsI9BUqkH7SFct8I8uIePe3OWrVIDXLemF9fdtux2oD-sAl-tFSfuODv2DC7ajqYORorWmqaXkBbm5_Prry1U-TVDIPThylXMpI5OhYCw2hbDaMWuZBo8eIS4Mta0dkwX3svCB-QipXmyAQgovYs20K9lLctT1XXhNaGFBqBhO6agQUKbWgnNV6WADF6LiGSl3DDV-ghfHKRetGdMMLU0SggEhmFEIRmXk837PKoFr_JX6AuW0p0Rg7PEGqIuZ1MX8S10y8gGlbBD6osPamqXdDoP5dv3TLBCwmWvYlZFPE1Hs4RvgUalVATiBaFkzyrMZJZxNP1_eKZOZbMNgsCEHkmjIIzPyfr-MO7HerQv9FmlKyDQRRjYjr5Lu7b-bgZUtIZPMiJpp5Ywx85Xu_m5EDlcQzEPMe_o_OPmGPK7GAyXzqjojR5v1NryFAG3j3o1n8TeL6TVv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t2UggxC4oCsxrFjOye0RVSFAwdKpb1ZiWNvK0XJstk99N93Js6GRkg9rRSPo82MPY_k8zeEfNLC1Jl0KYPoUDBZBceKkAkWas9dVgtkPEG0xS91fil_LvPl-MKtH2GVe584OOq6c_iO_ASPMUDpAdn31_Vfhl2j8Ovq2ELjIXmE1GUI6dLLqeDiGqqv_UEZo0568MUKIbcIxYLAyPQsGA2c_f975juhaQ6bvBOHzp6Rp2MCSRfR4s_JA9--II9jS8mbl6QCu29A_V3jsWWGpxGwQbtA1w1oka6g7t5esXWE4bUrelq666bZ9dT5jYefiwWnXUv77qbyZUvjOUaKPpvGgyWvyOXZ9z_fztnYR4E5COeaSaWCUD4VItRpXppKlKUwENcDZIe-KItKqFQ6lTovXICCL9QgoXKXh0KYiovX5KDtWn9IaFqCaTGpMkEjrUxhcil1ZnzpZZ5nMiF8r1DrRpJx7HXR2KHYMMpGI1gwgh2MYHVCvkxz1pFi417pU7TTJIn02MOFbrOy426zdYDEi_NautLJTNdVnrrKiFCkee4ErxLyEa1skQCjRYTNqtz1vf1x8dsukLZZGpiVkM-jUOjgGeBW8cACaAI5s2aSxzNJ2KFuPrxfTHb0EL39t54T8mEaxpmIemt9t0MZDvUmkskm5E1ce9NzC_C1HOrJhOjZqpwpZj7SXl8N_OEaUnrIfI_u_1tvyZNs2CqKZdkxOdhudv4dJGDb6v2wy24BobosiA
  priority: 102
  providerName: ProQuest
Title Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress
URI https://www.ncbi.nlm.nih.gov/pubmed/32571217
https://www.proquest.com/docview/2424717605
https://www.proquest.com/docview/2416264383
https://pubmed.ncbi.nlm.nih.gov/PMC7310250
https://doaj.org/article/df63911d4cac427db50cb83f9055c31b
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_uA-VexG-jZ1lF8EGiSXaTTR5EWrnjFDykZ6H4siSb3d5BSGrTgv3vnclH74KnLylkZ1MyHzsz7cxvAN5IHueB0J6L3iFxRWa1m9iAuzY3vg5yTognVG1xHp3NxNd5ON-DftxRx8D61tSO5knNVsX737-2n9DgPzYGH0cfajxjIyqlpRIrdHiu3IdD_G5JhvpNXP-rIDEb6xtnbt13BHc56rAfNPPLrv1UA-f_96F9w2sNKypvuKjT-3Cviy3ZuFWGB7Bnyodwp502uX0EGarECiVTFYamaRjW1nKwyrJlgQxmC0zJ15fusq3QKxdskuqrotjUTJuVwY-Lsc-qktXVNjNpydoWR0bHOWt7Th7D7PTkx-cztxux4Gr09NIVUWR5ZDzObe6FaZzxNOUxunyLgaNJ0iTjkSd05GnDtcVc0OZIEYU6tAmPM58_gYOyKs0zYF6KUqd4K7aSEGeSOBRCBrFJjQjDQDjg9wxVusMfpzEYhWrykDhSrTwUykM18lDSgXe7PcsWfeO_1BOS046SkLObG9VqoTpDVLnFmMz3c6FTLQKZZ6Gns5jbxAtDzf3MgdckZUXYGCUV3yzSTV2rLxdTNSZEZxHjLgfedkS2wnfAR7W9DMgJgtMaUB4PKNF49XC5VybV676ijh3MsjHRdODVbpl2UkFcaaoN0fiYihLOrANPW93bvXevwg7IgVYOGDNcKa8uG2hxidE-BsXP__nMF3AUNAYTuUFwDAfr1ca8xLBsnY1gX87lCA4nJ-ffp6Pmx41RY394nU5-_gG04DQH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgQviDuBAQaBeEDWEttJnAeEWtjUslGhXaS9mcSxu0lVUppWqH-K38g5uZRFSHvbU6T6OEp87s053yHkXSxUzqXxGXiHhMnMGZY4LpjLbWB4LhDxBKstJtHoTH47D8-3yJ-uFwbLKjubWBvqvDT4H_ketjFA6gHR9-f5L4ZTo_DrajdCoxGLQ7v-DSlb9Wn8Ffj7nvOD_dMvI9ZOFWAGnFvMZBQ5EVlfCJf7YaoykaZCgZdzECvZJE0yEfnSRL6xwjhIf1wOFFFoQpcIlQUC7nuL7EigAkOwM9yf_DjefLeIId_rWnNUtFeB9Y-wyBeLv8AVs7jn_uopAf_7givOsF-oecXzHdwn99qQlQ4aGXtAtmzxkNxuhliuH5EMJG0BDC9nFod0WNqUiNDS0fkM-EankOkvL9i8KfwrpnSYmsvZbFVRYxcWLieDgJYFrcp1ZtOCNp2TFL0EbVpZHpOzGznjJ2S7KAv7jFA_BWHCME65GIFsEhVKGXNlUyvDkEuPBN2BatPCmuN0jZmu0xsV6YYJGpigaybo2CMfN3vmDajHtdRD5NOGEgG56x_KxVS3-q1zB6FeEOTSpEbyOM9C32RKuMQPQyOCzCNvkcsaITcKrOmZpquq0uOTYz1AoGipYJdHPrREroR3gFs1LRJwEojS1aPc7VGCTTD95U6YdGuTKv1PgzzyZrOMO7HOrrDlCmkCyHARvtYjTxvZ27y3AOseQAbrkbgnlb2D6a8Ulxc1YnkMSQTE2s-vf6zX5M7o9PuRPhpPDl-Qu7xWm4hxvku2l4uVfQnh3zJ71eocJT9vWs3_Agnfah8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermotolerance+effect+of+plant+growth-promoting+Bacillus+cereus+SA1+on+soybean+during+heat+stress&rft.jtitle=BMC+microbiology&rft.au=Khan%2C+Muhammad+Aaqil&rft.au=Asaf%2C+Sajjad&rft.au=Khan%2C+Abdul+Latif&rft.au=Jan%2C+Rahmatullah&rft.date=2020-06-22&rft.eissn=1471-2180&rft.volume=20&rft.issue=1&rft.spage=175&rft_id=info:doi/10.1186%2Fs12866-020-01822-7&rft_id=info%3Apmid%2F32571217&rft.externalDocID=32571217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon