Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress
Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factor...
Saved in:
Published in | BMC microbiology Vol. 20; no. 1; pp. 175 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
22.06.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress.
We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress.
The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. |
---|---|
AbstractList | Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress.BACKGROUNDIncidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress.We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress.RESULTSWe isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress.The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.CONCLUSIONThe current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. Abstract Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. Keywords: B. cereus SA1, Heat stress, Phytohormone, Amino acid, HSP expression, Soybean Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. Results We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. Conclusion The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic. |
ArticleNumber | 175 |
Audience | Academic |
Author | Kang, Sang-Mo Jan, Rahmatullah Khan, Muhammad Aaqil Kim, Kyung-Min Khan, Abdul Latif Asaf, Sajjad Lee, In-Jung |
Author_xml | – sequence: 1 givenname: Muhammad Aaqil surname: Khan fullname: Khan, Muhammad Aaqil – sequence: 2 givenname: Sajjad surname: Asaf fullname: Asaf, Sajjad – sequence: 3 givenname: Abdul Latif surname: Khan fullname: Khan, Abdul Latif – sequence: 4 givenname: Rahmatullah surname: Jan fullname: Jan, Rahmatullah – sequence: 5 givenname: Sang-Mo surname: Kang fullname: Kang, Sang-Mo – sequence: 6 givenname: Kyung-Min surname: Kim fullname: Kim, Kyung-Min – sequence: 7 givenname: In-Jung surname: Lee fullname: Lee, In-Jung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32571217$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kltvFCEcxSemxl70C_hgJvFFH6ZyG2BeTNbGyyZNTGx9JgzzZ5ZmFlZgqv32st1au40xPEDgdw7hcI6rAx88VNVLjE4xlvxdwkRy3iCCGoQlIY14Uh1hJnBDsEQHD9aH1XFKVwhhIal4Vh1S0gpMsDiq-ssVxHXIYYKovYEarAWT62DrzaR9rscYfuZVs4mhUM6P9Qdt3DTNqTYQoUwXC1wHX6dw04P29TDHLbUCneuUI6T0vHpq9ZTgxd18Un3_9PHy7Etz_vXz8mxx3pgWE9Ewzi3lgCi1A2q17KnWVBLGbNd10Omupxwxw5EBaixDnR0KwVvT2o7KHtOTarnzHYK-Upvo1jreqKCdut0IcVQ6ZmcmUIPltMN4YEYbRsTQt8j0ktoOta2huC9e73dem7lfw2DA56inPdP9E-9WagzXSlCMSIuKwZs7gxh-zJCyWrtkYCqZQpiTIgxzwhmVtKCvH6FXYY6-RFUoUr5QcNT-pUZdHuC8DeVeszVVC05Ey2R5SKFO_0GVMcDamVIf68r-nuDtnqAwGX7lUc8pqeXFt3321cNQ7tP406YCkB1gYkgpgr1HMFLbyqpdZVWprLqtrNqK5CORcVlnF7bBuul_0t9yVe3I |
CitedBy_id | crossref_primary_10_1134_S0003683823040075 crossref_primary_10_1007_s13199_025_01037_2 crossref_primary_10_3390_microorganisms11020454 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_1186_s12934_023_02167_2 crossref_primary_10_3389_fpls_2022_948260 crossref_primary_10_1016_j_sajb_2024_04_012 crossref_primary_10_1007_s11104_022_05369_6 crossref_primary_10_1016_j_agwat_2022_107831 crossref_primary_10_1016_j_stress_2024_100714 crossref_primary_10_3390_horticulturae8040336 crossref_primary_10_1016_j_chemosphere_2022_136635 crossref_primary_10_1016_j_stress_2024_100435 crossref_primary_10_1093_lambio_ovac067 crossref_primary_10_1186_s12870_024_04767_5 crossref_primary_10_3389_fmicb_2022_958300 crossref_primary_10_1038_s41598_024_52535_0 crossref_primary_10_48022_mbl_2204_04007 crossref_primary_10_1016_j_apsoil_2024_105379 crossref_primary_10_3390_biology11121838 crossref_primary_10_3390_agronomy13030873 crossref_primary_10_3934_agrfood_2021029 crossref_primary_10_1016_j_stress_2024_100681 crossref_primary_10_3390_microorganisms10071386 crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_1007_s00122_024_04656_3 crossref_primary_10_1016_j_stress_2024_100725 crossref_primary_10_1007_s00425_021_03695_0 crossref_primary_10_1079_cabireviews_2023_0001 crossref_primary_10_1007_s00284_023_03466_y crossref_primary_10_3389_fpls_2024_1274964 crossref_primary_10_3390_cells11203292 crossref_primary_10_3389_fpls_2024_1423949 crossref_primary_10_3390_plants13152022 crossref_primary_10_1007_s00344_024_11586_3 crossref_primary_10_3390_biology11121763 crossref_primary_10_1007_s00284_023_03368_z crossref_primary_10_5937_ZemBilj2402014B crossref_primary_10_1002_jobm_202400666 crossref_primary_10_1016_j_sjbs_2021_02_073 crossref_primary_10_1007_s11738_024_03699_9 crossref_primary_10_1016_j_apsoil_2022_104578 crossref_primary_10_3390_agronomy13071804 crossref_primary_10_3390_plants12234037 crossref_primary_10_1007_s10668_024_05706_y crossref_primary_10_3390_agronomy12102304 crossref_primary_10_1186_s12870_024_05752_8 crossref_primary_10_1007_s12298_024_01417_w crossref_primary_10_1016_j_chemosphere_2022_133982 crossref_primary_10_2166_wcc_2023_539 crossref_primary_10_1016_j_heliyon_2022_e11269 crossref_primary_10_1007_s00344_024_11280_4 crossref_primary_10_1016_S1002_0160_21_60051_6 crossref_primary_10_3390_cells10102537 crossref_primary_10_3390_microorganisms10071286 crossref_primary_10_3390_microorganisms13010187 crossref_primary_10_31857_S0555109923040074 crossref_primary_10_1016_j_crsust_2021_100063 crossref_primary_10_3390_su14063480 crossref_primary_10_3389_fpls_2021_665590 crossref_primary_10_1007_s00284_022_02853_1 crossref_primary_10_1016_j_isci_2022_104755 crossref_primary_10_1016_j_crbiot_2023_100128 crossref_primary_10_1111_pce_14266 crossref_primary_10_26898_0370_8799_2023_5_3 crossref_primary_10_3390_ijms24119759 crossref_primary_10_1007_s00284_023_03273_5 crossref_primary_10_3389_fpls_2021_796847 crossref_primary_10_1007_s00344_024_11394_9 crossref_primary_10_3389_fpls_2023_1141538 crossref_primary_10_14202_IJOH_2024_45_55 crossref_primary_10_1007_s00344_021_10571_4 crossref_primary_10_1134_S1021443723600435 crossref_primary_10_1371_journal_pone_0248200 crossref_primary_10_1186_s12870_024_05534_2 crossref_primary_10_3390_agronomy11061167 crossref_primary_10_3390_agronomy14091891 crossref_primary_10_1007_s00344_024_11251_9 crossref_primary_10_3389_fpls_2024_1500894 crossref_primary_10_3390_agriculture11030272 crossref_primary_10_1080_01904167_2022_2046084 crossref_primary_10_3389_fpls_2022_1108276 crossref_primary_10_32350_BSR_0401_03 crossref_primary_10_32615_bp_2023_001 crossref_primary_10_1007_s00284_022_03012_2 crossref_primary_10_3389_fpls_2022_867531 crossref_primary_10_3390_plants11151927 crossref_primary_10_1111_ppl_14202 crossref_primary_10_1016_j_plaphy_2023_01_036 crossref_primary_10_3389_fpls_2024_1482739 crossref_primary_10_1002_ldr_4064 crossref_primary_10_3390_agriculture11060485 crossref_primary_10_3389_fmicb_2022_833566 crossref_primary_10_1186_s12870_021_02937_3 crossref_primary_10_3389_fpls_2023_1041413 crossref_primary_10_1016_j_tplants_2022_02_008 crossref_primary_10_69650_ahstr_2024_1280 crossref_primary_10_3390_plants12112083 crossref_primary_10_1002_sae2_70032 crossref_primary_10_1016_j_rhisph_2022_100472 crossref_primary_10_1094_PBIOMES_5_2 crossref_primary_10_1111_ppl_14458 crossref_primary_10_3390_horticulturae9121306 crossref_primary_10_1016_j_envexpbot_2022_105071 crossref_primary_10_1007_s42729_024_01996_3 crossref_primary_10_1016_j_stress_2023_100226 crossref_primary_10_1007_s41748_024_00552_4 crossref_primary_10_3390_w14050799 crossref_primary_10_1016_j_rhisph_2024_100905 crossref_primary_10_1016_j_envres_2023_116357 crossref_primary_10_1002_sae2_70026 crossref_primary_10_1016_j_jbiotec_2022_05_002 crossref_primary_10_1007_s42729_022_00937_2 crossref_primary_10_3390_antiox12091710 crossref_primary_10_1016_j_indcrop_2025_120720 crossref_primary_10_1186_s12870_024_05634_z crossref_primary_10_3390_microorganisms8091256 crossref_primary_10_1186_s13007_023_01022_0 crossref_primary_10_1016_j_plaphy_2023_02_024 crossref_primary_10_3390_antiox11050917 crossref_primary_10_2166_wcc_2022_134 crossref_primary_10_32615_bp_2023_022 crossref_primary_10_3390_plants13121639 crossref_primary_10_1016_j_stress_2024_100458 crossref_primary_10_1080_01904167_2025_2461279 crossref_primary_10_18006_2024_12_3__335_353 crossref_primary_10_1016_j_heliyon_2023_e12953 crossref_primary_10_1007_s11105_021_01308_4 crossref_primary_10_1016_j_envexpbot_2021_104511 crossref_primary_10_3390_resources11020021 crossref_primary_10_3390_agronomy11020404 crossref_primary_10_3389_fmicb_2022_1008451 crossref_primary_10_1007_s40626_022_00237_1 crossref_primary_10_1016_j_heliyon_2024_e40517 crossref_primary_10_1007_s44372_024_00022_1 crossref_primary_10_1007_s00203_022_03043_0 crossref_primary_10_1016_j_heliyon_2022_e09893 crossref_primary_10_1007_s13205_022_03278_0 crossref_primary_10_3390_environments8080086 crossref_primary_10_1007_s12298_024_01470_5 crossref_primary_10_1111_ppl_13545 crossref_primary_10_3389_fpls_2022_993189 crossref_primary_10_3390_agriculture13051021 crossref_primary_10_1016_j_pmpp_2021_101679 crossref_primary_10_1016_j_scitotenv_2022_160542 crossref_primary_10_3389_fmicb_2022_928967 crossref_primary_10_1094_PBIOMES_07_20_0052_R crossref_primary_10_3389_fmars_2024_1379439 crossref_primary_10_1007_s12892_022_00148_2 crossref_primary_10_3389_fpls_2021_767150 |
Cites_doi | 10.1023/B:JAPH.0000047782.20940.de 10.1007/s00374-009-0404-9 10.1007/978-3-319-08216-5_9 10.1007/s11103-016-0503-6 10.1016/0003-9861(59)90090-6 10.9787/PBB.2016.4.4.398 10.1002/jobm.201500459 10.1186/1471-2229-14-154 10.1128/AEM.68.8.3795-3801.2002 10.3389/fpls.2018.01397 10.1073/pnas.1701762114 10.1016/S0734-9750(99)00014-2 10.1016/j.molp.2015.09.005 10.1007/s11104-014-2063-3 10.1007/s13213-019-01470-x 10.3390/ijms14059643 10.1007/s13205-017-0739-0 10.1186/s12870-016-0771-y 10.3390/agronomy8030031 10.1104/pp.112.208298 10.1104/pp.105.063149 10.1016/j.plantsci.2005.09.005 10.1071/FP03024 10.1016/j.envexpbot.2007.06.007 10.1111/jpi.12167 10.1007/3-540-26609-7_9 10.3390/plants8100363 10.3390/ijms131215706 10.1199/tab.0036.1 10.1104/pp.116.1.387 10.4014/jmb.1906.06010 10.2135/cropsci2003.0678 10.1007/978-94-007-2220-0_8 10.1023/A:1006386800974 10.1111/j.1365-3040.2005.01324.x 10.1104/pp.111.175810 10.1007/s00344-009-9114-7 10.1016/j.pbi.2011.02.001 10.1007/s13213-010-0033-4 10.1186/1471-2229-10-34 10.1186/1471-2180-12-3 10.3389/fchem.2018.00026 10.1016/S1049-9644(02)00108-1 10.1023/A:1022304332313 10.1111/j.1432-1033.1974.tb03714.x 10.1007/BF02895849 10.3389/fpls.2016.00584 10.1080/17429145.2017.1310941 10.2478/s11756-008-0089-9 10.1093/jxb/49.321.713 10.1007/s00018-006-6321-2 10.5586/asbp.3554 10.1007/s11274-013-1378-1 10.1016/0003-2697(87)90612-9 10.1007/s11103-018-0767-0 10.1007/s11306-015-0941-1 10.1007/s00425-002-0895-1 10.1080/17429145.2010.545147 10.1016/j.tplants.2008.10.004 10.1016/j.ejbt.2016.02.001 10.1007/s00253-004-1696-1 10.1016/j.envexpbot.2017.01.010 10.1104/pp.102.017145 10.1016/S0304-4165(89)80016-9 10.3389/fpls.2013.00273 10.1016/j.plaphy.2016.05.006 10.1016/j.soilbio.2007.06.017 10.3389/fmicb.2018.00284 10.1016/j.micres.2017.08.009 10.3390/microorganisms5030041 10.3389/fpls.2017.01510 10.1093/oxfordjournals.pcp.a029575 10.1105/tpc.12.4.479 10.1007/s00284-008-9105-0 10.15406/mojbm.2017.02.00042 10.1007/s13199-018-0562-3 10.1023/A:1014780630479 10.1016/j.agee.2008.01.019 10.1034/j.1399-3054.2000.100114.x 10.1093/molbev/mst197 10.3389/fenvs.2015.00011 10.3389/fpls.2018.00998 10.1007/978-3-319-78283-6_10 10.1111/ppl.12220 10.1016/S0038-0717(97)00026-6 10.1111/j.1365-313X.2004.02054.x 10.1104/pp.109.139352 10.4014/jmb.1101.01031 10.1023/B:EUPH.0000046806.68554.5b 10.3390/agronomy9030144 10.1111/pbi.12556 10.3389/fmicb.2017.02104 10.3390/agronomy9020043 10.1016/j.jare.2017.09.001 10.1016/j.sjbs.2015.06.002 10.1016/j.bjm.2018.01.007 10.3389/fpls.2018.01705 10.1016/j.plantsci.2014.11.005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12866-020-01822-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Agriculture |
EISSN | 1471-2180 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_df63911d4cac427db50cb83f9055c31b PMC7310250 A627548427 32571217 10_1186_s12866_020_01822_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2017R1D1A1B04035601 – fundername: ; grantid: 2017R1D1A1B04035601 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK5 LK8 M1P M48 M7P M7R MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB ~02 CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5127-466f36e033fd05a8b3aa38244f999e9a9b3604c60ce3cf409fd3aa65c5f938b13 |
IEDL.DBID | M48 |
ISSN | 1471-2180 |
IngestDate | Wed Aug 27 01:20:08 EDT 2025 Thu Aug 21 14:06:07 EDT 2025 Thu Jul 10 18:10:14 EDT 2025 Fri Jul 25 19:12:46 EDT 2025 Tue Jun 17 21:18:03 EDT 2025 Tue Jun 10 20:27:39 EDT 2025 Fri Jun 27 04:23:39 EDT 2025 Mon Jul 21 06:02:20 EDT 2025 Tue Jul 01 04:31:33 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | HSP expression Amino acid Heat stress Phytohormone Soybean B. cereus SA1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5127-466f36e033fd05a8b3aa38244f999e9a9b3604c60ce3cf409fd3aa65c5f938b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12866-020-01822-7 |
PMID | 32571217 |
PQID | 2424717605 |
PQPubID | 42585 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df63911d4cac427db50cb83f9055c31b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7310250 proquest_miscellaneous_2416264383 proquest_journals_2424717605 gale_infotracmisc_A627548427 gale_infotracacademiconefile_A627548427 gale_incontextgauss_ISR_A627548427 pubmed_primary_32571217 crossref_primary_10_1186_s12866_020_01822_7 crossref_citationtrail_10_1186_s12866_020_01822_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-22 |
PublicationDateYYYYMMDD | 2020-06-22 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC microbiology |
PublicationTitleAlternate | BMC Microbiol |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | M Hasanuzzaman (1822_CR6) 2013; 14 C Bita (1822_CR4) 2013; 4 R Grene (1822_CR8) 2002; 1 R Awasthi (1822_CR7) 2015; 3 T Hisamatsu (1822_CR58) 2000; 109 JA de Ronde (1822_CR84) 2004; 138 M Ghani (1822_CR30) 2016; 4 A Deubel (1822_CR40) 2005 P Verma (1822_CR45) 2016; 56 MA Khan (1822_CR105) 2019; 7 SZ Ali (1822_CR19) 2009; 46 C-X Chan (1822_CR112) 2004; 16 L Yuan (1822_CR87) 2017; 86 SM Kang (1822_CR102) 2012; 44 R Bottini (1822_CR62) 2004; 65 H Rodriguez (1822_CR43) 1999; 17 S Tiwari (1822_CR18) 2017; 8 R Shahzad (1822_CR76) 2016; 106 L Zhou (1822_CR92) 2014; 14 M Hasanuzzaman (1822_CR13) 2018; 8 S-W Hong (1822_CR89) 2003; 132 Y Kim (1822_CR108) 2018; 13 B Mohite (1822_CR38) 2013; 13 K Tamura (1822_CR99) 2013; 30 MH Siddiqui (1822_CR52) 2017; 12 DB Lobell (1822_CR1) 2012; 160 WI Kim (1822_CR36) 2011; 21 R Ortiz (1822_CR3) 2008; 126 H Khurshid (1822_CR26) 2017; 2 MA Khan (1822_CR27) 2019; 69 C Chai (1822_CR90) 2016; 7 HJ Zhang (1822_CR63) 2014; 57 GJ Ahammed (1822_CR47) 2018; 9 T Senaratna (1822_CR72) 2000; 30 Y-G Park (1822_CR17) 2017; 12 KK Chebrolu (1822_CR31) 2016; 12 F Gagné-Bourque (1822_CR81) 2016; 7 GL Ellman (1822_CR110) 1959; 82 TM Hildebrandt (1822_CR78) 2018; 98 M Lamaoui (1822_CR15) 2018; 6 CL Patten (1822_CR94) 2002; 68 Q-J Wang (1822_CR69) 2016; 14 A Adhikari (1822_CR95) 2020; 30 KK Bhise (1822_CR83) 2017; 7 NN Vettakkorumakankav (1822_CR54) 1999; 40 S Marklund (1822_CR109) 1974; 47 JA Curá (1822_CR67) 2017; 5 M Thuzar (1822_CR33) 2010; 2 S Bensalim (1822_CR24) 1998; 75 SE-D Hassan (1822_CR37) 2017; 8 J Dobrá (1822_CR49) 2015; 231 KK Bashar (1822_CR64) 2019; 9 C Zhao (1822_CR34) 2017; 114 AL Khan (1822_CR101) 2012; 12 IA Abd El-Daim (1822_CR22) 2014; 379 K-E Lee (1822_CR61) 2019; 9 M Hasanuzzaman (1822_CR9) 2012 J Yang (1822_CR53) 2009; 14 A Alonso-Ramírez (1822_CR60) 2009; 150 H Jooyandeh (1822_CR29) 2011; 7 MH Siddiqui (1822_CR5) 2015; 22 R Othman (1822_CR41) 2014 S Srivastava (1822_CR21) 2008; 56 B Schwyn (1822_CR96) 1987; 160 SM Clarke (1822_CR73) 2004; 38 AA Santos (1822_CR82) 2018; 49 R Jan (1822_CR113) 2019; 8 A Maggio (1822_CR56) 2010; 29 L-J Wang (1822_CR74) 2006; 170 N Jan (1822_CR14) 2018 MA Khan (1822_CR97) 2019 SZ Ali (1822_CR20) 2011; 6 GJ Ahammed (1822_CR51) 2016 W-T Lv (1822_CR86) 2011; 156 JA Stavang (1822_CR59) 2005; 138 E Pérez (1822_CR44) 2007; 39 Z-S Xu (1822_CR11) 2012; 13 TD Sharkey (1822_CR46) 2005; 28 MA Khan (1822_CR93) 2020; 15 JI Vílchez (1822_CR80) 2018; 9 B Genty (1822_CR104) 1989; 990 AL Khan (1822_CR107) 2013; 29 MA Khan (1822_CR28) 2019; 77 A Sgobba (1822_CR32) 2015; 153 MAM Barbosa (1822_CR79) 2013; 7 T Vimala (1822_CR103) 2013; 4 K Georgieva (1822_CR85) 2003; 30 BR Glick (1822_CR48) 1997; 29 D Egamberdieva (1822_CR25) 2017; 8 H Lopez-Delgado (1822_CR71) 1998; 49 M Ashraf (1822_CR57) 2002; 36 Y He (1822_CR16) 2005; 45 V Verma (1822_CR65) 2016; 16 A Sehgal (1822_CR35) 2018; 9 R Deeken (1822_CR91) 2002; 216 AL Tuna (1822_CR55) 2008; 62 S Zhang (1822_CR68) 2002; 25 M Seskar (1822_CR106) 1998; 116 C de Ollas (1822_CR66) 2016; 91 R Shahzad (1822_CR75) 2017; 136 C Queitsch (1822_CR12) 2000; 12 IPCC (1822_CR2) 2007 J Sambrook (1822_CR98) 2001 M Yildiz (1822_CR10) 2008; 63 H Nakamoto (1822_CR88) 2007; 64 D Jones (1822_CR39) 2003; 248 U Iqbal (1822_CR42) 2010; 60 AL Khan (1822_CR100) 2016; 21 Z Peleg (1822_CR50) 2011; 14 S Asaf (1822_CR111) 2017; 205 A Issa (1822_CR23) 2018; 9 LJ Wang (1822_CR70) 2010; 10 M Hildebrandt Tatjana (1822_CR77) 2015; 8 |
References_xml | – volume: 16 start-page: 297 issue: 4 year: 2004 ident: 1822_CR112 publication-title: J Appl Phycol doi: 10.1023/B:JAPH.0000047782.20940.de – volume: 46 start-page: 45 issue: 1 year: 2009 ident: 1822_CR19 publication-title: Biol Fertil Soils doi: 10.1007/s00374-009-0404-9 – start-page: 207 volume-title: Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology year: 2014 ident: 1822_CR41 doi: 10.1007/978-3-319-08216-5_9 – volume: 91 start-page: 641 issue: 6 year: 2016 ident: 1822_CR66 publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0503-6 – volume: 82 start-page: 70 issue: 1 year: 1959 ident: 1822_CR110 publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(59)90090-6 – volume: 4 start-page: 398 issue: 4 year: 2016 ident: 1822_CR30 publication-title: Plant Breeding Biotechnol doi: 10.9787/PBB.2016.4.4.398 – volume: 56 start-page: 44 issue: 1 year: 2016 ident: 1822_CR45 publication-title: J Basic Microbiol doi: 10.1002/jobm.201500459 – volume: 14 start-page: 154 year: 2014 ident: 1822_CR92 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-14-154 – volume: 68 start-page: 3795 issue: 8 year: 2002 ident: 1822_CR94 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.8.3795-3801.2002 – volume: 9 start-page: 1397 year: 2018 ident: 1822_CR23 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01397 – volume: 114 start-page: 9326 issue: 35 year: 2017 ident: 1822_CR34 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1701762114 – volume: 17 start-page: 319 issue: 4–5 year: 1999 ident: 1822_CR43 publication-title: Biotechnol Adv doi: 10.1016/S0734-9750(99)00014-2 – volume: 8 start-page: 1563 issue: 11 year: 2015 ident: 1822_CR77 publication-title: Mol Plant doi: 10.1016/j.molp.2015.09.005 – volume-title: Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings BioMed research international year: 2019 ident: 1822_CR97 – volume: 379 start-page: 337 issue: 1 year: 2014 ident: 1822_CR22 publication-title: Plant Soil doi: 10.1007/s11104-014-2063-3 – volume: 69 start-page: 797 year: 2019 ident: 1822_CR27 publication-title: Ann Microbiol doi: 10.1007/s13213-019-01470-x – volume: 14 start-page: 9643 issue: 5 year: 2013 ident: 1822_CR6 publication-title: Int J Mol Sci doi: 10.3390/ijms14059643 – volume: 7 start-page: 105 issue: 2 year: 2017 ident: 1822_CR83 publication-title: 3 Biotech doi: 10.1007/s13205-017-0739-0 – volume: 16 start-page: 86 year: 2016 ident: 1822_CR65 publication-title: BMC Plant Biol doi: 10.1186/s12870-016-0771-y – volume: 7 start-page: 1983 issue: 13 year: 2013 ident: 1822_CR79 publication-title: Aust J Crop Sci – volume: 8 start-page: 31 issue: 3 year: 2018 ident: 1822_CR13 publication-title: Agronomy doi: 10.3390/agronomy8030031 – volume: 160 start-page: 1686 issue: 4 year: 2012 ident: 1822_CR1 publication-title: Plant Physiol doi: 10.1104/pp.112.208298 – volume: 2 start-page: 172 year: 2010 ident: 1822_CR33 publication-title: J Agric Sci – volume: 138 start-page: 2344 issue: 4 year: 2005 ident: 1822_CR59 publication-title: Plant Physiol doi: 10.1104/pp.105.063149 – volume: 44 start-page: 365 issue: 1 year: 2012 ident: 1822_CR102 publication-title: Pakistan J Botany – volume: 170 start-page: 685 issue: 4 year: 2006 ident: 1822_CR74 publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.09.005 – volume: 30 start-page: 515 issue: 5 year: 2003 ident: 1822_CR85 publication-title: Funct Plant Biol doi: 10.1071/FP03024 – volume: 62 start-page: 1 issue: 1 year: 2008 ident: 1822_CR55 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2007.06.007 – volume: 57 start-page: 269 issue: 3 year: 2014 ident: 1822_CR63 publication-title: J Pineal Res doi: 10.1111/jpi.12167 – start-page: 177 volume-title: Microorganisms in soils: roles in genesis and functions. Influence of Microorganisms on Phosphorus Bioavailability in Soils year: 2005 ident: 1822_CR40 doi: 10.1007/3-540-26609-7_9 – volume: 8 start-page: 363 issue: 10 year: 2019 ident: 1822_CR113 publication-title: Plants doi: 10.3390/plants8100363 – volume: 13 start-page: 15706 issue: 12 year: 2012 ident: 1822_CR11 publication-title: Int J Mol Sci doi: 10.3390/ijms131215706 – volume: 7 year: 2019 ident: 1822_CR105 publication-title: PeerJ – volume: 1 start-page: e0036 year: 2002 ident: 1822_CR8 publication-title: Arabidopsis Book doi: 10.1199/tab.0036.1 – volume: 116 start-page: 387 issue: 1 year: 1998 ident: 1822_CR106 publication-title: Plant Physiol doi: 10.1104/pp.116.1.387 – volume: 30 start-page: 118 issue: 1 year: 2020 ident: 1822_CR95 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1906.06010 – volume: 45 start-page: 988 year: 2005 ident: 1822_CR16 publication-title: Crop Sci doi: 10.2135/cropsci2003.0678 – start-page: 261 volume-title: Crop Stress and its Management: Perspectives and Strategies year: 2012 ident: 1822_CR9 doi: 10.1007/978-94-007-2220-0_8 – volume: 30 start-page: 157 issue: 2 year: 2000 ident: 1822_CR72 publication-title: Plant Growth Regul doi: 10.1023/A:1006386800974 – volume: 28 start-page: 269 issue: 3 year: 2005 ident: 1822_CR46 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01324.x – volume: 156 start-page: 1921 issue: 4 year: 2011 ident: 1822_CR86 publication-title: Plant Physiol doi: 10.1104/pp.111.175810 – volume: 29 start-page: 63 issue: 1 year: 2010 ident: 1822_CR56 publication-title: J Plant Growth Regul doi: 10.1007/s00344-009-9114-7 – volume: 14 start-page: 290 issue: 3 year: 2011 ident: 1822_CR50 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2011.02.001 – volume: 60 start-page: 243 issue: 2 year: 2010 ident: 1822_CR42 publication-title: Ann Microbiol doi: 10.1007/s13213-010-0033-4 – volume: 10 start-page: 34 year: 2010 ident: 1822_CR70 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-34 – volume: 12 start-page: 3 issue: 1 year: 2012 ident: 1822_CR101 publication-title: BMC Microbiol doi: 10.1186/1471-2180-12-3 – volume-title: Molecular cloning: a laboratory manual year: 2001 ident: 1822_CR98 – volume: 6 start-page: 26 year: 2018 ident: 1822_CR15 publication-title: Front Chem doi: 10.3389/fchem.2018.00026 – volume: 12 issue: 3 year: 2017 ident: 1822_CR17 publication-title: PLoS One – start-page: 1 volume-title: Plant Hormones under Challenging Environmental Factors year: 2016 ident: 1822_CR51 – volume-title: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 1822_CR2 – volume: 25 start-page: 288 issue: 3 year: 2002 ident: 1822_CR68 publication-title: Biol Control doi: 10.1016/S1049-9644(02)00108-1 – volume: 248 start-page: 31 issue: 1–2 year: 2003 ident: 1822_CR39 publication-title: Plant Soil doi: 10.1023/A:1022304332313 – volume: 47 start-page: 469 issue: 3 year: 1974 ident: 1822_CR109 publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1974.tb03714.x – volume: 7 start-page: 71 issue: 1 year: 2011 ident: 1822_CR29 publication-title: Middle-East J Sci Res – volume: 75 start-page: 145 issue: 3 year: 1998 ident: 1822_CR24 publication-title: Am J Potato Res doi: 10.1007/BF02895849 – volume: 7 start-page: 584 year: 2016 ident: 1822_CR81 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00584 – volume: 12 start-page: 177 issue: 1 year: 2017 ident: 1822_CR52 publication-title: J Plant Interact doi: 10.1080/17429145.2017.1310941 – volume: 63 start-page: 521 issue: 4 year: 2008 ident: 1822_CR10 publication-title: Biologia doi: 10.2478/s11756-008-0089-9 – volume: 49 start-page: 713 issue: 321 year: 1998 ident: 1822_CR71 publication-title: J Exp Bot doi: 10.1093/jxb/49.321.713 – volume: 64 start-page: 294 issue: 3 year: 2007 ident: 1822_CR88 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-006-6321-2 – volume: 86 start-page: 1 year: 2017 ident: 1822_CR87 publication-title: Acta Soc Bot Pol doi: 10.5586/asbp.3554 – volume: 29 start-page: 2133 issue: 11 year: 2013 ident: 1822_CR107 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-013-1378-1 – volume: 160 start-page: 47 issue: 1 year: 1987 ident: 1822_CR96 publication-title: Anal Biochem doi: 10.1016/0003-2697(87)90612-9 – volume: 98 start-page: 121 issue: 1–2 year: 2018 ident: 1822_CR78 publication-title: Plant Mol Biol doi: 10.1007/s11103-018-0767-0 – volume: 12 start-page: 28 issue: 2 year: 2016 ident: 1822_CR31 publication-title: Metabolomics doi: 10.1007/s11306-015-0941-1 – volume: 216 start-page: 334 issue: 2 year: 2002 ident: 1822_CR91 publication-title: Planta doi: 10.1007/s00425-002-0895-1 – volume: 6 start-page: 239 issue: 4 year: 2011 ident: 1822_CR20 publication-title: J Plant Interact doi: 10.1080/17429145.2010.545147 – volume: 14 start-page: 1 issue: 1 year: 2009 ident: 1822_CR53 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2008.10.004 – volume: 21 start-page: 58 year: 2016 ident: 1822_CR100 publication-title: Electron J Biotechnol doi: 10.1016/j.ejbt.2016.02.001 – volume: 65 start-page: 497 issue: 5 year: 2004 ident: 1822_CR62 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-004-1696-1 – volume: 136 start-page: 68 year: 2017 ident: 1822_CR75 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2017.01.010 – volume: 132 start-page: 757 issue: 2 year: 2003 ident: 1822_CR89 publication-title: Plant Physiol doi: 10.1104/pp.102.017145 – volume: 990 start-page: 87 issue: 1 year: 1989 ident: 1822_CR104 publication-title: Biochim Biophys Acta Gen Subj doi: 10.1016/S0304-4165(89)80016-9 – volume: 4 start-page: 273 year: 2013 ident: 1822_CR4 publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00273 – volume: 106 start-page: 236 year: 2016 ident: 1822_CR76 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.05.006 – volume: 39 start-page: 2905 issue: 11 year: 2007 ident: 1822_CR44 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.06.017 – volume: 9 start-page: 284 year: 2018 ident: 1822_CR80 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00284 – volume: 205 start-page: 135 year: 2017 ident: 1822_CR111 publication-title: Microbiol Res doi: 10.1016/j.micres.2017.08.009 – volume: 5 start-page: 41 issue: 3 year: 2017 ident: 1822_CR67 publication-title: Microorganisms doi: 10.3390/microorganisms5030041 – volume: 8 start-page: 1510 year: 2017 ident: 1822_CR18 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01510 – volume: 4 start-page: 1850 issue: 10 year: 2013 ident: 1822_CR103 publication-title: Int J Sci Res – volume: 40 start-page: 542 issue: 5 year: 1999 ident: 1822_CR54 publication-title: Plant Cell Physiol doi: 10.1093/oxfordjournals.pcp.a029575 – volume: 12 start-page: 479 issue: 4 year: 2000 ident: 1822_CR12 publication-title: Plant Cell doi: 10.1105/tpc.12.4.479 – volume: 56 start-page: 453 issue: 5 year: 2008 ident: 1822_CR21 publication-title: Curr Microbiol doi: 10.1007/s00284-008-9105-0 – volume: 2 start-page: 189 issue: 1 year: 2017 ident: 1822_CR26 publication-title: MOJ Biol Med doi: 10.15406/mojbm.2017.02.00042 – volume: 15 issue: 4 year: 2020 ident: 1822_CR93 publication-title: PLoS One – volume: 77 start-page: 9 issue: 1 year: 2019 ident: 1822_CR28 publication-title: Symbiosis doi: 10.1007/s13199-018-0562-3 – volume: 36 start-page: 49 issue: 1 year: 2002 ident: 1822_CR57 publication-title: Plant Growth Regul doi: 10.1023/A:1014780630479 – volume: 126 start-page: 46 issue: 1 year: 2008 ident: 1822_CR3 publication-title: Agric Ecosystems Environ doi: 10.1016/j.agee.2008.01.019 – volume: 109 start-page: 97 issue: 1 year: 2000 ident: 1822_CR58 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.2000.100114.x – volume: 30 start-page: 2725 issue: 12 year: 2013 ident: 1822_CR99 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 3 start-page: 11 year: 2015 ident: 1822_CR7 publication-title: Front Environ Sci doi: 10.3389/fenvs.2015.00011 – volume: 7 start-page: 282 year: 2016 ident: 1822_CR90 publication-title: Front Plant Sci – volume: 13 issue: 3 year: 2018 ident: 1822_CR108 publication-title: PLoS One – volume: 9 start-page: 998 year: 2018 ident: 1822_CR47 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00998 – start-page: 327 volume-title: Biotechnologies of Crop Improvement, Volume 1: Cellular Approaches year: 2018 ident: 1822_CR14 doi: 10.1007/978-3-319-78283-6_10 – volume: 153 start-page: 68 issue: 1 year: 2015 ident: 1822_CR32 publication-title: Physiol Plant doi: 10.1111/ppl.12220 – volume: 29 start-page: 1233 issue: 8 year: 1997 ident: 1822_CR48 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(97)00026-6 – volume: 38 start-page: 432 issue: 3 year: 2004 ident: 1822_CR73 publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02054.x – volume: 150 start-page: 1335 issue: 3 year: 2009 ident: 1822_CR60 publication-title: Plant Physiol doi: 10.1104/pp.109.139352 – volume: 21 start-page: 777 issue: 8 year: 2011 ident: 1822_CR36 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1101.01031 – volume: 138 start-page: 123 issue: 2 year: 2004 ident: 1822_CR84 publication-title: Euphytica doi: 10.1023/B:EUPH.0000046806.68554.5b – volume: 9 start-page: 144 issue: 3 year: 2019 ident: 1822_CR61 publication-title: Agronomy doi: 10.3390/agronomy9030144 – volume: 14 start-page: 1986 issue: 10 year: 2016 ident: 1822_CR69 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12556 – volume: 8 start-page: 2104 year: 2017 ident: 1822_CR25 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02104 – volume: 9 start-page: 43 issue: 2 year: 2019 ident: 1822_CR64 publication-title: Agronomy doi: 10.3390/agronomy9020043 – volume: 13 start-page: 638 issue: 3 year: 2013 ident: 1822_CR38 publication-title: J Soil Sci Plant Nutr – volume: 8 start-page: 687 issue: 6 year: 2017 ident: 1822_CR37 publication-title: J Adv Res doi: 10.1016/j.jare.2017.09.001 – volume: 22 start-page: 656 issue: 5 year: 2015 ident: 1822_CR5 publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2015.06.002 – volume: 49 start-page: 685 issue: 4 year: 2018 ident: 1822_CR82 publication-title: Braz J Microbiol doi: 10.1016/j.bjm.2018.01.007 – volume: 9 start-page: 1705 year: 2018 ident: 1822_CR35 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01705 – volume: 231 start-page: 52 year: 2015 ident: 1822_CR49 publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.11.005 |
SSID | ssj0017837 |
Score | 2.6384573 |
Snippet | Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety,... Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as... Abstract Background Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 175 |
SubjectTerms | Abscisic acid Abscisic Acid - metabolism Acetic acid Agricultural production Agriculture Amino acid Amino acids Analysis Antioxidants Antioxidants (Nutrients) Ascorbic acid Auxins B. cereus SA1 Bacillus cereus - isolation & purification Bacillus cereus - metabolism Bacillus cereus - physiology Bacteria Biofertilizers Biological activity Biomass Carotenoids Chlorophyll Climate change Commercialization Crop production Crop yields Crops, Agricultural - genetics Crops, Agricultural - growth & development Crops, Agricultural - microbiology Endophytes Endophytes - physiology Fluorescence Gene Expression Regulation, Plant - drug effects Genes Genetic engineering Gibberellins Global climate Glutathione Glycine max - genetics Glycine max - growth & development Glycine max - microbiology Growth Heat Heat shock proteins Heat stress Heat tolerance Heat-Shock Proteins - genetics Heat-Shock Response HSP expression Indoleacetic acid Inoculation L-Ascorbate peroxidase Lipids Metabolites Organic acids Peroxidase Physiological aspects Physiological effects Phytohormone Plant growth Plant Proteins - genetics Productivity Proteins Reactive oxygen species Salicylic acid Salicylic Acid - metabolism Soil Microbiology Soybean Soybeans Stress response Superoxide dismutase Superoxides Temperature tolerance Thermotolerance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltOnLaVrUUuihmNjW08dNaUh76KFpIDchydImYOxlvXvIv--M5V3WFNpLTwZrZOyZ0TzwzDeEfFRMNxX3RQ7eoc65iz6vY8Xy2ITSVw1DxBOstvghr27491txezDqC2vCEjxwYtx5E8GHlmXDvfW8Uo0ThXeaxboQwrPSofUFn7dLpqb_Bwryrl2LjJbnA1hhicW2WIQFLjFXMzc0ovX_aZMPnNK8YPLAA10-JU-m0JEu0is_I49Cd0KO0zDJh-fEgcTXwPi-DTgsI9BUqkH7SFct8I8uIePe3OWrVIDXLemF9fdtux2oD-sAl-tFSfuODv2DC7ajqYORorWmqaXkBbm5_Prry1U-TVDIPThylXMpI5OhYCw2hbDaMWuZBo8eIS4Mta0dkwX3svCB-QipXmyAQgovYs20K9lLctT1XXhNaGFBqBhO6agQUKbWgnNV6WADF6LiGSl3DDV-ghfHKRetGdMMLU0SggEhmFEIRmXk837PKoFr_JX6AuW0p0Rg7PEGqIuZ1MX8S10y8gGlbBD6osPamqXdDoP5dv3TLBCwmWvYlZFPE1Hs4RvgUalVATiBaFkzyrMZJZxNP1_eKZOZbMNgsCEHkmjIIzPyfr-MO7HerQv9FmlKyDQRRjYjr5Lu7b-bgZUtIZPMiJpp5Ywx85Xu_m5EDlcQzEPMe_o_OPmGPK7GAyXzqjojR5v1NryFAG3j3o1n8TeL6TVv priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t2UggxC4oCsxrFjOye0RVSFAwdKpb1ZiWNvK0XJstk99N93Js6GRkg9rRSPo82MPY_k8zeEfNLC1Jl0KYPoUDBZBceKkAkWas9dVgtkPEG0xS91fil_LvPl-MKtH2GVe584OOq6c_iO_ASPMUDpAdn31_Vfhl2j8Ovq2ELjIXmE1GUI6dLLqeDiGqqv_UEZo0568MUKIbcIxYLAyPQsGA2c_f975juhaQ6bvBOHzp6Rp2MCSRfR4s_JA9--II9jS8mbl6QCu29A_V3jsWWGpxGwQbtA1w1oka6g7t5esXWE4bUrelq666bZ9dT5jYefiwWnXUv77qbyZUvjOUaKPpvGgyWvyOXZ9z_fztnYR4E5COeaSaWCUD4VItRpXppKlKUwENcDZIe-KItKqFQ6lTovXICCL9QgoXKXh0KYiovX5KDtWn9IaFqCaTGpMkEjrUxhcil1ZnzpZZ5nMiF8r1DrRpJx7HXR2KHYMMpGI1gwgh2MYHVCvkxz1pFi417pU7TTJIn02MOFbrOy426zdYDEi_NautLJTNdVnrrKiFCkee4ErxLyEa1skQCjRYTNqtz1vf1x8dsukLZZGpiVkM-jUOjgGeBW8cACaAI5s2aSxzNJ2KFuPrxfTHb0EL39t54T8mEaxpmIemt9t0MZDvUmkskm5E1ce9NzC_C1HOrJhOjZqpwpZj7SXl8N_OEaUnrIfI_u_1tvyZNs2CqKZdkxOdhudv4dJGDb6v2wy24BobosiA priority: 102 providerName: ProQuest |
Title | Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32571217 https://www.proquest.com/docview/2424717605 https://www.proquest.com/docview/2416264383 https://pubmed.ncbi.nlm.nih.gov/PMC7310250 https://doaj.org/article/df63911d4cac427db50cb83f9055c31b |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_uA-VexG-jZ1lF8EGiSXaTTR5EWrnjFDykZ6H4siSb3d5BSGrTgv3vnclH74KnLylkZ1MyHzsz7cxvAN5IHueB0J6L3iFxRWa1m9iAuzY3vg5yTognVG1xHp3NxNd5ON-DftxRx8D61tSO5knNVsX737-2n9DgPzYGH0cfajxjIyqlpRIrdHiu3IdD_G5JhvpNXP-rIDEb6xtnbt13BHc56rAfNPPLrv1UA-f_96F9w2sNKypvuKjT-3Cviy3ZuFWGB7Bnyodwp502uX0EGarECiVTFYamaRjW1nKwyrJlgQxmC0zJ15fusq3QKxdskuqrotjUTJuVwY-Lsc-qktXVNjNpydoWR0bHOWt7Th7D7PTkx-cztxux4Gr09NIVUWR5ZDzObe6FaZzxNOUxunyLgaNJ0iTjkSd05GnDtcVc0OZIEYU6tAmPM58_gYOyKs0zYF6KUqd4K7aSEGeSOBRCBrFJjQjDQDjg9wxVusMfpzEYhWrykDhSrTwUykM18lDSgXe7PcsWfeO_1BOS046SkLObG9VqoTpDVLnFmMz3c6FTLQKZZ6Gns5jbxAtDzf3MgdckZUXYGCUV3yzSTV2rLxdTNSZEZxHjLgfedkS2wnfAR7W9DMgJgtMaUB4PKNF49XC5VybV676ijh3MsjHRdODVbpl2UkFcaaoN0fiYihLOrANPW93bvXevwg7IgVYOGDNcKa8uG2hxidE-BsXP__nMF3AUNAYTuUFwDAfr1ca8xLBsnY1gX87lCA4nJ-ffp6Pmx41RY394nU5-_gG04DQH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgQviDuBAQaBeEDWEttJnAeEWtjUslGhXaS9mcSxu0lVUppWqH-K38g5uZRFSHvbU6T6OEp87s053yHkXSxUzqXxGXiHhMnMGZY4LpjLbWB4LhDxBKstJtHoTH47D8-3yJ-uFwbLKjubWBvqvDT4H_ketjFA6gHR9-f5L4ZTo_DrajdCoxGLQ7v-DSlb9Wn8Ffj7nvOD_dMvI9ZOFWAGnFvMZBQ5EVlfCJf7YaoykaZCgZdzECvZJE0yEfnSRL6xwjhIf1wOFFFoQpcIlQUC7nuL7EigAkOwM9yf_DjefLeIId_rWnNUtFeB9Y-wyBeLv8AVs7jn_uopAf_7givOsF-oecXzHdwn99qQlQ4aGXtAtmzxkNxuhliuH5EMJG0BDC9nFod0WNqUiNDS0fkM-EankOkvL9i8KfwrpnSYmsvZbFVRYxcWLieDgJYFrcp1ZtOCNp2TFL0EbVpZHpOzGznjJ2S7KAv7jFA_BWHCME65GIFsEhVKGXNlUyvDkEuPBN2BatPCmuN0jZmu0xsV6YYJGpigaybo2CMfN3vmDajHtdRD5NOGEgG56x_KxVS3-q1zB6FeEOTSpEbyOM9C32RKuMQPQyOCzCNvkcsaITcKrOmZpquq0uOTYz1AoGipYJdHPrREroR3gFs1LRJwEojS1aPc7VGCTTD95U6YdGuTKv1PgzzyZrOMO7HOrrDlCmkCyHARvtYjTxvZ27y3AOseQAbrkbgnlb2D6a8Ulxc1YnkMSQTE2s-vf6zX5M7o9PuRPhpPDl-Qu7xWm4hxvku2l4uVfQnh3zJ71eocJT9vWs3_Agnfah8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermotolerance+effect+of+plant+growth-promoting+Bacillus+cereus+SA1+on+soybean+during+heat+stress&rft.jtitle=BMC+microbiology&rft.au=Khan%2C+Muhammad+Aaqil&rft.au=Asaf%2C+Sajjad&rft.au=Khan%2C+Abdul+Latif&rft.au=Jan%2C+Rahmatullah&rft.date=2020-06-22&rft.eissn=1471-2180&rft.volume=20&rft.issue=1&rft.spage=175&rft_id=info:doi/10.1186%2Fs12866-020-01822-7&rft_id=info%3Apmid%2F32571217&rft.externalDocID=32571217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon |