Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with wat...
Saved in:
Published in | Global change biology Vol. 21; no. 3; pp. 1005 - 1017 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.03.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. |
---|---|
AbstractList | Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. |
Author | Peñuelas, Josep Estiarte, Marc |
Author_xml | – sequence: 1 fullname: Estiarte, Marc – sequence: 2 fullname: Peñuelas, Josep |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25384459$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URNvAghcAS2xgMa09vsxMdyWCgFQVqaHq0vJ4jhOXqSfYHpW8AM-N0yQsKpDqhW1Z3__73I7RgR88IPSakhOa1-nCtCe0rAl_ho4ok6IoeS0PNnfBC0ooO0THMd4SQlhJ5At0WApWcy6aI_T7vE8QdHKDx4PFaQl4tQQ_9MNivXnoQVscwUM04A1g7Ttsdd9j5_G981mLOzCuG4cx4rjKV4i4XWPTuzudAJul9gs4w2AtmBRx_saPKTjwCa_CYF0WeLN-iZ5n1wivducEXX_-9H36pbj4Nvs6Pb8ojKAlL2prbGM5qSphyw46VracgG5oXVliJTS8bAVARSvC8mYZIcJQIpgVkrQdZxP0fuub__45QkzqzuXM-l57yBkoKhuea8d58wRU8pLkqJ7iKipGZd1sXN89Qm-HMfic84YSnBGRw52gNztqbO-gU6uQqxnWat-3DJxuAROGGANYZVx66GIK2vWKErWZDJUnQz1MRlZ8eKTYm_6L3bnfux7W_wfVbPpxryi2ChcT_Pqr0OGHkhWrhLq5nKmbK3FVysu5mmf-7Za3elB6EVxU1_NcTUEIbaSsOfsDOYnelg |
CitedBy_id | crossref_primary_10_1038_s41598_017_11163_7 crossref_primary_10_1655_Herpetologica_D_19_00031_1 crossref_primary_10_1111_gcb_13311 crossref_primary_10_1111_gcb_14642 crossref_primary_10_1111_nph_18797 crossref_primary_10_1002_eap_1547 crossref_primary_10_1186_s12870_024_05484_9 crossref_primary_10_1098_rspb_2023_2338 crossref_primary_10_1007_s00468_024_02587_6 crossref_primary_10_3390_agronomy14092145 crossref_primary_10_1016_j_atmosenv_2018_07_053 crossref_primary_10_1093_treephys_tpae054 crossref_primary_10_1093_treephys_tpz026 crossref_primary_10_1002_2017JD027318 crossref_primary_10_1007_s00442_022_05296_4 crossref_primary_10_3390_plants12163011 crossref_primary_10_1016_j_agrformet_2024_110249 crossref_primary_10_1007_s11104_016_3122_8 crossref_primary_10_3389_fpls_2018_01819 crossref_primary_10_1016_j_foreco_2024_122069 crossref_primary_10_3897_neobiota_96_129863 crossref_primary_10_1111_gcb_15602 crossref_primary_10_1093_jpe_rtw084 crossref_primary_10_1676_16_011_1 crossref_primary_10_1002_2016JD025190 crossref_primary_10_1111_1365_2745_13577 crossref_primary_10_1016_j_ufug_2016_02_001 crossref_primary_10_1093_treephys_tpad097 crossref_primary_10_1111_ecog_02296 crossref_primary_10_1038_s41559_020_01357_0 crossref_primary_10_5194_bg_21_4169_2024 crossref_primary_10_1002_ecm_1421 crossref_primary_10_1038_s43247_023_00835_0 crossref_primary_10_3390_rs11091063 crossref_primary_10_1016_j_agrformet_2022_108823 crossref_primary_10_3390_rs11141651 crossref_primary_10_1038_s41559_018_0677_1 crossref_primary_10_3390_f16010175 crossref_primary_10_1007_s00484_019_01678_1 crossref_primary_10_1016_j_agrformet_2022_108828 crossref_primary_10_1016_j_ecolind_2019_105760 crossref_primary_10_3390_su10051497 crossref_primary_10_1038_s41467_017_02690_y crossref_primary_10_1111_geb_13533 crossref_primary_10_1016_j_ecolind_2021_108211 crossref_primary_10_3390_f15091526 crossref_primary_10_1016_j_envres_2023_117364 crossref_primary_10_1016_j_scitotenv_2024_173280 crossref_primary_10_1007_s00344_019_10042_x crossref_primary_10_1016_j_foreco_2022_120405 crossref_primary_10_1007_s11430_022_1156_1 crossref_primary_10_1016_j_foreco_2020_118368 crossref_primary_10_3390_rs9050407 crossref_primary_10_1007_s10725_023_00981_7 crossref_primary_10_1093_jpe_rty034 crossref_primary_10_1002_ecs2_2677 crossref_primary_10_3390_rs15205058 crossref_primary_10_1186_s40663_021_00309_9 crossref_primary_10_1111_geb_13404 crossref_primary_10_1016_j_agrformet_2021_108353 crossref_primary_10_1016_j_ecolind_2021_108202 crossref_primary_10_1038_s41558_020_0820_2 crossref_primary_10_1080_13504622_2022_2069682 crossref_primary_10_1016_j_agee_2024_109160 crossref_primary_10_2139_ssrn_4157311 crossref_primary_10_3390_rs14174189 crossref_primary_10_1016_j_agrformet_2022_109229 crossref_primary_10_3390_f8120463 crossref_primary_10_1016_j_agrformet_2024_110133 crossref_primary_10_1093_treephys_tpz013 crossref_primary_10_1016_j_isprsjprs_2023_07_021 crossref_primary_10_3832_ifor2825_011 crossref_primary_10_1016_j_envres_2024_120044 crossref_primary_10_1016_j_ecolind_2019_105880 crossref_primary_10_3390_f11040461 crossref_primary_10_1016_j_agrformet_2025_110435 crossref_primary_10_1111_gcb_14095 crossref_primary_10_1016_j_agrformet_2024_110134 crossref_primary_10_1016_j_ecoleng_2021_106461 crossref_primary_10_1007_s10661_024_12771_3 crossref_primary_10_1016_j_fecs_2024_100173 crossref_primary_10_1111_gcb_16227 crossref_primary_10_1590_0102_33062020abb0525 crossref_primary_10_1029_2024EF004563 crossref_primary_10_3390_agronomy11112280 crossref_primary_10_1016_j_foreco_2025_122539 crossref_primary_10_1093_jxb_erae391 crossref_primary_10_3390_f11101070 crossref_primary_10_1016_j_foreco_2021_119089 crossref_primary_10_1016_j_agrformet_2017_10_034 crossref_primary_10_1016_j_gloplacha_2020_103131 crossref_primary_10_1016_j_rse_2019_05_003 crossref_primary_10_1016_j_srs_2021_100030 crossref_primary_10_1038_s41559_024_02602_6 crossref_primary_10_1002_ece3_5408 crossref_primary_10_1002_hyp_14621 crossref_primary_10_1371_journal_pone_0282635 crossref_primary_10_1016_j_ecolind_2018_08_047 crossref_primary_10_1016_j_agrformet_2021_108492 crossref_primary_10_1016_j_agrformet_2021_108493 crossref_primary_10_1007_s40725_024_00233_5 crossref_primary_10_1016_j_foreco_2022_120188 crossref_primary_10_1029_2019GL086788 crossref_primary_10_1016_j_ufug_2018_05_015 crossref_primary_10_1002_ppp3_10547 crossref_primary_10_1111_1365_2435_14137 crossref_primary_10_1111_gcb_15132 crossref_primary_10_1007_s13595_019_0861_8 crossref_primary_10_3389_ffgc_2020_610162 crossref_primary_10_1016_j_agrformet_2023_109869 crossref_primary_10_1111_ele_14259 crossref_primary_10_1038_s41561_018_0134_4 crossref_primary_10_1002_ece3_11505 crossref_primary_10_1111_nph_15991 crossref_primary_10_1111_nph_18345 crossref_primary_10_3390_plants9101353 crossref_primary_10_1016_j_agrformet_2020_108077 crossref_primary_10_1080_15627020_2021_1975560 crossref_primary_10_1111_gcb_13749 crossref_primary_10_1016_j_scitotenv_2021_145526 crossref_primary_10_1080_01904167_2024_2405990 crossref_primary_10_1111_1365_2745_13133 crossref_primary_10_1016_j_agrformet_2019_107711 crossref_primary_10_1007_s00484_016_1266_0 crossref_primary_10_3389_fpls_2018_00755 crossref_primary_10_1016_j_ecolind_2019_04_017 crossref_primary_10_1016_j_envexpbot_2020_104269 crossref_primary_10_1016_j_ecolind_2024_112469 crossref_primary_10_1111_geb_13581 crossref_primary_10_1111_geb_12802 crossref_primary_10_1126_sciadv_add4468 crossref_primary_10_3389_fevo_2024_1358676 crossref_primary_10_1016_j_agrformet_2023_109716 crossref_primary_10_3390_rs16193552 crossref_primary_10_1371_journal_pone_0174390 crossref_primary_10_1002_ecs2_4802 crossref_primary_10_1016_j_biocon_2015_12_033 crossref_primary_10_1016_j_apsoil_2024_105824 crossref_primary_10_1016_j_scitotenv_2018_09_129 crossref_primary_10_1007_s00442_019_04554_2 crossref_primary_10_1038_s41558_022_01285_w crossref_primary_10_3390_sym12050727 crossref_primary_10_1038_s41558_025_02273_6 crossref_primary_10_3389_ffgc_2024_1330561 crossref_primary_10_1016_j_rse_2019_111407 crossref_primary_10_3390_f13071125 crossref_primary_10_1016_j_ecolind_2023_111056 crossref_primary_10_1002_jpln_201700074 crossref_primary_10_1002_2016JG003677 crossref_primary_10_1002_ecs2_3706 crossref_primary_10_1038_s41559_022_01946_1 crossref_primary_10_1029_2019JG005137 crossref_primary_10_1111_gcb_16916 crossref_primary_10_1002_ece3_7734 crossref_primary_10_1111_gcb_14619 crossref_primary_10_1016_j_agrformet_2019_01_006 crossref_primary_10_1111_1365_2745_13952 crossref_primary_10_1111_nph_14083 crossref_primary_10_1111_gcb_13081 crossref_primary_10_1029_2023MS003655 crossref_primary_10_1093_aob_mcv169 crossref_primary_10_3390_f10020166 crossref_primary_10_1016_j_actao_2020_103617 crossref_primary_10_15531_KSCCR_2019_10_1_1 crossref_primary_10_1002_ecs2_4487 crossref_primary_10_1111_gcb_14129 crossref_primary_10_1016_j_geodrs_2022_e00602 crossref_primary_10_34133_remotesensing_0085 crossref_primary_10_1111_gcb_16545 crossref_primary_10_1007_s11104_018_3591_z crossref_primary_10_1111_gcb_15458 crossref_primary_10_1016_j_scitotenv_2022_153175 crossref_primary_10_1109_JSTARS_2023_3247422 crossref_primary_10_1038_s41467_019_11035_w crossref_primary_10_1002_ajb2_1631 crossref_primary_10_2139_ssrn_3973930 crossref_primary_10_1111_ele_13474 crossref_primary_10_1016_j_scitotenv_2020_138342 crossref_primary_10_1111_pce_14037 crossref_primary_10_1016_j_ijbiomac_2025_140665 crossref_primary_10_1007_s11104_017_3473_9 crossref_primary_10_3390_plants13121659 crossref_primary_10_1088_1748_9326_aaa17b crossref_primary_10_1111_gcb_13033 crossref_primary_10_1093_jxb_erz505 crossref_primary_10_1007_s11258_025_01503_3 crossref_primary_10_1071_BT20052 crossref_primary_10_1016_j_ecolind_2022_109650 crossref_primary_10_1016_j_jag_2023_103590 crossref_primary_10_1016_j_envres_2024_119790 crossref_primary_10_3897_neotropical_17_e93846 crossref_primary_10_1002_ece3_4920 crossref_primary_10_1016_j_agrformet_2024_109886 crossref_primary_10_1016_j_agrformet_2022_109095 crossref_primary_10_1111_1365_2745_14388 crossref_primary_10_3390_horticulturae7060120 crossref_primary_10_1016_j_ecolind_2020_106112 crossref_primary_10_1016_j_agrformet_2020_107908 crossref_primary_10_1007_s42729_023_01415_z crossref_primary_10_1111_gcb_15200 crossref_primary_10_3390_f10110967 crossref_primary_10_1016_j_rse_2020_111698 crossref_primary_10_1016_j_scitotenv_2022_159858 crossref_primary_10_1016_j_scitotenv_2024_171965 crossref_primary_10_1016_j_catena_2023_107543 crossref_primary_10_1360_N072022_0356 crossref_primary_10_1016_j_ecolind_2021_108052 crossref_primary_10_1093_jpe_rtab105 crossref_primary_10_3389_fpls_2023_1040758 crossref_primary_10_1007_s00484_022_02331_0 crossref_primary_10_1088_1748_3190_ad3ed4 crossref_primary_10_3389_fpls_2021_716071 crossref_primary_10_1029_2018MS001540 crossref_primary_10_1007_s11756_022_01055_1 crossref_primary_10_1093_pnasnexus_pgae477 crossref_primary_10_1080_13416979_2018_1432303 crossref_primary_10_1007_s00484_022_02354_7 crossref_primary_10_1007_s13595_015_0477_6 crossref_primary_10_1016_j_agrformet_2020_108228 crossref_primary_10_1111_nph_17041 crossref_primary_10_1016_j_agrformet_2022_109082 crossref_primary_10_1111_gcb_17097 crossref_primary_10_1002_ecy_4238 crossref_primary_10_1111_1365_2745_14173 crossref_primary_10_1029_2020JG005732 crossref_primary_10_1111_gcb_14021 crossref_primary_10_1111_nph_17606 crossref_primary_10_1016_j_cropd_2022_100015 crossref_primary_10_1016_j_xplc_2022_100503 crossref_primary_10_1016_j_agrformet_2017_12_259 crossref_primary_10_2139_ssrn_4147477 crossref_primary_10_1016_j_plaphy_2022_06_029 crossref_primary_10_1093_treephys_tpac068 crossref_primary_10_1016_j_ecolind_2023_111094 crossref_primary_10_1111_1365_2745_13637 crossref_primary_10_3390_rs16132309 crossref_primary_10_1111_nph_18361 crossref_primary_10_1007_s11258_017_0752_8 crossref_primary_10_1093_treephys_tpae124 crossref_primary_10_1111_1365_2745_13870 crossref_primary_10_3390_f14010005 crossref_primary_10_1016_j_agrformet_2023_109495 crossref_primary_10_1111_1365_2435_14243 crossref_primary_10_1007_s10021_016_9962_5 crossref_primary_10_1007_s12155_021_10249_5 crossref_primary_10_1111_gcb_15586 crossref_primary_10_3390_land14030562 crossref_primary_10_1111_gcb_13040 crossref_primary_10_3389_fpls_2022_1048656 crossref_primary_10_1139_cjss_2019_0037 crossref_primary_10_1016_j_jhydrol_2022_128201 crossref_primary_10_1016_j_agrformet_2021_108407 crossref_primary_10_1016_j_ecolind_2019_02_024 crossref_primary_10_1016_j_scitotenv_2024_173147 crossref_primary_10_3390_f10040293 crossref_primary_10_3390_plants14060909 crossref_primary_10_1038_s43017_022_00317_5 crossref_primary_10_3389_fpls_2020_570001 crossref_primary_10_1093_treephys_tpaa058 crossref_primary_10_1093_treephys_tpaa175 crossref_primary_10_1186_s13717_021_00338_w crossref_primary_10_1002_ece3_10362 crossref_primary_10_1016_j_foreco_2020_118663 crossref_primary_10_3390_rs10030449 crossref_primary_10_1007_s11104_023_06080_w crossref_primary_10_1016_j_foreco_2020_118785 crossref_primary_10_1093_treephys_tpaa171 crossref_primary_10_1029_2020JG006167 crossref_primary_10_1186_s40663_021_00350_8 crossref_primary_10_1016_j_agrformet_2023_109340 crossref_primary_10_1088_1748_9326_11_1_014003 crossref_primary_10_3390_rs16193724 crossref_primary_10_1016_j_scitotenv_2016_04_124 crossref_primary_10_1016_j_gloplacha_2024_104587 crossref_primary_10_1007_s11258_018_0863_x crossref_primary_10_1007_s11676_024_01740_8 crossref_primary_10_1029_2020JG006049 crossref_primary_10_1038_s41598_017_03435_z crossref_primary_10_1111_1365_2435_13327 crossref_primary_10_1016_j_agrformet_2022_108879 crossref_primary_10_3354_esr01104 crossref_primary_10_1007_s10661_022_10220_7 crossref_primary_10_1016_j_agee_2024_109304 crossref_primary_10_1111_gcb_13105 crossref_primary_10_1002_joc_8309 crossref_primary_10_1016_j_foreco_2019_117858 crossref_primary_10_1016_j_agrformet_2020_107943 crossref_primary_10_1111_1365_2745_13778 crossref_primary_10_1016_j_scitotenv_2021_149968 crossref_primary_10_1016_j_tourman_2018_08_021 crossref_primary_10_1007_s00484_021_02190_1 crossref_primary_10_1016_j_scitotenv_2020_138891 crossref_primary_10_1007_s10342_024_01733_6 crossref_primary_10_1111_1365_2745_13892 crossref_primary_10_1016_j_soilbio_2022_108840 crossref_primary_10_3390_f13101660 crossref_primary_10_3389_fpls_2022_926941 crossref_primary_10_1016_j_agrformet_2024_110036 crossref_primary_10_1016_j_plaphy_2020_01_024 crossref_primary_10_1016_j_ecochg_2024_100087 crossref_primary_10_1126_sciadv_adn2487 crossref_primary_10_3389_fpls_2023_1142786 crossref_primary_10_1371_journal_pone_0190313 crossref_primary_10_3390_f13071099 crossref_primary_10_5194_bg_18_3309_2021 crossref_primary_10_1016_j_agrformet_2021_108661 crossref_primary_10_1093_treephys_tpz041 crossref_primary_10_17474_artvinofd_1254754 crossref_primary_10_1016_j_agrformet_2019_107758 crossref_primary_10_3390_rs9070691 crossref_primary_10_3389_fpls_2020_01031 crossref_primary_10_1007_s10533_022_00985_x crossref_primary_10_1016_j_agrformet_2022_109044 crossref_primary_10_1016_j_agrformet_2020_108031 crossref_primary_10_1038_s41598_017_17368_0 crossref_primary_10_33265_polar_v41_6310 crossref_primary_10_1029_2023GL107346 crossref_primary_10_1073_pnas_1509991112 crossref_primary_10_1109_JSTARS_2022_3196494 crossref_primary_10_1093_treephys_tpac028 crossref_primary_10_1016_j_envres_2023_116643 crossref_primary_10_1016_j_rse_2023_113835 crossref_primary_10_1016_j_scitotenv_2023_161649 crossref_primary_10_1016_j_ecolmodel_2018_12_020 crossref_primary_10_1016_j_agrformet_2021_108432 crossref_primary_10_1016_j_agrformet_2022_109026 crossref_primary_10_1007_s11104_024_07035_5 crossref_primary_10_1016_j_ecofro_2024_10_011 crossref_primary_10_1016_j_scitotenv_2022_161109 crossref_primary_10_2139_ssrn_4089107 crossref_primary_10_1073_pnas_2015821118 crossref_primary_10_1088_2752_664X_ad63ae crossref_primary_10_1111_gcb_16194 crossref_primary_10_3390_en16207083 crossref_primary_10_1186_s13717_024_00507_7 |
Cites_doi | 10.2307/2265777 10.1093/jxb/err213 10.1071/FP03236 10.1080/02827588609382425 10.1007/s004420000576 10.1111/j.1469-8137.2005.01451.x 10.1051/forest:19990406 10.1111/j.1365-2486.2009.01851.x 10.1111/j.1365-2486.2003.00714.x 10.1016/j.agrformet.2011.03.003 10.1038/17709 10.1093/treephys/tpp029 10.2307/2937209 10.1055/s-2005-837469 10.1016/j.scienta.2011.07.011 10.1111/j.1469-8137.2007.02079.x 10.1093/treephys/tpr002 10.1093/treephys/tpr118 10.1105/tpc.010410 10.1111/j.1365-2486.1997.gcb135.x 10.1111/j.1438-8677.2012.00687.x 10.1016/B978-012520915-1/50017-5 10.1007/s00468-008-0239-2 10.1371/journal.pone.0057373 10.1016/j.agrformet.2012.01.019 10.1007/s11104-004-0297-1 10.1111/j.1365-2486.2010.02281.x 10.1111/j.1365-2486.2011.02397.x 10.1104/pp.108.133249 10.1046/j.1365-2486.2003.00688.x 10.1016/j.envpol.2006.08.033 10.1016/0378-1127(95)97452-X 10.1111/j.1365-313X.2007.03077.x 10.3354/cr032253 10.1111/j.1365-2486.2011.02632.x 10.1111/j.1438-8677.2009.00309.x 10.1111/j.1466-8238.2008.00398.x 10.1007/BF00328788 10.1093/treephys/17.11.733 10.1093/oxfordjournals.aob.a087463 10.1105/tpc.111.083345 10.1890/10-0633.1 10.1098/rstb.2010.0120 10.1007/s00468-009-0320-5 10.1007/s004250050436 10.1016/j.agrformet.2010.04.001 10.1046/j.1365-3040.2001.00794.x 10.1111/j.1365-3040.2012.02552.x 10.1007/s00468-012-0686-7 10.1086/376576 10.1016/j.agrformet.2004.06.011 10.1111/j.1365-3040.2012.02560.x 10.1038/382146a0 10.1007/s11103-012-9974-2 10.1046/j.1365-2486.2002.00489.x 10.1111/gcb.12556 10.1007/s11104-006-6249-1 10.1007/BF00037052 10.1007/s00484-010-0305-5 10.1007/s11258-004-2485-8 10.1080/01431160310001618149 10.1093/jxb/ert174 10.1201/9781420014877.ch3 10.1007/s00442-010-1614-4 10.1093/treephys/27.1.63 10.2307/3565537 10.1111/j.1365-3040.2007.01724.x 10.2307/2261481 10.1073/pnas.1321727111 10.1007/s10342-011-0554-9 10.1080/07352689409701916 10.1111/j.1365-2486.2009.02084.x 10.1111/j.1438-8677.2012.00665.x 10.1104/pp.105.066845 10.2307/3565549 10.1007/s00468-011-0600-8 10.1111/j.1365-2486.2008.01735.x 10.1007/s11103-010-9610-y 10.1007/s10265-013-0565-3 10.21273/JASHS.126.5.644 10.1016/j.pbi.2013.02.006 10.1007/s00484-011-0494-6 10.1111/j.0269-8463.2004.00847.x 10.1111/1365-2664.12102 10.1093/treephys/16.1-2.153 10.1111/j.0269-8463.2004.00872.x 10.1111/j.1365-2486.2006.01193.x 10.1007/s11104-011-0742-x 10.1126/science.1066860 10.1111/j.1461-0248.2009.01310.x 10.1002/joc.1969 10.1146/annurev.es.17.110186.000435 10.1007/s00442-009-1363-4 10.1016/0378-1127(92)90332-4 10.1146/annurev.arplant.57.032905.105212 10.1016/0098-8472(94)90005-1 10.1111/j.1365-2486.2006.01164.x 10.1139/x90-154 10.1093/treephys/tps005 10.1007/s13595-011-0010-5 10.2307/1937083 10.1002/9780470988855.ch5 10.1007/BF00317817 10.1051/forest:2006042 10.1016/S1360-1385(03)00103-1 10.1016/j.agrformet.2008.11.014 10.1093/treephys/25.1.109 10.1016/S0378-1127(98)00381-8 10.1093/treephys/25.6.641 10.1006/anbo.1998.0656 10.1007/s00484-007-0126-3 10.1016/j.tplants.2007.03.012 10.1111/j.1469-8137.2010.03252.x 10.1093/treephys/25.8.1001 10.1534/genetics.105.047522 10.1111/j.1365-2435.2010.01748.x 10.1104/pp.110.163907 10.1890/11-0416.1 |
ContentType | Journal Article |
Copyright | 2014 John Wiley & Sons Ltd 2014 John Wiley & Sons Ltd. Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2014 John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons Ltd. – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TG 7U6 KL. SOI 7S9 L.6 |
DOI | 10.1111/gcb.12804 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 1017 |
ExternalDocumentID | 3592779831 25384459 10_1111_gcb_12804 GCB12804 ark_67375_WNG_WR5R26NS_S US201500196684 |
Genre | commentary Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Spanish Government funderid: CGL2013‐48074‐P – fundername: Consolider Ingenio funderid: MONTES CSD2008‐00040 – fundername: Catalan Government funderid: SGR2014‐274 – fundername: European Research Council Synergy funderid: ERC‐SyG‐610028 IMBALANCE‐P |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TG 7U6 KL. SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c5124-8fcf9f40775f2ded32b40ea9187f0f6e942b5ee71703717f3005c1053f560bd43 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:28:32 EDT 2025 Fri Jul 11 05:54:56 EDT 2025 Fri Jul 11 12:24:55 EDT 2025 Fri Jul 25 11:06:42 EDT 2025 Mon Jul 21 05:57:53 EDT 2025 Thu Apr 24 23:04:27 EDT 2025 Tue Jul 01 03:52:53 EDT 2025 Wed Jan 22 16:40:32 EST 2025 Wed Oct 30 09:56:56 EDT 2024 Wed Dec 27 18:48:23 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | nutrient cycle litter plant production drought nutrient proficiency phenology warming winter deciduous species leaf fall climate change leaf senescence |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5124-8fcf9f40775f2ded32b40ea9187f0f6e942b5ee71703717f3005c1053f560bd43 |
Notes | http://dx.doi.org/10.1111/gcb.12804 Spanish Government - No. CGL2013-48074-P Catalan Government - No. SGR2014-274 ark:/67375/WNG-WR5R26NS-S European Research Council Synergy - No. ERC-SyG-610028 IMBALANCE-P Consolider Ingenio - No. MONTES CSD2008-00040 istex:09382668F5A11FB4B42C1BC222D5E79369325426 ArticleID:GCB12804 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://ddd.uab.cat/record/128577 |
PMID | 25384459 |
PQID | 1655430505 |
PQPubID | 30327 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1694486449 proquest_miscellaneous_1664201244 proquest_miscellaneous_1657316899 proquest_journals_1655430505 pubmed_primary_25384459 crossref_citationtrail_10_1111_gcb_12804 crossref_primary_10_1111_gcb_12804 wiley_primary_10_1111_gcb_12804_GCB12804 istex_primary_ark_67375_WNG_WR5R26NS_S fao_agris_US201500196684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2015 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: March 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2015 |
Publisher | Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | Dougherty PM, Hennessey TC, Zarnoch SJ, Stenberg PT, Holeman RT, Wittwer RF (1995) Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly-pine (Pinus taeda L.) stand. Forest Ecology and Management, 72, 213-227. Munne-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell and Environment, 24, 1319-1327. Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15, 1930-1948. Peñuelas J, Filella I (2001) Phenology - Responses to a warming world. Science, 294, 793-795. Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013) Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant Cell and Environment, 36, 116-127. Günthardt-Goerg MS, Kuster TM, Arend M, Vollenweider P (2013) Foliage response of young central European oaks to air warming, drought and soil type. Plant Biology, 15, 185-197. Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae, 130, 357-372. Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biology, 12, 275-291. Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell and Environment, 35, 1707-1728. Fu YSH, Campioli M, Vitasse Y et al. (2014) Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111, 7355-7360. Silla F, Fleury M, Mediavilla S, Escudero A (2008) Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. saplings. Trees-Structure and Function, 22, 785-793. Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644. Escudero A, Delarco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos, 49, 11-14. Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126, 237-255. Doi H, Takahashi M (2008) Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecology and Biogeography, 17, 556-561. Keskitalo J, Bergquist G, Gardestrom P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiology, 139, 1635-1648. Breeze E, Harrison E, McHattie S et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23, 873-894. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 161, 187-198. Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28. Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9, 1792-1801. Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149. Druart N, Johansson A, Baba K et al. (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant Journal, 50, 557-573. Migita C, Chiba Y, Tange T (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology, 27, 63-70. Paakkonen E, Gunthardt-Goerg MS, Holopainen T (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany, 82, 49-59. Montserrat-Marti G, Camarero JJ, Palacio S, Perez-Rontome C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees-Structure and Function, 23, 787-799. Ueda MU, Mizumachi E, Tokuchi N (2009) Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings. Tree Physiology, 29, 913-919. Gonzalez E (2012) Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica, 31, 173-185. Ruuhola T, Leppanen T, Lehto T (2011) Retranslocation of nutrients in relation to boron availability during leaf senescence of Betula pendula Roth. Plant and Soil, 344, 227-240. Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17, 886-897. Killingbeck KT, May JD, Nyman S (1990) Foliar senescence in an aspen (Populus tremuloides) clone - the response of element resorption to interramet variation and timing of abscission. Canadian Journal of Forest Research, 20, 1156?1164. Feller U, Fischer A (1994) Nitrogen-metabolism in senescing leaves. Critical Reviews in Plant Sciences, 13, 241-273. Ibañez I, Primack RB, Miller-Rushing AJ et al. (2010) Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3247-3260. Jordan MO, Wendler R, Millard P (2012) Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees. Trees-Structure and Function, 26, 393-404. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature, 397, 659. Xu ZF, Hu TX, Zhang YB (2012) Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research, 131, 811-819. Niinemets U, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 25, 1001-1014. Juknys R, Sujetoviene G, Zeimavicius K, Sveikauskaite I (2012) Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology. Baltic Forestry, 18, 25-32. Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 24, 1211-1218. Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005) Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus. Plant Biology, 7, 182-189. Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. International Journal of Biometeorology, 54, 563-581. Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251-259. Silla F, Escudero A (2006) Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. saplings. Plant and Soil, 282, 301-311. Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiology, 149, 1982-1991. Wendler R, Millard P (1996) Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula. Tree Physiology, 16, 153-159. Niederholzer FJA, Dejong TM, Saenz JL, Muraoka TT, Weinbaum SA (2001) Effectiveness of fall versus spring soil fertilization of field-grown peach trees. Journal of the American Society for Horticultural Science, 126, 644-648. Matsumoto K (2010) Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. International Journal of Climatology, 30, 1280-1288. Kasurinen A, Biasi C, Holopainen T, Rousi M, Maenpaa M, Oksanen E (2012) Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737-751. Staelens J, Nachtergale L, De Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011) Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98. Leuzinger S, Zotz G, Asshoff R, Korner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 25, 641-650. Clausen S, Apel K (1991) Seasonal-changes in the concentration of the major storage protein and its messenger-RNA in xylem ray cells of poplar trees. Plant Molecular Biology, 17, 669-678. Gunderson CA, Edwards NT, Walker AV, O'Hara KH, Campion CM, Hanson PJ (2012) Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology, 18, 2008-2025. Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151, 969-980. Pugnaire FI, Chapin FS (1992) Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 90, 120-126. Ingvarsson PK, Garcia MV, Ha 2010; 12 2002; 14 2010; 16 1991; 17 2006; 32 2005; 178 2004; 25 2013; 126 2011; 62 2013; 64 1996; 382 2011; 55 2010; 186 2012; 18 2006; 172 1998; 82 2013; 8 1997; 3 1992; 51 2014; 20 1996; 77 2009; 12 1986; 1 2004; 31 2012; 131 2010; 24 2013; 50 2007; 175 2003; 162 1999; 56 1998; 206 2011; 68 2008; 22 2006; 282 2012; 26 2010; 30 2009; 15 1989 1987; 49 2006; 57 1991; 72 2002; 8 1986; 17 2010; 163 2008; 52 2011; 130 2012; 35 2001; 24 1996; 16 2007; 12 2012; 32 2012; 31 1990; 20 1987; 60 2013; 82 2005; 7 1996; 84 1994; 13 1999; 114 2007; 147 2010; 54 1995; 72 2004; 126 2005; 139 2007; 30 2011; 17 2011; 151 1996; 105 2005; 25 1992; 90 2006; 63 2013; 15 2001; 294 2013; 16 2005; 268 2003; 8 2003; 9 1983; 64 2010; 154 1994; 34 1997; 17 2010; 150 2009; 161 2011; 23 2010; 73 2007; 27 2009; 23 2012; 82 2006; 12 2010; 365 2008; 17 2011; 31 2007 2006 2005 2007; 50 2004 1988; 53 2014; 111 2001; 126 2009; 29 2001; 127 2011; 344 2013; 36 2012; 157 2004; 18 2005; 167 1999; 397 2013 2010; 91 2009; 149 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 IPCC (e_1_2_9_50_1) 2013 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Gonzalez E (e_1_2_9_34_1) 2012; 31 e_1_2_9_102_1 Evans JR (e_1_2_9_27_1) 1989 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_73_1 e_1_2_9_35_1 Juknys R (e_1_2_9_54_1) 2012; 18 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 Mostowska A (e_1_2_9_79_1) 2005 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Silla F, Fleury M, Mediavilla S, Escudero A (2008) Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. saplings. Trees-Structure and Function, 22, 785-793. – reference: Cufar K, De Luis M, Saz MA, Crepinsek Z, Kajfez-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees-Structure and Function, 26, 1091-1100. – reference: Paakkonen E, Gunthardt-Goerg MS, Holopainen T (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany, 82, 49-59. – reference: Dragoni D, Rahman AF (2012) Trends in fall phenology across the deciduous forests of the Eastern USA. Agricultural and Forest Meteorology, 157, 96-105. – reference: Staaf H, Stjernquist I (1986) Seasonal dynamics, especially autumnal retranslocation, of nitrogen and phosphorus in foliage of dominant and suppressed trees of beech, Fagus sylvatica. Scandinavian Journal of Forest Research, 1, 333-342. – reference: Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 161, 187-198. – reference: Inada N, Sakai A, Kuroiwa H, Kuroiwa T (1998) Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles - Investigations by fluorescence microscopy and electron microscopy. Planta, 206, 585-597. – reference: Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28. – reference: Breeze E, Harrison E, McHattie S et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23, 873-894. – reference: Jeong SJ, Ho CH, Gim HJ, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17, 2385-2399. – reference: Hortensteiner S (2006) Chlorophyll degradation during senescence. Annual Review of Plant Biology, 57, 55-77. – reference: Heide OM (2011) Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. Journal of Experimental Botany, 62, 5397-5404. – reference: Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. – reference: Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18, 419-425. – reference: Staelens J, Nachtergale L, De Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011) Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98. – reference: Marchin R, Zeng HN, Hoffmann W (2010) Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia, 163, 845-854. – reference: Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531-544. – reference: Chen WQ, Provart NJ, Glazebrook J et al. (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell, 14, 559-574. – reference: Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell and Environment, 35, 1707-1728. – reference: Leuzinger S, Zotz G, Asshoff R, Korner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 25, 641-650. – reference: Matsumoto K (2010) Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. International Journal of Climatology, 30, 1280-1288. – reference: Killingbeck KT, May JD, Nyman S (1990) Foliar senescence in an aspen (Populus tremuloides) clone - the response of element resorption to interramet variation and timing of abscission. Canadian Journal of Forest Research, 20, 1156?1164. – reference: Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126, 237-255. – reference: Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31, 203-216. – reference: Keskitalo J, Bergquist G, Gardestrom P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiology, 139, 1635-1648. – reference: Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology, 150, 1026-1029. – reference: Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17, 886-897. – reference: Kasurinen A, Biasi C, Holopainen T, Rousi M, Maenpaa M, Oksanen E (2012) Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737-751. – reference: Montserrat-Marti G, Camarero JJ, Palacio S, Perez-Rontome C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees-Structure and Function, 23, 787-799. – reference: Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytologist, 167, 19-30. – reference: Delpierre N, Dufrene E, Soudani K, Ulrich E, Cecchini S, Boe J, Francois C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149, 938-948. – reference: Resman L, Howe G, Jonsen D et al. (2010) Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. Plant Physiology, 154, 1294-1303. – reference: Fu YSH, Campioli M, Vitasse Y et al. (2014) Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111, 7355-7360. – reference: Schreiber SG, Ding C, Hamann A, Hacke UG, Thomas BR, Brouard JS (2013) Frost hardiness vs. growth performance in trembling aspen: an experimental test of assisted migration. Journal of Applied Ecology, 50, 939-949. – reference: Keech O, Pesquet E, Ahad A et al. (2007) The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell and Environment, 30, 1523-1534. – reference: Niederholzer FJA, Dejong TM, Saenz JL, Muraoka TT, Weinbaum SA (2001) Effectiveness of fall versus spring soil fertilization of field-grown peach trees. Journal of the American Society for Horticultural Science, 126, 644-648. – reference: del Arco JM, Escudero A, Garrido MV (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708. – reference: Ueda MU, Mizumachi E, Tokuchi N (2009) Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings. Tree Physiology, 29, 913-919. – reference: Peng ZP, Li CJ (2005) Transport and partitioning of phosphorus in wheat as affected by P withdrawal during flag-leaf expansion. Plant and Soil, 268, 1-11. – reference: Ibañez I, Primack RB, Miller-Rushing AJ et al. (2010) Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3247-3260. – reference: Jordan MO, Wendler R, Millard P (2012) Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees. Trees-Structure and Function, 26, 393-404. – reference: Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013) Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant Cell and Environment, 36, 116-127. – reference: El Zein R, Breda N, Gerant D, Zeller B, Maillard P (2011) Nitrogen sources for current-year shoot growth in 50-year-old sessile oak trees: an in situ N-15 labeling approach. Tree Physiology, 31, 1390-1400. – reference: Waddell KJ, Fox CW, White KD, Mousseau TA (2001) Leaf abscission phenology of a scrub oak: consequences for growth and survivorship of a leaf mining beetle. Oecologia, 127, 251-258. – reference: Wendler R, Millard P (1996) Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula. Tree Physiology, 16, 153-159. – reference: Escudero A, Delarco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos, 49, 11-14. – reference: Killingbeck KT, Costigan SA (1988) Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos, 53, 366-374. – reference: Niinemets U, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 25, 1001-1014. – reference: Warren JM, Norby RJ, Wullschleger SD (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 31, 117-130. – reference: Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005) Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus. Plant Biology, 7, 182-189. – reference: Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends in Plant Science, 12, 217-223. – reference: Neilsen D, Millard P, Neilsen GH, Hogue EJ (1997) Sources of N for leaf growth in a high-density apple (Malus domestica) orchard irrigated with ammonium nitrate solution. Tree Physiology, 17, 733-739. – reference: Morin X, Roy J, Sonie L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186, 900-910. – reference: Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149. – reference: Pugnaire FI, Chapin FS (1992) Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 90, 120-126. – reference: Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151, 969-980. – reference: Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology, 16, 1082-1106. – reference: Jones MH, Bay C, Nordenhall U (1997) Effects of experimental warming on arctic willows (Salix spp.): a comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Subarctic. Global Change Biology, 3, 55-60. – reference: Yasumura Y, Onoda Y, Hikosaka K, Hirose T (2005) Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology, 178, 29-37. – reference: Matzek V, Vitousek PM (2009) N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771. – reference: Hikosaka K (2003) A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency. The American Naturalist, 162, 149-164. – reference: Ingvarsson PK, Garcia MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics, 172, 1845-1853. – reference: Gonzalez E (2012) Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica, 31, 173-185. – reference: Juknys R, Sujetoviene G, Zeimavicius K, Sveikauskaite I (2012) Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology. Baltic Forestry, 18, 25-32. – reference: Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiology, 149, 1982-1991. – reference: Charles-Edwards DA, Stutzel H, Ferraris R, Beech DF (1987) An analysis of spatial variation in the nitrogen-content of leaves from different horizons within a canopy. Annals of Botany, 60, 421-426. – reference: Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9, 1792-1801. – reference: Ruuhola T, Leppanen T, Lehto T (2011) Retranslocation of nutrients in relation to boron availability during leaf senescence of Betula pendula Roth. Plant and Soil, 344, 227-240. – reference: Pedersen LB, Bille-Hansen J (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecology and Management, 114, 55-70. – reference: Dougherty PM, Hennessey TC, Zarnoch SJ, Stenberg PT, Holeman RT, Wittwer RF (1995) Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly-pine (Pinus taeda L.) stand. Forest Ecology and Management, 72, 213-227. – reference: Silla F, Escudero A (2006) Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. saplings. Plant and Soil, 282, 301-311. – reference: Morin X, Lechowicz MJ, Augspurger C, O' Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 15, 961-975. – reference: IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY. – reference: Hennessey TC, Dougherty PM, Cregg BM, Wittwer RF (1992) Annual variation in needle fall of a loblolly-pine stand in relation to climate and stand density. Forest Ecology and Management, 51, 329-338. – reference: Gunderson CA, Edwards NT, Walker AV, O'Hara KH, Campion CM, Hanson PJ (2012) Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology, 18, 2008-2025. – reference: Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644. – reference: Menzel A, Sparks TH, Estrella N et al. (2006) European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976. – reference: Migita C, Chiba Y, Tange T (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology, 27, 63-70. – reference: Chapin FS, Kedrowski RA (1983) Seasonal-changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64, 376-391. – reference: Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25, 109-114. – reference: Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environmental Pollution, 147, 467-488. – reference: Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 67-88. – reference: Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251-259. – reference: Tanino K, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology, 73, 49-65. – reference: Hwang T, Band LE, Miniat CF, Song C, Bolstad PV, Vose JM, Love JP (2014) Divergent phenological response to hydroclimate variability in forested mountain watersheds. Global Change Biology, 20, 2580-2595. – reference: Feller U, Fischer A (1994) Nitrogen-metabolism in senescing leaves. Critical Reviews in Plant Sciences, 13, 241-273. – reference: Anten NPR, Werger MJA (1996) Canopy structure and nitrogen distribution in dominant and subordinate plants in a dense stand of Amaranthus dubius L. with a size hierarchy of individuals. Oecologia, 105, 30-37. – reference: Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology, 9, 1634-1642. – reference: Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220. – reference: Wibbe ML, Blanke MM, Lenz F (1994) Respiration of apple-trees between leaf fall and leaf emergence. Environmental and Experimental Botany, 34, 25-30. – reference: Peñuelas J, Filella I (2001) Phenology - Responses to a warming world. Science, 294, 793-795. – reference: Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biology, 12, 275-291. – reference: Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research, 126, 447-460. – reference: Richardson AD, Bailey AS, Denny EG, Martin CW, O'Keefe J (2006) Phenology of a northern hardwood forest canopy. Global Change Biology, 12, 1174-1188. – reference: Stöckli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25, 3303-3330. – reference: Druart N, Johansson A, Baba K et al. (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant Journal, 50, 557-573. – reference: Menzel A, Fabian P (1999) Growing season extended in Europe. Nature, 397, 659. – reference: Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae, 130, 357-372. – reference: Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. International Journal of Biometeorology, 54, 563-581. – reference: Clausen S, Apel K (1991) Seasonal-changes in the concentration of the major storage protein and its messenger-RNA in xylem ray cells of poplar trees. Plant Molecular Biology, 17, 669-678. – reference: Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Research, 32, 253-267. – reference: Friedman JM, Roelle JE, Cade BS (2011) Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees. International Journal of Biometeorology, 55, 775-787. – reference: Pregitzer KS, Zak DR, Talhelm AF, Burton AJ, Eikenberry JR (2010) Nitrogen turnover in the leaf litter and fine roots of sugar maple. Ecology, 91, 3456-3462. – reference: Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15, 1930-1948. – reference: Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends in Plant Science, 8, 272-278. – reference: Doi H, Takahashi M (2008) Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecology and Biogeography, 17, 556-561. – reference: Silla F, Escudero A (2004) Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population levels. Functional Ecology, 18, 511-521. – reference: Wildhagen H, Bilela S, Rennenberg H (2013) Low temperatures counteract short-day induced nitrogen storage, but not accumulation of bark storage protein transcripts in bark of grey poplar (Populus x canescens) trees. Plant Biology, 15, 44-56. – reference: Günthardt-Goerg MS, Kuster TM, Arend M, Vollenweider P (2013) Foliage response of young central European oaks to air warming, drought and soil type. Plant Biology, 15, 185-197. – reference: Archetti M, Richardson AD, O'Keefe J, Delpierre N (2013) Predicting climate change impacts on the amount and duration of autumn colours in a new england forest. PLoS ONE, 8, e57373. – reference: Juvany M, Muller M, Munne-Bosch S (2013) Photo-oxidative stress in emerging and senescing leaves: a mirror image? Journal of Experimental Botany, 64, 3087-3098. – reference: Guo YF (2013) Towards systems biological understanding of leaf senescence. Plant Molecular Biology, 82, 519-528. – reference: Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology, 84, 597-608. – reference: Xu ZF, Hu TX, Zhang YB (2012) Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research, 131, 811-819. – reference: Petterle A, Karlberg A, Bhalerao RP (2013) Daylength mediated control of seasonal growth patterns in perennial trees. Current Opinion in Plant Biology, 16, 301-306. – reference: Gallardo JF, Martin A, Moreno G (1999) Nutrient efficiency and resorption in Quercus pyrenaica oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain). Annals of Forest Science, 56, 321-331. – reference: Munne-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell and Environment, 24, 1319-1327. – reference: Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 24, 1211-1218. – volume: 15 start-page: 1930 year: 2009 end-page: 1948 article-title: Long‐term temporal changes of plant phenology in the Western Mediterranean publication-title: Global Change Biology – start-page: 183 year: 1989 end-page: 205 – start-page: 51 year: 2006 end-page: 90 – volume: 32 start-page: 253 year: 2006 end-page: 267 article-title: Responses of leaf colouring in four deciduous tree species to climate and weather in Germany publication-title: Climate Research – volume: 9 start-page: 1634 year: 2003 end-page: 1642 article-title: Climate change and extension of the L. growing season in Japan publication-title: Global Change Biology – volume: 16 start-page: 1082 year: 2010 end-page: 1106 article-title: Impact of climate change on plant phenology in Mediterranean ecosystems publication-title: Global Change Biology – volume: 9 start-page: 1792 year: 2003 end-page: 1801 article-title: Phenological responses in maple to experimental atmospheric warming and CO enrichment publication-title: Global Change Biology – volume: 20 start-page: 1156 year: 1990 end-page: 1164 article-title: Foliar senescence in an aspen ( ) clone ‐ the response of element resorption to interramet variation and timing of abscission publication-title: Canadian Journal of Forest Research – volume: 157 start-page: 96 year: 2012 end-page: 105 article-title: Trends in fall phenology across the deciduous forests of the Eastern USA publication-title: Agricultural and Forest Meteorology – volume: 151 start-page: 969 year: 2011 end-page: 980 article-title: Assessing the effects of climate change on the phenology of European temperate trees publication-title: Agricultural and Forest Meteorology – volume: 30 start-page: 1280 year: 2010 end-page: 1288 article-title: Causal factors for spatial variation in long‐term phenological trends in L. in Japan publication-title: International Journal of Climatology – volume: 15 start-page: 961 year: 2009 end-page: 975 article-title: Leaf phenology in 22 North American tree species during the 21st century publication-title: Global Change Biology – volume: 26 start-page: 393 year: 2012 end-page: 404 article-title: Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees publication-title: Trees‐Structure and Function – volume: 17 start-page: 886 year: 2011 end-page: 897 article-title: Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south‐central Indiana, USA publication-title: Global Change Biology – volume: 1 start-page: 333 year: 1986 end-page: 342 article-title: Seasonal dynamics, especially autumnal retranslocation, of nitrogen and phosphorus in foliage of dominant and suppressed trees of beech, publication-title: Scandinavian Journal of Forest Research – volume: 15 start-page: 44 year: 2013 end-page: 56 article-title: Low temperatures counteract short‐day induced nitrogen storage, but not accumulation of bark storage protein transcripts in bark of grey poplar ( ) trees publication-title: Plant Biology – volume: 365 start-page: 3247 year: 2010 end-page: 3260 article-title: Forecasting phenology under global warming publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 162 start-page: 149 year: 2003 end-page: 164 article-title: A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency publication-title: The American Naturalist – volume: 12 start-page: 217 year: 2007 end-page: 223 article-title: Plant dormancy in the perennial context publication-title: Trends in Plant Science – volume: 51 start-page: 329 year: 1992 end-page: 338 article-title: Annual variation in needle fall of a loblolly‐pine stand in relation to climate and stand density publication-title: Forest Ecology and Management – volume: 17 start-page: 733 year: 1997 end-page: 739 article-title: Sources of N for leaf growth in a high‐density apple ( ) orchard irrigated with ammonium nitrate solution publication-title: Tree Physiology – volume: 206 start-page: 585 year: 1998 end-page: 597 article-title: Three‐dimensional analysis of the senescence program in rice ( L.) coleoptiles ‐ Investigations by fluorescence microscopy and electron microscopy publication-title: Planta – volume: 175 start-page: 11 year: 2007 end-page: 28 article-title: Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal publication-title: New Phytologist – volume: 31 start-page: 1390 year: 2011 end-page: 1400 article-title: Nitrogen sources for current‐year shoot growth in 50‐year‐old sessile oak trees: an in situ N‐15 labeling approach publication-title: Tree Physiology – volume: 53 start-page: 366 year: 1988 end-page: 374 article-title: Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds publication-title: Oikos – volume: 31 start-page: 203 year: 2004 end-page: 216 article-title: Die and let live: leaf senescence contributes to plant survival under drought stress publication-title: Functional Plant Biology – volume: 16 start-page: 301 year: 2013 end-page: 306 article-title: Daylength mediated control of seasonal growth patterns in perennial trees publication-title: Current Opinion in Plant Biology – volume: 36 start-page: 116 year: 2013 end-page: 127 article-title: Timing of photoperiodic competency causes phenological mismatch in balsam poplar ( L.) publication-title: Plant Cell and Environment – volume: 14 start-page: 559 year: 2002 end-page: 574 article-title: Expression profile matrix of transcription factor genes suggests their putative functions in response to environmental stresses publication-title: The Plant Cell – volume: 31 start-page: 173 year: 2012 end-page: 185 article-title: Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river publication-title: Limnetica – volume: 30 start-page: 1523 year: 2007 end-page: 1534 article-title: The different fates of mitochondria and chloroplasts during dark‐induced senescence in leaves publication-title: Plant Cell and Environment – volume: 17 start-page: 669 year: 1991 end-page: 678 article-title: Seasonal‐changes in the concentration of the major storage protein and its messenger‐RNA in xylem ray cells of poplar trees publication-title: Plant Molecular Biology – volume: 50 start-page: 939 year: 2013 end-page: 949 article-title: Frost hardiness vs. growth performance in trembling aspen: an experimental test of assisted migration publication-title: Journal of Applied Ecology – volume: 34 start-page: 25 year: 1994 end-page: 30 article-title: Respiration of apple‐trees between leaf fall and leaf emergence publication-title: Environmental and Experimental Botany – volume: 26 start-page: 1091 year: 2012 end-page: 1100 article-title: Temporal shifts in leaf phenology of beech ( ) depend on elevation publication-title: Trees‐Structure and Function – volume: 56 start-page: 321 year: 1999 end-page: 331 article-title: Nutrient efficiency and resorption in oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain) publication-title: Annals of Forest Science – volume: 167 start-page: 19 year: 2005 end-page: 30 article-title: Nitrogen storage and seasonal nitrogen cycling in : bridging molecular physiology and ecophysiology publication-title: New Phytologist – volume: 63 start-page: 625 year: 2006 end-page: 644 article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences publication-title: Annals of Forest Science – volume: 149 start-page: 1982 year: 2009 end-page: 1991 article-title: The control of autumn senescence in European aspen publication-title: Plant Physiology – volume: 382 start-page: 146 year: 1996 end-page: 149 article-title: Increased activity of northern vegetation inferred from atmospheric CO measurements publication-title: Nature – start-page: 691 year: 2005 end-page: 716 – volume: 72 start-page: 213 year: 1995 end-page: 227 article-title: Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly‐pine ( L.) stand publication-title: Forest Ecology and Management – volume: 178 start-page: 29 year: 2005 end-page: 37 article-title: Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species publication-title: Plant Ecology – volume: 12 start-page: 765 year: 2009 end-page: 771 article-title: N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth‐rate hypothesis publication-title: Ecology Letters – volume: 25 start-page: 1001 year: 2005 end-page: 1014 article-title: Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands publication-title: Tree Physiology – volume: 29 start-page: 913 year: 2009 end-page: 919 article-title: Allocation of nitrogen within the crown during leaf expansion in saplings publication-title: Tree Physiology – volume: 16 start-page: 153 year: 1996 end-page: 159 article-title: Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of publication-title: Tree Physiology – volume: 68 start-page: 89 year: 2011 end-page: 98 article-title: Spatio‐temporal litterfall dynamics in a 60‐year‐old mixed deciduous forest publication-title: Annals of Forest Science – volume: 60 start-page: 421 year: 1987 end-page: 426 article-title: An analysis of spatial variation in the nitrogen‐content of leaves from different horizons within a canopy publication-title: Annals of Botany – volume: 55 start-page: 775 year: 2011 end-page: 787 article-title: Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees publication-title: International Journal of Biometeorology – volume: 147 start-page: 467 year: 2007 end-page: 488 article-title: Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives publication-title: Environmental Pollution – volume: 18 start-page: 419 year: 2004 end-page: 425 article-title: Allocation of nitrogen to cell walls decreases photosynthetic nitrogen‐use efficiency publication-title: Functional Ecology – volume: 23 start-page: 873 year: 2011 end-page: 894 article-title: High‐resolution temporal profiling of transcripts during leaf senescence reveals a distinct chronology of processes and regulation publication-title: The Plant Cell – volume: 82 start-page: 519 year: 2013 end-page: 528 article-title: Towards systems biological understanding of leaf senescence publication-title: Plant Molecular Biology – volume: 24 start-page: 1319 year: 2001 end-page: 1327 article-title: Drought‐induced senescence is characterized by a loss of antioxidant defences in chloroplasts publication-title: Plant Cell and Environment – volume: 7 start-page: 182 year: 2005 end-page: 189 article-title: Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter‐deciduous shrub Medicus publication-title: Plant Biology – volume: 186 start-page: 900 year: 2010 end-page: 910 article-title: Changes in leaf phenology of three European oak species in response to experimental climate change publication-title: New Phytologist – volume: 72 start-page: 701 year: 1991 end-page: 708 article-title: Effects of site characteristics on nitrogen retranslocation from senescing leaves publication-title: Ecology – volume: 18 start-page: 25 year: 2012 end-page: 32 article-title: Comparison of climate warming induced changes in silver birch ( Roth) and lime ( Mill.) phenology publication-title: Baltic Forestry – volume: 8 start-page: 531 year: 2002 end-page: 544 article-title: Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region publication-title: Global Change Biology – volume: 24 start-page: 1211 year: 2010 end-page: 1218 article-title: Quantifying phenological plasticity to temperature in two temperate tree species publication-title: Functional Ecology – volume: 64 start-page: 3087 year: 2013 end-page: 3098 article-title: Photo‐oxidative stress in emerging and senescing leaves: a mirror image? publication-title: Journal of Experimental Botany – volume: 20 start-page: 2580 year: 2014 end-page: 2595 article-title: Divergent phenological response to hydroclimate variability in forested mountain watersheds publication-title: Global Change Biology – year: 2013 – volume: 57 start-page: 55 year: 2006 end-page: 77 article-title: Chlorophyll degradation during senescence publication-title: Annual Review of Plant Biology – volume: 294 start-page: 793 year: 2001 end-page: 795 article-title: Phenology – Responses to a warming world publication-title: Science – volume: 12 start-page: 275 year: 2010 end-page: 291 article-title: Nitrogen nutrition of poplar trees publication-title: Plant Biology – volume: 126 start-page: 237 year: 2004 end-page: 255 article-title: Inter‐annual variability in the leaf area index of a boreal aspen‐hazelnut forest in relation to net ecosystem production publication-title: Agricultural and Forest Meteorology – volume: 105 start-page: 30 year: 1996 end-page: 37 article-title: Canopy structure and nitrogen distribution in dominant and subordinate plants in a dense stand of L. with a size hierarchy of individuals publication-title: Oecologia – start-page: 87 year: 2007 end-page: 107 – volume: 54 start-page: 563 year: 2010 end-page: 581 article-title: Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models publication-title: International Journal of Biometeorology – volume: 131 start-page: 811 year: 2012 end-page: 819 article-title: Effects of experimental warming on phenology, growth and gas exchange of treeline birch ( ) saplings, Eastern Tibetan Plateau, China publication-title: European Journal of Forest Research – volume: 22 start-page: 785 year: 2008 end-page: 793 article-title: Effects of simulated herbivory on photosynthesis and N resorption efficiency in Willd. saplings publication-title: Trees‐Structure and Function – volume: 150 start-page: 1026 year: 2010 end-page: 1029 article-title: Experimental branch warming alters tall tree leaf phenology and acorn production publication-title: Agricultural and Forest Meteorology – volume: 35 start-page: 1707 year: 2012 end-page: 1728 article-title: The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms publication-title: Plant Cell and Environment – volume: 163 start-page: 845 year: 2010 end-page: 854 article-title: Drought‐deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought publication-title: Oecologia – volume: 64 start-page: 376 year: 1983 end-page: 391 article-title: Seasonal‐changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees publication-title: Ecology – volume: 130 start-page: 357 year: 2011 end-page: 372 article-title: Dormancy in temperate fruit trees in a global warming context: a review publication-title: Scientia Horticulturae – volume: 18 start-page: 2008 year: 2012 end-page: 2025 article-title: Forest phenology and a warmer climate – growing season extension in relation to climatic provenance publication-title: Global Change Biology – volume: 31 start-page: 117 year: 2011 end-page: 130 article-title: Elevated CO enhances leaf senescence during extreme drought in a temperate forest publication-title: Tree Physiology – volume: 344 start-page: 227 year: 2011 end-page: 240 article-title: Retranslocation of nutrients in relation to boron availability during leaf senescence of Roth publication-title: Plant and Soil – volume: 50 start-page: 557 year: 2007 end-page: 573 article-title: Environmental and hormonal regulation of the activity‐dormancy cycle in the cambial meristem involves stage‐specific modulation of transcriptional and metabolic networks publication-title: Plant Journal – volume: 17 start-page: 556 year: 2008 end-page: 561 article-title: Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan publication-title: Global Ecology and Biogeography – volume: 27 start-page: 63 year: 2007 end-page: 70 article-title: Seasonal and spatial variations in leaf nitrogen content and resorption in a canopy publication-title: Tree Physiology – volume: 154 start-page: 1294 year: 2010 end-page: 1303 article-title: Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar publication-title: Plant Physiology – volume: 15 start-page: 185 year: 2013 end-page: 197 article-title: Foliage response of young central European oaks to air warming, drought and soil type publication-title: Plant Biology – volume: 17 start-page: 2385 year: 2011 end-page: 2399 article-title: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008 publication-title: Global Change Biology – volume: 32 start-page: 737 year: 2012 end-page: 751 article-title: Interactive effects of elevated ozone and temperature on carbon allocation of silver birch ( ) genotypes in an open‐air field exposure publication-title: Tree Physiology – volume: 172 start-page: 1845 year: 2006 end-page: 1853 article-title: Clinal variation in phyB2, a candidate gene for day‐length‐induced growth cessation and bud set, across a latitudinal gradient in European aspen ( ) publication-title: Genetics – volume: 25 start-page: 641 year: 2005 end-page: 650 article-title: Responses of deciduous forest trees to severe drought in Central Europe publication-title: Tree Physiology – volume: 282 start-page: 301 year: 2006 end-page: 311 article-title: Coupling N cycling and N productivity in relation to seasonal stress in Willd. saplings publication-title: Plant and Soil – volume: 139 start-page: 1635 year: 2005 end-page: 1648 article-title: A cellular timetable of autumn senescence publication-title: Plant Physiology – volume: 91 start-page: 3456 year: 2010 end-page: 3462 article-title: Nitrogen turnover in the leaf litter and fine roots of sugar maple publication-title: Ecology – volume: 161 start-page: 187 year: 2009 end-page: 198 article-title: Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology publication-title: Oecologia – volume: 82 start-page: 49 year: 1998 end-page: 59 article-title: Responses of leaf processes in a sensitive birch ( Roth) clone to ozone combined with drought publication-title: Annals of Botany – volume: 49 start-page: 11 year: 1987 end-page: 14 article-title: Ecological significance of the phenology of leaf abscission publication-title: Oikos – volume: 3 start-page: 55 year: 1997 end-page: 60 article-title: Effects of experimental warming on arctic willows ( spp.): a comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Subarctic publication-title: Global Change Biology – volume: 84 start-page: 597 year: 1996 end-page: 608 article-title: Nutrient resorption from senescing leaves of perennials: are there general patterns? publication-title: Journal of Ecology – volume: 114 start-page: 55 year: 1999 end-page: 70 article-title: A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark publication-title: Forest Ecology and Management – volume: 73 start-page: 49 year: 2010 end-page: 65 article-title: Temperature‐driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction publication-title: Plant Molecular Biology – volume: 127 start-page: 251 year: 2001 end-page: 258 article-title: Leaf abscission phenology of a scrub oak: consequences for growth and survivorship of a leaf mining beetle publication-title: Oecologia – volume: 25 start-page: 109 year: 2005 end-page: 114 article-title: Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear publication-title: Tree Physiology – volume: 77 start-page: 1716 year: 1996 end-page: 1727 article-title: Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency publication-title: Ecology – volume: 126 start-page: 644 year: 2001 end-page: 648 article-title: Effectiveness of fall versus spring soil fertilization of field‐grown peach trees publication-title: Journal of the American Society for Horticultural Science – volume: 12 start-page: 1969 year: 2006 end-page: 1976 article-title: European phenological response to climate change matches the warming pattern publication-title: Global Change Biology – volume: 126 start-page: 447 year: 2013 end-page: 460 article-title: Experimental warming studies on tree species and forest ecosystems: a literature review publication-title: Journal of Plant Research – volume: 397 start-page: 659 year: 1999 article-title: Growing season extended in Europe publication-title: Nature – volume: 90 start-page: 120 year: 1992 end-page: 126 article-title: Environmental and physiological factors governing nutrient resorption efficiency in barley publication-title: Oecologia – volume: 17 start-page: 67 year: 1986 end-page: 88 article-title: Ecology of tropical dry forest publication-title: Annual Review of Ecology and Systematics – volume: 12 start-page: 1174 year: 2006 end-page: 1188 article-title: Phenology of a northern hardwood forest canopy publication-title: Global Change Biology – volume: 23 start-page: 787 year: 2009 end-page: 799 article-title: Summer‐drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction publication-title: Trees‐Structure and Function – volume: 18 start-page: 511 year: 2004 end-page: 521 article-title: Nitrogen‐use efficiency: trade‐offs between N productivity and mean residence time at organ, plant and population levels publication-title: Functional Ecology – volume: 149 start-page: 938 year: 2009 end-page: 948 article-title: Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France publication-title: Agricultural and Forest Meteorology – volume: 13 start-page: 241 year: 1994 end-page: 273 article-title: Nitrogen‐metabolism in senescing leaves publication-title: Critical Reviews in Plant Sciences – volume: 62 start-page: 5397 year: 2011 end-page: 5404 article-title: Temperature rather than photoperiod controls growth cessation and dormancy in species publication-title: Journal of Experimental Botany – start-page: 215 year: 2004 end-page: 226 – volume: 52 start-page: 251 year: 2008 end-page: 259 article-title: Trends in phenology of across the boreal zone in Finland publication-title: International Journal of Biometeorology – volume: 268 start-page: 1 year: 2005 end-page: 11 article-title: Transport and partitioning of phosphorus in wheat as affected by P withdrawal during flag‐leaf expansion publication-title: Plant and Soil – volume: 8 start-page: 272 year: 2003 end-page: 278 article-title: Molecular genetics of leaf senescence in publication-title: Trends in Plant Science – volume: 25 start-page: 3303 year: 2004 end-page: 3330 article-title: European plant phenology and climate as seen in a 20‐year AVHRR land‐surface parameter dataset publication-title: International Journal of Remote Sensing – volume: 111 start-page: 7355 year: 2014 end-page: 7360 article-title: Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: e57373 year: 2013 article-title: Predicting climate change impacts on the amount and duration of autumn colours in a new england forest publication-title: PLoS ONE – volume: 82 start-page: 205 year: 2012 end-page: 220 article-title: Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants publication-title: Ecological Monographs – ident: e_1_2_9_60_1 doi: 10.2307/2265777 – ident: e_1_2_9_41_1 doi: 10.1093/jxb/err213 – ident: e_1_2_9_80_1 doi: 10.1071/FP03236 – ident: e_1_2_9_109_1 doi: 10.1080/02827588609382425 – ident: e_1_2_9_118_1 doi: 10.1007/s004420000576 – ident: e_1_2_9_15_1 doi: 10.1111/j.1469-8137.2005.01451.x – ident: e_1_2_9_33_1 doi: 10.1051/forest:19990406 – ident: e_1_2_9_35_1 doi: 10.1111/j.1365-2486.2009.01851.x – ident: e_1_2_9_87_1 doi: 10.1111/j.1365-2486.2003.00714.x – ident: e_1_2_9_117_1 doi: 10.1016/j.agrformet.2011.03.003 – ident: e_1_2_9_71_1 doi: 10.1038/17709 – ident: e_1_2_9_113_1 doi: 10.1093/treephys/tpp029 – ident: e_1_2_9_5_1 doi: 10.2307/2937209 – ident: e_1_2_9_74_1 doi: 10.1055/s-2005-837469 – ident: e_1_2_9_9_1 doi: 10.1016/j.scienta.2011.07.011 – ident: e_1_2_9_75_1 doi: 10.1111/j.1469-8137.2007.02079.x – ident: e_1_2_9_119_1 doi: 10.1093/treephys/tpr002 – ident: e_1_2_9_24_1 doi: 10.1093/treephys/tpr118 – ident: e_1_2_9_12_1 doi: 10.1105/tpc.010410 – ident: e_1_2_9_52_1 doi: 10.1111/j.1365-2486.1997.gcb135.x – ident: e_1_2_9_122_1 doi: 10.1111/j.1438-8677.2012.00687.x – ident: e_1_2_9_61_1 doi: 10.1016/B978-012520915-1/50017-5 – ident: e_1_2_9_107_1 doi: 10.1007/s00468-008-0239-2 – ident: e_1_2_9_4_1 doi: 10.1371/journal.pone.0057373 – ident: e_1_2_9_21_1 doi: 10.1016/j.agrformet.2012.01.019 – ident: e_1_2_9_91_1 doi: 10.1007/s11104-004-0297-1 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-2486.2010.02281.x – ident: e_1_2_9_51_1 doi: 10.1111/j.1365-2486.2011.02397.x – ident: e_1_2_9_30_1 doi: 10.1104/pp.108.133249 – ident: e_1_2_9_69_1 doi: 10.1046/j.1365-2486.2003.00688.x – ident: e_1_2_9_38_1 doi: 10.1016/j.envpol.2006.08.033 – ident: e_1_2_9_20_1 doi: 10.1016/0378-1127(95)97452-X – ident: e_1_2_9_23_1 doi: 10.1111/j.1365-313X.2007.03077.x – ident: e_1_2_9_26_1 doi: 10.3354/cr032253 – ident: e_1_2_9_37_1 doi: 10.1111/j.1365-2486.2011.02632.x – ident: e_1_2_9_98_1 doi: 10.1111/j.1438-8677.2009.00309.x – ident: e_1_2_9_19_1 doi: 10.1111/j.1466-8238.2008.00398.x – ident: e_1_2_9_3_1 doi: 10.1007/BF00328788 – ident: e_1_2_9_84_1 doi: 10.1093/treephys/17.11.733 – ident: e_1_2_9_11_1 doi: 10.1093/oxfordjournals.aob.a087463 – ident: e_1_2_9_8_1 doi: 10.1105/tpc.111.083345 – ident: e_1_2_9_95_1 doi: 10.1890/10-0633.1 – ident: e_1_2_9_47_1 doi: 10.1098/rstb.2010.0120 – ident: e_1_2_9_76_1 doi: 10.1007/s00468-009-0320-5 – ident: e_1_2_9_48_1 doi: 10.1007/s004250050436 – volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_9_50_1 – ident: e_1_2_9_83_1 doi: 10.1016/j.agrformet.2010.04.001 – ident: e_1_2_9_81_1 doi: 10.1046/j.1365-3040.2001.00794.x – ident: e_1_2_9_16_1 doi: 10.1111/j.1365-3040.2012.02552.x – ident: e_1_2_9_17_1 doi: 10.1007/s00468-012-0686-7 – ident: e_1_2_9_44_1 doi: 10.1086/376576 – start-page: 183 volume-title: Photosynthesis year: 1989 ident: e_1_2_9_27_1 – ident: e_1_2_9_6_1 doi: 10.1016/j.agrformet.2004.06.011 – ident: e_1_2_9_108_1 doi: 10.1111/j.1365-3040.2012.02560.x – ident: e_1_2_9_58_1 doi: 10.1038/382146a0 – start-page: 691 volume-title: Handbook of Photosynthesis year: 2005 ident: e_1_2_9_79_1 – ident: e_1_2_9_40_1 doi: 10.1007/s11103-012-9974-2 – ident: e_1_2_9_93_1 doi: 10.1046/j.1365-2486.2002.00489.x – ident: e_1_2_9_46_1 doi: 10.1111/gcb.12556 – ident: e_1_2_9_106_1 doi: 10.1007/s11104-006-6249-1 – ident: e_1_2_9_14_1 doi: 10.1007/BF00037052 – ident: e_1_2_9_64_1 doi: 10.1007/s00484-010-0305-5 – ident: e_1_2_9_124_1 doi: 10.1007/s11258-004-2485-8 – ident: e_1_2_9_111_1 doi: 10.1080/01431160310001618149 – ident: e_1_2_9_55_1 doi: 10.1093/jxb/ert174 – ident: e_1_2_9_103_1 doi: 10.1201/9781420014877.ch3 – ident: e_1_2_9_67_1 doi: 10.1007/s00442-010-1614-4 – ident: e_1_2_9_73_1 doi: 10.1093/treephys/27.1.63 – ident: e_1_2_9_62_1 doi: 10.2307/3565537 – ident: e_1_2_9_57_1 doi: 10.1111/j.1365-3040.2007.01724.x – ident: e_1_2_9_2_1 doi: 10.2307/2261481 – ident: e_1_2_9_32_1 doi: 10.1073/pnas.1321727111 – ident: e_1_2_9_123_1 doi: 10.1007/s10342-011-0554-9 – ident: e_1_2_9_28_1 doi: 10.1080/07352689409701916 – ident: e_1_2_9_36_1 doi: 10.1111/j.1365-2486.2009.02084.x – ident: e_1_2_9_39_1 doi: 10.1111/j.1438-8677.2012.00665.x – ident: e_1_2_9_59_1 doi: 10.1104/pp.105.066845 – ident: e_1_2_9_25_1 doi: 10.2307/3565549 – ident: e_1_2_9_53_1 doi: 10.1007/s00468-011-0600-8 – ident: e_1_2_9_77_1 doi: 10.1111/j.1365-2486.2008.01735.x – ident: e_1_2_9_112_1 doi: 10.1007/s11103-010-9610-y – ident: e_1_2_9_13_1 doi: 10.1007/s10265-013-0565-3 – ident: e_1_2_9_85_1 doi: 10.21273/JASHS.126.5.644 – ident: e_1_2_9_94_1 doi: 10.1016/j.pbi.2013.02.006 – ident: e_1_2_9_31_1 doi: 10.1007/s00484-011-0494-6 – ident: e_1_2_9_88_1 doi: 10.1111/j.0269-8463.2004.00847.x – ident: e_1_2_9_104_1 doi: 10.1111/1365-2664.12102 – ident: e_1_2_9_120_1 doi: 10.1093/treephys/16.1-2.153 – volume: 31 start-page: 173 year: 2012 ident: e_1_2_9_34_1 article-title: Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river publication-title: Limnetica – ident: e_1_2_9_105_1 doi: 10.1111/j.0269-8463.2004.00872.x – ident: e_1_2_9_72_1 doi: 10.1111/j.1365-2486.2006.01193.x – ident: e_1_2_9_102_1 doi: 10.1007/s11104-011-0742-x – ident: e_1_2_9_92_1 doi: 10.1126/science.1066860 – ident: e_1_2_9_70_1 doi: 10.1111/j.1461-0248.2009.01310.x – volume: 18 start-page: 25 year: 2012 ident: e_1_2_9_54_1 article-title: Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology publication-title: Baltic Forestry – ident: e_1_2_9_68_1 doi: 10.1002/joc.1969 – ident: e_1_2_9_82_1 doi: 10.1146/annurev.es.17.110186.000435 – ident: e_1_2_9_115_1 doi: 10.1007/s00442-009-1363-4 – ident: e_1_2_9_43_1 doi: 10.1016/0378-1127(92)90332-4 – ident: e_1_2_9_45_1 doi: 10.1146/annurev.arplant.57.032905.105212 – ident: e_1_2_9_121_1 doi: 10.1016/0098-8472(94)90005-1 – ident: e_1_2_9_100_1 doi: 10.1111/j.1365-2486.2006.01164.x – ident: e_1_2_9_63_1 doi: 10.1139/x90-154 – ident: e_1_2_9_56_1 doi: 10.1093/treephys/tps005 – ident: e_1_2_9_110_1 doi: 10.1007/s13595-011-0010-5 – ident: e_1_2_9_10_1 doi: 10.2307/1937083 – ident: e_1_2_9_29_1 doi: 10.1002/9780470988855.ch5 – ident: e_1_2_9_97_1 doi: 10.1007/BF00317817 – ident: e_1_2_9_7_1 doi: 10.1051/forest:2006042 – ident: e_1_2_9_66_1 doi: 10.1016/S1360-1385(03)00103-1 – ident: e_1_2_9_18_1 doi: 10.1016/j.agrformet.2008.11.014 – ident: e_1_2_9_42_1 doi: 10.1093/treephys/25.1.109 – ident: e_1_2_9_90_1 doi: 10.1016/S0378-1127(98)00381-8 – ident: e_1_2_9_65_1 doi: 10.1093/treephys/25.6.641 – ident: e_1_2_9_89_1 doi: 10.1006/anbo.1998.0656 – ident: e_1_2_9_96_1 doi: 10.1007/s00484-007-0126-3 – ident: e_1_2_9_101_1 doi: 10.1016/j.tplants.2007.03.012 – ident: e_1_2_9_78_1 doi: 10.1111/j.1469-8137.2010.03252.x – ident: e_1_2_9_86_1 doi: 10.1093/treephys/25.8.1001 – ident: e_1_2_9_49_1 doi: 10.1534/genetics.105.047522 – ident: e_1_2_9_116_1 doi: 10.1111/j.1365-2435.2010.01748.x – ident: e_1_2_9_99_1 doi: 10.1104/pp.110.163907 – ident: e_1_2_9_114_1 doi: 10.1890/11-0416.1 |
SSID | ssj0003206 |
Score | 2.60007 |
Snippet | Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1005 |
SubjectTerms | biogeochemical cycles carbon Climate Change Climate effects Drought ecosystems Environmental impact Foliage Global warming latitude leaf fall leaf senescence Leaves litter nutrient cycle Nutrient cycles nutrient proficiency nutrient resorption (physiology) nutrients Phenology photoperiod Plant Leaves - physiology plant production Seasons Senescence spring temperature Trees - physiology warming Water stress Winter winter deciduous species |
Title | Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency |
URI | https://api.istex.fr/ark:/67375/WNG-WR5R26NS-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12804 https://www.ncbi.nlm.nih.gov/pubmed/25384459 https://www.proquest.com/docview/1655430505 https://www.proquest.com/docview/1657316899 https://www.proquest.com/docview/1664201244 https://www.proquest.com/docview/1694486449 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJCReGBTGAgMZhCZeUiWOkybwNKp9CGl9aKm2ByTLduypWpSgphWUP4C_mzvnYwyNCfGWj0vi2nfn37nn3xHyNuA6U0xHvuVx5vM4TH0VhsYPozwzMIOn0uJ6x9kkOZ3zTxfxxRb50O2Fafgh-gU3tAznr9HApap_M_JLrYbgXB0XKOZqISCaXlNHRczV1QyjmIOrCaOWVQizePonb8xF96ysAKFi536_DW7eRK9u-jneIV-6hjdZJ1fD9UoN9Y8_OB3_85c9Ig9bWEoPGz16TLZMOSD3m0KVmwHZPbreDwdirUOoB8Q7A9BdLZ0YPaDjYgEI2J09IT8PC0fZDCNPK0sBaVJMKGtk4UJhpKU1-lqNb6OyzKmVRUEXJf2GNBZLmhu9yNfVuqa4IxSCeqo2VLuPGNrsWX5P25QUCp8psbYAtJG6UuSulZunZH589Hl86rdlH3wN6IP7qdU2sxy5-SzLTR4xxQMjszAd2cAmJuNMxcZAHIp0gyOLhPsaYGJkAb2pnEe7ZLusSrNHKEPFSBT4MLgehpGUyHajbKyDnMlg5JF3nQII3XKiY2mOQnSxEYyFcGPhkTe96NeGCOQ2oT3QIiEvwUGL-YzhchISECUp3DpwqtU_LJdXmFQ3isX55EScT-MpSyYzMfPIfqd7ovUntQgTgH0RVh30yOv-NngC_HtHlgYGAmVcGbIsu0sG4s0AMd1dMhnE7ICT4T3PGt3vG81gfuRg1dBxToP_3hXiZPzRHTz_d9EX5AF2WZPit0-2V8u1eQmYb6VeOeP-BZ-jToo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61RQgu_ARKAwUWBBUXR_Z67dhIHEr6S5sckkbtbVmvd6uoloPiRCU8AE_Dq_BOzKwdl6JScemBW2JP7NXszsw3m9lvCHnjchUnTPmO4UHs8MCLnMTztOP5aawhgkfS4H5HtxfuDfmnk-BkifxYnIUp-SHqDTe0DOuv0cBxQ_o3Kz9VSQu8q8urksoDPT-HhK34sL8Fs_uWsZ3to86eU_UUcBSENu5ERpnYcCR-MyzVqc8S7moZe1HbuCbUMWdJoDUkOchl1zbI5q4Ag_gGoEGSch-eu0xuYQdxZOrf6l-QVfnMdvL0_ICDc_P8iscI64bqoV6KfstGjgET43R-vQrgXsbLNuDt3Cc_F6oq61zOWrNp0lLf_mCR_F90-YDcq5A33SxN5SFZ0nmD3C57cc4bZHX74sgfiFU-r2iQZhfyivHEitEN2slGAPLtt0fk-2ZmWalhcdOxoQCmKdbMlbJwIdPS0ALDicKnUZmn1Mgso6OcniNTx4SmWo3S2XhWUDz0OtIFTeZU2ZdoWh7Lfk-rqhsKr8mxfQKMkdpu63aU88dkeCOaWyUr-TjXa4QyrFMME3DTcN3zfCmR0CcxgXJTJt12k7xbrDihKtp37D6SiUX6B3Mv7Nw3yeta9EvJdXKV0BosWyFPIQaJ4YDhjhlyLIUR3Nqwa7n-sZycYd1gOxDHvV1x3A_6LOwNxKBJ1heLXVQusxBeCMjWx8aKTfKqvg3ODv_BkrmGiUAZ22ktjq-TgZTaRdh6nUzMeQSpADznSWls9aAZQAAOjgsUZ03m76oQu52P9sPTfxd9Se7sHXUPxeF-7-AZuYvqKysa18nKdDLTzwHiTpMX1rNQ8vmmze8X3fOqpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELe2IRAv_BmMFQYYBBMvqRLHSRMkHka7bmOsQi3V9mYcx56qRenUtBrlA_Bl-Cp8KO6cNGNoTLzsgbc2uSbW2Xf3O_f8O0JeuVzFCVO-Y3gQOzzwIifxPO14fhpriOCRNLjfcdALd4f8w1FwtER-LM7ClPwQ9YYbWob112jgp6n5zciPVdIE5-ryqqJyX8_PIF8r3u11YHJfM9bd_tzedaqWAo6CyMadyCgTG468b4alOvVZwl0tYy9qGdeEOuYsCbSGHAep7FoGydwVQBDfADJIUu7Dc5fJDR66MfaJ6PTPuap8Zht5en7Awbd5fkVjhGVD9VAvBL9lI8cAiXE2v16Gby_CZRvvunfJz4WmyjKXk-ZsmjTVtz9IJP8TVd4jdyrcTbdKQ7lPlnS-Sm6WnTjnq2Rt-_zAH4hVHq9YJY0DyCrGEytGN2k7GwHEt98ekO9bmeWkhqVNx4YClKZYMVfKwoVMS0MLDCYKn0ZlnlIjs4yOcnqGPB0Tmmo1SmfjWUHxyOtIFzSZU2Vfoml5KPstrWpuKLwmx-YJMEZqe63bUc4fkuG1aG6NrOTjXK8TyrBKMUzAScN1z_OlRDqfxATKTZl0Ww3yZrHghKpI37H3SCYWyR_MvbBz3yAva9HTkunkMqF1WLVCHkMEEsMBw_0yZFgKI7i1aZdy_WM5OcGqwVYgDns74rAf9FnYG4hBg2ws1rqoHGYhvBBwrY9tFRvkRX0bXB3-fyVzDROBMrbPWhxfJQMJtYug9SqZmPMIEgF4zqPS1upBMwAAHNwWKM5azN9VIXba7-2Hx_8u-pzc-tTpio97vf0n5DZqryxn3CAr08lMPwV8O02eWb9CyZfrtr5fG32pVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alteration+of+the+phenology+of+leaf+senescence+and+fall+in+winter+deciduous+species+by+climate+change%3A+effects+on+nutrient+proficiency&rft.jtitle=Global+change+biology&rft.au=Estiarte%2C+Marc&rft.au=Pe%C3%B1uelas%2C+Josep&rft.date=2015-03-01&rft.issn=1354-1013&rft.volume=21&rft.issue=3+p.1005-1017&rft.spage=1005&rft.epage=1017&rft_id=info:doi/10.1111%2Fgcb.12804&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |