Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency

Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with wat...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 21; no. 3; pp. 1005 - 1017
Main Authors Estiarte, Marc, Peñuelas, Josep
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.03.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.
AbstractList Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.
Author Peñuelas, Josep
Estiarte, Marc
Author_xml – sequence: 1
  fullname: Estiarte, Marc
– sequence: 2
  fullname: Peñuelas, Josep
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25384459$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNvAghcAS2xgMa09vsxMdyWCgFQVqaHq0vJ4jhOXqSfYHpW8AM-N0yQsKpDqhW1Z3__73I7RgR88IPSakhOa1-nCtCe0rAl_ho4ok6IoeS0PNnfBC0ooO0THMd4SQlhJ5At0WApWcy6aI_T7vE8QdHKDx4PFaQl4tQQ_9MNivXnoQVscwUM04A1g7Ttsdd9j5_G981mLOzCuG4cx4rjKV4i4XWPTuzudAJul9gs4w2AtmBRx_saPKTjwCa_CYF0WeLN-iZ5n1wivducEXX_-9H36pbj4Nvs6Pb8ojKAlL2prbGM5qSphyw46VracgG5oXVliJTS8bAVARSvC8mYZIcJQIpgVkrQdZxP0fuub__45QkzqzuXM-l57yBkoKhuea8d58wRU8pLkqJ7iKipGZd1sXN89Qm-HMfic84YSnBGRw52gNztqbO-gU6uQqxnWat-3DJxuAROGGANYZVx66GIK2vWKErWZDJUnQz1MRlZ8eKTYm_6L3bnfux7W_wfVbPpxryi2ChcT_Pqr0OGHkhWrhLq5nKmbK3FVysu5mmf-7Za3elB6EVxU1_NcTUEIbaSsOfsDOYnelg
CitedBy_id crossref_primary_10_1038_s41598_017_11163_7
crossref_primary_10_1655_Herpetologica_D_19_00031_1
crossref_primary_10_1111_gcb_13311
crossref_primary_10_1111_gcb_14642
crossref_primary_10_1111_nph_18797
crossref_primary_10_1002_eap_1547
crossref_primary_10_1186_s12870_024_05484_9
crossref_primary_10_1098_rspb_2023_2338
crossref_primary_10_1007_s00468_024_02587_6
crossref_primary_10_3390_agronomy14092145
crossref_primary_10_1016_j_atmosenv_2018_07_053
crossref_primary_10_1093_treephys_tpae054
crossref_primary_10_1093_treephys_tpz026
crossref_primary_10_1002_2017JD027318
crossref_primary_10_1007_s00442_022_05296_4
crossref_primary_10_3390_plants12163011
crossref_primary_10_1016_j_agrformet_2024_110249
crossref_primary_10_1007_s11104_016_3122_8
crossref_primary_10_3389_fpls_2018_01819
crossref_primary_10_1016_j_foreco_2024_122069
crossref_primary_10_3897_neobiota_96_129863
crossref_primary_10_1111_gcb_15602
crossref_primary_10_1093_jpe_rtw084
crossref_primary_10_1676_16_011_1
crossref_primary_10_1002_2016JD025190
crossref_primary_10_1111_1365_2745_13577
crossref_primary_10_1016_j_ufug_2016_02_001
crossref_primary_10_1093_treephys_tpad097
crossref_primary_10_1111_ecog_02296
crossref_primary_10_1038_s41559_020_01357_0
crossref_primary_10_5194_bg_21_4169_2024
crossref_primary_10_1002_ecm_1421
crossref_primary_10_1038_s43247_023_00835_0
crossref_primary_10_3390_rs11091063
crossref_primary_10_1016_j_agrformet_2022_108823
crossref_primary_10_3390_rs11141651
crossref_primary_10_1038_s41559_018_0677_1
crossref_primary_10_3390_f16010175
crossref_primary_10_1007_s00484_019_01678_1
crossref_primary_10_1016_j_agrformet_2022_108828
crossref_primary_10_1016_j_ecolind_2019_105760
crossref_primary_10_3390_su10051497
crossref_primary_10_1038_s41467_017_02690_y
crossref_primary_10_1111_geb_13533
crossref_primary_10_1016_j_ecolind_2021_108211
crossref_primary_10_3390_f15091526
crossref_primary_10_1016_j_envres_2023_117364
crossref_primary_10_1016_j_scitotenv_2024_173280
crossref_primary_10_1007_s00344_019_10042_x
crossref_primary_10_1016_j_foreco_2022_120405
crossref_primary_10_1007_s11430_022_1156_1
crossref_primary_10_1016_j_foreco_2020_118368
crossref_primary_10_3390_rs9050407
crossref_primary_10_1007_s10725_023_00981_7
crossref_primary_10_1093_jpe_rty034
crossref_primary_10_1002_ecs2_2677
crossref_primary_10_3390_rs15205058
crossref_primary_10_1186_s40663_021_00309_9
crossref_primary_10_1111_geb_13404
crossref_primary_10_1016_j_agrformet_2021_108353
crossref_primary_10_1016_j_ecolind_2021_108202
crossref_primary_10_1038_s41558_020_0820_2
crossref_primary_10_1080_13504622_2022_2069682
crossref_primary_10_1016_j_agee_2024_109160
crossref_primary_10_2139_ssrn_4157311
crossref_primary_10_3390_rs14174189
crossref_primary_10_1016_j_agrformet_2022_109229
crossref_primary_10_3390_f8120463
crossref_primary_10_1016_j_agrformet_2024_110133
crossref_primary_10_1093_treephys_tpz013
crossref_primary_10_1016_j_isprsjprs_2023_07_021
crossref_primary_10_3832_ifor2825_011
crossref_primary_10_1016_j_envres_2024_120044
crossref_primary_10_1016_j_ecolind_2019_105880
crossref_primary_10_3390_f11040461
crossref_primary_10_1016_j_agrformet_2025_110435
crossref_primary_10_1111_gcb_14095
crossref_primary_10_1016_j_agrformet_2024_110134
crossref_primary_10_1016_j_ecoleng_2021_106461
crossref_primary_10_1007_s10661_024_12771_3
crossref_primary_10_1016_j_fecs_2024_100173
crossref_primary_10_1111_gcb_16227
crossref_primary_10_1590_0102_33062020abb0525
crossref_primary_10_1029_2024EF004563
crossref_primary_10_3390_agronomy11112280
crossref_primary_10_1016_j_foreco_2025_122539
crossref_primary_10_1093_jxb_erae391
crossref_primary_10_3390_f11101070
crossref_primary_10_1016_j_foreco_2021_119089
crossref_primary_10_1016_j_agrformet_2017_10_034
crossref_primary_10_1016_j_gloplacha_2020_103131
crossref_primary_10_1016_j_rse_2019_05_003
crossref_primary_10_1016_j_srs_2021_100030
crossref_primary_10_1038_s41559_024_02602_6
crossref_primary_10_1002_ece3_5408
crossref_primary_10_1002_hyp_14621
crossref_primary_10_1371_journal_pone_0282635
crossref_primary_10_1016_j_ecolind_2018_08_047
crossref_primary_10_1016_j_agrformet_2021_108492
crossref_primary_10_1016_j_agrformet_2021_108493
crossref_primary_10_1007_s40725_024_00233_5
crossref_primary_10_1016_j_foreco_2022_120188
crossref_primary_10_1029_2019GL086788
crossref_primary_10_1016_j_ufug_2018_05_015
crossref_primary_10_1002_ppp3_10547
crossref_primary_10_1111_1365_2435_14137
crossref_primary_10_1111_gcb_15132
crossref_primary_10_1007_s13595_019_0861_8
crossref_primary_10_3389_ffgc_2020_610162
crossref_primary_10_1016_j_agrformet_2023_109869
crossref_primary_10_1111_ele_14259
crossref_primary_10_1038_s41561_018_0134_4
crossref_primary_10_1002_ece3_11505
crossref_primary_10_1111_nph_15991
crossref_primary_10_1111_nph_18345
crossref_primary_10_3390_plants9101353
crossref_primary_10_1016_j_agrformet_2020_108077
crossref_primary_10_1080_15627020_2021_1975560
crossref_primary_10_1111_gcb_13749
crossref_primary_10_1016_j_scitotenv_2021_145526
crossref_primary_10_1080_01904167_2024_2405990
crossref_primary_10_1111_1365_2745_13133
crossref_primary_10_1016_j_agrformet_2019_107711
crossref_primary_10_1007_s00484_016_1266_0
crossref_primary_10_3389_fpls_2018_00755
crossref_primary_10_1016_j_ecolind_2019_04_017
crossref_primary_10_1016_j_envexpbot_2020_104269
crossref_primary_10_1016_j_ecolind_2024_112469
crossref_primary_10_1111_geb_13581
crossref_primary_10_1111_geb_12802
crossref_primary_10_1126_sciadv_add4468
crossref_primary_10_3389_fevo_2024_1358676
crossref_primary_10_1016_j_agrformet_2023_109716
crossref_primary_10_3390_rs16193552
crossref_primary_10_1371_journal_pone_0174390
crossref_primary_10_1002_ecs2_4802
crossref_primary_10_1016_j_biocon_2015_12_033
crossref_primary_10_1016_j_apsoil_2024_105824
crossref_primary_10_1016_j_scitotenv_2018_09_129
crossref_primary_10_1007_s00442_019_04554_2
crossref_primary_10_1038_s41558_022_01285_w
crossref_primary_10_3390_sym12050727
crossref_primary_10_1038_s41558_025_02273_6
crossref_primary_10_3389_ffgc_2024_1330561
crossref_primary_10_1016_j_rse_2019_111407
crossref_primary_10_3390_f13071125
crossref_primary_10_1016_j_ecolind_2023_111056
crossref_primary_10_1002_jpln_201700074
crossref_primary_10_1002_2016JG003677
crossref_primary_10_1002_ecs2_3706
crossref_primary_10_1038_s41559_022_01946_1
crossref_primary_10_1029_2019JG005137
crossref_primary_10_1111_gcb_16916
crossref_primary_10_1002_ece3_7734
crossref_primary_10_1111_gcb_14619
crossref_primary_10_1016_j_agrformet_2019_01_006
crossref_primary_10_1111_1365_2745_13952
crossref_primary_10_1111_nph_14083
crossref_primary_10_1111_gcb_13081
crossref_primary_10_1029_2023MS003655
crossref_primary_10_1093_aob_mcv169
crossref_primary_10_3390_f10020166
crossref_primary_10_1016_j_actao_2020_103617
crossref_primary_10_15531_KSCCR_2019_10_1_1
crossref_primary_10_1002_ecs2_4487
crossref_primary_10_1111_gcb_14129
crossref_primary_10_1016_j_geodrs_2022_e00602
crossref_primary_10_34133_remotesensing_0085
crossref_primary_10_1111_gcb_16545
crossref_primary_10_1007_s11104_018_3591_z
crossref_primary_10_1111_gcb_15458
crossref_primary_10_1016_j_scitotenv_2022_153175
crossref_primary_10_1109_JSTARS_2023_3247422
crossref_primary_10_1038_s41467_019_11035_w
crossref_primary_10_1002_ajb2_1631
crossref_primary_10_2139_ssrn_3973930
crossref_primary_10_1111_ele_13474
crossref_primary_10_1016_j_scitotenv_2020_138342
crossref_primary_10_1111_pce_14037
crossref_primary_10_1016_j_ijbiomac_2025_140665
crossref_primary_10_1007_s11104_017_3473_9
crossref_primary_10_3390_plants13121659
crossref_primary_10_1088_1748_9326_aaa17b
crossref_primary_10_1111_gcb_13033
crossref_primary_10_1093_jxb_erz505
crossref_primary_10_1007_s11258_025_01503_3
crossref_primary_10_1071_BT20052
crossref_primary_10_1016_j_ecolind_2022_109650
crossref_primary_10_1016_j_jag_2023_103590
crossref_primary_10_1016_j_envres_2024_119790
crossref_primary_10_3897_neotropical_17_e93846
crossref_primary_10_1002_ece3_4920
crossref_primary_10_1016_j_agrformet_2024_109886
crossref_primary_10_1016_j_agrformet_2022_109095
crossref_primary_10_1111_1365_2745_14388
crossref_primary_10_3390_horticulturae7060120
crossref_primary_10_1016_j_ecolind_2020_106112
crossref_primary_10_1016_j_agrformet_2020_107908
crossref_primary_10_1007_s42729_023_01415_z
crossref_primary_10_1111_gcb_15200
crossref_primary_10_3390_f10110967
crossref_primary_10_1016_j_rse_2020_111698
crossref_primary_10_1016_j_scitotenv_2022_159858
crossref_primary_10_1016_j_scitotenv_2024_171965
crossref_primary_10_1016_j_catena_2023_107543
crossref_primary_10_1360_N072022_0356
crossref_primary_10_1016_j_ecolind_2021_108052
crossref_primary_10_1093_jpe_rtab105
crossref_primary_10_3389_fpls_2023_1040758
crossref_primary_10_1007_s00484_022_02331_0
crossref_primary_10_1088_1748_3190_ad3ed4
crossref_primary_10_3389_fpls_2021_716071
crossref_primary_10_1029_2018MS001540
crossref_primary_10_1007_s11756_022_01055_1
crossref_primary_10_1093_pnasnexus_pgae477
crossref_primary_10_1080_13416979_2018_1432303
crossref_primary_10_1007_s00484_022_02354_7
crossref_primary_10_1007_s13595_015_0477_6
crossref_primary_10_1016_j_agrformet_2020_108228
crossref_primary_10_1111_nph_17041
crossref_primary_10_1016_j_agrformet_2022_109082
crossref_primary_10_1111_gcb_17097
crossref_primary_10_1002_ecy_4238
crossref_primary_10_1111_1365_2745_14173
crossref_primary_10_1029_2020JG005732
crossref_primary_10_1111_gcb_14021
crossref_primary_10_1111_nph_17606
crossref_primary_10_1016_j_cropd_2022_100015
crossref_primary_10_1016_j_xplc_2022_100503
crossref_primary_10_1016_j_agrformet_2017_12_259
crossref_primary_10_2139_ssrn_4147477
crossref_primary_10_1016_j_plaphy_2022_06_029
crossref_primary_10_1093_treephys_tpac068
crossref_primary_10_1016_j_ecolind_2023_111094
crossref_primary_10_1111_1365_2745_13637
crossref_primary_10_3390_rs16132309
crossref_primary_10_1111_nph_18361
crossref_primary_10_1007_s11258_017_0752_8
crossref_primary_10_1093_treephys_tpae124
crossref_primary_10_1111_1365_2745_13870
crossref_primary_10_3390_f14010005
crossref_primary_10_1016_j_agrformet_2023_109495
crossref_primary_10_1111_1365_2435_14243
crossref_primary_10_1007_s10021_016_9962_5
crossref_primary_10_1007_s12155_021_10249_5
crossref_primary_10_1111_gcb_15586
crossref_primary_10_3390_land14030562
crossref_primary_10_1111_gcb_13040
crossref_primary_10_3389_fpls_2022_1048656
crossref_primary_10_1139_cjss_2019_0037
crossref_primary_10_1016_j_jhydrol_2022_128201
crossref_primary_10_1016_j_agrformet_2021_108407
crossref_primary_10_1016_j_ecolind_2019_02_024
crossref_primary_10_1016_j_scitotenv_2024_173147
crossref_primary_10_3390_f10040293
crossref_primary_10_3390_plants14060909
crossref_primary_10_1038_s43017_022_00317_5
crossref_primary_10_3389_fpls_2020_570001
crossref_primary_10_1093_treephys_tpaa058
crossref_primary_10_1093_treephys_tpaa175
crossref_primary_10_1186_s13717_021_00338_w
crossref_primary_10_1002_ece3_10362
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_3390_rs10030449
crossref_primary_10_1007_s11104_023_06080_w
crossref_primary_10_1016_j_foreco_2020_118785
crossref_primary_10_1093_treephys_tpaa171
crossref_primary_10_1029_2020JG006167
crossref_primary_10_1186_s40663_021_00350_8
crossref_primary_10_1016_j_agrformet_2023_109340
crossref_primary_10_1088_1748_9326_11_1_014003
crossref_primary_10_3390_rs16193724
crossref_primary_10_1016_j_scitotenv_2016_04_124
crossref_primary_10_1016_j_gloplacha_2024_104587
crossref_primary_10_1007_s11258_018_0863_x
crossref_primary_10_1007_s11676_024_01740_8
crossref_primary_10_1029_2020JG006049
crossref_primary_10_1038_s41598_017_03435_z
crossref_primary_10_1111_1365_2435_13327
crossref_primary_10_1016_j_agrformet_2022_108879
crossref_primary_10_3354_esr01104
crossref_primary_10_1007_s10661_022_10220_7
crossref_primary_10_1016_j_agee_2024_109304
crossref_primary_10_1111_gcb_13105
crossref_primary_10_1002_joc_8309
crossref_primary_10_1016_j_foreco_2019_117858
crossref_primary_10_1016_j_agrformet_2020_107943
crossref_primary_10_1111_1365_2745_13778
crossref_primary_10_1016_j_scitotenv_2021_149968
crossref_primary_10_1016_j_tourman_2018_08_021
crossref_primary_10_1007_s00484_021_02190_1
crossref_primary_10_1016_j_scitotenv_2020_138891
crossref_primary_10_1007_s10342_024_01733_6
crossref_primary_10_1111_1365_2745_13892
crossref_primary_10_1016_j_soilbio_2022_108840
crossref_primary_10_3390_f13101660
crossref_primary_10_3389_fpls_2022_926941
crossref_primary_10_1016_j_agrformet_2024_110036
crossref_primary_10_1016_j_plaphy_2020_01_024
crossref_primary_10_1016_j_ecochg_2024_100087
crossref_primary_10_1126_sciadv_adn2487
crossref_primary_10_3389_fpls_2023_1142786
crossref_primary_10_1371_journal_pone_0190313
crossref_primary_10_3390_f13071099
crossref_primary_10_5194_bg_18_3309_2021
crossref_primary_10_1016_j_agrformet_2021_108661
crossref_primary_10_1093_treephys_tpz041
crossref_primary_10_17474_artvinofd_1254754
crossref_primary_10_1016_j_agrformet_2019_107758
crossref_primary_10_3390_rs9070691
crossref_primary_10_3389_fpls_2020_01031
crossref_primary_10_1007_s10533_022_00985_x
crossref_primary_10_1016_j_agrformet_2022_109044
crossref_primary_10_1016_j_agrformet_2020_108031
crossref_primary_10_1038_s41598_017_17368_0
crossref_primary_10_33265_polar_v41_6310
crossref_primary_10_1029_2023GL107346
crossref_primary_10_1073_pnas_1509991112
crossref_primary_10_1109_JSTARS_2022_3196494
crossref_primary_10_1093_treephys_tpac028
crossref_primary_10_1016_j_envres_2023_116643
crossref_primary_10_1016_j_rse_2023_113835
crossref_primary_10_1016_j_scitotenv_2023_161649
crossref_primary_10_1016_j_ecolmodel_2018_12_020
crossref_primary_10_1016_j_agrformet_2021_108432
crossref_primary_10_1016_j_agrformet_2022_109026
crossref_primary_10_1007_s11104_024_07035_5
crossref_primary_10_1016_j_ecofro_2024_10_011
crossref_primary_10_1016_j_scitotenv_2022_161109
crossref_primary_10_2139_ssrn_4089107
crossref_primary_10_1073_pnas_2015821118
crossref_primary_10_1088_2752_664X_ad63ae
crossref_primary_10_1111_gcb_16194
crossref_primary_10_3390_en16207083
crossref_primary_10_1186_s13717_024_00507_7
Cites_doi 10.2307/2265777
10.1093/jxb/err213
10.1071/FP03236
10.1080/02827588609382425
10.1007/s004420000576
10.1111/j.1469-8137.2005.01451.x
10.1051/forest:19990406
10.1111/j.1365-2486.2009.01851.x
10.1111/j.1365-2486.2003.00714.x
10.1016/j.agrformet.2011.03.003
10.1038/17709
10.1093/treephys/tpp029
10.2307/2937209
10.1055/s-2005-837469
10.1016/j.scienta.2011.07.011
10.1111/j.1469-8137.2007.02079.x
10.1093/treephys/tpr002
10.1093/treephys/tpr118
10.1105/tpc.010410
10.1111/j.1365-2486.1997.gcb135.x
10.1111/j.1438-8677.2012.00687.x
10.1016/B978-012520915-1/50017-5
10.1007/s00468-008-0239-2
10.1371/journal.pone.0057373
10.1016/j.agrformet.2012.01.019
10.1007/s11104-004-0297-1
10.1111/j.1365-2486.2010.02281.x
10.1111/j.1365-2486.2011.02397.x
10.1104/pp.108.133249
10.1046/j.1365-2486.2003.00688.x
10.1016/j.envpol.2006.08.033
10.1016/0378-1127(95)97452-X
10.1111/j.1365-313X.2007.03077.x
10.3354/cr032253
10.1111/j.1365-2486.2011.02632.x
10.1111/j.1438-8677.2009.00309.x
10.1111/j.1466-8238.2008.00398.x
10.1007/BF00328788
10.1093/treephys/17.11.733
10.1093/oxfordjournals.aob.a087463
10.1105/tpc.111.083345
10.1890/10-0633.1
10.1098/rstb.2010.0120
10.1007/s00468-009-0320-5
10.1007/s004250050436
10.1016/j.agrformet.2010.04.001
10.1046/j.1365-3040.2001.00794.x
10.1111/j.1365-3040.2012.02552.x
10.1007/s00468-012-0686-7
10.1086/376576
10.1016/j.agrformet.2004.06.011
10.1111/j.1365-3040.2012.02560.x
10.1038/382146a0
10.1007/s11103-012-9974-2
10.1046/j.1365-2486.2002.00489.x
10.1111/gcb.12556
10.1007/s11104-006-6249-1
10.1007/BF00037052
10.1007/s00484-010-0305-5
10.1007/s11258-004-2485-8
10.1080/01431160310001618149
10.1093/jxb/ert174
10.1201/9781420014877.ch3
10.1007/s00442-010-1614-4
10.1093/treephys/27.1.63
10.2307/3565537
10.1111/j.1365-3040.2007.01724.x
10.2307/2261481
10.1073/pnas.1321727111
10.1007/s10342-011-0554-9
10.1080/07352689409701916
10.1111/j.1365-2486.2009.02084.x
10.1111/j.1438-8677.2012.00665.x
10.1104/pp.105.066845
10.2307/3565549
10.1007/s00468-011-0600-8
10.1111/j.1365-2486.2008.01735.x
10.1007/s11103-010-9610-y
10.1007/s10265-013-0565-3
10.21273/JASHS.126.5.644
10.1016/j.pbi.2013.02.006
10.1007/s00484-011-0494-6
10.1111/j.0269-8463.2004.00847.x
10.1111/1365-2664.12102
10.1093/treephys/16.1-2.153
10.1111/j.0269-8463.2004.00872.x
10.1111/j.1365-2486.2006.01193.x
10.1007/s11104-011-0742-x
10.1126/science.1066860
10.1111/j.1461-0248.2009.01310.x
10.1002/joc.1969
10.1146/annurev.es.17.110186.000435
10.1007/s00442-009-1363-4
10.1016/0378-1127(92)90332-4
10.1146/annurev.arplant.57.032905.105212
10.1016/0098-8472(94)90005-1
10.1111/j.1365-2486.2006.01164.x
10.1139/x90-154
10.1093/treephys/tps005
10.1007/s13595-011-0010-5
10.2307/1937083
10.1002/9780470988855.ch5
10.1007/BF00317817
10.1051/forest:2006042
10.1016/S1360-1385(03)00103-1
10.1016/j.agrformet.2008.11.014
10.1093/treephys/25.1.109
10.1016/S0378-1127(98)00381-8
10.1093/treephys/25.6.641
10.1006/anbo.1998.0656
10.1007/s00484-007-0126-3
10.1016/j.tplants.2007.03.012
10.1111/j.1469-8137.2010.03252.x
10.1093/treephys/25.8.1001
10.1534/genetics.105.047522
10.1111/j.1365-2435.2010.01748.x
10.1104/pp.110.163907
10.1890/11-0416.1
ContentType Journal Article
Copyright 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7TG
7U6
KL.
SOI
7S9
L.6
DOI 10.1111/gcb.12804
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1017
ExternalDocumentID 3592779831
25384459
10_1111_gcb_12804
GCB12804
ark_67375_WNG_WR5R26NS_S
US201500196684
Genre commentary
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Spanish Government
  funderid: CGL2013‐48074‐P
– fundername: Consolider Ingenio
  funderid: MONTES CSD2008‐00040
– fundername: Catalan Government
  funderid: SGR2014‐274
– fundername: European Research Council Synergy
  funderid: ERC‐SyG‐610028 IMBALANCE‐P
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7TG
7U6
KL.
SOI
7S9
L.6
ID FETCH-LOGICAL-c5124-8fcf9f40775f2ded32b40ea9187f0f6e942b5ee71703717f3005c1053f560bd43
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:28:32 EDT 2025
Fri Jul 11 05:54:56 EDT 2025
Fri Jul 11 12:24:55 EDT 2025
Fri Jul 25 11:06:42 EDT 2025
Mon Jul 21 05:57:53 EDT 2025
Thu Apr 24 23:04:27 EDT 2025
Tue Jul 01 03:52:53 EDT 2025
Wed Jan 22 16:40:32 EST 2025
Wed Oct 30 09:56:56 EDT 2024
Wed Dec 27 18:48:23 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords nutrient cycle
litter
plant production
drought
nutrient proficiency
phenology
warming
winter deciduous species
leaf fall
climate change
leaf senescence
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5124-8fcf9f40775f2ded32b40ea9187f0f6e942b5ee71703717f3005c1053f560bd43
Notes http://dx.doi.org/10.1111/gcb.12804
Spanish Government - No. CGL2013-48074-P
Catalan Government - No. SGR2014-274
ark:/67375/WNG-WR5R26NS-S
European Research Council Synergy - No. ERC-SyG-610028 IMBALANCE-P
Consolider Ingenio - No. MONTES CSD2008-00040
istex:09382668F5A11FB4B42C1BC222D5E79369325426
ArticleID:GCB12804
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://ddd.uab.cat/record/128577
PMID 25384459
PQID 1655430505
PQPubID 30327
PageCount 13
ParticipantIDs proquest_miscellaneous_1694486449
proquest_miscellaneous_1664201244
proquest_miscellaneous_1657316899
proquest_journals_1655430505
pubmed_primary_25384459
crossref_citationtrail_10_1111_gcb_12804
crossref_primary_10_1111_gcb_12804
wiley_primary_10_1111_gcb_12804_GCB12804
istex_primary_ark_67375_WNG_WR5R26NS_S
fao_agris_US201500196684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2015
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: March 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2015
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Dougherty PM, Hennessey TC, Zarnoch SJ, Stenberg PT, Holeman RT, Wittwer RF (1995) Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly-pine (Pinus taeda L.) stand. Forest Ecology and Management, 72, 213-227.
Munne-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell and Environment, 24, 1319-1327.
Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15, 1930-1948.
Peñuelas J, Filella I (2001) Phenology - Responses to a warming world. Science, 294, 793-795.
Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013) Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant Cell and Environment, 36, 116-127.
Günthardt-Goerg MS, Kuster TM, Arend M, Vollenweider P (2013) Foliage response of young central European oaks to air warming, drought and soil type. Plant Biology, 15, 185-197.
Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae, 130, 357-372.
Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biology, 12, 275-291.
Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell and Environment, 35, 1707-1728.
Fu YSH, Campioli M, Vitasse Y et al. (2014) Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111, 7355-7360.
Silla F, Fleury M, Mediavilla S, Escudero A (2008) Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. saplings. Trees-Structure and Function, 22, 785-793.
Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644.
Escudero A, Delarco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos, 49, 11-14.
Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126, 237-255.
Doi H, Takahashi M (2008) Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecology and Biogeography, 17, 556-561.
Keskitalo J, Bergquist G, Gardestrom P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiology, 139, 1635-1648.
Breeze E, Harrison E, McHattie S et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23, 873-894.
Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 161, 187-198.
Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9, 1792-1801.
Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149.
Druart N, Johansson A, Baba K et al. (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant Journal, 50, 557-573.
Migita C, Chiba Y, Tange T (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology, 27, 63-70.
Paakkonen E, Gunthardt-Goerg MS, Holopainen T (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany, 82, 49-59.
Montserrat-Marti G, Camarero JJ, Palacio S, Perez-Rontome C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees-Structure and Function, 23, 787-799.
Ueda MU, Mizumachi E, Tokuchi N (2009) Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings. Tree Physiology, 29, 913-919.
Gonzalez E (2012) Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica, 31, 173-185.
Ruuhola T, Leppanen T, Lehto T (2011) Retranslocation of nutrients in relation to boron availability during leaf senescence of Betula pendula Roth. Plant and Soil, 344, 227-240.
Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17, 886-897.
Killingbeck KT, May JD, Nyman S (1990) Foliar senescence in an aspen (Populus tremuloides) clone - the response of element resorption to interramet variation and timing of abscission. Canadian Journal of Forest Research, 20, 1156?1164.
Feller U, Fischer A (1994) Nitrogen-metabolism in senescing leaves. Critical Reviews in Plant Sciences, 13, 241-273.
Ibañez I, Primack RB, Miller-Rushing AJ et al. (2010) Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3247-3260.
Jordan MO, Wendler R, Millard P (2012) Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees. Trees-Structure and Function, 26, 393-404.
Menzel A, Fabian P (1999) Growing season extended in Europe. Nature, 397, 659.
Xu ZF, Hu TX, Zhang YB (2012) Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research, 131, 811-819.
Niinemets U, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 25, 1001-1014.
Juknys R, Sujetoviene G, Zeimavicius K, Sveikauskaite I (2012) Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology. Baltic Forestry, 18, 25-32.
Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 24, 1211-1218.
Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005) Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus. Plant Biology, 7, 182-189.
Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. International Journal of Biometeorology, 54, 563-581.
Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251-259.
Silla F, Escudero A (2006) Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. saplings. Plant and Soil, 282, 301-311.
Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiology, 149, 1982-1991.
Wendler R, Millard P (1996) Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula. Tree Physiology, 16, 153-159.
Niederholzer FJA, Dejong TM, Saenz JL, Muraoka TT, Weinbaum SA (2001) Effectiveness of fall versus spring soil fertilization of field-grown peach trees. Journal of the American Society for Horticultural Science, 126, 644-648.
Matsumoto K (2010) Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. International Journal of Climatology, 30, 1280-1288.
Kasurinen A, Biasi C, Holopainen T, Rousi M, Maenpaa M, Oksanen E (2012) Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737-751.
Staelens J, Nachtergale L, De Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011) Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98.
Leuzinger S, Zotz G, Asshoff R, Korner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 25, 641-650.
Clausen S, Apel K (1991) Seasonal-changes in the concentration of the major storage protein and its messenger-RNA in xylem ray cells of poplar trees. Plant Molecular Biology, 17, 669-678.
Gunderson CA, Edwards NT, Walker AV, O'Hara KH, Campion CM, Hanson PJ (2012) Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology, 18, 2008-2025.
Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151, 969-980.
Pugnaire FI, Chapin FS (1992) Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 90, 120-126.
Ingvarsson PK, Garcia MV, Ha
2010; 12
2002; 14
2010; 16
1991; 17
2006; 32
2005; 178
2004; 25
2013; 126
2011; 62
2013; 64
1996; 382
2011; 55
2010; 186
2012; 18
2006; 172
1998; 82
2013; 8
1997; 3
1992; 51
2014; 20
1996; 77
2009; 12
1986; 1
2004; 31
2012; 131
2010; 24
2013; 50
2007; 175
2003; 162
1999; 56
1998; 206
2011; 68
2008; 22
2006; 282
2012; 26
2010; 30
2009; 15
1989
1987; 49
2006; 57
1991; 72
2002; 8
1986; 17
2010; 163
2008; 52
2011; 130
2012; 35
2001; 24
1996; 16
2007; 12
2012; 32
2012; 31
1990; 20
1987; 60
2013; 82
2005; 7
1996; 84
1994; 13
1999; 114
2007; 147
2010; 54
1995; 72
2004; 126
2005; 139
2007; 30
2011; 17
2011; 151
1996; 105
2005; 25
1992; 90
2006; 63
2013; 15
2001; 294
2013; 16
2005; 268
2003; 8
2003; 9
1983; 64
2010; 154
1994; 34
1997; 17
2010; 150
2009; 161
2011; 23
2010; 73
2007; 27
2009; 23
2012; 82
2006; 12
2010; 365
2008; 17
2011; 31
2007
2006
2005
2007; 50
2004
1988; 53
2014; 111
2001; 126
2009; 29
2001; 127
2011; 344
2013; 36
2012; 157
2004; 18
2005; 167
1999; 397
2013
2010; 91
2009; 149
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
IPCC (e_1_2_9_50_1) 2013
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Gonzalez E (e_1_2_9_34_1) 2012; 31
e_1_2_9_102_1
Evans JR (e_1_2_9_27_1) 1989
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_73_1
e_1_2_9_35_1
Juknys R (e_1_2_9_54_1) 2012; 18
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
Mostowska A (e_1_2_9_79_1) 2005
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Silla F, Fleury M, Mediavilla S, Escudero A (2008) Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. saplings. Trees-Structure and Function, 22, 785-793.
– reference: Cufar K, De Luis M, Saz MA, Crepinsek Z, Kajfez-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees-Structure and Function, 26, 1091-1100.
– reference: Paakkonen E, Gunthardt-Goerg MS, Holopainen T (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany, 82, 49-59.
– reference: Dragoni D, Rahman AF (2012) Trends in fall phenology across the deciduous forests of the Eastern USA. Agricultural and Forest Meteorology, 157, 96-105.
– reference: Staaf H, Stjernquist I (1986) Seasonal dynamics, especially autumnal retranslocation, of nitrogen and phosphorus in foliage of dominant and suppressed trees of beech, Fagus sylvatica. Scandinavian Journal of Forest Research, 1, 333-342.
– reference: Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 161, 187-198.
– reference: Inada N, Sakai A, Kuroiwa H, Kuroiwa T (1998) Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles - Investigations by fluorescence microscopy and electron microscopy. Planta, 206, 585-597.
– reference: Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
– reference: Breeze E, Harrison E, McHattie S et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23, 873-894.
– reference: Jeong SJ, Ho CH, Gim HJ, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17, 2385-2399.
– reference: Hortensteiner S (2006) Chlorophyll degradation during senescence. Annual Review of Plant Biology, 57, 55-77.
– reference: Heide OM (2011) Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. Journal of Experimental Botany, 62, 5397-5404.
– reference: Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
– reference: Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18, 419-425.
– reference: Staelens J, Nachtergale L, De Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011) Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98.
– reference: Marchin R, Zeng HN, Hoffmann W (2010) Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia, 163, 845-854.
– reference: Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531-544.
– reference: Chen WQ, Provart NJ, Glazebrook J et al. (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell, 14, 559-574.
– reference: Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell and Environment, 35, 1707-1728.
– reference: Leuzinger S, Zotz G, Asshoff R, Korner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 25, 641-650.
– reference: Matsumoto K (2010) Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. International Journal of Climatology, 30, 1280-1288.
– reference: Killingbeck KT, May JD, Nyman S (1990) Foliar senescence in an aspen (Populus tremuloides) clone - the response of element resorption to interramet variation and timing of abscission. Canadian Journal of Forest Research, 20, 1156?1164.
– reference: Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126, 237-255.
– reference: Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31, 203-216.
– reference: Keskitalo J, Bergquist G, Gardestrom P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiology, 139, 1635-1648.
– reference: Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology, 150, 1026-1029.
– reference: Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17, 886-897.
– reference: Kasurinen A, Biasi C, Holopainen T, Rousi M, Maenpaa M, Oksanen E (2012) Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737-751.
– reference: Montserrat-Marti G, Camarero JJ, Palacio S, Perez-Rontome C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees-Structure and Function, 23, 787-799.
– reference: Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytologist, 167, 19-30.
– reference: Delpierre N, Dufrene E, Soudani K, Ulrich E, Cecchini S, Boe J, Francois C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149, 938-948.
– reference: Resman L, Howe G, Jonsen D et al. (2010) Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. Plant Physiology, 154, 1294-1303.
– reference: Fu YSH, Campioli M, Vitasse Y et al. (2014) Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111, 7355-7360.
– reference: Schreiber SG, Ding C, Hamann A, Hacke UG, Thomas BR, Brouard JS (2013) Frost hardiness vs. growth performance in trembling aspen: an experimental test of assisted migration. Journal of Applied Ecology, 50, 939-949.
– reference: Keech O, Pesquet E, Ahad A et al. (2007) The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell and Environment, 30, 1523-1534.
– reference: Niederholzer FJA, Dejong TM, Saenz JL, Muraoka TT, Weinbaum SA (2001) Effectiveness of fall versus spring soil fertilization of field-grown peach trees. Journal of the American Society for Horticultural Science, 126, 644-648.
– reference: del Arco JM, Escudero A, Garrido MV (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708.
– reference: Ueda MU, Mizumachi E, Tokuchi N (2009) Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings. Tree Physiology, 29, 913-919.
– reference: Peng ZP, Li CJ (2005) Transport and partitioning of phosphorus in wheat as affected by P withdrawal during flag-leaf expansion. Plant and Soil, 268, 1-11.
– reference: Ibañez I, Primack RB, Miller-Rushing AJ et al. (2010) Forecasting phenology under global warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3247-3260.
– reference: Jordan MO, Wendler R, Millard P (2012) Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees. Trees-Structure and Function, 26, 393-404.
– reference: Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013) Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant Cell and Environment, 36, 116-127.
– reference: El Zein R, Breda N, Gerant D, Zeller B, Maillard P (2011) Nitrogen sources for current-year shoot growth in 50-year-old sessile oak trees: an in situ N-15 labeling approach. Tree Physiology, 31, 1390-1400.
– reference: Waddell KJ, Fox CW, White KD, Mousseau TA (2001) Leaf abscission phenology of a scrub oak: consequences for growth and survivorship of a leaf mining beetle. Oecologia, 127, 251-258.
– reference: Wendler R, Millard P (1996) Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula. Tree Physiology, 16, 153-159.
– reference: Escudero A, Delarco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos, 49, 11-14.
– reference: Killingbeck KT, Costigan SA (1988) Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos, 53, 366-374.
– reference: Niinemets U, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 25, 1001-1014.
– reference: Warren JM, Norby RJ, Wullschleger SD (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 31, 117-130.
– reference: Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005) Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus. Plant Biology, 7, 182-189.
– reference: Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends in Plant Science, 12, 217-223.
– reference: Neilsen D, Millard P, Neilsen GH, Hogue EJ (1997) Sources of N for leaf growth in a high-density apple (Malus domestica) orchard irrigated with ammonium nitrate solution. Tree Physiology, 17, 733-739.
– reference: Morin X, Roy J, Sonie L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186, 900-910.
– reference: Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149.
– reference: Pugnaire FI, Chapin FS (1992) Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 90, 120-126.
– reference: Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151, 969-980.
– reference: Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology, 16, 1082-1106.
– reference: Jones MH, Bay C, Nordenhall U (1997) Effects of experimental warming on arctic willows (Salix spp.): a comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Subarctic. Global Change Biology, 3, 55-60.
– reference: Yasumura Y, Onoda Y, Hikosaka K, Hirose T (2005) Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology, 178, 29-37.
– reference: Matzek V, Vitousek PM (2009) N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771.
– reference: Hikosaka K (2003) A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency. The American Naturalist, 162, 149-164.
– reference: Ingvarsson PK, Garcia MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics, 172, 1845-1853.
– reference: Gonzalez E (2012) Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica, 31, 173-185.
– reference: Juknys R, Sujetoviene G, Zeimavicius K, Sveikauskaite I (2012) Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology. Baltic Forestry, 18, 25-32.
– reference: Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiology, 149, 1982-1991.
– reference: Charles-Edwards DA, Stutzel H, Ferraris R, Beech DF (1987) An analysis of spatial variation in the nitrogen-content of leaves from different horizons within a canopy. Annals of Botany, 60, 421-426.
– reference: Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9, 1792-1801.
– reference: Ruuhola T, Leppanen T, Lehto T (2011) Retranslocation of nutrients in relation to boron availability during leaf senescence of Betula pendula Roth. Plant and Soil, 344, 227-240.
– reference: Pedersen LB, Bille-Hansen J (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecology and Management, 114, 55-70.
– reference: Dougherty PM, Hennessey TC, Zarnoch SJ, Stenberg PT, Holeman RT, Wittwer RF (1995) Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly-pine (Pinus taeda L.) stand. Forest Ecology and Management, 72, 213-227.
– reference: Silla F, Escudero A (2006) Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. saplings. Plant and Soil, 282, 301-311.
– reference: Morin X, Lechowicz MJ, Augspurger C, O' Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 15, 961-975.
– reference: IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY.
– reference: Hennessey TC, Dougherty PM, Cregg BM, Wittwer RF (1992) Annual variation in needle fall of a loblolly-pine stand in relation to climate and stand density. Forest Ecology and Management, 51, 329-338.
– reference: Gunderson CA, Edwards NT, Walker AV, O'Hara KH, Campion CM, Hanson PJ (2012) Forest phenology and a warmer climate - growing season extension in relation to climatic provenance. Global Change Biology, 18, 2008-2025.
– reference: Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644.
– reference: Menzel A, Sparks TH, Estrella N et al. (2006) European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976.
– reference: Migita C, Chiba Y, Tange T (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology, 27, 63-70.
– reference: Chapin FS, Kedrowski RA (1983) Seasonal-changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64, 376-391.
– reference: Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25, 109-114.
– reference: Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environmental Pollution, 147, 467-488.
– reference: Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 67-88.
– reference: Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251-259.
– reference: Tanino K, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology, 73, 49-65.
– reference: Hwang T, Band LE, Miniat CF, Song C, Bolstad PV, Vose JM, Love JP (2014) Divergent phenological response to hydroclimate variability in forested mountain watersheds. Global Change Biology, 20, 2580-2595.
– reference: Feller U, Fischer A (1994) Nitrogen-metabolism in senescing leaves. Critical Reviews in Plant Sciences, 13, 241-273.
– reference: Anten NPR, Werger MJA (1996) Canopy structure and nitrogen distribution in dominant and subordinate plants in a dense stand of Amaranthus dubius L. with a size hierarchy of individuals. Oecologia, 105, 30-37.
– reference: Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology, 9, 1634-1642.
– reference: Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
– reference: Wibbe ML, Blanke MM, Lenz F (1994) Respiration of apple-trees between leaf fall and leaf emergence. Environmental and Experimental Botany, 34, 25-30.
– reference: Peñuelas J, Filella I (2001) Phenology - Responses to a warming world. Science, 294, 793-795.
– reference: Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biology, 12, 275-291.
– reference: Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research, 126, 447-460.
– reference: Richardson AD, Bailey AS, Denny EG, Martin CW, O'Keefe J (2006) Phenology of a northern hardwood forest canopy. Global Change Biology, 12, 1174-1188.
– reference: Stöckli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25, 3303-3330.
– reference: Druart N, Johansson A, Baba K et al. (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant Journal, 50, 557-573.
– reference: Menzel A, Fabian P (1999) Growing season extended in Europe. Nature, 397, 659.
– reference: Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae, 130, 357-372.
– reference: Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. International Journal of Biometeorology, 54, 563-581.
– reference: Clausen S, Apel K (1991) Seasonal-changes in the concentration of the major storage protein and its messenger-RNA in xylem ray cells of poplar trees. Plant Molecular Biology, 17, 669-678.
– reference: Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Research, 32, 253-267.
– reference: Friedman JM, Roelle JE, Cade BS (2011) Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees. International Journal of Biometeorology, 55, 775-787.
– reference: Pregitzer KS, Zak DR, Talhelm AF, Burton AJ, Eikenberry JR (2010) Nitrogen turnover in the leaf litter and fine roots of sugar maple. Ecology, 91, 3456-3462.
– reference: Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15, 1930-1948.
– reference: Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends in Plant Science, 8, 272-278.
– reference: Doi H, Takahashi M (2008) Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecology and Biogeography, 17, 556-561.
– reference: Silla F, Escudero A (2004) Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population levels. Functional Ecology, 18, 511-521.
– reference: Wildhagen H, Bilela S, Rennenberg H (2013) Low temperatures counteract short-day induced nitrogen storage, but not accumulation of bark storage protein transcripts in bark of grey poplar (Populus x canescens) trees. Plant Biology, 15, 44-56.
– reference: Günthardt-Goerg MS, Kuster TM, Arend M, Vollenweider P (2013) Foliage response of young central European oaks to air warming, drought and soil type. Plant Biology, 15, 185-197.
– reference: Archetti M, Richardson AD, O'Keefe J, Delpierre N (2013) Predicting climate change impacts on the amount and duration of autumn colours in a new england forest. PLoS ONE, 8, e57373.
– reference: Juvany M, Muller M, Munne-Bosch S (2013) Photo-oxidative stress in emerging and senescing leaves: a mirror image? Journal of Experimental Botany, 64, 3087-3098.
– reference: Guo YF (2013) Towards systems biological understanding of leaf senescence. Plant Molecular Biology, 82, 519-528.
– reference: Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology, 84, 597-608.
– reference: Xu ZF, Hu TX, Zhang YB (2012) Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research, 131, 811-819.
– reference: Petterle A, Karlberg A, Bhalerao RP (2013) Daylength mediated control of seasonal growth patterns in perennial trees. Current Opinion in Plant Biology, 16, 301-306.
– reference: Gallardo JF, Martin A, Moreno G (1999) Nutrient efficiency and resorption in Quercus pyrenaica oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain). Annals of Forest Science, 56, 321-331.
– reference: Munne-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell and Environment, 24, 1319-1327.
– reference: Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 24, 1211-1218.
– volume: 15
  start-page: 1930
  year: 2009
  end-page: 1948
  article-title: Long‐term temporal changes of plant phenology in the Western Mediterranean
  publication-title: Global Change Biology
– start-page: 183
  year: 1989
  end-page: 205
– start-page: 51
  year: 2006
  end-page: 90
– volume: 32
  start-page: 253
  year: 2006
  end-page: 267
  article-title: Responses of leaf colouring in four deciduous tree species to climate and weather in Germany
  publication-title: Climate Research
– volume: 9
  start-page: 1634
  year: 2003
  end-page: 1642
  article-title: Climate change and extension of the L. growing season in Japan
  publication-title: Global Change Biology
– volume: 16
  start-page: 1082
  year: 2010
  end-page: 1106
  article-title: Impact of climate change on plant phenology in Mediterranean ecosystems
  publication-title: Global Change Biology
– volume: 9
  start-page: 1792
  year: 2003
  end-page: 1801
  article-title: Phenological responses in maple to experimental atmospheric warming and CO enrichment
  publication-title: Global Change Biology
– volume: 20
  start-page: 1156
  year: 1990
  end-page: 1164
  article-title: Foliar senescence in an aspen ( ) clone ‐ the response of element resorption to interramet variation and timing of abscission
  publication-title: Canadian Journal of Forest Research
– volume: 157
  start-page: 96
  year: 2012
  end-page: 105
  article-title: Trends in fall phenology across the deciduous forests of the Eastern USA
  publication-title: Agricultural and Forest Meteorology
– volume: 151
  start-page: 969
  year: 2011
  end-page: 980
  article-title: Assessing the effects of climate change on the phenology of European temperate trees
  publication-title: Agricultural and Forest Meteorology
– volume: 30
  start-page: 1280
  year: 2010
  end-page: 1288
  article-title: Causal factors for spatial variation in long‐term phenological trends in L. in Japan
  publication-title: International Journal of Climatology
– volume: 15
  start-page: 961
  year: 2009
  end-page: 975
  article-title: Leaf phenology in 22 North American tree species during the 21st century
  publication-title: Global Change Biology
– volume: 26
  start-page: 393
  year: 2012
  end-page: 404
  article-title: Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees
  publication-title: Trees‐Structure and Function
– volume: 17
  start-page: 886
  year: 2011
  end-page: 897
  article-title: Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south‐central Indiana, USA
  publication-title: Global Change Biology
– volume: 1
  start-page: 333
  year: 1986
  end-page: 342
  article-title: Seasonal dynamics, especially autumnal retranslocation, of nitrogen and phosphorus in foliage of dominant and suppressed trees of beech,
  publication-title: Scandinavian Journal of Forest Research
– volume: 15
  start-page: 44
  year: 2013
  end-page: 56
  article-title: Low temperatures counteract short‐day induced nitrogen storage, but not accumulation of bark storage protein transcripts in bark of grey poplar ( ) trees
  publication-title: Plant Biology
– volume: 365
  start-page: 3247
  year: 2010
  end-page: 3260
  article-title: Forecasting phenology under global warming
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 162
  start-page: 149
  year: 2003
  end-page: 164
  article-title: A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency
  publication-title: The American Naturalist
– volume: 12
  start-page: 217
  year: 2007
  end-page: 223
  article-title: Plant dormancy in the perennial context
  publication-title: Trends in Plant Science
– volume: 51
  start-page: 329
  year: 1992
  end-page: 338
  article-title: Annual variation in needle fall of a loblolly‐pine stand in relation to climate and stand density
  publication-title: Forest Ecology and Management
– volume: 17
  start-page: 733
  year: 1997
  end-page: 739
  article-title: Sources of N for leaf growth in a high‐density apple ( ) orchard irrigated with ammonium nitrate solution
  publication-title: Tree Physiology
– volume: 206
  start-page: 585
  year: 1998
  end-page: 597
  article-title: Three‐dimensional analysis of the senescence program in rice ( L.) coleoptiles ‐ Investigations by fluorescence microscopy and electron microscopy
  publication-title: Planta
– volume: 175
  start-page: 11
  year: 2007
  end-page: 28
  article-title: Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal
  publication-title: New Phytologist
– volume: 31
  start-page: 1390
  year: 2011
  end-page: 1400
  article-title: Nitrogen sources for current‐year shoot growth in 50‐year‐old sessile oak trees: an in situ N‐15 labeling approach
  publication-title: Tree Physiology
– volume: 53
  start-page: 366
  year: 1988
  end-page: 374
  article-title: Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds
  publication-title: Oikos
– volume: 31
  start-page: 203
  year: 2004
  end-page: 216
  article-title: Die and let live: leaf senescence contributes to plant survival under drought stress
  publication-title: Functional Plant Biology
– volume: 16
  start-page: 301
  year: 2013
  end-page: 306
  article-title: Daylength mediated control of seasonal growth patterns in perennial trees
  publication-title: Current Opinion in Plant Biology
– volume: 36
  start-page: 116
  year: 2013
  end-page: 127
  article-title: Timing of photoperiodic competency causes phenological mismatch in balsam poplar ( L.)
  publication-title: Plant Cell and Environment
– volume: 14
  start-page: 559
  year: 2002
  end-page: 574
  article-title: Expression profile matrix of transcription factor genes suggests their putative functions in response to environmental stresses
  publication-title: The Plant Cell
– volume: 31
  start-page: 173
  year: 2012
  end-page: 185
  article-title: Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river
  publication-title: Limnetica
– volume: 30
  start-page: 1523
  year: 2007
  end-page: 1534
  article-title: The different fates of mitochondria and chloroplasts during dark‐induced senescence in leaves
  publication-title: Plant Cell and Environment
– volume: 17
  start-page: 669
  year: 1991
  end-page: 678
  article-title: Seasonal‐changes in the concentration of the major storage protein and its messenger‐RNA in xylem ray cells of poplar trees
  publication-title: Plant Molecular Biology
– volume: 50
  start-page: 939
  year: 2013
  end-page: 949
  article-title: Frost hardiness vs. growth performance in trembling aspen: an experimental test of assisted migration
  publication-title: Journal of Applied Ecology
– volume: 34
  start-page: 25
  year: 1994
  end-page: 30
  article-title: Respiration of apple‐trees between leaf fall and leaf emergence
  publication-title: Environmental and Experimental Botany
– volume: 26
  start-page: 1091
  year: 2012
  end-page: 1100
  article-title: Temporal shifts in leaf phenology of beech ( ) depend on elevation
  publication-title: Trees‐Structure and Function
– volume: 56
  start-page: 321
  year: 1999
  end-page: 331
  article-title: Nutrient efficiency and resorption in oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain)
  publication-title: Annals of Forest Science
– volume: 167
  start-page: 19
  year: 2005
  end-page: 30
  article-title: Nitrogen storage and seasonal nitrogen cycling in : bridging molecular physiology and ecophysiology
  publication-title: New Phytologist
– volume: 63
  start-page: 625
  year: 2006
  end-page: 644
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences
  publication-title: Annals of Forest Science
– volume: 149
  start-page: 1982
  year: 2009
  end-page: 1991
  article-title: The control of autumn senescence in European aspen
  publication-title: Plant Physiology
– volume: 382
  start-page: 146
  year: 1996
  end-page: 149
  article-title: Increased activity of northern vegetation inferred from atmospheric CO measurements
  publication-title: Nature
– start-page: 691
  year: 2005
  end-page: 716
– volume: 72
  start-page: 213
  year: 1995
  end-page: 227
  article-title: Effects of stand development and weather on monthly leaf biomass dynamics of a loblolly‐pine ( L.) stand
  publication-title: Forest Ecology and Management
– volume: 178
  start-page: 29
  year: 2005
  end-page: 37
  article-title: Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species
  publication-title: Plant Ecology
– volume: 12
  start-page: 765
  year: 2009
  end-page: 771
  article-title: N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth‐rate hypothesis
  publication-title: Ecology Letters
– volume: 25
  start-page: 1001
  year: 2005
  end-page: 1014
  article-title: Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands
  publication-title: Tree Physiology
– volume: 29
  start-page: 913
  year: 2009
  end-page: 919
  article-title: Allocation of nitrogen within the crown during leaf expansion in saplings
  publication-title: Tree Physiology
– volume: 16
  start-page: 153
  year: 1996
  end-page: 159
  article-title: Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of
  publication-title: Tree Physiology
– volume: 68
  start-page: 89
  year: 2011
  end-page: 98
  article-title: Spatio‐temporal litterfall dynamics in a 60‐year‐old mixed deciduous forest
  publication-title: Annals of Forest Science
– volume: 60
  start-page: 421
  year: 1987
  end-page: 426
  article-title: An analysis of spatial variation in the nitrogen‐content of leaves from different horizons within a canopy
  publication-title: Annals of Botany
– volume: 55
  start-page: 775
  year: 2011
  end-page: 787
  article-title: Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees
  publication-title: International Journal of Biometeorology
– volume: 147
  start-page: 467
  year: 2007
  end-page: 488
  article-title: Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives
  publication-title: Environmental Pollution
– volume: 18
  start-page: 419
  year: 2004
  end-page: 425
  article-title: Allocation of nitrogen to cell walls decreases photosynthetic nitrogen‐use efficiency
  publication-title: Functional Ecology
– volume: 23
  start-page: 873
  year: 2011
  end-page: 894
  article-title: High‐resolution temporal profiling of transcripts during leaf senescence reveals a distinct chronology of processes and regulation
  publication-title: The Plant Cell
– volume: 82
  start-page: 519
  year: 2013
  end-page: 528
  article-title: Towards systems biological understanding of leaf senescence
  publication-title: Plant Molecular Biology
– volume: 24
  start-page: 1319
  year: 2001
  end-page: 1327
  article-title: Drought‐induced senescence is characterized by a loss of antioxidant defences in chloroplasts
  publication-title: Plant Cell and Environment
– volume: 7
  start-page: 182
  year: 2005
  end-page: 189
  article-title: Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter‐deciduous shrub Medicus
  publication-title: Plant Biology
– volume: 186
  start-page: 900
  year: 2010
  end-page: 910
  article-title: Changes in leaf phenology of three European oak species in response to experimental climate change
  publication-title: New Phytologist
– volume: 72
  start-page: 701
  year: 1991
  end-page: 708
  article-title: Effects of site characteristics on nitrogen retranslocation from senescing leaves
  publication-title: Ecology
– volume: 18
  start-page: 25
  year: 2012
  end-page: 32
  article-title: Comparison of climate warming induced changes in silver birch ( Roth) and lime ( Mill.) phenology
  publication-title: Baltic Forestry
– volume: 8
  start-page: 531
  year: 2002
  end-page: 544
  article-title: Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region
  publication-title: Global Change Biology
– volume: 24
  start-page: 1211
  year: 2010
  end-page: 1218
  article-title: Quantifying phenological plasticity to temperature in two temperate tree species
  publication-title: Functional Ecology
– volume: 64
  start-page: 3087
  year: 2013
  end-page: 3098
  article-title: Photo‐oxidative stress in emerging and senescing leaves: a mirror image?
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 2580
  year: 2014
  end-page: 2595
  article-title: Divergent phenological response to hydroclimate variability in forested mountain watersheds
  publication-title: Global Change Biology
– year: 2013
– volume: 57
  start-page: 55
  year: 2006
  end-page: 77
  article-title: Chlorophyll degradation during senescence
  publication-title: Annual Review of Plant Biology
– volume: 294
  start-page: 793
  year: 2001
  end-page: 795
  article-title: Phenology – Responses to a warming world
  publication-title: Science
– volume: 12
  start-page: 275
  year: 2010
  end-page: 291
  article-title: Nitrogen nutrition of poplar trees
  publication-title: Plant Biology
– volume: 126
  start-page: 237
  year: 2004
  end-page: 255
  article-title: Inter‐annual variability in the leaf area index of a boreal aspen‐hazelnut forest in relation to net ecosystem production
  publication-title: Agricultural and Forest Meteorology
– volume: 105
  start-page: 30
  year: 1996
  end-page: 37
  article-title: Canopy structure and nitrogen distribution in dominant and subordinate plants in a dense stand of L. with a size hierarchy of individuals
  publication-title: Oecologia
– start-page: 87
  year: 2007
  end-page: 107
– volume: 54
  start-page: 563
  year: 2010
  end-page: 581
  article-title: Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models
  publication-title: International Journal of Biometeorology
– volume: 131
  start-page: 811
  year: 2012
  end-page: 819
  article-title: Effects of experimental warming on phenology, growth and gas exchange of treeline birch ( ) saplings, Eastern Tibetan Plateau, China
  publication-title: European Journal of Forest Research
– volume: 22
  start-page: 785
  year: 2008
  end-page: 793
  article-title: Effects of simulated herbivory on photosynthesis and N resorption efficiency in Willd. saplings
  publication-title: Trees‐Structure and Function
– volume: 150
  start-page: 1026
  year: 2010
  end-page: 1029
  article-title: Experimental branch warming alters tall tree leaf phenology and acorn production
  publication-title: Agricultural and Forest Meteorology
– volume: 35
  start-page: 1707
  year: 2012
  end-page: 1728
  article-title: The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms
  publication-title: Plant Cell and Environment
– volume: 163
  start-page: 845
  year: 2010
  end-page: 854
  article-title: Drought‐deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought
  publication-title: Oecologia
– volume: 64
  start-page: 376
  year: 1983
  end-page: 391
  article-title: Seasonal‐changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees
  publication-title: Ecology
– volume: 130
  start-page: 357
  year: 2011
  end-page: 372
  article-title: Dormancy in temperate fruit trees in a global warming context: a review
  publication-title: Scientia Horticulturae
– volume: 18
  start-page: 2008
  year: 2012
  end-page: 2025
  article-title: Forest phenology and a warmer climate – growing season extension in relation to climatic provenance
  publication-title: Global Change Biology
– volume: 31
  start-page: 117
  year: 2011
  end-page: 130
  article-title: Elevated CO enhances leaf senescence during extreme drought in a temperate forest
  publication-title: Tree Physiology
– volume: 344
  start-page: 227
  year: 2011
  end-page: 240
  article-title: Retranslocation of nutrients in relation to boron availability during leaf senescence of Roth
  publication-title: Plant and Soil
– volume: 50
  start-page: 557
  year: 2007
  end-page: 573
  article-title: Environmental and hormonal regulation of the activity‐dormancy cycle in the cambial meristem involves stage‐specific modulation of transcriptional and metabolic networks
  publication-title: Plant Journal
– volume: 17
  start-page: 556
  year: 2008
  end-page: 561
  article-title: Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan
  publication-title: Global Ecology and Biogeography
– volume: 27
  start-page: 63
  year: 2007
  end-page: 70
  article-title: Seasonal and spatial variations in leaf nitrogen content and resorption in a canopy
  publication-title: Tree Physiology
– volume: 154
  start-page: 1294
  year: 2010
  end-page: 1303
  article-title: Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar
  publication-title: Plant Physiology
– volume: 15
  start-page: 185
  year: 2013
  end-page: 197
  article-title: Foliage response of young central European oaks to air warming, drought and soil type
  publication-title: Plant Biology
– volume: 17
  start-page: 2385
  year: 2011
  end-page: 2399
  article-title: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008
  publication-title: Global Change Biology
– volume: 32
  start-page: 737
  year: 2012
  end-page: 751
  article-title: Interactive effects of elevated ozone and temperature on carbon allocation of silver birch ( ) genotypes in an open‐air field exposure
  publication-title: Tree Physiology
– volume: 172
  start-page: 1845
  year: 2006
  end-page: 1853
  article-title: Clinal variation in phyB2, a candidate gene for day‐length‐induced growth cessation and bud set, across a latitudinal gradient in European aspen ( )
  publication-title: Genetics
– volume: 25
  start-page: 641
  year: 2005
  end-page: 650
  article-title: Responses of deciduous forest trees to severe drought in Central Europe
  publication-title: Tree Physiology
– volume: 282
  start-page: 301
  year: 2006
  end-page: 311
  article-title: Coupling N cycling and N productivity in relation to seasonal stress in Willd. saplings
  publication-title: Plant and Soil
– volume: 139
  start-page: 1635
  year: 2005
  end-page: 1648
  article-title: A cellular timetable of autumn senescence
  publication-title: Plant Physiology
– volume: 91
  start-page: 3456
  year: 2010
  end-page: 3462
  article-title: Nitrogen turnover in the leaf litter and fine roots of sugar maple
  publication-title: Ecology
– volume: 161
  start-page: 187
  year: 2009
  end-page: 198
  article-title: Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology
  publication-title: Oecologia
– volume: 82
  start-page: 49
  year: 1998
  end-page: 59
  article-title: Responses of leaf processes in a sensitive birch ( Roth) clone to ozone combined with drought
  publication-title: Annals of Botany
– volume: 49
  start-page: 11
  year: 1987
  end-page: 14
  article-title: Ecological significance of the phenology of leaf abscission
  publication-title: Oikos
– volume: 3
  start-page: 55
  year: 1997
  end-page: 60
  article-title: Effects of experimental warming on arctic willows ( spp.): a comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Subarctic
  publication-title: Global Change Biology
– volume: 84
  start-page: 597
  year: 1996
  end-page: 608
  article-title: Nutrient resorption from senescing leaves of perennials: are there general patterns?
  publication-title: Journal of Ecology
– volume: 114
  start-page: 55
  year: 1999
  end-page: 70
  article-title: A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark
  publication-title: Forest Ecology and Management
– volume: 73
  start-page: 49
  year: 2010
  end-page: 65
  article-title: Temperature‐driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction
  publication-title: Plant Molecular Biology
– volume: 127
  start-page: 251
  year: 2001
  end-page: 258
  article-title: Leaf abscission phenology of a scrub oak: consequences for growth and survivorship of a leaf mining beetle
  publication-title: Oecologia
– volume: 25
  start-page: 109
  year: 2005
  end-page: 114
  article-title: Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear
  publication-title: Tree Physiology
– volume: 77
  start-page: 1716
  year: 1996
  end-page: 1727
  article-title: Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency
  publication-title: Ecology
– volume: 126
  start-page: 644
  year: 2001
  end-page: 648
  article-title: Effectiveness of fall versus spring soil fertilization of field‐grown peach trees
  publication-title: Journal of the American Society for Horticultural Science
– volume: 12
  start-page: 1969
  year: 2006
  end-page: 1976
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Global Change Biology
– volume: 126
  start-page: 447
  year: 2013
  end-page: 460
  article-title: Experimental warming studies on tree species and forest ecosystems: a literature review
  publication-title: Journal of Plant Research
– volume: 397
  start-page: 659
  year: 1999
  article-title: Growing season extended in Europe
  publication-title: Nature
– volume: 90
  start-page: 120
  year: 1992
  end-page: 126
  article-title: Environmental and physiological factors governing nutrient resorption efficiency in barley
  publication-title: Oecologia
– volume: 17
  start-page: 67
  year: 1986
  end-page: 88
  article-title: Ecology of tropical dry forest
  publication-title: Annual Review of Ecology and Systematics
– volume: 12
  start-page: 1174
  year: 2006
  end-page: 1188
  article-title: Phenology of a northern hardwood forest canopy
  publication-title: Global Change Biology
– volume: 23
  start-page: 787
  year: 2009
  end-page: 799
  article-title: Summer‐drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction
  publication-title: Trees‐Structure and Function
– volume: 18
  start-page: 511
  year: 2004
  end-page: 521
  article-title: Nitrogen‐use efficiency: trade‐offs between N productivity and mean residence time at organ, plant and population levels
  publication-title: Functional Ecology
– volume: 149
  start-page: 938
  year: 2009
  end-page: 948
  article-title: Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France
  publication-title: Agricultural and Forest Meteorology
– volume: 13
  start-page: 241
  year: 1994
  end-page: 273
  article-title: Nitrogen‐metabolism in senescing leaves
  publication-title: Critical Reviews in Plant Sciences
– volume: 62
  start-page: 5397
  year: 2011
  end-page: 5404
  article-title: Temperature rather than photoperiod controls growth cessation and dormancy in species
  publication-title: Journal of Experimental Botany
– start-page: 215
  year: 2004
  end-page: 226
– volume: 52
  start-page: 251
  year: 2008
  end-page: 259
  article-title: Trends in phenology of across the boreal zone in Finland
  publication-title: International Journal of Biometeorology
– volume: 268
  start-page: 1
  year: 2005
  end-page: 11
  article-title: Transport and partitioning of phosphorus in wheat as affected by P withdrawal during flag‐leaf expansion
  publication-title: Plant and Soil
– volume: 8
  start-page: 272
  year: 2003
  end-page: 278
  article-title: Molecular genetics of leaf senescence in
  publication-title: Trends in Plant Science
– volume: 25
  start-page: 3303
  year: 2004
  end-page: 3330
  article-title: European plant phenology and climate as seen in a 20‐year AVHRR land‐surface parameter dataset
  publication-title: International Journal of Remote Sensing
– volume: 111
  start-page: 7355
  year: 2014
  end-page: 7360
  article-title: Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: e57373
  year: 2013
  article-title: Predicting climate change impacts on the amount and duration of autumn colours in a new england forest
  publication-title: PLoS ONE
– volume: 82
  start-page: 205
  year: 2012
  end-page: 220
  article-title: Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants
  publication-title: Ecological Monographs
– ident: e_1_2_9_60_1
  doi: 10.2307/2265777
– ident: e_1_2_9_41_1
  doi: 10.1093/jxb/err213
– ident: e_1_2_9_80_1
  doi: 10.1071/FP03236
– ident: e_1_2_9_109_1
  doi: 10.1080/02827588609382425
– ident: e_1_2_9_118_1
  doi: 10.1007/s004420000576
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1469-8137.2005.01451.x
– ident: e_1_2_9_33_1
  doi: 10.1051/forest:19990406
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1365-2486.2009.01851.x
– ident: e_1_2_9_87_1
  doi: 10.1111/j.1365-2486.2003.00714.x
– ident: e_1_2_9_117_1
  doi: 10.1016/j.agrformet.2011.03.003
– ident: e_1_2_9_71_1
  doi: 10.1038/17709
– ident: e_1_2_9_113_1
  doi: 10.1093/treephys/tpp029
– ident: e_1_2_9_5_1
  doi: 10.2307/2937209
– ident: e_1_2_9_74_1
  doi: 10.1055/s-2005-837469
– ident: e_1_2_9_9_1
  doi: 10.1016/j.scienta.2011.07.011
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1469-8137.2007.02079.x
– ident: e_1_2_9_119_1
  doi: 10.1093/treephys/tpr002
– ident: e_1_2_9_24_1
  doi: 10.1093/treephys/tpr118
– ident: e_1_2_9_12_1
  doi: 10.1105/tpc.010410
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365-2486.1997.gcb135.x
– ident: e_1_2_9_122_1
  doi: 10.1111/j.1438-8677.2012.00687.x
– ident: e_1_2_9_61_1
  doi: 10.1016/B978-012520915-1/50017-5
– ident: e_1_2_9_107_1
  doi: 10.1007/s00468-008-0239-2
– ident: e_1_2_9_4_1
  doi: 10.1371/journal.pone.0057373
– ident: e_1_2_9_21_1
  doi: 10.1016/j.agrformet.2012.01.019
– ident: e_1_2_9_91_1
  doi: 10.1007/s11104-004-0297-1
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-2486.2010.02281.x
– ident: e_1_2_9_51_1
  doi: 10.1111/j.1365-2486.2011.02397.x
– ident: e_1_2_9_30_1
  doi: 10.1104/pp.108.133249
– ident: e_1_2_9_69_1
  doi: 10.1046/j.1365-2486.2003.00688.x
– ident: e_1_2_9_38_1
  doi: 10.1016/j.envpol.2006.08.033
– ident: e_1_2_9_20_1
  doi: 10.1016/0378-1127(95)97452-X
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1365-313X.2007.03077.x
– ident: e_1_2_9_26_1
  doi: 10.3354/cr032253
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1365-2486.2011.02632.x
– ident: e_1_2_9_98_1
  doi: 10.1111/j.1438-8677.2009.00309.x
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1466-8238.2008.00398.x
– ident: e_1_2_9_3_1
  doi: 10.1007/BF00328788
– ident: e_1_2_9_84_1
  doi: 10.1093/treephys/17.11.733
– ident: e_1_2_9_11_1
  doi: 10.1093/oxfordjournals.aob.a087463
– ident: e_1_2_9_8_1
  doi: 10.1105/tpc.111.083345
– ident: e_1_2_9_95_1
  doi: 10.1890/10-0633.1
– ident: e_1_2_9_47_1
  doi: 10.1098/rstb.2010.0120
– ident: e_1_2_9_76_1
  doi: 10.1007/s00468-009-0320-5
– ident: e_1_2_9_48_1
  doi: 10.1007/s004250050436
– volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_9_50_1
– ident: e_1_2_9_83_1
  doi: 10.1016/j.agrformet.2010.04.001
– ident: e_1_2_9_81_1
  doi: 10.1046/j.1365-3040.2001.00794.x
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1365-3040.2012.02552.x
– ident: e_1_2_9_17_1
  doi: 10.1007/s00468-012-0686-7
– ident: e_1_2_9_44_1
  doi: 10.1086/376576
– start-page: 183
  volume-title: Photosynthesis
  year: 1989
  ident: e_1_2_9_27_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.agrformet.2004.06.011
– ident: e_1_2_9_108_1
  doi: 10.1111/j.1365-3040.2012.02560.x
– ident: e_1_2_9_58_1
  doi: 10.1038/382146a0
– start-page: 691
  volume-title: Handbook of Photosynthesis
  year: 2005
  ident: e_1_2_9_79_1
– ident: e_1_2_9_40_1
  doi: 10.1007/s11103-012-9974-2
– ident: e_1_2_9_93_1
  doi: 10.1046/j.1365-2486.2002.00489.x
– ident: e_1_2_9_46_1
  doi: 10.1111/gcb.12556
– ident: e_1_2_9_106_1
  doi: 10.1007/s11104-006-6249-1
– ident: e_1_2_9_14_1
  doi: 10.1007/BF00037052
– ident: e_1_2_9_64_1
  doi: 10.1007/s00484-010-0305-5
– ident: e_1_2_9_124_1
  doi: 10.1007/s11258-004-2485-8
– ident: e_1_2_9_111_1
  doi: 10.1080/01431160310001618149
– ident: e_1_2_9_55_1
  doi: 10.1093/jxb/ert174
– ident: e_1_2_9_103_1
  doi: 10.1201/9781420014877.ch3
– ident: e_1_2_9_67_1
  doi: 10.1007/s00442-010-1614-4
– ident: e_1_2_9_73_1
  doi: 10.1093/treephys/27.1.63
– ident: e_1_2_9_62_1
  doi: 10.2307/3565537
– ident: e_1_2_9_57_1
  doi: 10.1111/j.1365-3040.2007.01724.x
– ident: e_1_2_9_2_1
  doi: 10.2307/2261481
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.1321727111
– ident: e_1_2_9_123_1
  doi: 10.1007/s10342-011-0554-9
– ident: e_1_2_9_28_1
  doi: 10.1080/07352689409701916
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1365-2486.2009.02084.x
– ident: e_1_2_9_39_1
  doi: 10.1111/j.1438-8677.2012.00665.x
– ident: e_1_2_9_59_1
  doi: 10.1104/pp.105.066845
– ident: e_1_2_9_25_1
  doi: 10.2307/3565549
– ident: e_1_2_9_53_1
  doi: 10.1007/s00468-011-0600-8
– ident: e_1_2_9_77_1
  doi: 10.1111/j.1365-2486.2008.01735.x
– ident: e_1_2_9_112_1
  doi: 10.1007/s11103-010-9610-y
– ident: e_1_2_9_13_1
  doi: 10.1007/s10265-013-0565-3
– ident: e_1_2_9_85_1
  doi: 10.21273/JASHS.126.5.644
– ident: e_1_2_9_94_1
  doi: 10.1016/j.pbi.2013.02.006
– ident: e_1_2_9_31_1
  doi: 10.1007/s00484-011-0494-6
– ident: e_1_2_9_88_1
  doi: 10.1111/j.0269-8463.2004.00847.x
– ident: e_1_2_9_104_1
  doi: 10.1111/1365-2664.12102
– ident: e_1_2_9_120_1
  doi: 10.1093/treephys/16.1-2.153
– volume: 31
  start-page: 173
  year: 2012
  ident: e_1_2_9_34_1
  article-title: Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river
  publication-title: Limnetica
– ident: e_1_2_9_105_1
  doi: 10.1111/j.0269-8463.2004.00872.x
– ident: e_1_2_9_72_1
  doi: 10.1111/j.1365-2486.2006.01193.x
– ident: e_1_2_9_102_1
  doi: 10.1007/s11104-011-0742-x
– ident: e_1_2_9_92_1
  doi: 10.1126/science.1066860
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1461-0248.2009.01310.x
– volume: 18
  start-page: 25
  year: 2012
  ident: e_1_2_9_54_1
  article-title: Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology
  publication-title: Baltic Forestry
– ident: e_1_2_9_68_1
  doi: 10.1002/joc.1969
– ident: e_1_2_9_82_1
  doi: 10.1146/annurev.es.17.110186.000435
– ident: e_1_2_9_115_1
  doi: 10.1007/s00442-009-1363-4
– ident: e_1_2_9_43_1
  doi: 10.1016/0378-1127(92)90332-4
– ident: e_1_2_9_45_1
  doi: 10.1146/annurev.arplant.57.032905.105212
– ident: e_1_2_9_121_1
  doi: 10.1016/0098-8472(94)90005-1
– ident: e_1_2_9_100_1
  doi: 10.1111/j.1365-2486.2006.01164.x
– ident: e_1_2_9_63_1
  doi: 10.1139/x90-154
– ident: e_1_2_9_56_1
  doi: 10.1093/treephys/tps005
– ident: e_1_2_9_110_1
  doi: 10.1007/s13595-011-0010-5
– ident: e_1_2_9_10_1
  doi: 10.2307/1937083
– ident: e_1_2_9_29_1
  doi: 10.1002/9780470988855.ch5
– ident: e_1_2_9_97_1
  doi: 10.1007/BF00317817
– ident: e_1_2_9_7_1
  doi: 10.1051/forest:2006042
– ident: e_1_2_9_66_1
  doi: 10.1016/S1360-1385(03)00103-1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.agrformet.2008.11.014
– ident: e_1_2_9_42_1
  doi: 10.1093/treephys/25.1.109
– ident: e_1_2_9_90_1
  doi: 10.1016/S0378-1127(98)00381-8
– ident: e_1_2_9_65_1
  doi: 10.1093/treephys/25.6.641
– ident: e_1_2_9_89_1
  doi: 10.1006/anbo.1998.0656
– ident: e_1_2_9_96_1
  doi: 10.1007/s00484-007-0126-3
– ident: e_1_2_9_101_1
  doi: 10.1016/j.tplants.2007.03.012
– ident: e_1_2_9_78_1
  doi: 10.1111/j.1469-8137.2010.03252.x
– ident: e_1_2_9_86_1
  doi: 10.1093/treephys/25.8.1001
– ident: e_1_2_9_49_1
  doi: 10.1534/genetics.105.047522
– ident: e_1_2_9_116_1
  doi: 10.1111/j.1365-2435.2010.01748.x
– ident: e_1_2_9_99_1
  doi: 10.1104/pp.110.163907
– ident: e_1_2_9_114_1
  doi: 10.1890/11-0416.1
SSID ssj0003206
Score 2.60007
Snippet Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1005
SubjectTerms biogeochemical cycles
carbon
Climate Change
Climate effects
Drought
ecosystems
Environmental impact
Foliage
Global warming
latitude
leaf fall
leaf senescence
Leaves
litter
nutrient cycle
Nutrient cycles
nutrient proficiency
nutrient resorption (physiology)
nutrients
Phenology
photoperiod
Plant Leaves - physiology
plant production
Seasons
Senescence
spring
temperature
Trees - physiology
warming
Water stress
Winter
winter deciduous species
Title Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency
URI https://api.istex.fr/ark:/67375/WNG-WR5R26NS-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12804
https://www.ncbi.nlm.nih.gov/pubmed/25384459
https://www.proquest.com/docview/1655430505
https://www.proquest.com/docview/1657316899
https://www.proquest.com/docview/1664201244
https://www.proquest.com/docview/1694486449
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJCReGBTGAgMZhCZeUiWOkybwNKp9CGl9aKm2ByTLduypWpSgphWUP4C_mzvnYwyNCfGWj0vi2nfn37nn3xHyNuA6U0xHvuVx5vM4TH0VhsYPozwzMIOn0uJ6x9kkOZ3zTxfxxRb50O2Fafgh-gU3tAznr9HApap_M_JLrYbgXB0XKOZqISCaXlNHRczV1QyjmIOrCaOWVQizePonb8xF96ysAKFi536_DW7eRK9u-jneIV-6hjdZJ1fD9UoN9Y8_OB3_85c9Ig9bWEoPGz16TLZMOSD3m0KVmwHZPbreDwdirUOoB8Q7A9BdLZ0YPaDjYgEI2J09IT8PC0fZDCNPK0sBaVJMKGtk4UJhpKU1-lqNb6OyzKmVRUEXJf2GNBZLmhu9yNfVuqa4IxSCeqo2VLuPGNrsWX5P25QUCp8psbYAtJG6UuSulZunZH589Hl86rdlH3wN6IP7qdU2sxy5-SzLTR4xxQMjszAd2cAmJuNMxcZAHIp0gyOLhPsaYGJkAb2pnEe7ZLusSrNHKEPFSBT4MLgehpGUyHajbKyDnMlg5JF3nQII3XKiY2mOQnSxEYyFcGPhkTe96NeGCOQ2oT3QIiEvwUGL-YzhchISECUp3DpwqtU_LJdXmFQ3isX55EScT-MpSyYzMfPIfqd7ovUntQgTgH0RVh30yOv-NngC_HtHlgYGAmVcGbIsu0sG4s0AMd1dMhnE7ICT4T3PGt3vG81gfuRg1dBxToP_3hXiZPzRHTz_d9EX5AF2WZPit0-2V8u1eQmYb6VeOeP-BZ-jToo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61RQgu_ARKAwUWBBUXR_Z67dhIHEr6S5sckkbtbVmvd6uoloPiRCU8AE_Dq_BOzKwdl6JScemBW2JP7NXszsw3m9lvCHnjchUnTPmO4UHs8MCLnMTztOP5aawhgkfS4H5HtxfuDfmnk-BkifxYnIUp-SHqDTe0DOuv0cBxQ_o3Kz9VSQu8q8urksoDPT-HhK34sL8Fs_uWsZ3to86eU_UUcBSENu5ERpnYcCR-MyzVqc8S7moZe1HbuCbUMWdJoDUkOchl1zbI5q4Ag_gGoEGSch-eu0xuYQdxZOrf6l-QVfnMdvL0_ICDc_P8iscI64bqoV6KfstGjgET43R-vQrgXsbLNuDt3Cc_F6oq61zOWrNp0lLf_mCR_F90-YDcq5A33SxN5SFZ0nmD3C57cc4bZHX74sgfiFU-r2iQZhfyivHEitEN2slGAPLtt0fk-2ZmWalhcdOxoQCmKdbMlbJwIdPS0ALDicKnUZmn1Mgso6OcniNTx4SmWo3S2XhWUDz0OtIFTeZU2ZdoWh7Lfk-rqhsKr8mxfQKMkdpu63aU88dkeCOaWyUr-TjXa4QyrFMME3DTcN3zfCmR0CcxgXJTJt12k7xbrDihKtp37D6SiUX6B3Mv7Nw3yeta9EvJdXKV0BosWyFPIQaJ4YDhjhlyLIUR3Nqwa7n-sZycYd1gOxDHvV1x3A_6LOwNxKBJ1heLXVQusxBeCMjWx8aKTfKqvg3ODv_BkrmGiUAZ22ktjq-TgZTaRdh6nUzMeQSpADznSWls9aAZQAAOjgsUZ03m76oQu52P9sPTfxd9Se7sHXUPxeF-7-AZuYvqKysa18nKdDLTzwHiTpMX1rNQ8vmmze8X3fOqpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELe2IRAv_BmMFQYYBBMvqRLHSRMkHka7bmOsQi3V9mYcx56qRenUtBrlA_Bl-Cp8KO6cNGNoTLzsgbc2uSbW2Xf3O_f8O0JeuVzFCVO-Y3gQOzzwIifxPO14fhpriOCRNLjfcdALd4f8w1FwtER-LM7ClPwQ9YYbWob112jgp6n5zciPVdIE5-ryqqJyX8_PIF8r3u11YHJfM9bd_tzedaqWAo6CyMadyCgTG468b4alOvVZwl0tYy9qGdeEOuYsCbSGHAep7FoGydwVQBDfADJIUu7Dc5fJDR66MfaJ6PTPuap8Zht5en7Awbd5fkVjhGVD9VAvBL9lI8cAiXE2v16Gby_CZRvvunfJz4WmyjKXk-ZsmjTVtz9IJP8TVd4jdyrcTbdKQ7lPlnS-Sm6WnTjnq2Rt-_zAH4hVHq9YJY0DyCrGEytGN2k7GwHEt98ekO9bmeWkhqVNx4YClKZYMVfKwoVMS0MLDCYKn0ZlnlIjs4yOcnqGPB0Tmmo1SmfjWUHxyOtIFzSZU2Vfoml5KPstrWpuKLwmx-YJMEZqe63bUc4fkuG1aG6NrOTjXK8TyrBKMUzAScN1z_OlRDqfxATKTZl0Ww3yZrHghKpI37H3SCYWyR_MvbBz3yAva9HTkunkMqF1WLVCHkMEEsMBw_0yZFgKI7i1aZdy_WM5OcGqwVYgDns74rAf9FnYG4hBg2ws1rqoHGYhvBBwrY9tFRvkRX0bXB3-fyVzDROBMrbPWhxfJQMJtYug9SqZmPMIEgF4zqPS1upBMwAAHNwWKM5azN9VIXba7-2Hx_8u-pzc-tTpio97vf0n5DZqryxn3CAr08lMPwV8O02eWb9CyZfrtr5fG32pVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alteration+of+the+phenology+of+leaf+senescence+and+fall+in+winter+deciduous+species+by+climate+change%3A+effects+on+nutrient+proficiency&rft.jtitle=Global+change+biology&rft.au=Estiarte%2C+Marc&rft.au=Pe%C3%B1uelas%2C+Josep&rft.date=2015-03-01&rft.issn=1354-1013&rft.volume=21&rft.issue=3+p.1005-1017&rft.spage=1005&rft.epage=1017&rft_id=info:doi/10.1111%2Fgcb.12804&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon