Harnessing Light with Photonic Nanowires: Fundamentals and Applications to Quantum Optics

The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low‐threshold microlasers and bright sources of quantum light. In the solid state, single‐mode emission was first demonstrated by using...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 14; no. 11; pp. 2393 - 2402
Main Authors Claudon, Julien, Gregersen, Niels, Lalanne, Philippe, Gérard, Jean-Michel
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 05.08.2013
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low‐threshold microlasers and bright sources of quantum light. In the solid state, single‐mode emission was first demonstrated by using the Purcell effect that arises in a resonant microcavity. Recently, the need to relax the constraints inherent to such a narrow‐band approach has motivated large effort to develop structures ensuring broadband and efficient SE control. This minireview deals with fiber‐like photonic nanowires, a class of high‐index waveguides that features key assets in this context. Combining theoretical predictions and experimental results, the paper details the SE dynamics in such tiny wires. In addition, it shows how the far‐field emission of a single wire can be tailored through proper engineering of the two wire ends. As an application in the field of quantum optics, we review the realization of an ultrabright single‐photon source. This first device was based on a self‐assembled quantum dot embedded in a wire antenna realized with a top‐down fabrication process. Considering recent advances in the direct growth of tapered photonic wires, we also propose a bottom‐up fabrication route to realize a complete device. In particular, this proposal ensures the optimal 3D positioning of a single emitter inside the antenna. Finally, future research and application prospects are also reviewed. Fire the photons: Photonic nanowire antennas efficiently funnel the emission of an embedded quantum light source into a directive optical beam. In this Minireview, the physics and realization of such devices are discussed. The authors consider both bottom‐up and top‐down fabrication routes and review potential applications to solid‐state quantum optics and beyond.
AbstractList Abstract The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low‐threshold microlasers and bright sources of quantum light. In the solid state, single‐mode emission was first demonstrated by using the Purcell effect that arises in a resonant microcavity. Recently, the need to relax the constraints inherent to such a narrow‐band approach has motivated large effort to develop structures ensuring broadband and efficient SE control. This minireview deals with fiber‐like photonic nanowires, a class of high‐index waveguides that features key assets in this context. Combining theoretical predictions and experimental results, the paper details the SE dynamics in such tiny wires. In addition, it shows how the far‐field emission of a single wire can be tailored through proper engineering of the two wire ends. As an application in the field of quantum optics, we review the realization of an ultrabright single‐photon source. This first device was based on a self‐assembled quantum dot embedded in a wire antenna realized with a top‐down fabrication process. Considering recent advances in the direct growth of tapered photonic wires, we also propose a bottom‐up fabrication route to realize a complete device. In particular, this proposal ensures the optimal 3D positioning of a single emitter inside the antenna. Finally, future research and application prospects are also reviewed.
The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low-threshold microlasers and bright sources of quantum light. In the solid state, single-mode emission was first demonstrated by using the Purcell effect that arises in a resonant microcavity. Recently, the need to relax the constraints inherent to such a narrow-band approach has motivated large effort to develop structures ensuring broadband and efficient SE control. This minireview deals with fiber-like photonic nanowires, a class of high-index waveguides that features key assets in this context. Combining theoretical predictions and experimental results, the paper details the SE dynamics in such tiny wires. In addition, it shows how the far-field emission of a single wire can be tailored through proper engineering of the two wire ends. As an application in the field of quantum optics, we review the realization of an ultrabright single-photon source. This first device was based on a self-assembled quantum dot embedded in a wire antenna realized with a top-down fabrication process. Considering recent advances in the direct growth of tapered photonic wires, we also propose a bottom-up fabrication route to realize a complete device. In particular, this proposal ensures the optimal 3D positioning of a single emitter inside the antenna. Finally, future research and application prospects are also reviewed [PUBLICATION ABSTRACT].
The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low-threshold microlasers and bright sources of quantum light. In the solid state, single-mode emission was first demonstrated by using the Purcell effect that arises in a resonant microcavity. Recently, the need to relax the constraints inherent to such a narrow-band approach has motivated large effort to develop structures ensuring broadband and efficient SE control. This minireview deals with fiber-like photonic nanowires, a class of high-index waveguides that features key assets in this context. Combining theoretical predictions and experimental results, the paper details the SE dynamics in such tiny wires. In addition, it shows how the far-field emission of a single wire can be tailored through proper engineering of the two wire ends. As an application in the field of quantum optics, we review the realization of an ultrabright single-photon source. This first device was based on a self-assembled quantum dot embedded in a wire antenna realized with a top-down fabrication process. Considering recent advances in the direct growth of tapered photonic wires, we also propose a bottom-up fabrication route to realize a complete device. In particular, this proposal ensures the optimal 3D positioning of a single emitter inside the antenna. Finally, future research and application prospects are also reviewed.
The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices, such as low‐threshold microlasers and bright sources of quantum light. In the solid state, single‐mode emission was first demonstrated by using the Purcell effect that arises in a resonant microcavity. Recently, the need to relax the constraints inherent to such a narrow‐band approach has motivated large effort to develop structures ensuring broadband and efficient SE control. This minireview deals with fiber‐like photonic nanowires, a class of high‐index waveguides that features key assets in this context. Combining theoretical predictions and experimental results, the paper details the SE dynamics in such tiny wires. In addition, it shows how the far‐field emission of a single wire can be tailored through proper engineering of the two wire ends. As an application in the field of quantum optics, we review the realization of an ultrabright single‐photon source. This first device was based on a self‐assembled quantum dot embedded in a wire antenna realized with a top‐down fabrication process. Considering recent advances in the direct growth of tapered photonic wires, we also propose a bottom‐up fabrication route to realize a complete device. In particular, this proposal ensures the optimal 3D positioning of a single emitter inside the antenna. Finally, future research and application prospects are also reviewed. Fire the photons: Photonic nanowire antennas efficiently funnel the emission of an embedded quantum light source into a directive optical beam. In this Minireview, the physics and realization of such devices are discussed. The authors consider both bottom‐up and top‐down fabrication routes and review potential applications to solid‐state quantum optics and beyond.
Author Gérard, Jean-Michel
Gregersen, Niels
Lalanne, Philippe
Claudon, Julien
Author_xml – sequence: 1
  givenname: Julien
  surname: Claudon
  fullname: Claudon, Julien
  email: julien.claudon@cea.fr
  organization: CEA-CNRS-UJF group "Nanophysique et Semiconducteurs", CEA, INAC, SP2 M, F-38054 Grenoble (France)
– sequence: 2
  givenname: Niels
  surname: Gregersen
  fullname: Gregersen, Niels
  organization: Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, 2800 Kongens Lyngby (Denmark)
– sequence: 3
  givenname: Philippe
  surname: Lalanne
  fullname: Lalanne, Philippe
  organization: Laboratoire Photonique, Numérique et Nanosciences, Institut d'Optique d'Aquitaine, Univ. Bordeaux 1, CNRS, 33405 Talence cedex (France)
– sequence: 4
  givenname: Jean-Michel
  surname: Gérard
  fullname: Gérard, Jean-Michel
  organization: CEA-CNRS-UJF group "Nanophysique et Semiconducteurs", CEA, INAC, SP2 M, F-38054 Grenoble (France)
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27651936$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23784791$$D View this record in MEDLINE/PubMed
https://hal-iogs.archives-ouvertes.fr/hal-00850473$$DView record in HAL
BookMark eNqF0Utv1DAQAOAIFdEHXDmiSAipHLJ47DhOuC1b2oCitkgFxMlyHKdxm9ghTlj673GUZUFcOHlkffPSHAcHxhoVBM8BrQAh_Eb2jVxhBAQhRMij4AhikkUsieFgF8eY0MPg2Lk7T1LE4ElwiAlLY5bBUfAtF4NRzmlzGxb6thnDrR6b8LqxozVahpfC2K0elHsbnk-mEp0yo2hdKEwVrvu-1VKM2hoXjjb8NAkzTl141Y9auqfB49pL9Wz3ngSfz9_fbPKouLr4sFkXkaSASZSyrAJZMShlmlS0KktapwnUEGMJUqUUyVJShH1MiIA4QSDjGoBhTEntlz4JXi91G9HyftCdGB64FZrn64LPf35rimJGfoC3p4vtB_t9Um7knXZSta0wyk6OQww0QSzD2NOX_9A7Ow3GbzIrAiQBPDdfLUoO1rlB1fsJAPH5QHw-EN8fyCe82JWdyk5Ve_77Ih682gHhpGjrQRip3R_HEgoZSbzLFrfVrXr4T1u-uc43fw8RLbnajernPlcM9zxhhFH-9fKCF3CTf3y3-cLPyC-uy7g6
CitedBy_id crossref_primary_10_1364_OE_442527
crossref_primary_10_1103_PhysRevB_105_115308
crossref_primary_10_1088_1361_6528_ac9c6b
crossref_primary_10_1103_PhysRevLett_123_247403
crossref_primary_10_1063_5_0045834
crossref_primary_10_1063_1_4932574
crossref_primary_10_1364_JOSAA_33_001298
crossref_primary_10_1364_OE_24_020904
crossref_primary_10_1103_PhysRevB_90_201408
crossref_primary_10_3390_nano11051201
crossref_primary_10_1103_PhysRevLett_116_163903
crossref_primary_10_1021_acsphotonics_6b00065
crossref_primary_10_1088_2040_8978_18_9_094005
crossref_primary_10_1038_s42005_024_01547_3
crossref_primary_10_1088_0957_4484_26_39_395701
crossref_primary_10_1515_nanoph_2019_0007
crossref_primary_10_1063_1_4906921
crossref_primary_10_1063_1_4929821
crossref_primary_10_1021_acs_nanolett_6b00678
crossref_primary_10_1039_c3nr03001f
crossref_primary_10_1007_s11128_019_2542_9
crossref_primary_10_1021_acs_nanolett_7b05402
crossref_primary_10_1063_1_4935798
crossref_primary_10_1021_acs_nanolett_8b02826
crossref_primary_10_1039_D2NR07132K
crossref_primary_10_3390_nano11112894
crossref_primary_10_1063_5_0107624
crossref_primary_10_1021_nl501648f
crossref_primary_10_1103_PhysRevApplied_8_054022
crossref_primary_10_1088_1361_6528_ac5cfa
Cites_doi 10.1103/PhysRevLett.107.193903
10.1126/science.1109815
10.1364/OL.18.000909
10.1038/nphoton.2009.184
10.1021/nl303327h
10.1103/RevModPhys.74.145
10.1038/nature01939
10.1103/PhysRevLett.107.223601
10.1007/978-3-540-39180-7_7
10.1038/nnano.2010.6
10.1103/PhysRevLett.108.057402
10.1038/nphoton.2012.110
10.1021/nl070228l
10.1364/OL.33.002635
10.1088/1367-2630/14/8/083029
10.1103/PhysRevLett.89.233602
10.1038/nature11577
10.1103/PhysRevLett.101.113903
10.1038/nmat3557
10.1038/nphys1780
10.1103/PhysRevLett.106.113601
10.1063/1.3284514
10.1038/ncomms1746
10.1103/PhysRevLett.106.053601
10.1103/PhysRevLett.110.177402
10.1063/1.3665629
10.1364/OL.33.001693
10.1021/nl301907f
10.1103/PhysRevB.77.073303
10.1364/OL.29.001209
10.1038/ncomms2434
10.1016/S1386-9477(02)00157-1
10.1364/OL.28.001302
10.1103/PhysRevLett.101.267404
10.1364/OE.18.021204
10.1103/PhysRevB.63.233306
10.1021/nl802160z
10.1364/JOSAB.10.000381
10.1364/JOSAA.18.002865
10.1038/nphoton.2007.141
10.1038/nphoton.2008.202
10.1038/nphoton.2007.227
10.1103/PhysRevLett.106.020501
10.1140/epjd/e20020024
10.1038/nature06234
10.1103/PhysRevB.70.201308
10.1103/PhysRevLett.86.1502
10.1103/PhysRevA.80.011810
10.1103/PhysRevLett.99.023902
10.1364/OPEX.12.000458
10.1126/science.290.5500.2282
10.1103/PhysRevX.2.021008
10.1103/PhysRevLett.75.2678
10.1103/PhysRevLett.106.103601
10.1038/nature06230
10.1038/nature09148
10.1126/science.1066790
10.1364/JOSAB.10.000283
10.1063/1.2245219
10.1038/nature07127
10.1063/1.3694935
10.1364/OL.29.000572
10.1103/PhysRevA.75.053823
10.1016/S1369-7021(06)71650-9
10.1103/PhysRevLett.81.1110
10.1103/PhysRev.69.37
10.1103/PhysRevLett.61.2546
10.1103/PhysRevLett.96.130501
10.1063/1.3440967
10.1103/PhysRevLett.107.167404
10.1063/1.2164538
10.1103/PhysRevLett.108.077405
10.1016/S1369-7021(06)71651-0
10.1038/nature11573
10.1038/nphoton.2009.287x
10.1063/1.2890166
10.1038/nphoton.2010.174
10.1038/35051009
10.1038/35016030
10.1007/BF01082065
10.1038/nphoton.2010.312
10.1103/PhysRevB.76.035420
10.1038/nphys708
10.1109/3.89951
10.1038/nature04446
10.1364/OE.17.002095
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
IQODW
NPM
AAYXX
CITATION
K9.
7X8
1XC
DOI 10.1002/cphc.201300033
DatabaseName Istex
Pascal-Francis
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
Physics
EISSN 1439-7641
EndPage 2402
ExternalDocumentID oai_HAL_hal_00850473v1
3030397981
10_1002_cphc_201300033
23784791
27651936
CPHC201300033
ark_67375_WNG_L1THJBCV_D
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AAJUZ
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADDAD
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
GODZA
HBH
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AITYG
HGLYW
OIG
.GJ
31~
53G
AAPBV
ABFLS
AI.
FEDTE
HF~
HVGLF
IPNFZ
IQODW
PQEST
VH1
XFK
XSW
ZGI
NPM
AAYXX
CITATION
K9.
7X8
1XC
ID FETCH-LOGICAL-c5123-879d1cd71bc86d5dbb5f861f142c1ce850cbc5021ce33a14601c4f1172253f003
IEDL.DBID DR2
ISSN 1439-4235
IngestDate Wed Sep 04 07:22:21 EDT 2024
Thu Jul 25 12:18:26 EDT 2024
Thu Oct 10 19:15:44 EDT 2024
Fri Aug 23 02:08:34 EDT 2024
Sat Sep 28 07:59:55 EDT 2024
Tue Sep 20 22:39:12 EDT 2022
Sat Aug 24 01:04:58 EDT 2024
Wed Jan 17 05:00:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Integrated optics
Quantum dot
Semiconductor materials
single photon sources
Quantum optics
optical antennas
Wire
photonic wires
Photon
semiconductors
quantum dots
Optical waveguide
Nanowires
Language English
License CC BY 4.0
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5123-879d1cd71bc86d5dbb5f861f142c1ce850cbc5021ce33a14601c4f1172253f003
Notes ArticleID:CPHC201300033
ark:/67375/WNG-L1THJBCV-D
istex:2482713D1B000D87D9369FCC806640A47A03EB85
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3626-3630
0000-0002-0929-0409
PMID 23784791
PQID 1413136120
PQPubID 986334
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_00850473v1
proquest_miscellaneous_1415607922
proquest_journals_1413136120
crossref_primary_10_1002_cphc_201300033
pubmed_primary_23784791
pascalfrancis_primary_27651936
wiley_primary_10_1002_cphc_201300033_CPHC201300033
istex_primary_ark_67375_WNG_L1THJBCV_D
PublicationCentury 2000
PublicationDate August 5, 2013
PublicationDateYYYYMMDD 2013-08-05
PublicationDate_xml – month: 08
  year: 2013
  text: August 5, 2013
  day: 05
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemphyschem
PublicationTitleAlternate ChemPhysChem
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
– name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, I. Robert-Philip, Opt. Lett. 2008, 33, 2635.
A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, Nature 2010, 466, 217.
C. Santori, M. Pelton, G. Solomon, Y. Dale, E. Yamamoto, Phys. Rev. Lett. 2001, 86, 1502.
K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa, Nat. Photonics 2008, 2, 688.
H. J. Kimble, Nature 2008, 453, 1023.
W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Nature 2012, 491, 426.
N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, P. M. Petroff, Phys. Rev. Lett. 2006, 96, 130501.
N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, J. Mørk, Opt. Lett. 2008, 33, 1693.
D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, Nat. Phys. 2007, 3, 807.
K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, Nature 2012, 491, 421.
R. Yan, D. Gargas, P. Yang, Nat. Photonics 2009, 3, 569.
D. Valente, Y. Li, J. P. Poizat, J. M. Gérard, L. C. Kwek, M. F. Santos, A. Auffèves, New J. Phys. 2012, 14, 083029.
A. Gonzalez-Tudela, D. Martion-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, F. J. Garcia-Vidal, Phys. Rev. Lett. 2011, 106, 020501.
G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, Nat. Photonics 2012, 6, 455.
Q. A. Turchette, R. J. Thompson, H. J. Kimble, Appl. Phys. B 1995, 60, S1.
E. Yablonovitch, T. J. Gmitter, R. Bhat, Phys. Rev. Lett. 1988, 61, 2546.
M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Höfling, J. Mørk, L. Worschech, M. Kamp, A. Forchel, Phys. Rev. Lett. 2012, 108, 057402.
J. M. Gérard, Top. Appl. Phys. 2003, 90, 269.
A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, M. D. Lukin, Nature 2007, 450, 402.
D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, M. E. Reimer, Nano Lett. 2012, 12, 5919.
M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. Bouwes Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, Nat. Commun. 2012, 3, 737.
E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, I. Abram, Phys. E 2002, 13, 418.
A. Auffèves-Garnier, C. Simon, J.-M. Gérard, J.-P. Poizat, Phys. Rev. A 2007, 75, 053823.
S. T. Ho, S. L. McCall, R. E. Slusher, Opt. Lett. 1993, 18, 909.
T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, P. Lodahl, Phys. Rev. Lett. 2008, 101, 113903.
M. Munsch, N. S. Malik, J. Bleuse, E. Dupuy, A. Delga, J.-M. Gérard, J. Claudon, N. Gregersen, J. Mork, Phys. Rev. Lett. 2013, 110, 177402.
S. Cortez, O. Krebs, P. Voisin, J. M. Gérard, Phys. Rev. B 2001, 63, 233306.
E. Yablonovitch, J. Opt. Soc. Am. B 1993, 10, 283.
J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, A. Forchel, Appl. Phys. Lett. 2010, 96, 211117.
D. Y. Chu, S. T. Ho, J. Opt. Soc. Am. B 1993, 10, 381.
E. Silberstein, P. Lalanne, J. P. Hugonin, Q. Cao, J. Opt. Soc. Am. A 2001, 18, 2865.
A. V. Maslov, M. I. Bakunov, C. Z. Ning, J. Appl. Phys. 2006, 99, 024314.
J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, Phys. Rev. Lett. 1995, 75, 2678.
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, Appl. Phys. Lett. 2010, 96, 011107.
Q. Wang, S. Stobbe, P. Lodahl, Phys. Rev. Lett. 2011, 107, 167404.
N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 2002, 74, 145.
R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, P. M. Petroff, Nature 2000, 405, 926.
E. Knill, R. Laflamme, G. J. Milburn, Nature 2001, 409, 46.
Q. Quan, I. Bulu, M. Lončar, Phys. Rev. A 2009, 80, 011810.
M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, Phys. Rev. Lett. 2002, 89, 233602.
Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, Science 2002, 295, 102.
D. E. Chang, A. S. Sørensen, P. R. Hemmer, M. D. Lukin, Phys. Rev. B 2007, 76, 035420.
I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, Opt. Express 2009, 17, 2095.
Y. Li, F. Qian, J. Xiang, C. M. Lieber, Mater. Today 2006, 9, 18.
R. Dibyendu, Phys. Rev. Lett. 2011, 106, 053601.
A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaitre, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, Phys. Rev. Lett. 2008, 101, 267404.
K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, S. Götzinger, Nat. Photonics 2011, 5, 166.
P. Lalanne, S. Mias, J. Hugonin, Opt. Express 2004, 12, 458.
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoğlu, Science 2000, 290, 2282.
M. Munsch, J. Claudon, J. Bleuse, N. S. Malik, E. Dupuy, J.-Mi. Gérard, Y. Chen, N. Gregersen, J. Mørk, Phys. Rev. Lett. 2012, 108, 077405.
A. V. Maslov, C. Z. Ning, Opt. Lett. 2004, 29, 572.
R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, Nature 2006, 439, 179.
H. Zheng, D. J. Gauthier, H. U. Baranger, Phys. Rev. Lett. 2011, 107, 223601.
G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, J.-Ph. Poizat, Nat. Photonics 2010, 4, 696.
M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O'Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, A. Fontcuberta i Morral, Nat. Mater. 2013, 12, 439.
V. R. Almeida, R. R. Panepucci, M. Lipson, Opt. Lett. 2003, 28, 1302.
G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, J. Gómez Rivas, Nano Lett. 2012, 12, 5481.
M. Tchernycheva, G. E. Cirlin, G. Patriarche, L. Travers, V. Zwiller, U. Perinetti, J.-C. Harmand, Nano Lett. 2007, 7, 1500.
L. Chen, E. Towe, Appl. Phys. Lett. 2006, 89, 053125.
T. Baba, T. Hamano, F. Koyama, K. Iga, IEEE J. Quantum Electron. 1991, 27, 1347.
J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, Phys. Rev. Lett. 2011, 106, 103601.
J. J. Finley, M. Sabathil, P. Vogl, G. Abstreiter, R. Oulton, A. I. Tartakovskii, D. J. Mowbray, M. S. Skolnick, S. L. Liew, A. G. Cullis, M. Hopkinson, Phys. Rev. B 2004, 70, 201308(R).
J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, Phys. Rev. Lett. 1998, 81, 1110.
K. J. Vahala, Nature 2003, 424, 839.
C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gérard, Appl. Phys. Lett. 2008, 92, 091107.
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, Eur. Phys. J. D 2002, 18, 197.
A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, A. Imamoğlu, Science 2005, 308, 1158.
J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, P. Lodahl, Phys. Rev. B 2008, 77, 073303.
E. M. Purcell, Phys. Rev. 1946, 69, 674.
D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vuckovic, Nature 2007, 450, 857.
V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, Opt. Lett. 2004, 29, 1209.
M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, W. L. Vos, Phys. Rev. Lett. 2011, 107, 193903.
G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, Appl. Phys. Lett. 2012, 100, 121106.
S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, D. Bouwmeester, Nat. Photonics 2007, 1, 704.
G. Lecamp, P. Lalanne, J. P. Hugonin, Phys. Rev. Lett. 2007, 99, 023902.
A. Tribu, G. Sallen, T. Aichele, R. André, J.-P. Poizat, C. Bougerol, S. Tatarenko, K. Kheng, Nano Lett. 2008, 8, 4326.
N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, J.-M. Gérard, Opt. Express 2010, 18, 21204.
J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, Nat. Photonics 2010, 4, 174.
A. J. Bennett, M. A. Pooley, R. M. Stevenson, M. B. Ward, R. B. Patel, A. Boyer de La Giroday, N. Sköld, I. Farrer, C. A. Nicoll, D. A. Ritchie, A. J. Shields, Nat. Phys. 2010, 6, 947.
C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, L. Samuelson, Mater. Today 2006, 9, 28.
C. H. Gan, J. P. Hugonin, P. Lalanne, Phys. Rev. X 2012, 2, 021008.
I. Yeo, N. S. Malik, M. Munsch, E. Dupuy, J. Bleuse, Y.-M. Niquet, J.-M. Gérard, J. Claudon, E. Wagner, S. Seidelin, A. Auffèves, J.-P. Poizat, G. Nogues, Appl. Phys. Lett. 2011, 99, 233106.
O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, Nat. Commun. 2013, 4, 1425.
P. Kolchin, R. F. Oulton, X. Zhang, Phys. Rev. Lett. 2011, 106, 113601.
S. Noda, M. Fujita, T. Asano, Nat. Photonics 2009, 1, 449.
T. M. Babinec, B. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, M. Lončar, Nat. Nanotechnol. 2010, 5, 195.
1995; 75
2013; 4
2002; 18
2004; 29
2009; 80
2010; 18
2010; 466
2002; 13
2011; 99
2008; 8
1998; 81
2008; 33
2008; 77
2008; 101
2007; 75
2012; 14
2007; 76
2008; 2
2012; 12
2000; 290
2001; 86
2012; 491
1995; 60
2003; 90
2004; 70
2013; 12
2002; 89
2000; 405
2007; 450
2007; 7
2005; 308
2013; 110
2001; 18
2007; 3
2007; 1
2010; 5
2010; 4
2010; 6
2009; 17
2006; 96
2006; 439
2012; 100
2002; 74
2006; 99
2002; 295
2006; 9
2001; 409
2007; 99
2008; 92
2011; 5
2001; 63
2012; 108
1946; 69
1991; 27
2012; 2
2012; 3
1993; 18
2011; 107
2003; 424
2011; 106
2006; 89
1993; 10
2004; 12
1988; 61
2003; 28
2008; 453
2009; 3
2012; 6
2009; 1
2010; 96
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_74_2
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_81_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_31_2
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_42_2
e_1_2_6_80_2
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 9
  start-page: 18
  year: 2006
  publication-title: Mater. Today
– volume: 108
  start-page: 057402
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 308
  start-page: 1158
  year: 2005
  publication-title: Science
– volume: 99
  start-page: 233106
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 81
  start-page: 1110
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 073303
  year: 2008
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 193903
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 2865
  year: 2001
  publication-title: J. Opt. Soc. Am. A
– volume: 1
  start-page: 449
  year: 2009
  publication-title: Nat. Photonics
– volume: 100
  start-page: 121106
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 491
  start-page: 421
  year: 2012
  publication-title: Nature
– volume: 8
  start-page: 4326
  year: 2008
  publication-title: Nano Lett.
– volume: 13
  start-page: 418
  year: 2002
  publication-title: Phys. E
– volume: 10
  start-page: 283
  year: 1993
  publication-title: J. Opt. Soc. Am. B
– volume: 101
  start-page: 113903
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 439
  start-page: 179
  year: 2006
  publication-title: Nature
– volume: 14
  start-page: 083029
  year: 2012
  publication-title: New J. Phys.
– volume: 1
  start-page: 704
  year: 2007
  publication-title: Nat. Photonics
– volume: 70
  start-page: 201308
  year: 2004
  publication-title: Phys. Rev. B
– volume: 106
  start-page: 103601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 458
  year: 2004
  publication-title: Opt. Express
– volume: 450
  start-page: 857
  year: 2007
  publication-title: Nature
– volume: 106
  start-page: 113601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 2095
  year: 2009
  publication-title: Opt. Express
– volume: 12
  start-page: 5919
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 166
  year: 2011
  publication-title: Nat. Photonics
– volume: 453
  start-page: 1023
  year: 2008
  publication-title: Nature
– volume: 4
  start-page: 696
  year: 2010
  publication-title: Nat. Photonics
– volume: 75
  start-page: 2678
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 688
  year: 2008
  publication-title: Nat. Photonics
– volume: 27
  start-page: 1347
  year: 1991
  publication-title: IEEE J. Quantum Electron.
– volume: 99
  start-page: 023902
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 569
  year: 2009
  publication-title: Nat. Photonics
– volume: 409
  start-page: 46
  year: 2001
  publication-title: Nature
– volume: 18
  start-page: 197
  year: 2002
  publication-title: Eur. Phys. J. D
– volume: 108
  start-page: 077405
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 290
  start-page: 2282
  year: 2000
  publication-title: Science
– volume: 110
  start-page: 177402
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 455
  year: 2012
  publication-title: Nat. Photonics
– volume: 75
  start-page: 053823
  year: 2007
  publication-title: Phys. Rev. A
– volume: 424
  start-page: 839
  year: 2003
  publication-title: Nature
– volume: 9
  start-page: 28
  year: 2006
  publication-title: Mater. Today
– volume: 96
  start-page: 130501
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 1425
  year: 2013
  publication-title: Nat. Commun.
– volume: 74
  start-page: 145
  year: 2002
  publication-title: Rev. Mod. Phys.
– volume: 28
  start-page: 1302
  year: 2003
  publication-title: Opt. Lett.
– volume: 80
  start-page: 011810
  year: 2009
  publication-title: Phys. Rev. A
– volume: 2
  start-page: 021008
  year: 2012
  publication-title: Phys. Rev. X
– volume: 33
  start-page: 1693
  year: 2008
  publication-title: Opt. Lett.
– volume: 107
  start-page: 167404
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 211117
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 106
  start-page: 020501
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 035420
  year: 2007
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 572
  year: 2004
  publication-title: Opt. Lett.
– volume: 107
  start-page: 223601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 439
  year: 2013
  publication-title: Nat. Mater.
– volume: 6
  start-page: 947
  year: 2010
  publication-title: Nat. Phys.
– volume: 491
  start-page: 426
  year: 2012
  publication-title: Nature
– volume: 466
  start-page: 217
  year: 2010
  publication-title: Nature
– volume: 89
  start-page: 053125
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 174
  year: 2010
  publication-title: Nat. Photonics
– volume: 106
  start-page: 053601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 737
  year: 2012
  publication-title: Nat. Commun.
– volume: 12
  start-page: 5481
  year: 2012
  publication-title: Nano Lett.
– volume: 3
  start-page: 807
  year: 2007
  publication-title: Nat. Phys.
– volume: 10
  start-page: 381
  year: 1993
  publication-title: J. Opt. Soc. Am. B
– volume: 96
  start-page: 011107
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 450
  start-page: 402
  year: 2007
  publication-title: Nature
– volume: 7
  start-page: 1500
  year: 2007
  publication-title: Nano Lett.
– volume: 18
  start-page: 909
  year: 1993
  publication-title: Opt. Lett.
– volume: 295
  start-page: 102
  year: 2002
  publication-title: Science
– volume: 92
  start-page: 091107
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 101
  start-page: 267404
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 69
  start-page: 674
  year: 1946
  publication-title: Phys. Rev.
– volume: 63
  start-page: 233306
  year: 2001
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 024314
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 21204
  year: 2010
  publication-title: Opt. Express
– volume: 86
  start-page: 1502
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 233602
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 405
  start-page: 926
  year: 2000
  publication-title: Nature
– volume: 60
  start-page: 1
  year: 1995
  publication-title: Appl. Phys. B
– volume: 29
  start-page: 1209
  year: 2004
  publication-title: Opt. Lett.
– volume: 61
  start-page: 2546
  year: 1988
  publication-title: Phys. Rev. Lett.
– volume: 90
  start-page: 269
  year: 2003
  publication-title: Top. Appl. Phys.
– volume: 33
  start-page: 2635
  year: 2008
  publication-title: Opt. Lett.
– volume: 5
  start-page: 195
  year: 2010
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_6_17_2
  doi: 10.1103/PhysRevLett.107.193903
– ident: e_1_2_6_40_2
  doi: 10.1126/science.1109815
– ident: e_1_2_6_38_2
  doi: 10.1364/OL.18.000909
– ident: e_1_2_6_34_2
  doi: 10.1038/nphoton.2009.184
– ident: e_1_2_6_31_2
  doi: 10.1021/nl303327h
– ident: e_1_2_6_46_2
  doi: 10.1103/RevModPhys.74.145
– ident: e_1_2_6_9_2
  doi: 10.1038/nature01939
– ident: e_1_2_6_83_2
  doi: 10.1103/PhysRevLett.107.223601
– ident: e_1_2_6_8_2
  doi: 10.1007/978-3-540-39180-7_7
– ident: e_1_2_6_70_2
  doi: 10.1038/nnano.2010.6
– ident: e_1_2_6_57_2
  doi: 10.1103/PhysRevLett.108.057402
– ident: e_1_2_6_76_2
  doi: 10.1038/nphoton.2012.110
– ident: e_1_2_6_27_2
  doi: 10.1021/nl070228l
– ident: e_1_2_6_25_2
  doi: 10.1364/OL.33.002635
– ident: e_1_2_6_81_2
  doi: 10.1088/1367-2630/14/8/083029
– ident: e_1_2_6_58_2
  doi: 10.1103/PhysRevLett.89.233602
– ident: e_1_2_6_5_2
  doi: 10.1038/nature11577
– ident: e_1_2_6_21_2
  doi: 10.1103/PhysRevLett.101.113903
– ident: e_1_2_6_32_2
  doi: 10.1038/nmat3557
– ident: e_1_2_6_75_2
  doi: 10.1038/nphys1780
– ident: e_1_2_6_84_2
  doi: 10.1103/PhysRevLett.106.113601
– ident: e_1_2_6_61_2
  doi: 10.1063/1.3284514
– ident: e_1_2_6_30_2
  doi: 10.1038/ncomms1746
– ident: e_1_2_6_82_2
  doi: 10.1103/PhysRevLett.106.053601
– ident: e_1_2_6_72_2
  doi: 10.1103/PhysRevLett.110.177402
– ident: e_1_2_6_85_2
  doi: 10.1063/1.3665629
– ident: e_1_2_6_24_2
  doi: 10.1364/OL.33.001693
– ident: e_1_2_6_66_2
  doi: 10.1021/nl301907f
– ident: e_1_2_6_51_2
  doi: 10.1103/PhysRevB.77.073303
– ident: e_1_2_6_14_2
  doi: 10.1364/OL.29.001209
– ident: e_1_2_6_63_2
  doi: 10.1038/ncomms2434
– ident: e_1_2_6_59_2
  doi: 10.1016/S1386-9477(02)00157-1
– ident: e_1_2_6_54_2
  doi: 10.1364/OL.28.001302
– ident: e_1_2_6_41_2
  doi: 10.1103/PhysRevLett.101.267404
– ident: e_1_2_6_65_2
  doi: 10.1364/OE.18.021204
– ident: e_1_2_6_39_2
  doi: 10.1103/PhysRevB.63.233306
– ident: e_1_2_6_28_2
  doi: 10.1021/nl802160z
– ident: e_1_2_6_18_2
  doi: 10.1364/JOSAB.10.000381
– ident: e_1_2_6_35_2
  doi: 10.1364/JOSAA.18.002865
– ident: e_1_2_6_42_2
  doi: 10.1038/nphoton.2007.141
– ident: e_1_2_6_16_2
  doi: 10.1038/nphoton.2008.202
– ident: e_1_2_6_60_2
  doi: 10.1038/nphoton.2007.227
– ident: e_1_2_6_11_2
  doi: 10.1103/PhysRevLett.106.020501
– ident: e_1_2_6_52_2
  doi: 10.1140/epjd/e20020024
– ident: e_1_2_6_79_2
  doi: 10.1038/nature06234
– ident: e_1_2_6_73_2
  doi: 10.1103/PhysRevB.70.201308
– ident: e_1_2_6_49_2
  doi: 10.1103/PhysRevLett.86.1502
– ident: e_1_2_6_15_2
  doi: 10.1103/PhysRevA.80.011810
– ident: e_1_2_6_20_2
  doi: 10.1103/PhysRevLett.99.023902
– ident: e_1_2_6_56_2
  doi: 10.1364/OPEX.12.000458
– ident: e_1_2_6_48_2
  doi: 10.1126/science.290.5500.2282
– ident: e_1_2_6_13_2
  doi: 10.1103/PhysRevX.2.021008
– ident: e_1_2_6_19_2
  doi: 10.1103/PhysRevLett.75.2678
– ident: e_1_2_6_23_2
  doi: 10.1103/PhysRevLett.106.103601
– ident: e_1_2_6_10_2
  doi: 10.1038/nature06230
– ident: e_1_2_6_69_2
  doi: 10.1038/nature09148
– ident: e_1_2_6_50_2
  doi: 10.1126/science.1066790
– ident: e_1_2_6_3_2
  doi: 10.1364/JOSAB.10.000283
– ident: e_1_2_6_55_2
  doi: 10.1063/1.2245219
– ident: e_1_2_6_4_2
  doi: 10.1038/nature07127
– ident: e_1_2_6_44_2
  doi: 10.1063/1.3694935
– ident: e_1_2_6_53_2
  doi: 10.1364/OL.29.000572
– ident: e_1_2_6_78_2
  doi: 10.1103/PhysRevA.75.053823
– ident: e_1_2_6_33_2
  doi: 10.1016/S1369-7021(06)71650-9
– ident: e_1_2_6_7_2
  doi: 10.1103/PhysRevLett.81.1110
– ident: e_1_2_6_1_2
  doi: 10.1103/PhysRev.69.37
– ident: e_1_2_6_36_2
  doi: 10.1103/PhysRevLett.61.2546
– ident: e_1_2_6_67_2
  doi: 10.1103/PhysRevLett.96.130501
– ident: e_1_2_6_29_2
  doi: 10.1063/1.3440967
– ident: e_1_2_6_43_2
  doi: 10.1103/PhysRevLett.107.167404
– ident: e_1_2_6_37_2
  doi: 10.1063/1.2164538
– ident: e_1_2_6_45_2
  doi: 10.1103/PhysRevLett.108.077405
– ident: e_1_2_6_64_2
  doi: 10.1016/S1369-7021(06)71651-0
– ident: e_1_2_6_6_2
  doi: 10.1038/nature11573
– ident: e_1_2_6_26_2
  doi: 10.1038/nphoton.2009.287x
– ident: e_1_2_6_71_2
  doi: 10.1063/1.2890166
– ident: e_1_2_6_86_2
  doi: 10.1038/nphoton.2010.174
– ident: e_1_2_6_47_2
  doi: 10.1038/35051009
– ident: e_1_2_6_74_2
  doi: 10.1038/35016030
– ident: e_1_2_6_77_2
  doi: 10.1007/BF01082065
– ident: e_1_2_6_62_2
  doi: 10.1038/nphoton.2010.312
– ident: e_1_2_6_12_2
  doi: 10.1103/PhysRevB.76.035420
– ident: e_1_2_6_80_2
  doi: 10.1038/nphys708
– ident: e_1_2_6_2_2
  doi: 10.1109/3.89951
– ident: e_1_2_6_68_2
  doi: 10.1038/nature04446
– ident: e_1_2_6_22_2
  doi: 10.1364/OE.17.002095
SSID ssj0008071
Score 2.3174622
Snippet The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic devices,...
Abstract The efficient feeding of spontaneous emission (SE) into a controlled optical mode lies at the heart of a new generation of advanced optoelectronic...
SourceID hal
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2393
SubjectTerms Applied sciences
Circuit properties
Electric, optical and optoelectronic circuits
Electronics
Engineering Sciences
Exact sciences and technology
Integrated optics. Optical fibers and wave guides
Optical and optoelectronic circuits
optical antennas
Optics
Photonic
photonic wires
Physics
Quantum dots
semiconductors
single photon sources
Wire
Title Harnessing Light with Photonic Nanowires: Fundamentals and Applications to Quantum Optics
URI https://api.istex.fr/ark:/67375/WNG-L1THJBCV-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201300033
https://www.ncbi.nlm.nih.gov/pubmed/23784791
https://www.proquest.com/docview/1413136120
https://search.proquest.com/docview/1415607922
https://hal-iogs.archives-ouvertes.fr/hal-00850473
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHODC-5FSKoMQnNLGdhJnuS2BJapWpaAWyslyHFsrVU1WmwQhfj0zySbbRUhIcExiR7ZnPP7GY39DyMvYWFloWfjCgRgwvbafCGf9wJowd4WQIu_YPo_j7Cw8Oo_Or9zi7_khxg03nBmdvcYJrvP6cEMaapYLpCDEcEwgkO4T2fQQFX3e8EclQe9xhRju5CIaWBsDfrhdfWtVur7AM5E3cJh_4FlJXcNwuT7PxZ-A6Dau7Ram2R2ihy7151EuDtomPzA_f2N7_J8-3yW316iVTns1u0eu2fI-uZkOyeIekG-ZXqHRhIWQztHfp7jBS08WVYPcuxSMeIWsyPUbOsO7J31KgZrqsqDTKzF02lT0UwvSbi_pxyVSSD8kZ7P3p2nmr7M2-AbAgwDzOimYKSTLTRIXUZHnkUti5ljIDcMkqYHJTQTQwlghNBjqgJnQMQBSPBIO-vWI7JRVaZ8QKiNrRGC1zJkNY-cSA-gy0OCTcu2grEdeD1JTy56cQ_U0zFzhUKlxqDzyAoQ6FkJO7Ww6V_iuI-0LpfjOPPKqk_lYTK8u8NybjNTX4w9qzk6zo7fpF_XOI_tbSjFW4DJGRBx7ZG_QErW2CTU4WUwwAYgS2v18_AxywhCNLm3VdmUAgsoJ5x553GvX5udCApSYQDN5pyN_6bJKT7J0fNr9l0pPyS3eZf9I_CDaIzvNqrXPAIM1-X43z34BSTAluw
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbY9jBeuF8CYxiE4ClbbCdxylvJKGGEMlDH5clKHFuVJpKqTRDi13NO0qQUISHBYxI7sn0u_mwff4eQJ6E2sshk4QoLYsD02m4krHE9o_3cFkKKvGX7nIbJuX_6OeijCfEuTMcPMWy4oWW0_hoNHDekjzesoXoxRw5CPI_xhNghe2DzAdrmyYcNg1TkdWsuHw88uQh63kaPH2_X35qXduYYFbmHA_0doyWzFQyY7TJd_AmKbiPbdmqaXCV536kuIuXiqKnzI_3jN77H_-r1NXJlDVzpuNO06-SSKW-Q_bjPF3eTfEmyJfpNmAtpikt-inu89Gxe1Ui_S8GPV0iMvHpOJ3j9pMsqsKJZWdDxL8fotK7o-wYE3nyl7xbIIn2LnE9ezuLEXSducDXgBwEedlQwXUiW6ygsgiLPAxuFzDKfa4Z5Uj2d6wDQhTZCZOCrPaZ9ywBL8UBY6NdtsltWpblLqAyMFp7JZM6MH1obaQCYXgbLUp5ZKOuQZ73Y1KLj51AdEzNXOFRqGCqHPAapDoWQVjsZpwrftbx9vhTfmEOetkIfimXLCwx9k4H6NH2lUjZLTl_EH9WJQw63tGKowGWIoDh0yEGvJmrtFlawzmKCCQCV0O5Hw2eQE57SZKWpmrYMoFA54twhdzr12vxcSEATI2gmb5XkL11W8VkSD0_3_qXSQ7KfzN6mKn09fXOfXOZtMpDI9YIDslsvG_MAIFmdH7ZG9xOtMSnb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJgEvfH8ExjAIwVO22E7ilLfSUsKoSkHbGE-W49iqNJFWbYIQfz13SZOuCAkJHpOcI9t3Pv_OH78j5EVsrMy1zH3hQA2YXttPhLN-YE2YuVxIkdVsn5M4PQ2Pz6PzS7f4G36IbsENR0btr3GAL3J3tCENNYsZUhDidkwgxA7ZC2PBMfwaft4QSCVBE3KFuN_JRdTSNgb8aLv81rS0M8NDkXvYzz_wsKReQX-5JtHFn5DoNrCtZ6bRTaLbNjUHUi4OqzI7ND9_o3v8n0bfIjfWsJX2Gzu7Ta7Y4g65Nmizxd0lX1O9RK8JMyEdY8BPcYWXTmfzEsl3KXjxOdIir17TEV4-aXIKrKguctq_tIlOyzn9VIG6q2_04wI5pO-R09Hbk0Hqr9M2-AbQgwD_2suZySXLTBLnUZ5lkUti5ljIDcMsqYHJTATYwlghNHjqgJnQMUBSPBIO2nWf7Bbzwj4kVEbWiMBqmTEbxs4lBuBloCEo5dqBrEdetVpTi4adQzU8zFxhV6muqzzyHJTaCSGpdtofK3xXs_aFUnxnHnlZ67wT08sLPPgmI_Vl8k6N2Ul6_GZwpoYeOdgyiq4AlzFC4tgj-62VqLVTWEGUxQQTACmh3s-6z6An3KPRhZ1XtQxgUNnj3CMPGuva_FxIwBI9qCavbeQvTVaDaTronh79S6Gn5Op0OFLj95MPj8l1XmcCSfwg2ie75bKyTwCPldlBPeR-AQORKIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+light+with+photonic+nanowires%3A+fundamentals+and+applications+to+quantum+optics&rft.jtitle=Chemphyschem&rft.au=Claudon%2C+Julien&rft.au=Gregersen%2C+Niels&rft.au=Lalanne%2C+Philippe&rft.au=G%C3%A9rard%2C+Jean-Michel&rft.date=2013-08-05&rft.eissn=1439-7641&rft.volume=14&rft.issue=11&rft.spage=2393&rft_id=info:doi/10.1002%2Fcphc.201300033&rft_id=info%3Apmid%2F23784791&rft.externalDocID=23784791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon