Study of GaN coalescence by dark‐field X‐ray microscopy at the nanoscale

This work illustrates the potential of dark‐field X‐ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO2 nano‐pillars for optoelectronic applications. The nano‐pillars are intended to allow in...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied crystallography Vol. 56; no. 3; pp. 643 - 649
Main Authors Wehbe, Maya, Charles, Matthew, Baril, Kilian, Alloing, Blandine, Pino Munoz, Daniel, Labchir, Nabil, Zuniga-Perez, Jesús, Detlefs, Carsten, Yildirim, Can, Gergaud, Patrice
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.06.2023
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work illustrates the potential of dark‐field X‐ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO2 nano‐pillars for optoelectronic applications. The nano‐pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm2 in area are achieved with this growth approach. At a macroscale, high‐intensity X‐ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano‐pillars, implying that the growth occurs as intended (i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro‐displays and micro‐LEDs, which require small islands of high‐quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution. In this article, highly oriented small structures of gallium nitride grown on top of silicon nano‐pillars are characterized by dark‐field X‐ray microscopy for optoelectronic applications such as micro‐LEDs.
AbstractList This work illustrates the potential of dark-field X-ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO nano-pillars for optoelectronic applications. The nano-pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm in area are achieved with this growth approach. At a macroscale, high-intensity X-ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano-pillars, implying that the growth occurs as intended ( that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro-displays and micro-LEDs, which require small islands of high-quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution.
In this article, highly oriented small structures of gallium nitride grown on top of silicon nano-pillars are characterized by dark-field X-ray microscopy for optoelectronic applications such as micro-LEDs. This work illustrates the potential of dark-field X-ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO 2 nano-pillars for optoelectronic applications. The nano-pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO 2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm 2 in area are achieved with this growth approach. At a macroscale, high-intensity X-ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano-pillars, implying that the growth occurs as intended ( i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro-displays and micro-LEDs, which require small islands of high-quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution.
This work illustrates the potential of dark-field X-ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO 2 nano-pillars for optoelectronic applications. The nano-pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO 2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04) as well as highly oriented material for zones up to 10 Â 10 mm 2 in area are achieved with this growth approach. At a macroscale, high-intensity X-ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano-pillars, implying that the growth occurs as intended (i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro-displays and micro-LEDs, which require small islands of high-quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution.
This work illustrates the potential of dark-field X-ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO 2 nano-pillars for optoelectronic applications. The nano-pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO 2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm 2 in area are achieved with this growth approach. At a macroscale, high-intensity X-ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano-pillars, implying that the growth occurs as intended ( i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro-displays and micro-LEDs, which require small islands of high-quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution.
This work illustrates the potential of dark‐field X‐ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO2 nano‐pillars for optoelectronic applications. The nano‐pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm2 in area are achieved with this growth approach. At a macroscale, high‐intensity X‐ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano‐pillars, implying that the growth occurs as intended (i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro‐displays and micro‐LEDs, which require small islands of high‐quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution.
This work illustrates the potential of dark‐field X‐ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO2 nano‐pillars for optoelectronic applications. The nano‐pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm2 in area are achieved with this growth approach. At a macroscale, high‐intensity X‐ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano‐pillars, implying that the growth occurs as intended (i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro‐displays and micro‐LEDs, which require small islands of high‐quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution. In this article, highly oriented small structures of gallium nitride grown on top of silicon nano‐pillars are characterized by dark‐field X‐ray microscopy for optoelectronic applications such as micro‐LEDs.
Author Alloing, Blandine
Pino Munoz, Daniel
Labchir, Nabil
Yildirim, Can
Gergaud, Patrice
Zuniga-Perez, Jesús
Detlefs, Carsten
Wehbe, Maya
Charles, Matthew
Baril, Kilian
Author_xml – sequence: 1
  givenname: Maya
  surname: Wehbe
  fullname: Wehbe, Maya
  email: maya.wehbe@cea.fr
  organization: PSL Research University
– sequence: 2
  givenname: Matthew
  surname: Charles
  fullname: Charles, Matthew
  organization: Univ. Grenoble Alpes, CEA-LETI
– sequence: 3
  givenname: Kilian
  surname: Baril
  fullname: Baril, Kilian
  organization: Univ. Côte d'Azur
– sequence: 4
  givenname: Blandine
  surname: Alloing
  fullname: Alloing, Blandine
  organization: Univ. Côte d'Azur
– sequence: 5
  givenname: Daniel
  surname: Pino Munoz
  fullname: Pino Munoz, Daniel
  organization: PSL Research University
– sequence: 6
  givenname: Nabil
  surname: Labchir
  fullname: Labchir, Nabil
– sequence: 7
  givenname: Jesús
  surname: Zuniga-Perez
  fullname: Zuniga-Perez, Jesús
  organization: CNRS, Université Côte d'Azûr, Sorbonne Université, National University of Singapore, Nanyang Technological University
– sequence: 8
  givenname: Carsten
  surname: Detlefs
  fullname: Detlefs, Carsten
  organization: ESRF, The European Synchrotron
– sequence: 9
  givenname: Can
  surname: Yildirim
  fullname: Yildirim, Can
  organization: ESRF, The European Synchrotron
– sequence: 10
  givenname: Patrice
  surname: Gergaud
  fullname: Gergaud, Patrice
  organization: Univ. Grenoble Alpes, CEA-LETI
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37284275$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04304004$$DView record in HAL
BookMark eNqFkc1u1DAUhS1URH_gAdggS2xgMXB9_ZesUDWCFjQCiYI0O8txbCYlEw9OUpQdj8Az8iQ4mlKVsmDlq-PvHF_fe0wOuth5Qh4zeMEY6JcXTAFIrTRyACz0-h45mqXFrB3cqg_Jcd9fArCM4gNyyDUWArU8IquLYawnGgM9s--pi7b1vfOd87SaaG3T118_fobGtzVd5yrZiW4bl2Lv4m6idqDDxtPOdlnIzofkfrBt7x9dnyfk85vXn5bni9WHs7fL09XCSYZ8ISvpOQQulMe6kJUKVghQDpSqdEAeOC-AVc57D5JrUahalrbkVXC10k7yE_Jqn7sbq62vc79Dsq3ZpWZr02SibczfN12zMV_ilWGAgoFQOeH5PmFzx3d-ujKzBoKDABBXLLPPrl9L8dvo-8FsmzyjtrWdj2NvsEAuyhIRMvr0DnoZx9TlWcwUYsFLPrfP9tQ8yD75cNMBAzMv1vyz2Ox5cvvLN44_m8xAuQe-N62f_p9o3i0_4notATn_DZcbsEA
CitedBy_id crossref_primary_10_1063_5_0149882
crossref_primary_10_1002_admt_202400166
Cites_doi 10.1016/j.actamat.2021.117290
10.3390/met9030352
10.1107/S1600576718017302
10.1016/j.jcrysgro.2017.11.004
10.1111/j.1365-2818.2009.03263.x
10.1007/b97884
10.1002/pssa.201100129
10.35848/1882-0786/ac1b3e
10.1017/S1431927618012837
10.1063/1.1349864
10.1107/S0021889801014273
10.1063/1.1849836
10.1038/ncomms7098
10.1088/1757-899X/580/1/012007
10.1126/science.1202202
10.1063/1.3100200
10.1063/1.5017550
10.1016/j.jcrysgro.2019.125235
10.1103/PhysRev.101.1285
10.1002/adma.201702557
10.1107/S1600576721012760
10.1016/S0927-796X(02)00008-6
10.1016/j.mne.2022.100110
10.1063/1.126448
10.1080/08940886.2020.1812357
10.1088/0953-8984/13/32/315
ContentType Journal Article
Copyright 2023 Maya Wehbe et al. published by IUCr Journals.
Maya Wehbe et al. 2023.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Maya Wehbe et al. 2023 2023
Copyright_xml – notice: 2023 Maya Wehbe et al. published by IUCr Journals.
– notice: Maya Wehbe et al. 2023.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Maya Wehbe et al. 2023 2023
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
VOOES
5PM
DOI 10.1107/S160057672300287X
DatabaseName Wiley Open Access
Wiley Free Archive
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
DocumentTitleAlternate GaN coalescence studied by dark-field X-ray microscopy
EISSN 1600-5767
EndPage 649
ExternalDocumentID oai_HAL_hal_04304004v1
10_1107_S160057672300287X
37284275
JCR2XX5023
Genre article
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
1Y6
24P
29J
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
H~9
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCJ
RIWAO
RJQFR
RNS
ROL
RX1
SUPJJ
TN5
UB1
UPT
V8K
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WOHZO
WQJ
WRC
WYISQ
XG1
YCJ
YQT
ZCG
ZZTAW
~02
~IA
~WT
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5123-5b5e30f346e2d85b6fa4406c066b7f23f33801bceee0537486d59a93bfcd67c53
IEDL.DBID 24P
ISSN 1600-5767
0021-8898
IngestDate Tue Sep 17 21:29:56 EDT 2024
Wed Sep 04 07:26:26 EDT 2024
Fri Aug 16 21:36:36 EDT 2024
Thu Oct 10 17:18:36 EDT 2024
Fri Aug 23 03:27:20 EDT 2024
Sat Sep 28 08:13:09 EDT 2024
Sat Aug 24 00:54:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords coalescence
nano-pillars
diffraction imaging
gallium nitride
dark-field X-ray microscopy
characterization
synchrotron radiation
nanopillars
Language English
License Attribution
Maya Wehbe et al. 2023.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5123-5b5e30f346e2d85b6fa4406c066b7f23f33801bceee0537486d59a93bfcd67c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2573-2286
0000-0002-8120-2506
0000-0003-3969-6204
0000-0003-0668-8865
0000-0002-3959-1018
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS160057672300287X
PMID 37284275
PQID 2822283935
PQPubID 29562
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241046
hal_primary_oai_HAL_hal_04304004v1
proquest_miscellaneous_2823499220
proquest_journals_2822283935
crossref_primary_10_1107_S160057672300287X
pubmed_primary_37284275
wiley_primary_10_1107_S160057672300287X_JCR2XX5023
PublicationCentury 2000
PublicationDate June 2023
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
– name: Oxford
PublicationTitle Journal of applied crystallography
PublicationTitleAlternate J Appl Crystallogr
PublicationYear 2023
Publisher International Union of Crystallography
Blackwell Publishing Ltd
Publisher_xml – name: International Union of Crystallography
– name: Blackwell Publishing Ltd
References Mrad (xx5023_bb20) 2022; 14
Dussaigne (xx5023_bb7) 2021; 14
Maziarz (xx5023_bb18) 2010; 237
xx5023_bb4
Kurtz (xx5023_bb11) 1956; 101
xx5023_bb8
Tanaka (xx5023_bb25) 2017; 29
xx5023_bb12
Shen (xx5023_bb23) 2005; 86
Tanaka (xx5023_bb26) 2000; 76
Liu (xx5023_bb13) 2011; 332
Charles (xx5023_bb2) 2018; 483
Liu (xx5023_bb14) 2002; 37
Cook (xx5023_bb3) 2018; 24
Ludwig (xx5023_bb16) 2009; 80
Chahine (xx5023_bb1) 2019; 9
Dassonneville (xx5023_bb6) 2001; 89
Holstad (xx5023_bb9) 2022; 55
xx5023_bb21
Yildirim (xx5023_bb27) 2021; 220
Zhu (xx5023_bb28) 2012; 209
Mante (xx5023_bb17) 2018; 123
Poulsen (xx5023_bb22) 2001; 34
Miyajima (xx5023_bb19) 2001; 13
xx5023_bb24
Longo (xx5023_bb15) 2020; 33
Jakobsen (xx5023_bb10) 2019; 52
Dagher (xx5023_bb5) 2019; 526
References_xml – volume: 220
  start-page: 117290
  year: 2021
  ident: xx5023_bb27
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117290
  contributor:
    fullname: Yildirim
– volume: 9
  start-page: 352
  year: 2019
  ident: xx5023_bb1
  publication-title: Metals
  doi: 10.3390/met9030352
  contributor:
    fullname: Chahine
– volume: 52
  start-page: 122
  year: 2019
  ident: xx5023_bb10
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576718017302
  contributor:
    fullname: Jakobsen
– volume: 483
  start-page: 89
  year: 2018
  ident: xx5023_bb2
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2017.11.004
  contributor:
    fullname: Charles
– volume: 237
  start-page: 374
  year: 2010
  ident: xx5023_bb18
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2009.03263.x
  contributor:
    fullname: Maziarz
– ident: xx5023_bb21
  doi: 10.1007/b97884
– volume: 209
  start-page: 13
  year: 2012
  ident: xx5023_bb28
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201100129
  contributor:
    fullname: Zhu
– volume: 14
  start-page: 092011
  year: 2021
  ident: xx5023_bb7
  publication-title: Appl. Phys. Expr.
  doi: 10.35848/1882-0786/ac1b3e
  contributor:
    fullname: Dussaigne
– volume: 24
  start-page: 88
  year: 2018
  ident: xx5023_bb3
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927618012837
  contributor:
    fullname: Cook
– volume: 89
  start-page: 3736
  year: 2001
  ident: xx5023_bb6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1349864
  contributor:
    fullname: Dassonneville
– volume: 34
  start-page: 751
  year: 2001
  ident: xx5023_bb22
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889801014273
  contributor:
    fullname: Poulsen
– volume: 86
  start-page: 021912
  year: 2005
  ident: xx5023_bb23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1849836
  contributor:
    fullname: Shen
– ident: xx5023_bb24
  doi: 10.1038/ncomms7098
– ident: xx5023_bb12
  doi: 10.1088/1757-899X/580/1/012007
– volume: 332
  start-page: 833
  year: 2011
  ident: xx5023_bb13
  publication-title: Science
  doi: 10.1126/science.1202202
  contributor:
    fullname: Liu
– ident: xx5023_bb8
– volume: 80
  start-page: 033905
  year: 2009
  ident: xx5023_bb16
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3100200
  contributor:
    fullname: Ludwig
– volume: 123
  start-page: 215701
  year: 2018
  ident: xx5023_bb17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5017550
  contributor:
    fullname: Mante
– volume: 526
  start-page: 125235
  year: 2019
  ident: xx5023_bb5
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2019.125235
  contributor:
    fullname: Dagher
– volume: 101
  start-page: 1285
  year: 1956
  ident: xx5023_bb11
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.101.1285
  contributor:
    fullname: Kurtz
– volume: 29
  start-page: 1702557
  year: 2017
  ident: xx5023_bb25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702557
  contributor:
    fullname: Tanaka
– volume: 55
  start-page: 112
  year: 2022
  ident: xx5023_bb9
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576721012760
  contributor:
    fullname: Holstad
– ident: xx5023_bb4
– volume: 37
  start-page: 61
  year: 2002
  ident: xx5023_bb14
  publication-title: Mater. Sci. Eng. Rep.
  doi: 10.1016/S0927-796X(02)00008-6
  contributor:
    fullname: Liu
– volume: 14
  start-page: 100110
  year: 2022
  ident: xx5023_bb20
  publication-title: Micro Nano Eng.
  doi: 10.1016/j.mne.2022.100110
  contributor:
    fullname: Mrad
– volume: 76
  start-page: 2701
  year: 2000
  ident: xx5023_bb26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126448
  contributor:
    fullname: Tanaka
– volume: 33
  start-page: 40
  year: 2020
  ident: xx5023_bb15
  publication-title: Synchrotron Radiat. News
  doi: 10.1080/08940886.2020.1812357
  contributor:
    fullname: Longo
– volume: 13
  start-page: 7099
  year: 2001
  ident: xx5023_bb19
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/13/32/315
  contributor:
    fullname: Miyajima
SSID ssj0016722
Score 2.4594758
Snippet This work illustrates the potential of dark‐field X‐ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial...
This work illustrates the potential of dark-field X-ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial...
In this article, highly oriented small structures of gallium nitride grown on top of silicon nano-pillars are characterized by dark-field X-ray microscopy for...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 643
SubjectTerms characterization
Coalescence
dark‐field X‐ray microscopy
Diffraction
diffraction imaging
Extreme values
Gallium
gallium nitride
Gallium nitrides
Imaging techniques
Microscopy
Misalignment
Nanostructure
nano‐pillars
Optoelectronics
Physics
Pyramids
Research Papers
Silicon dioxide
Spatial discrimination
Spatial resolution
synchrotron radiation
Title Study of GaN coalescence by dark‐field X‐ray microscopy at the nanoscale
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS160057672300287X
https://www.ncbi.nlm.nih.gov/pubmed/37284275
https://www.proquest.com/docview/2822283935
https://search.proquest.com/docview/2823499220
https://hal.science/hal-04304004
https://pubmed.ncbi.nlm.nih.gov/PMC10241046
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAcKiiPphRkECekiCR-JcdqoayqUqFCpdwi27FVhMhWyxZpb_yE_sb-EmacbNTVHpC4RJFfSfyabzLjbwDelhZhOJdlGjiqKEJ4hWuurVJvBaraigtrSVH8fKamF-KklvUWTFZnYXp-iPGHG62MuF_TAjd2iEIS7fpfc0UnKZVGEI1CUtfbcI-YY4hAvxBfRlOC6tkQqXRKxQfTJjbyfqOJNeG0fUmukZu4c9N98i6sjXLp-BHsDoCSHfUz4DFs-W4P7k9Wcdz24OEdysEncEqOg0s2C-yTOWNuZno-J-eZXbLWzH_c_rmJXm2sxru5WbKf5LJHh1eWzCwY4kXWmQ4TsOZTuDj--G0yTYeICqlDwc5TaaXnWeBC-aItpVXBCJToDnGH1aHgARXWLLcoOClihBalamVlKm6Da5V2kj-DnW7W-X1gCLukckJLW2XCC2ddG_KAwr4SecaNS-Ddqiubq544o4kKR6abjX5P4A129liOKK-nR6cNpREnGe0zv_MEDldj0QwL7VdDXrCIkCouE3g9ZmMPk93DdH52HctwQfy7WQLP-6EbH8U1yudCY-1ybVDX3mU9p_t-GWm4EZoJspAnUMTx__dnNieT86KuJeKkg_-p9AIeULT73lPtEHYW82v_EjHRwr6Kcx6vH86LvxnV_-8
link.rule.ids 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB615VA48CivQAGDOCGlTeJHkmO1pSxlu4fSSrlFtuOoqGq2WnaRlhM_gd_IL2HG2URd9oAEt8ixndiesb-xx98AvM0MwnAus7DmaKII4RTqXJWHzgg0tRUXxpCheDJWw3NxXMhiAw67uzAtP0S_4Uaa4edrUnDakG613B_sf44VXaVUKaJoXCXTYhNuodpzCuBweNqTSMWqpUOk3CFlX55tYiX7a1WsrE6bF-QbuQ481_0nb-JavzAd3QPXNan1R7ncm8_Mnv3-B9vj_7b5PtxdIld20IraA9hwzQ5sD7qAcTtw5wa34UMYkYfigk1q9kGPmZ3oljjKOmYWrNLTy18_fnr3OVbg01Qv2BX5BtItmQXTM4bAlDW6wQQs-QjOj96fDYbhMnRDaBFB8FAa6XhUc6FcUmXSqFoLhA4WAY5J64TXaBlHscEVmkJTpCJTlcx1zk1tK5VayR_DVjNp3FNgiO-ksiKVJo-EE9bYqo5rRBW5iCOubQDvuiErr1uGjtJbNlFarnVXAG9wUPt8xK09PBiVlEbkZzShfYsD2O3GvFxq9NeS3G0RiuVcBvC6f409TAcsunGTuc_DBRH9RgE8aUWk_xRPEQgkKZbOVoRn5V9W3zRfLjzfN2JAQUfxASReOP7ezPJ4cJoUhURA9uxfCr2C7eHZyagcfRx_eg63UWt56x63C1uz6dy9QCA2My-9nv0Gx8kkhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB61RYL2gKD8BQoYxAkpahL_JDlWC8tSllUFVMotsh1bRajZatlW2lsfoc_IkzDj7EZd7QGJW-SMncT2eL7JjD8DvCsMwnAui9hzdFGEcAp1riljZwS62ooLY8hR_DpRo1NxXMlqCwarvTAdP0T_w400I6zXpOAXje-UPMT1v6eKdlKqHEE0Gsm82oY7AuE4Eehn4qQPJaiODZGkYxJfhjaxkcONJtaM0_YZpUZu4s7N9MnbsDbYpeEDuL8ElOyomwEPYcu1-3BvsDrHbR_2blEOPoIxJQ4u2NSzT3rC7FR3fE7WMbNgjZ79-nN9E7LaWIVXM71g55SyR5tXFkzPGeJF1uoWC7DmYzgdfvwxGMXLExVii4adx9JIxxPPhXJZU0ijvBZo0S3iDpP7jHt0WJPUoOGkEyNyUahGlrrkxttG5VbyJ7DTTlv3DBjCLqmsyKUpE-GENbbxqUdjX4o04dpG8H7VlfVFR5xRB4cjyeuNfo_gLXZ2L0eU16OjcU1lxElG68xVGsHBaizqpaL9rikLFhFSyWUEb_rb2MMU99Ctm14GGS6IfzeJ4Gk3dP2jeI72OcuxdrE2qGvvsn6n_XkWaLgRmgmKkEeQhfH_92fWx4NvWVVJxEnP_6fSa7h78mFYjz9PvryAXTr4vktaO4Cd-ezSvUR4NDevwvT_Cz_lAak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+GaN+coalescence+by+dark-field+X-ray+microscopy+at+the+nanoscale&rft.jtitle=Journal+of+applied+crystallography&rft.au=Wehbe%2C+Maya&rft.au=Charles%2C+Matthew&rft.au=Baril%2C+Kilian&rft.au=Alloing%2C+Blandine&rft.date=2023-06-01&rft.pub=International+Union+of+Crystallography&rft.issn=0021-8898&rft.eissn=1600-5767&rft.volume=56&rft.issue=Pt+3&rft.spage=643&rft.epage=649&rft_id=info:doi/10.1107%2FS160057672300287X&rft.externalDBID=PMC10241046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon