A Mechanically Robust and Versatile Liquid‐Free Ionic Conductive Elastomer

Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hos...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 11; pp. e2006111 - n/a
Main Authors Yiming, Burebi, Han, Ying, Han, Zilong, Zhang, Xinning, Li, Yang, Lian, Weizhen, Zhang, Mingqi, Yin, Jun, Sun, Taolin, Wu, Ziliang, Li, Tiefeng, Fu, Jianzhong, Jia, Zheng, Qu, Shaoxing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self‐healing, quick self‐recovery, and 3D‐printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness—a compromise well recognized in mechanics and material science—and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid‐free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel‐based devices, such as leakage, evaporation, and weak hydrogel–elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability. A novel liquid‐free ionic conductive elastomer (ICE) that possesses excellent mechanical properties and overcomes some of the intrinsic shortcomings of gel‐based ionic conductors, for example leakage and evaporation, is designed. A series of ICE‐based liquid‐free ionotronic devices, including resistive sensors, ionic skins, and triboelectric nanogenerators, is presented. The processability of the material is further demonstrated via 3D printing.
AbstractList Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self‐healing, quick self‐recovery, and 3D‐printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness—a compromise well recognized in mechanics and material science—and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid‐free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel‐based devices, such as leakage, evaporation, and weak hydrogel–elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability. A novel liquid‐free ionic conductive elastomer (ICE) that possesses excellent mechanical properties and overcomes some of the intrinsic shortcomings of gel‐based ionic conductors, for example leakage and evaporation, is designed. A series of ICE‐based liquid‐free ionotronic devices, including resistive sensors, ionic skins, and triboelectric nanogenerators, is presented. The processability of the material is further demonstrated via 3D printing.
Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self‐healing, quick self‐recovery, and 3D‐printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness—a compromise well recognized in mechanics and material science—and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid‐free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel‐based devices, such as leakage, evaporation, and weak hydrogel–elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.
Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.
Author Zhang, Xinning
Han, Zilong
Yiming, Burebi
Qu, Shaoxing
Jia, Zheng
Lian, Weizhen
Wu, Ziliang
Han, Ying
Li, Tiefeng
Sun, Taolin
Fu, Jianzhong
Yin, Jun
Zhang, Mingqi
Li, Yang
Author_xml – sequence: 1
  givenname: Burebi
  surname: Yiming
  fullname: Yiming, Burebi
  organization: Zhejiang University
– sequence: 2
  givenname: Ying
  surname: Han
  fullname: Han, Ying
  organization: Zhejiang University
– sequence: 3
  givenname: Zilong
  surname: Han
  fullname: Han, Zilong
  organization: Zhejiang University
– sequence: 4
  givenname: Xinning
  surname: Zhang
  fullname: Zhang, Xinning
  organization: Zhejiang University
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Zhejiang University
– sequence: 6
  givenname: Weizhen
  surname: Lian
  fullname: Lian, Weizhen
  organization: South China University of Technology
– sequence: 7
  givenname: Mingqi
  surname: Zhang
  fullname: Zhang, Mingqi
  organization: Zhejiang University
– sequence: 8
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  email: junyin@zju.edu.cn
  organization: Zhejiang University
– sequence: 9
  givenname: Taolin
  surname: Sun
  fullname: Sun, Taolin
  email: suntl@scut.edu.cn
  organization: South China University of Technology
– sequence: 10
  givenname: Ziliang
  surname: Wu
  fullname: Wu, Ziliang
  organization: Zhejiang University
– sequence: 11
  givenname: Tiefeng
  surname: Li
  fullname: Li, Tiefeng
  organization: Zhejiang University
– sequence: 12
  givenname: Jianzhong
  surname: Fu
  fullname: Fu, Jianzhong
  organization: Zhejiang University
– sequence: 13
  givenname: Zheng
  orcidid: 0000-0001-8459-515X
  surname: Jia
  fullname: Jia, Zheng
  email: zheng.jia@zju.edu.cn
  organization: Zhejiang University
– sequence: 14
  givenname: Shaoxing
  surname: Qu
  fullname: Qu, Shaoxing
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33576145$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMoOl62LqXgxs2MJ22TpsthvMKIIOo2pMkpRtpGk1aZnY_gM_okRsYLCOLqbL7vnMP_b5LVznVIyC6FCQVID5Vp1SSFFIBTSlfIiLKUjnMo2SoZQZmxcclzsUE2Q7gHgJIDXycbWcYKTnM2IvNpcoH6TnVWq6ZZJFeuGkKfqM4kt-iD6m2Dydw-Dta8vbyeeMTk3EU4mbnODLq3T5gcNyr0rkW_TdZq1QTc-Zxb5Obk-Hp2Np5fnp7PpvOxZjR-h0ILU3BhalRK6wpFaag2nIPQRS1UBYgMMlVWWrBaccMN1MA5hdzkGZpsixws9z549zhg6GVrg8amUR26Icg0F2XKMiHyiO7_Qu_d4Lv4nUwZUFEUIi0itfdJDVWLRj542yq_kF85RWCyBLR3IXisvxEK8qMI-VGE_C4iCvkvQds-pum63ivb_K2VS-055r7454icHl1Mf9x3xRedRQ
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110630
crossref_primary_10_1002_advs_202106008
crossref_primary_10_1016_j_cej_2023_142312
crossref_primary_10_1002_adfm_202308686
crossref_primary_10_1039_D3MH01812A
crossref_primary_10_1126_sciadv_adi8505
crossref_primary_10_1016_j_cej_2024_157534
crossref_primary_10_1016_j_jmps_2024_105800
crossref_primary_10_1002_adma_202500770
crossref_primary_10_1016_j_cej_2025_159437
crossref_primary_10_1007_s40820_024_01535_w
crossref_primary_10_1021_acsami_1c05833
crossref_primary_10_1039_D3TA02053C
crossref_primary_10_1063_5_0104765
crossref_primary_10_1002_adfm_202301921
crossref_primary_10_1016_j_carbpol_2022_119268
crossref_primary_10_1126_sciadv_adq7441
crossref_primary_10_1002_adhm_202202531
crossref_primary_10_1021_acs_macromol_2c00492
crossref_primary_10_1002_adma_202108586
crossref_primary_10_1016_j_cej_2023_145497
crossref_primary_10_1016_j_coco_2021_101049
crossref_primary_10_1007_s12613_024_2938_0
crossref_primary_10_1039_D2CS00173J
crossref_primary_10_1016_j_cej_2023_145811
crossref_primary_10_1039_D2MH00880G
crossref_primary_10_1021_acsami_2c06682
crossref_primary_10_1016_j_jcis_2022_12_101
crossref_primary_10_1016_j_polymer_2022_125543
crossref_primary_10_1002_adfm_202107105
crossref_primary_10_1016_j_eurpolymj_2024_112999
crossref_primary_10_1039_D1TA09769E
crossref_primary_10_1002_app_52607
crossref_primary_10_1039_D4LC00247D
crossref_primary_10_1021_acs_macromol_2c01234
crossref_primary_10_1002_adma_202101396
crossref_primary_10_1002_adma_202105996
crossref_primary_10_1016_j_cej_2023_143072
crossref_primary_10_1021_acsaem_4c02391
crossref_primary_10_1016_j_trac_2024_117662
crossref_primary_10_1038_s41467_021_24382_4
crossref_primary_10_1016_j_cej_2025_159776
crossref_primary_10_1002_adma_202203049
crossref_primary_10_1016_j_cej_2022_139208
crossref_primary_10_1021_acsnano_2c11734
crossref_primary_10_1016_j_cej_2022_135644
crossref_primary_10_1016_j_cej_2022_140796
crossref_primary_10_1039_D2TA06987C
crossref_primary_10_1002_adfm_202206424
crossref_primary_10_1002_smtd_202402190
crossref_primary_10_1016_j_apmt_2023_101777
crossref_primary_10_1021_acsami_3c18512
crossref_primary_10_1016_j_nanoen_2024_109500
crossref_primary_10_1039_D3MH02217J
crossref_primary_10_1016_j_cej_2024_150688
crossref_primary_10_1016_j_ijbiomac_2024_131129
crossref_primary_10_1002_adfm_202107006
crossref_primary_10_1021_acsami_3c02970
crossref_primary_10_1016_j_carbpol_2023_120654
crossref_primary_10_1016_j_xcrp_2024_102107
crossref_primary_10_1002_adma_202311795
crossref_primary_10_1002_anie_202319003
crossref_primary_10_1016_j_cej_2022_136741
crossref_primary_10_1002_adfm_202305499
crossref_primary_10_1016_j_cej_2022_140328
crossref_primary_10_1002_adma_202411131
crossref_primary_10_1039_D1TA06724A
crossref_primary_10_1039_D4MH00338A
crossref_primary_10_1016_j_nanoen_2022_107359
crossref_primary_10_1038_s41467_022_32517_4
crossref_primary_10_1016_j_cej_2024_149330
crossref_primary_10_1002_adma_202211342
crossref_primary_10_1002_adma_202300447
crossref_primary_10_1080_19475411_2023_2255554
crossref_primary_10_1016_j_cej_2023_147405
crossref_primary_10_1002_smtd_202401156
crossref_primary_10_1016_j_cej_2023_143603
crossref_primary_10_1021_acsnano_4c08896
crossref_primary_10_1021_acsami_2c00950
crossref_primary_10_1007_s42114_023_00658_9
crossref_primary_10_1002_aelm_202400356
crossref_primary_10_1002_adfm_202307543
crossref_primary_10_1016_j_nanoen_2021_106611
crossref_primary_10_1021_acsapm_3c02114
crossref_primary_10_1021_acsapm_4c02324
crossref_primary_10_3389_fmats_2022_1118943
crossref_primary_10_1016_j_cossms_2024_101213
crossref_primary_10_3390_gels10110720
crossref_primary_10_1016_j_trac_2024_118027
crossref_primary_10_1021_jacsau_2c00489
crossref_primary_10_1016_j_snb_2025_137304
crossref_primary_10_1002_adfm_202102773
crossref_primary_10_1021_acsami_3c01585
crossref_primary_10_1021_acsami_3c05943
crossref_primary_10_1021_acsapm_1c00773
crossref_primary_10_1016_j_mtphys_2024_101448
crossref_primary_10_1002_advs_202408657
crossref_primary_10_1002_adfm_202402815
crossref_primary_10_1016_j_nanoen_2021_106619
crossref_primary_10_1016_j_colsurfa_2023_132081
crossref_primary_10_1016_j_ijbiomac_2024_136115
crossref_primary_10_1002_adma_202400103
crossref_primary_10_1039_D4TA02305F
crossref_primary_10_1007_s40843_022_2286_5
crossref_primary_10_1002_app_53852
crossref_primary_10_1002_admt_202200413
crossref_primary_10_1016_j_cej_2025_159292
crossref_primary_10_1039_D4TC00256C
crossref_primary_10_1002_advs_202300857
crossref_primary_10_1039_D3MH01587D
crossref_primary_10_1002_admt_202301123
crossref_primary_10_1002_adfm_202303292
crossref_primary_10_1002_batt_202300190
crossref_primary_10_1021_acsami_4c02182
crossref_primary_10_1002_adfm_202307400
crossref_primary_10_1039_D3MH00612C
crossref_primary_10_1039_D3MH01138K
crossref_primary_10_1039_D4TA09222H
crossref_primary_10_1021_acsami_1c10717
crossref_primary_10_1039_D2SM00733A
crossref_primary_10_1016_j_isci_2021_103174
crossref_primary_10_1016_j_cej_2023_147069
crossref_primary_10_1002_marc_202200512
crossref_primary_10_1039_D2MH00109H
crossref_primary_10_1038_s41563_024_01848_6
crossref_primary_10_1002_adfm_202110859
crossref_primary_10_1002_app_56221
crossref_primary_10_1002_adfm_202402952
crossref_primary_10_1002_smll_202200421
crossref_primary_10_1016_j_polymer_2022_125600
crossref_primary_10_1002_adma_202300114
crossref_primary_10_1021_acsami_3c05802
crossref_primary_10_1002_adfm_202208083
crossref_primary_10_1002_advs_202201059
crossref_primary_10_1021_acsapm_4c01239
crossref_primary_10_1002_adfm_202304486
crossref_primary_10_1016_j_cej_2022_137633
crossref_primary_10_1016_j_cej_2024_154672
crossref_primary_10_1016_j_cej_2025_159502
crossref_primary_10_1039_D2SM00865C
crossref_primary_10_1016_j_eurpolymj_2023_112471
crossref_primary_10_1039_D3MH02008H
crossref_primary_10_1021_acs_macromol_2c00161
crossref_primary_10_1016_j_matchemphys_2023_127791
crossref_primary_10_1002_adfm_202422755
crossref_primary_10_1039_D2TB00839D
crossref_primary_10_1002_ange_202319003
crossref_primary_10_1002_smll_202304828
crossref_primary_10_1038_s41467_024_44848_5
crossref_primary_10_2139_ssrn_4160466
crossref_primary_10_1039_D4TC01732C
crossref_primary_10_1002_marc_202400362
crossref_primary_10_1016_j_cclet_2024_110554
crossref_primary_10_1016_j_sna_2022_113538
crossref_primary_10_1038_s41467_023_40583_5
crossref_primary_10_1021_acs_langmuir_2c01749
crossref_primary_10_1016_j_cej_2022_135593
crossref_primary_10_1016_j_colsurfa_2024_134196
crossref_primary_10_1021_acsami_3c09780
crossref_primary_10_1007_s12274_023_6194_9
crossref_primary_10_1016_j_jcis_2025_01_034
crossref_primary_10_1002_adfm_202412377
crossref_primary_10_1080_19475411_2021_1972053
crossref_primary_10_1002_adma_202408826
crossref_primary_10_1016_j_cej_2022_140022
crossref_primary_10_1038_s41467_024_55472_8
crossref_primary_10_1016_j_progpolymsci_2025_101944
crossref_primary_10_1039_D4TA05313C
crossref_primary_10_1002_adma_202308547
crossref_primary_10_1039_D2PY01448C
crossref_primary_10_1021_acsami_3c04187
crossref_primary_10_1002_adfm_202306086
crossref_primary_10_1016_j_polymer_2023_126501
crossref_primary_10_1002_pol_20220245
crossref_primary_10_1021_acs_macromol_2c01838
crossref_primary_10_1002_adma_202419002
crossref_primary_10_1021_acsapm_4c01611
crossref_primary_10_1002_adma_202403905
crossref_primary_10_1016_j_cej_2024_154762
crossref_primary_10_1021_acsami_2c15356
crossref_primary_10_1016_j_cej_2023_147382
crossref_primary_10_1002_adfm_202110244
crossref_primary_10_1016_j_cej_2024_154409
crossref_primary_10_1016_j_cej_2024_151917
crossref_primary_10_1002_adma_202210092
crossref_primary_10_1021_acsapm_2c00527
crossref_primary_10_1021_acs_iecr_4c00835
crossref_primary_10_1016_j_colsurfa_2022_128897
crossref_primary_10_1016_j_porgcoat_2022_107079
crossref_primary_10_1021_acssensors_3c00579
crossref_primary_10_1021_acsami_2c14394
crossref_primary_10_1002_adma_202405776
crossref_primary_10_1007_s10570_022_04800_6
crossref_primary_10_1002_adfm_202313397
crossref_primary_10_1002_adma_202103755
crossref_primary_10_1002_cjoc_202200631
crossref_primary_10_1557_s43578_021_00243_0
crossref_primary_10_1016_j_eurpolymj_2022_111695
crossref_primary_10_1039_D3MH01719B
crossref_primary_10_1002_adfm_202101957
crossref_primary_10_1016_j_mattod_2023_11_014
crossref_primary_10_1016_j_polymer_2023_126166
crossref_primary_10_1002_adfm_202416701
crossref_primary_10_1021_acs_chemmater_2c01759
crossref_primary_10_1002_smll_202303415
crossref_primary_10_1039_D4TC03248A
crossref_primary_10_1039_D4MH00648H
crossref_primary_10_1021_acsami_1c16081
crossref_primary_10_3389_fbioe_2023_1335188
crossref_primary_10_1002_aelm_202300069
crossref_primary_10_1016_j_apmt_2023_101756
crossref_primary_10_1007_s10118_024_3203_8
crossref_primary_10_1021_acs_iecr_1c03330
crossref_primary_10_1002_advs_202105742
crossref_primary_10_1002_admt_202302048
crossref_primary_10_1016_j_cej_2024_151231
crossref_primary_10_1039_D3TC03159D
crossref_primary_10_1039_D2TA05388H
crossref_primary_10_1002_adfm_202112293
crossref_primary_10_1021_acsami_2c14696
crossref_primary_10_1039_D1TA02635F
crossref_primary_10_1002_aelm_202400408
crossref_primary_10_1021_acs_chemmater_1c03386
crossref_primary_10_1002_adma_202406967
crossref_primary_10_1021_acsapm_2c01568
crossref_primary_10_1039_D2TC02573F
crossref_primary_10_1002_adfm_202405130
crossref_primary_10_1039_D4TC05252H
crossref_primary_10_1080_17452759_2021_1980283
crossref_primary_10_1002_adfm_202209787
crossref_primary_10_1002_aenm_202301159
crossref_primary_10_1002_marc_202200480
crossref_primary_10_1016_j_colsurfa_2023_132349
crossref_primary_10_1021_acsami_2c07963
crossref_primary_10_1039_D4TA02029D
crossref_primary_10_1002_chem_202301800
crossref_primary_10_1021_acs_iecr_4c04144
crossref_primary_10_1002_admt_202300553
crossref_primary_10_1002_marc_202400418
crossref_primary_10_1002_adfm_202307011
crossref_primary_10_1002_adma_202204333
crossref_primary_10_3390_ma17010123
crossref_primary_10_1002_admt_202202088
crossref_primary_10_1016_j_addma_2024_104536
crossref_primary_10_1002_advs_202401869
crossref_primary_10_1007_s12274_023_5612_3
crossref_primary_10_1002_marc_202100480
crossref_primary_10_1016_j_cej_2024_154605
crossref_primary_10_1039_D4MH01003E
crossref_primary_10_1142_S1758825124500832
crossref_primary_10_1021_acsami_4c03559
crossref_primary_10_1016_j_carbpol_2025_123366
crossref_primary_10_1021_acsnano_1c03830
crossref_primary_10_1021_acsaelm_2c01209
crossref_primary_10_1039_D3TA00835E
crossref_primary_10_3390_polym16071013
crossref_primary_10_1021_acsami_2c09576
crossref_primary_10_1039_D4TA01001A
crossref_primary_10_1002_adma_202209581
crossref_primary_10_1002_smll_202207334
crossref_primary_10_1021_acsaelm_2c00118
crossref_primary_10_1016_j_cej_2024_151455
crossref_primary_10_1016_j_cej_2022_136142
crossref_primary_10_1021_acsami_2c18954
crossref_primary_10_1021_acsami_5c01250
crossref_primary_10_1016_j_cej_2022_140763
crossref_primary_10_1016_j_nanoen_2021_106329
crossref_primary_10_1039_D3TA02874G
crossref_primary_10_1002_adma_202309568
crossref_primary_10_1039_D4TA03238A
crossref_primary_10_1002_admt_202201566
Cites_doi 10.1038/s41467-018-03269-x
10.1073/pnas.1502870112
10.1002/adfm.201901721
10.1021/mz5002355
10.1016/j.eml.2015.03.001
10.3390/s17112621
10.1039/C8MH01188E
10.1016/j.eml.2016.10.002
10.1002/adma.201700321
10.1038/nmat3115
10.1002/adma.202070048
10.1021/am501130t
10.1021/acs.chemmater.9b02039
10.1126/sciadv.aax0648
10.1039/C9MH01699F
10.1021/acs.chemmater.8b01172
10.1021/acsami.7b07445
10.1002/adfm.201907290
10.1039/C9MH00715F
10.1002/adma.201704253
10.1002/adfm.201900971
10.1038/s41467-019-14054-9
10.1021/acsami.8b10672
10.1126/sciadv.1700015
10.1038/s41578-018-0018-7
10.1038/s41467-019-11364-w
10.1002/adfm.201802343
10.1002/adfm.201909252
10.1038/s41467-019-13362-4
10.1002/adma.201605099
10.1016/j.jmps.2019.06.018
10.1002/polb.24781
10.1002/adma.201504031
10.1126/science.1240228
10.1038/s41467-018-05165-w
10.1038/s41467-018-03954-x
10.1002/adma.201403441
10.1002/adfm.201909736
10.1016/j.eml.2019.03.001
10.1039/C9TA04840E
10.1002/adma.201702181
10.1126/science.aaf8810
10.1126/science.aay8467
10.1021/acs.nanolett.5b03069
10.1021/acsami.9b10146
10.1002/adma.201700533
10.1021/ja01185a065
10.1002/anie.201915623
10.1039/C6TA02621D
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202006111
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33576145
10_1002_adma_202006111
ADMA202006111
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11802269; 12072314
– fundername: One‐Hundred Talents Program of Zhejiang University
– fundername: One-Hundred Talents Program of Zhejiang University
– fundername: National Natural Science Foundation of China
  grantid: 12072314
– fundername: National Natural Science Foundation of China
  grantid: 11802269
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c5121-e8c8d768dfeaaccbe89d1cd6608c7f8ab0ee503a9bc85fa6d6d0f066104d43ed3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:33:14 EDT 2025
Fri Jul 25 06:28:25 EDT 2025
Wed Feb 19 02:29:38 EST 2025
Thu Apr 24 22:54:00 EDT 2025
Tue Jul 01 02:32:58 EDT 2025
Wed Jan 22 16:29:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords ionic conductive elastomers
3D-printability
conductivity
mechanical properties
ionotronics
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5121-e8c8d768dfeaaccbe89d1cd6608c7f8ab0ee503a9bc85fa6d6d0f066104d43ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8459-515X
PMID 33576145
PQID 2501877827
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2489253884
proquest_journals_2501877827
pubmed_primary_33576145
crossref_primary_10_1002_adma_202006111
crossref_citationtrail_10_1002_adma_202006111
wiley_primary_10_1002_adma_202006111_ADMA202006111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2015; 15
2018; 28
2017; 3
2019; 6
2015; 3
2019; 5
2019; 31
2019; 30
2019; 11
2019; 10
2019; 57
2014; 26
2020; 59
2011; 10
2017; 29
2013; 341
2020; 367
2020; 32
2017; 9
2016; 4
2018; 6
2020; 7
2018; 9
2020; 2020
2014; 3
2020; 1
2020; 30
2017; 17
2015; 112
2017; 10
2019; 28
2016; 353
1947; 70
2019; 29
2018; 30
2016; 28
2018; 10
2014; 10
2019; 131
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
Shi L. (e_1_2_5_3_1) 2020; 2020
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 31
  start-page: 5881
  year: 2019
  publication-title: Chem. Mater.
– volume: 6
  start-page: 125
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 846
  year: 2018
  publication-title: Nat. Commun.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 477
  year: 2020
  publication-title: Mater. Horiz.
– volume: 3
  start-page: 520
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 17
  start-page: 2621
  year: 2017
  publication-title: Sensors
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 353
  start-page: 682
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 3429
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 326
  year: 2019
  publication-title: Mater. Horiz.
– volume: 10
  start-page: 817
  year: 2011
  publication-title: Nat. Mater.
– volume: 57
  start-page: 272
  year: 2019
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 131
  start-page: 43
  year: 2019
  publication-title: J. Mech. Phys. Solids
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 70
  start-page: 1870
  year: 1947
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 50
  year: 2017
  publication-title: Extreme Mech. Lett.
– volume: 10
  start-page: 5384
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 912
  year: 2020
  publication-title: Mater. Horiz.
– volume: 112
  start-page: 8971
  year: 2015
  publication-title: Proc. Natl. Acad. Sci., USA
– volume: 30
  start-page: 3110
  year: 2018
  publication-title: Chem. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 209
  year: 2020
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 6276
  year: 2015
  publication-title: Nano Lett.
– volume: 3
  start-page: 59
  year: 2015
  publication-title: Extreme Mech. Lett.
– volume: 26
  start-page: 7608
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1804
  year: 2018
  publication-title: Nat. Commun.
– volume: 341
  start-page: 984
  year: 2013
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 2020
  start-page: 1
  year: 2020
  publication-title: Research
– volume: 10
  start-page: 7840
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 367
  start-page: 773
  year: 2020
  publication-title: Science
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 81
  year: 2019
  publication-title: Extreme Mech. Lett.
– volume: 28
  start-page: 4480
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2630
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_5_19_1
  doi: 10.1038/s41467-018-03269-x
– ident: e_1_2_5_31_1
  doi: 10.1073/pnas.1502870112
– volume: 2020
  start-page: 1
  year: 2020
  ident: e_1_2_5_3_1
  publication-title: Research
– ident: e_1_2_5_20_1
  doi: 10.1002/adfm.201901721
– ident: e_1_2_5_35_1
  doi: 10.1021/mz5002355
– ident: e_1_2_5_5_1
  doi: 10.1016/j.eml.2015.03.001
– ident: e_1_2_5_44_1
  doi: 10.3390/s17112621
– ident: e_1_2_5_48_1
  doi: 10.1039/C8MH01188E
– ident: e_1_2_5_39_1
  doi: 10.1016/j.eml.2016.10.002
– ident: e_1_2_5_12_1
  doi: 10.1002/adma.201700321
– ident: e_1_2_5_32_1
  doi: 10.1038/nmat3115
– ident: e_1_2_5_37_1
  doi: 10.1002/adma.202070048
– ident: e_1_2_5_18_1
  doi: 10.1021/am501130t
– ident: e_1_2_5_47_1
  doi: 10.1021/acs.chemmater.9b02039
– ident: e_1_2_5_21_1
  doi: 10.1126/sciadv.aax0648
– ident: e_1_2_5_26_1
  doi: 10.1039/C9MH01699F
– ident: e_1_2_5_45_1
  doi: 10.1021/acs.chemmater.8b01172
– ident: e_1_2_5_43_1
  doi: 10.1021/acsami.7b07445
– ident: e_1_2_5_22_1
  doi: 10.1002/adfm.201907290
– ident: e_1_2_5_13_1
  doi: 10.1039/C9MH00715F
– ident: e_1_2_5_34_1
  doi: 10.1002/adma.201704253
– ident: e_1_2_5_50_1
  doi: 10.1002/adfm.201900971
– ident: e_1_2_5_4_1
  doi: 10.1038/s41467-019-14054-9
– ident: e_1_2_5_2_1
  doi: 10.1021/acsami.8b10672
– ident: e_1_2_5_15_1
  doi: 10.1126/sciadv.1700015
– ident: e_1_2_5_10_1
  doi: 10.1038/s41578-018-0018-7
– ident: e_1_2_5_25_1
  doi: 10.1038/s41467-019-11364-w
– ident: e_1_2_5_49_1
  doi: 10.1002/adfm.201802343
– ident: e_1_2_5_28_1
  doi: 10.1002/adfm.201909252
– ident: e_1_2_5_36_1
  doi: 10.1038/s41467-019-13362-4
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201605099
– ident: e_1_2_5_38_1
  doi: 10.1016/j.jmps.2019.06.018
– ident: e_1_2_5_6_1
  doi: 10.1002/polb.24781
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201504031
– ident: e_1_2_5_14_1
  doi: 10.1126/science.1240228
– ident: e_1_2_5_29_1
  doi: 10.1038/s41467-018-05165-w
– ident: e_1_2_5_7_1
  doi: 10.1038/s41467-018-03954-x
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.201403441
– ident: e_1_2_5_23_1
  doi: 10.1002/adfm.201909736
– ident: e_1_2_5_8_1
  doi: 10.1016/j.eml.2019.03.001
– ident: e_1_2_5_33_1
  doi: 10.1039/C9TA04840E
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201702181
– ident: e_1_2_5_1_1
  doi: 10.1126/science.aaf8810
– ident: e_1_2_5_27_1
  doi: 10.1126/science.aay8467
– ident: e_1_2_5_41_1
  doi: 10.1021/acs.nanolett.5b03069
– ident: e_1_2_5_46_1
  doi: 10.1021/acsami.9b10146
– ident: e_1_2_5_42_1
  doi: 10.1002/adma.201700533
– ident: e_1_2_5_17_1
  doi: 10.1021/ja01185a065
– ident: e_1_2_5_40_1
  doi: 10.1002/anie.201915623
– ident: e_1_2_5_30_1
  doi: 10.1039/C6TA02621D
SSID ssj0009606
Score 2.696232
Snippet Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2006111
SubjectTerms 3D‐printability
conductivity
Conductors
Copolymers
Elastomers
Evaporation
Hydrogels
Hydrogen bonds
Ion currents
ionic conductive elastomers
ionotronics
Leakage
Lithium
Mechanical properties
Nanogenerators
Stretchability
Three dimensional printing
Toughness
Title A Mechanically Robust and Versatile Liquid‐Free Ionic Conductive Elastomer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006111
https://www.ncbi.nlm.nih.gov/pubmed/33576145
https://www.proquest.com/docview/2501877827
https://www.proquest.com/docview/2489253884
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTu2htIXCttvKSJU4GbKJ43WOK8qKVmwPCCRukX8mEmJJYDc5wKmP0Gfsk3TG2Q1sUYVEj1HsxPHMeL5xZj4z9gWMUYX1XqD3L4S0w0JYBVpEMSSkRVaGurXJD3V0Jr-fp-cPqvhbfohuw40sI6zXZODGzvfvSUOND7xBFBIPQnEvJWwRKjq5548ieB7I9pJUZErqJWtjFO-vdl_1So-g5ipyDa5nvM7MctBtxsnlXlPbPXf3F5_j_3zVG_Z6gUv5qFWkt-wFlO_YqwdshRvseMQnQIXCJNfpLT-pbDOvuSk9p103FPEU-PHFTXPhf__8NZ4B8G9EvMsPqpJYZXFd5YcI1uvqCmab7Gx8eHpwJBaHMQiHmGAgQDvtMTbxBYrXOQs68wPnlYq0Gxba2AggjRKTWafTwiivfFQgnsFwz8sEfPKerZVVCduMA-KGJIuyQhP_YGqzSGmT4pMlFdKC7DGxFEbuFkzldGDGNG85luOcZinvZqnHdrv21y1Hxz9b9peyzRe2Os9j4jQcIlIa9thOdxutjH6dmBKqBttIncXoGzQObqvVie5VSYIx20CmPRYHyT4xhnz0dTLqrj48p9NH9jKm1JqQCtdna_WsgU-IjWr7Oej_H-9LBOE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcigcgPK7UIorVeLkNps4Xue4Kl1tYbeHqpW4Rf6ZSBVLAtvkACcegWfkSZhxNikLqpDKMYqdOB6P55vJzGfG9sEYVVjvBVr_Qkg7KoRVoEUUQ0KryMpQtzY_VdML-e5D2mUTUi1Myw_RB9xIM8J-TQpOAenDa9ZQ4wNxEPnEQ6ruvUPHegev6uyaQYoAeqDbS1KRKak73sYoPlzvv26X_gKb69g1GJ_JA2a7Ybc5Jx8PmtoeuG9_MDr-13c9ZPdX0JSP27W0zTagfMTu_UZY-JjNxnwOVCtMol185WeVba5qbkrPKfCGUl4An11-aS79z-8_JksAfkLcu_yoKolYFrdWfox4va4-wfIJu5gcnx9Nxeo8BuEQFgwFaKc9uie-QAk7Z0Fnfui8UpF2o0IbGwGkUWIy63RaGOWVjwqENOjxeZmAT56yzbIq4TnjgNAhyaKs0ERBmNosUtqk-GRJtbQgB0x00sjdiqyczsxY5C3NcpzTLOX9LA3Ym77955am48aWO51w85W6XuUx0RqOECyNBmyvv42KRn9PTAlVg22kzmI0DxoH96xdFP2rkgTdtqFMBywOov3HGPLx2_m4v3pxm06v2db0fD7LZyen71-yuzFl2oTMuB22WS8beIVQqba7QRl-AUHzCPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE48CivpQWMVImT22zieJ3jqttVS3crVFGpt8iPsVSxJGWbHODET-A38ks6k-ym3SJUCY5R7MTxzHi-cWY-M7YNxqhgvRfo_YOQdhCEVaBFFENCWmRlU7c2PVYHp_LjWXp2o4q_5YfoNtzIMpr1mgz8wofda9JQ4xveIAqJ-1Tce0-qSJNej06uCaQInzdse0kqMiX1krYxindX-6-6pT-w5ip0bXzP-DEzy1G3KSdfdurK7rgftwgd_-eznrBHC2DKh60mPWVrUGywhzfoCp-xyZBPgSqFSbCz7_yktPVlxU3hOW27oYxnwCfn3-pz__vnr_EcgB8S8y7fKwuilcWFle8jWq_KrzB_zk7H-5_3DsTiNAbhEBT0BWinPQYnPqB8nbOgM993XuGsu0HQxkYAaZSYzDqdBqO88lFAQIPxnpcJ-OQFWy_KAl4xDggckizKgiYCwtRmkdImxSdLqqQF2WNiKYzcLajK6cSMWd6SLMc5zVLezVKPfejaX7QkHX9tubWUbb4w1ss8JlLDAUKlQY-9726jmdG_E1NAWWMbqbMYnYPGwb1sdaJ7VZJg0NaXaY_FjWTvGEM-HE2H3dXrf-n0jt3_NBrnk8Pjo032IKY0myYtboutV_Ma3iBOquzbxhSuADMAB7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mechanically+Robust+and+Versatile+Liquid%E2%80%90Free+Ionic+Conductive+Elastomer&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Burebi+Yiming&rft.au=Han%2C+Ying&rft.au=Han%2C+Zilong&rft.au=Zhang%2C+Xinning&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202006111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon