A Mechanically Robust and Versatile Liquid‐Free Ionic Conductive Elastomer
Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hos...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 11; pp. e2006111 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self‐healing, quick self‐recovery, and 3D‐printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness—a compromise well recognized in mechanics and material science—and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid‐free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel‐based devices, such as leakage, evaporation, and weak hydrogel–elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.
A novel liquid‐free ionic conductive elastomer (ICE) that possesses excellent mechanical properties and overcomes some of the intrinsic shortcomings of gel‐based ionic conductors, for example leakage and evaporation, is designed. A series of ICE‐based liquid‐free ionotronic devices, including resistive sensors, ionic skins, and triboelectric nanogenerators, is presented. The processability of the material is further demonstrated via 3D printing. |
---|---|
AbstractList | Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self‐healing, quick self‐recovery, and 3D‐printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness—a compromise well recognized in mechanics and material science—and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid‐free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel‐based devices, such as leakage, evaporation, and weak hydrogel–elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.
A novel liquid‐free ionic conductive elastomer (ICE) that possesses excellent mechanical properties and overcomes some of the intrinsic shortcomings of gel‐based ionic conductors, for example leakage and evaporation, is designed. A series of ICE‐based liquid‐free ionotronic devices, including resistive sensors, ionic skins, and triboelectric nanogenerators, is presented. The processability of the material is further demonstrated via 3D printing. Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid‐free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self‐healing, quick self‐recovery, and 3D‐printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness—a compromise well recognized in mechanics and material science—and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid‐free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel‐based devices, such as leakage, evaporation, and weak hydrogel–elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability. Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability. |
Author | Zhang, Xinning Han, Zilong Yiming, Burebi Qu, Shaoxing Jia, Zheng Lian, Weizhen Wu, Ziliang Han, Ying Li, Tiefeng Sun, Taolin Fu, Jianzhong Yin, Jun Zhang, Mingqi Li, Yang |
Author_xml | – sequence: 1 givenname: Burebi surname: Yiming fullname: Yiming, Burebi organization: Zhejiang University – sequence: 2 givenname: Ying surname: Han fullname: Han, Ying organization: Zhejiang University – sequence: 3 givenname: Zilong surname: Han fullname: Han, Zilong organization: Zhejiang University – sequence: 4 givenname: Xinning surname: Zhang fullname: Zhang, Xinning organization: Zhejiang University – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang organization: Zhejiang University – sequence: 6 givenname: Weizhen surname: Lian fullname: Lian, Weizhen organization: South China University of Technology – sequence: 7 givenname: Mingqi surname: Zhang fullname: Zhang, Mingqi organization: Zhejiang University – sequence: 8 givenname: Jun surname: Yin fullname: Yin, Jun email: junyin@zju.edu.cn organization: Zhejiang University – sequence: 9 givenname: Taolin surname: Sun fullname: Sun, Taolin email: suntl@scut.edu.cn organization: South China University of Technology – sequence: 10 givenname: Ziliang surname: Wu fullname: Wu, Ziliang organization: Zhejiang University – sequence: 11 givenname: Tiefeng surname: Li fullname: Li, Tiefeng organization: Zhejiang University – sequence: 12 givenname: Jianzhong surname: Fu fullname: Fu, Jianzhong organization: Zhejiang University – sequence: 13 givenname: Zheng orcidid: 0000-0001-8459-515X surname: Jia fullname: Jia, Zheng email: zheng.jia@zju.edu.cn organization: Zhejiang University – sequence: 14 givenname: Shaoxing surname: Qu fullname: Qu, Shaoxing organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33576145$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMoOl62LqXgxs2MJ22TpsthvMKIIOo2pMkpRtpGk1aZnY_gM_okRsYLCOLqbL7vnMP_b5LVznVIyC6FCQVID5Vp1SSFFIBTSlfIiLKUjnMo2SoZQZmxcclzsUE2Q7gHgJIDXycbWcYKTnM2IvNpcoH6TnVWq6ZZJFeuGkKfqM4kt-iD6m2Dydw-Dta8vbyeeMTk3EU4mbnODLq3T5gcNyr0rkW_TdZq1QTc-Zxb5Obk-Hp2Np5fnp7PpvOxZjR-h0ILU3BhalRK6wpFaag2nIPQRS1UBYgMMlVWWrBaccMN1MA5hdzkGZpsixws9z549zhg6GVrg8amUR26Icg0F2XKMiHyiO7_Qu_d4Lv4nUwZUFEUIi0itfdJDVWLRj542yq_kF85RWCyBLR3IXisvxEK8qMI-VGE_C4iCvkvQds-pum63ivb_K2VS-055r7454icHl1Mf9x3xRedRQ |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110630 crossref_primary_10_1002_advs_202106008 crossref_primary_10_1016_j_cej_2023_142312 crossref_primary_10_1002_adfm_202308686 crossref_primary_10_1039_D3MH01812A crossref_primary_10_1126_sciadv_adi8505 crossref_primary_10_1016_j_cej_2024_157534 crossref_primary_10_1016_j_jmps_2024_105800 crossref_primary_10_1002_adma_202500770 crossref_primary_10_1016_j_cej_2025_159437 crossref_primary_10_1007_s40820_024_01535_w crossref_primary_10_1021_acsami_1c05833 crossref_primary_10_1039_D3TA02053C crossref_primary_10_1063_5_0104765 crossref_primary_10_1002_adfm_202301921 crossref_primary_10_1016_j_carbpol_2022_119268 crossref_primary_10_1126_sciadv_adq7441 crossref_primary_10_1002_adhm_202202531 crossref_primary_10_1021_acs_macromol_2c00492 crossref_primary_10_1002_adma_202108586 crossref_primary_10_1016_j_cej_2023_145497 crossref_primary_10_1016_j_coco_2021_101049 crossref_primary_10_1007_s12613_024_2938_0 crossref_primary_10_1039_D2CS00173J crossref_primary_10_1016_j_cej_2023_145811 crossref_primary_10_1039_D2MH00880G crossref_primary_10_1021_acsami_2c06682 crossref_primary_10_1016_j_jcis_2022_12_101 crossref_primary_10_1016_j_polymer_2022_125543 crossref_primary_10_1002_adfm_202107105 crossref_primary_10_1016_j_eurpolymj_2024_112999 crossref_primary_10_1039_D1TA09769E crossref_primary_10_1002_app_52607 crossref_primary_10_1039_D4LC00247D crossref_primary_10_1021_acs_macromol_2c01234 crossref_primary_10_1002_adma_202101396 crossref_primary_10_1002_adma_202105996 crossref_primary_10_1016_j_cej_2023_143072 crossref_primary_10_1021_acsaem_4c02391 crossref_primary_10_1016_j_trac_2024_117662 crossref_primary_10_1038_s41467_021_24382_4 crossref_primary_10_1016_j_cej_2025_159776 crossref_primary_10_1002_adma_202203049 crossref_primary_10_1016_j_cej_2022_139208 crossref_primary_10_1021_acsnano_2c11734 crossref_primary_10_1016_j_cej_2022_135644 crossref_primary_10_1016_j_cej_2022_140796 crossref_primary_10_1039_D2TA06987C crossref_primary_10_1002_adfm_202206424 crossref_primary_10_1002_smtd_202402190 crossref_primary_10_1016_j_apmt_2023_101777 crossref_primary_10_1021_acsami_3c18512 crossref_primary_10_1016_j_nanoen_2024_109500 crossref_primary_10_1039_D3MH02217J crossref_primary_10_1016_j_cej_2024_150688 crossref_primary_10_1016_j_ijbiomac_2024_131129 crossref_primary_10_1002_adfm_202107006 crossref_primary_10_1021_acsami_3c02970 crossref_primary_10_1016_j_carbpol_2023_120654 crossref_primary_10_1016_j_xcrp_2024_102107 crossref_primary_10_1002_adma_202311795 crossref_primary_10_1002_anie_202319003 crossref_primary_10_1016_j_cej_2022_136741 crossref_primary_10_1002_adfm_202305499 crossref_primary_10_1016_j_cej_2022_140328 crossref_primary_10_1002_adma_202411131 crossref_primary_10_1039_D1TA06724A crossref_primary_10_1039_D4MH00338A crossref_primary_10_1016_j_nanoen_2022_107359 crossref_primary_10_1038_s41467_022_32517_4 crossref_primary_10_1016_j_cej_2024_149330 crossref_primary_10_1002_adma_202211342 crossref_primary_10_1002_adma_202300447 crossref_primary_10_1080_19475411_2023_2255554 crossref_primary_10_1016_j_cej_2023_147405 crossref_primary_10_1002_smtd_202401156 crossref_primary_10_1016_j_cej_2023_143603 crossref_primary_10_1021_acsnano_4c08896 crossref_primary_10_1021_acsami_2c00950 crossref_primary_10_1007_s42114_023_00658_9 crossref_primary_10_1002_aelm_202400356 crossref_primary_10_1002_adfm_202307543 crossref_primary_10_1016_j_nanoen_2021_106611 crossref_primary_10_1021_acsapm_3c02114 crossref_primary_10_1021_acsapm_4c02324 crossref_primary_10_3389_fmats_2022_1118943 crossref_primary_10_1016_j_cossms_2024_101213 crossref_primary_10_3390_gels10110720 crossref_primary_10_1016_j_trac_2024_118027 crossref_primary_10_1021_jacsau_2c00489 crossref_primary_10_1016_j_snb_2025_137304 crossref_primary_10_1002_adfm_202102773 crossref_primary_10_1021_acsami_3c01585 crossref_primary_10_1021_acsami_3c05943 crossref_primary_10_1021_acsapm_1c00773 crossref_primary_10_1016_j_mtphys_2024_101448 crossref_primary_10_1002_advs_202408657 crossref_primary_10_1002_adfm_202402815 crossref_primary_10_1016_j_nanoen_2021_106619 crossref_primary_10_1016_j_colsurfa_2023_132081 crossref_primary_10_1016_j_ijbiomac_2024_136115 crossref_primary_10_1002_adma_202400103 crossref_primary_10_1039_D4TA02305F crossref_primary_10_1007_s40843_022_2286_5 crossref_primary_10_1002_app_53852 crossref_primary_10_1002_admt_202200413 crossref_primary_10_1016_j_cej_2025_159292 crossref_primary_10_1039_D4TC00256C crossref_primary_10_1002_advs_202300857 crossref_primary_10_1039_D3MH01587D crossref_primary_10_1002_admt_202301123 crossref_primary_10_1002_adfm_202303292 crossref_primary_10_1002_batt_202300190 crossref_primary_10_1021_acsami_4c02182 crossref_primary_10_1002_adfm_202307400 crossref_primary_10_1039_D3MH00612C crossref_primary_10_1039_D3MH01138K crossref_primary_10_1039_D4TA09222H crossref_primary_10_1021_acsami_1c10717 crossref_primary_10_1039_D2SM00733A crossref_primary_10_1016_j_isci_2021_103174 crossref_primary_10_1016_j_cej_2023_147069 crossref_primary_10_1002_marc_202200512 crossref_primary_10_1039_D2MH00109H crossref_primary_10_1038_s41563_024_01848_6 crossref_primary_10_1002_adfm_202110859 crossref_primary_10_1002_app_56221 crossref_primary_10_1002_adfm_202402952 crossref_primary_10_1002_smll_202200421 crossref_primary_10_1016_j_polymer_2022_125600 crossref_primary_10_1002_adma_202300114 crossref_primary_10_1021_acsami_3c05802 crossref_primary_10_1002_adfm_202208083 crossref_primary_10_1002_advs_202201059 crossref_primary_10_1021_acsapm_4c01239 crossref_primary_10_1002_adfm_202304486 crossref_primary_10_1016_j_cej_2022_137633 crossref_primary_10_1016_j_cej_2024_154672 crossref_primary_10_1016_j_cej_2025_159502 crossref_primary_10_1039_D2SM00865C crossref_primary_10_1016_j_eurpolymj_2023_112471 crossref_primary_10_1039_D3MH02008H crossref_primary_10_1021_acs_macromol_2c00161 crossref_primary_10_1016_j_matchemphys_2023_127791 crossref_primary_10_1002_adfm_202422755 crossref_primary_10_1039_D2TB00839D crossref_primary_10_1002_ange_202319003 crossref_primary_10_1002_smll_202304828 crossref_primary_10_1038_s41467_024_44848_5 crossref_primary_10_2139_ssrn_4160466 crossref_primary_10_1039_D4TC01732C crossref_primary_10_1002_marc_202400362 crossref_primary_10_1016_j_cclet_2024_110554 crossref_primary_10_1016_j_sna_2022_113538 crossref_primary_10_1038_s41467_023_40583_5 crossref_primary_10_1021_acs_langmuir_2c01749 crossref_primary_10_1016_j_cej_2022_135593 crossref_primary_10_1016_j_colsurfa_2024_134196 crossref_primary_10_1021_acsami_3c09780 crossref_primary_10_1007_s12274_023_6194_9 crossref_primary_10_1016_j_jcis_2025_01_034 crossref_primary_10_1002_adfm_202412377 crossref_primary_10_1080_19475411_2021_1972053 crossref_primary_10_1002_adma_202408826 crossref_primary_10_1016_j_cej_2022_140022 crossref_primary_10_1038_s41467_024_55472_8 crossref_primary_10_1016_j_progpolymsci_2025_101944 crossref_primary_10_1039_D4TA05313C crossref_primary_10_1002_adma_202308547 crossref_primary_10_1039_D2PY01448C crossref_primary_10_1021_acsami_3c04187 crossref_primary_10_1002_adfm_202306086 crossref_primary_10_1016_j_polymer_2023_126501 crossref_primary_10_1002_pol_20220245 crossref_primary_10_1021_acs_macromol_2c01838 crossref_primary_10_1002_adma_202419002 crossref_primary_10_1021_acsapm_4c01611 crossref_primary_10_1002_adma_202403905 crossref_primary_10_1016_j_cej_2024_154762 crossref_primary_10_1021_acsami_2c15356 crossref_primary_10_1016_j_cej_2023_147382 crossref_primary_10_1002_adfm_202110244 crossref_primary_10_1016_j_cej_2024_154409 crossref_primary_10_1016_j_cej_2024_151917 crossref_primary_10_1002_adma_202210092 crossref_primary_10_1021_acsapm_2c00527 crossref_primary_10_1021_acs_iecr_4c00835 crossref_primary_10_1016_j_colsurfa_2022_128897 crossref_primary_10_1016_j_porgcoat_2022_107079 crossref_primary_10_1021_acssensors_3c00579 crossref_primary_10_1021_acsami_2c14394 crossref_primary_10_1002_adma_202405776 crossref_primary_10_1007_s10570_022_04800_6 crossref_primary_10_1002_adfm_202313397 crossref_primary_10_1002_adma_202103755 crossref_primary_10_1002_cjoc_202200631 crossref_primary_10_1557_s43578_021_00243_0 crossref_primary_10_1016_j_eurpolymj_2022_111695 crossref_primary_10_1039_D3MH01719B crossref_primary_10_1002_adfm_202101957 crossref_primary_10_1016_j_mattod_2023_11_014 crossref_primary_10_1016_j_polymer_2023_126166 crossref_primary_10_1002_adfm_202416701 crossref_primary_10_1021_acs_chemmater_2c01759 crossref_primary_10_1002_smll_202303415 crossref_primary_10_1039_D4TC03248A crossref_primary_10_1039_D4MH00648H crossref_primary_10_1021_acsami_1c16081 crossref_primary_10_3389_fbioe_2023_1335188 crossref_primary_10_1002_aelm_202300069 crossref_primary_10_1016_j_apmt_2023_101756 crossref_primary_10_1007_s10118_024_3203_8 crossref_primary_10_1021_acs_iecr_1c03330 crossref_primary_10_1002_advs_202105742 crossref_primary_10_1002_admt_202302048 crossref_primary_10_1016_j_cej_2024_151231 crossref_primary_10_1039_D3TC03159D crossref_primary_10_1039_D2TA05388H crossref_primary_10_1002_adfm_202112293 crossref_primary_10_1021_acsami_2c14696 crossref_primary_10_1039_D1TA02635F crossref_primary_10_1002_aelm_202400408 crossref_primary_10_1021_acs_chemmater_1c03386 crossref_primary_10_1002_adma_202406967 crossref_primary_10_1021_acsapm_2c01568 crossref_primary_10_1039_D2TC02573F crossref_primary_10_1002_adfm_202405130 crossref_primary_10_1039_D4TC05252H crossref_primary_10_1080_17452759_2021_1980283 crossref_primary_10_1002_adfm_202209787 crossref_primary_10_1002_aenm_202301159 crossref_primary_10_1002_marc_202200480 crossref_primary_10_1016_j_colsurfa_2023_132349 crossref_primary_10_1021_acsami_2c07963 crossref_primary_10_1039_D4TA02029D crossref_primary_10_1002_chem_202301800 crossref_primary_10_1021_acs_iecr_4c04144 crossref_primary_10_1002_admt_202300553 crossref_primary_10_1002_marc_202400418 crossref_primary_10_1002_adfm_202307011 crossref_primary_10_1002_adma_202204333 crossref_primary_10_3390_ma17010123 crossref_primary_10_1002_admt_202202088 crossref_primary_10_1016_j_addma_2024_104536 crossref_primary_10_1002_advs_202401869 crossref_primary_10_1007_s12274_023_5612_3 crossref_primary_10_1002_marc_202100480 crossref_primary_10_1016_j_cej_2024_154605 crossref_primary_10_1039_D4MH01003E crossref_primary_10_1142_S1758825124500832 crossref_primary_10_1021_acsami_4c03559 crossref_primary_10_1016_j_carbpol_2025_123366 crossref_primary_10_1021_acsnano_1c03830 crossref_primary_10_1021_acsaelm_2c01209 crossref_primary_10_1039_D3TA00835E crossref_primary_10_3390_polym16071013 crossref_primary_10_1021_acsami_2c09576 crossref_primary_10_1039_D4TA01001A crossref_primary_10_1002_adma_202209581 crossref_primary_10_1002_smll_202207334 crossref_primary_10_1021_acsaelm_2c00118 crossref_primary_10_1016_j_cej_2024_151455 crossref_primary_10_1016_j_cej_2022_136142 crossref_primary_10_1021_acsami_2c18954 crossref_primary_10_1021_acsami_5c01250 crossref_primary_10_1016_j_cej_2022_140763 crossref_primary_10_1016_j_nanoen_2021_106329 crossref_primary_10_1039_D3TA02874G crossref_primary_10_1002_adma_202309568 crossref_primary_10_1039_D4TA03238A crossref_primary_10_1002_admt_202201566 |
Cites_doi | 10.1038/s41467-018-03269-x 10.1073/pnas.1502870112 10.1002/adfm.201901721 10.1021/mz5002355 10.1016/j.eml.2015.03.001 10.3390/s17112621 10.1039/C8MH01188E 10.1016/j.eml.2016.10.002 10.1002/adma.201700321 10.1038/nmat3115 10.1002/adma.202070048 10.1021/am501130t 10.1021/acs.chemmater.9b02039 10.1126/sciadv.aax0648 10.1039/C9MH01699F 10.1021/acs.chemmater.8b01172 10.1021/acsami.7b07445 10.1002/adfm.201907290 10.1039/C9MH00715F 10.1002/adma.201704253 10.1002/adfm.201900971 10.1038/s41467-019-14054-9 10.1021/acsami.8b10672 10.1126/sciadv.1700015 10.1038/s41578-018-0018-7 10.1038/s41467-019-11364-w 10.1002/adfm.201802343 10.1002/adfm.201909252 10.1038/s41467-019-13362-4 10.1002/adma.201605099 10.1016/j.jmps.2019.06.018 10.1002/polb.24781 10.1002/adma.201504031 10.1126/science.1240228 10.1038/s41467-018-05165-w 10.1038/s41467-018-03954-x 10.1002/adma.201403441 10.1002/adfm.201909736 10.1016/j.eml.2019.03.001 10.1039/C9TA04840E 10.1002/adma.201702181 10.1126/science.aaf8810 10.1126/science.aay8467 10.1021/acs.nanolett.5b03069 10.1021/acsami.9b10146 10.1002/adma.201700533 10.1021/ja01185a065 10.1002/anie.201915623 10.1039/C6TA02621D |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006111 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33576145 10_1002_adma_202006111 ADMA202006111 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11802269; 12072314 – fundername: One‐Hundred Talents Program of Zhejiang University – fundername: One-Hundred Talents Program of Zhejiang University – fundername: National Natural Science Foundation of China grantid: 12072314 – fundername: National Natural Science Foundation of China grantid: 11802269 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c5121-e8c8d768dfeaaccbe89d1cd6608c7f8ab0ee503a9bc85fa6d6d0f066104d43ed3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:33:14 EDT 2025 Fri Jul 25 06:28:25 EDT 2025 Wed Feb 19 02:29:38 EST 2025 Thu Apr 24 22:54:00 EDT 2025 Tue Jul 01 02:32:58 EDT 2025 Wed Jan 22 16:29:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | ionic conductive elastomers 3D-printability conductivity mechanical properties ionotronics |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5121-e8c8d768dfeaaccbe89d1cd6608c7f8ab0ee503a9bc85fa6d6d0f066104d43ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8459-515X |
PMID | 33576145 |
PQID | 2501877827 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2489253884 proquest_journals_2501877827 pubmed_primary_33576145 crossref_primary_10_1002_adma_202006111 crossref_citationtrail_10_1002_adma_202006111 wiley_primary_10_1002_adma_202006111_ADMA202006111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2015; 15 2018; 28 2017; 3 2019; 6 2015; 3 2019; 5 2019; 31 2019; 30 2019; 11 2019; 10 2019; 57 2014; 26 2020; 59 2011; 10 2017; 29 2013; 341 2020; 367 2020; 32 2017; 9 2016; 4 2018; 6 2020; 7 2018; 9 2020; 2020 2014; 3 2020; 1 2020; 30 2017; 17 2015; 112 2017; 10 2019; 28 2016; 353 1947; 70 2019; 29 2018; 30 2016; 28 2018; 10 2014; 10 2019; 131 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 Shi L. (e_1_2_5_3_1) 2020; 2020 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 31 start-page: 5881 year: 2019 publication-title: Chem. Mater. – volume: 6 start-page: 125 year: 2018 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 846 year: 2018 publication-title: Nat. Commun. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 7 start-page: 477 year: 2020 publication-title: Mater. Horiz. – volume: 3 start-page: 520 year: 2014 publication-title: ACS Macro Lett. – volume: 17 start-page: 2621 year: 2017 publication-title: Sensors – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 353 start-page: 682 year: 2016 publication-title: Science – volume: 10 start-page: 3429 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 326 year: 2019 publication-title: Mater. Horiz. – volume: 10 start-page: 817 year: 2011 publication-title: Nat. Mater. – volume: 57 start-page: 272 year: 2019 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 131 start-page: 43 year: 2019 publication-title: J. Mech. Phys. Solids – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 70 start-page: 1870 year: 1947 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 50 year: 2017 publication-title: Extreme Mech. Lett. – volume: 10 start-page: 5384 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 912 year: 2020 publication-title: Mater. Horiz. – volume: 112 start-page: 8971 year: 2015 publication-title: Proc. Natl. Acad. Sci., USA – volume: 30 start-page: 3110 year: 2018 publication-title: Chem. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 209 year: 2020 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 6276 year: 2015 publication-title: Nano Lett. – volume: 3 start-page: 59 year: 2015 publication-title: Extreme Mech. Lett. – volume: 26 start-page: 7608 year: 2014 publication-title: Adv. Mater. – volume: 9 start-page: 1804 year: 2018 publication-title: Nat. Commun. – volume: 341 start-page: 984 year: 2013 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 2020 start-page: 1 year: 2020 publication-title: Research – volume: 10 start-page: 7840 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 367 start-page: 773 year: 2020 publication-title: Science – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 81 year: 2019 publication-title: Extreme Mech. Lett. – volume: 28 start-page: 4480 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 2630 year: 2018 publication-title: Nat. Commun. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_5_19_1 doi: 10.1038/s41467-018-03269-x – ident: e_1_2_5_31_1 doi: 10.1073/pnas.1502870112 – volume: 2020 start-page: 1 year: 2020 ident: e_1_2_5_3_1 publication-title: Research – ident: e_1_2_5_20_1 doi: 10.1002/adfm.201901721 – ident: e_1_2_5_35_1 doi: 10.1021/mz5002355 – ident: e_1_2_5_5_1 doi: 10.1016/j.eml.2015.03.001 – ident: e_1_2_5_44_1 doi: 10.3390/s17112621 – ident: e_1_2_5_48_1 doi: 10.1039/C8MH01188E – ident: e_1_2_5_39_1 doi: 10.1016/j.eml.2016.10.002 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201700321 – ident: e_1_2_5_32_1 doi: 10.1038/nmat3115 – ident: e_1_2_5_37_1 doi: 10.1002/adma.202070048 – ident: e_1_2_5_18_1 doi: 10.1021/am501130t – ident: e_1_2_5_47_1 doi: 10.1021/acs.chemmater.9b02039 – ident: e_1_2_5_21_1 doi: 10.1126/sciadv.aax0648 – ident: e_1_2_5_26_1 doi: 10.1039/C9MH01699F – ident: e_1_2_5_45_1 doi: 10.1021/acs.chemmater.8b01172 – ident: e_1_2_5_43_1 doi: 10.1021/acsami.7b07445 – ident: e_1_2_5_22_1 doi: 10.1002/adfm.201907290 – ident: e_1_2_5_13_1 doi: 10.1039/C9MH00715F – ident: e_1_2_5_34_1 doi: 10.1002/adma.201704253 – ident: e_1_2_5_50_1 doi: 10.1002/adfm.201900971 – ident: e_1_2_5_4_1 doi: 10.1038/s41467-019-14054-9 – ident: e_1_2_5_2_1 doi: 10.1021/acsami.8b10672 – ident: e_1_2_5_15_1 doi: 10.1126/sciadv.1700015 – ident: e_1_2_5_10_1 doi: 10.1038/s41578-018-0018-7 – ident: e_1_2_5_25_1 doi: 10.1038/s41467-019-11364-w – ident: e_1_2_5_49_1 doi: 10.1002/adfm.201802343 – ident: e_1_2_5_28_1 doi: 10.1002/adfm.201909252 – ident: e_1_2_5_36_1 doi: 10.1038/s41467-019-13362-4 – ident: e_1_2_5_24_1 doi: 10.1002/adma.201605099 – ident: e_1_2_5_38_1 doi: 10.1016/j.jmps.2019.06.018 – ident: e_1_2_5_6_1 doi: 10.1002/polb.24781 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201504031 – ident: e_1_2_5_14_1 doi: 10.1126/science.1240228 – ident: e_1_2_5_29_1 doi: 10.1038/s41467-018-05165-w – ident: e_1_2_5_7_1 doi: 10.1038/s41467-018-03954-x – ident: e_1_2_5_11_1 doi: 10.1002/adma.201403441 – ident: e_1_2_5_23_1 doi: 10.1002/adfm.201909736 – ident: e_1_2_5_8_1 doi: 10.1016/j.eml.2019.03.001 – ident: e_1_2_5_33_1 doi: 10.1039/C9TA04840E – ident: e_1_2_5_16_1 doi: 10.1002/adma.201702181 – ident: e_1_2_5_1_1 doi: 10.1126/science.aaf8810 – ident: e_1_2_5_27_1 doi: 10.1126/science.aay8467 – ident: e_1_2_5_41_1 doi: 10.1021/acs.nanolett.5b03069 – ident: e_1_2_5_46_1 doi: 10.1021/acsami.9b10146 – ident: e_1_2_5_42_1 doi: 10.1002/adma.201700533 – ident: e_1_2_5_17_1 doi: 10.1021/ja01185a065 – ident: e_1_2_5_40_1 doi: 10.1002/anie.201915623 – ident: e_1_2_5_30_1 doi: 10.1039/C6TA02621D |
SSID | ssj0009606 |
Score | 2.696232 |
Snippet | Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006111 |
SubjectTerms | 3D‐printability conductivity Conductors Copolymers Elastomers Evaporation Hydrogels Hydrogen bonds Ion currents ionic conductive elastomers ionotronics Leakage Lithium Mechanical properties Nanogenerators Stretchability Three dimensional printing Toughness |
Title | A Mechanically Robust and Versatile Liquid‐Free Ionic Conductive Elastomer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006111 https://www.ncbi.nlm.nih.gov/pubmed/33576145 https://www.proquest.com/docview/2501877827 https://www.proquest.com/docview/2489253884 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTu2htIXCttvKSJU4GbKJ43WOK8qKVmwPCCRukX8mEmJJYDc5wKmP0Gfsk3TG2Q1sUYVEj1HsxPHMeL5xZj4z9gWMUYX1XqD3L4S0w0JYBVpEMSSkRVaGurXJD3V0Jr-fp-cPqvhbfohuw40sI6zXZODGzvfvSUOND7xBFBIPQnEvJWwRKjq5548ieB7I9pJUZErqJWtjFO-vdl_1So-g5ipyDa5nvM7MctBtxsnlXlPbPXf3F5_j_3zVG_Z6gUv5qFWkt-wFlO_YqwdshRvseMQnQIXCJNfpLT-pbDOvuSk9p103FPEU-PHFTXPhf__8NZ4B8G9EvMsPqpJYZXFd5YcI1uvqCmab7Gx8eHpwJBaHMQiHmGAgQDvtMTbxBYrXOQs68wPnlYq0Gxba2AggjRKTWafTwiivfFQgnsFwz8sEfPKerZVVCduMA-KGJIuyQhP_YGqzSGmT4pMlFdKC7DGxFEbuFkzldGDGNG85luOcZinvZqnHdrv21y1Hxz9b9peyzRe2Os9j4jQcIlIa9thOdxutjH6dmBKqBttIncXoGzQObqvVie5VSYIx20CmPRYHyT4xhnz0dTLqrj48p9NH9jKm1JqQCtdna_WsgU-IjWr7Oej_H-9LBOE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcigcgPK7UIorVeLkNps4Xue4Kl1tYbeHqpW4Rf6ZSBVLAtvkACcegWfkSZhxNikLqpDKMYqdOB6P55vJzGfG9sEYVVjvBVr_Qkg7KoRVoEUUQ0KryMpQtzY_VdML-e5D2mUTUi1Myw_RB9xIM8J-TQpOAenDa9ZQ4wNxEPnEQ6ruvUPHegev6uyaQYoAeqDbS1KRKak73sYoPlzvv26X_gKb69g1GJ_JA2a7Ybc5Jx8PmtoeuG9_MDr-13c9ZPdX0JSP27W0zTagfMTu_UZY-JjNxnwOVCtMol185WeVba5qbkrPKfCGUl4An11-aS79z-8_JksAfkLcu_yoKolYFrdWfox4va4-wfIJu5gcnx9Nxeo8BuEQFgwFaKc9uie-QAk7Z0Fnfui8UpF2o0IbGwGkUWIy63RaGOWVjwqENOjxeZmAT56yzbIq4TnjgNAhyaKs0ERBmNosUtqk-GRJtbQgB0x00sjdiqyczsxY5C3NcpzTLOX9LA3Ym77955am48aWO51w85W6XuUx0RqOECyNBmyvv42KRn9PTAlVg22kzmI0DxoH96xdFP2rkgTdtqFMBywOov3HGPLx2_m4v3pxm06v2db0fD7LZyen71-yuzFl2oTMuB22WS8beIVQqba7QRl-AUHzCPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE48CivpQWMVImT22zieJ3jqttVS3crVFGpt8iPsVSxJGWbHODET-A38ks6k-ym3SJUCY5R7MTxzHi-cWY-M7YNxqhgvRfo_YOQdhCEVaBFFENCWmRlU7c2PVYHp_LjWXp2o4q_5YfoNtzIMpr1mgz8wofda9JQ4xveIAqJ-1Tce0-qSJNej06uCaQInzdse0kqMiX1krYxindX-6-6pT-w5ip0bXzP-DEzy1G3KSdfdurK7rgftwgd_-eznrBHC2DKh60mPWVrUGywhzfoCp-xyZBPgSqFSbCz7_yktPVlxU3hOW27oYxnwCfn3-pz__vnr_EcgB8S8y7fKwuilcWFle8jWq_KrzB_zk7H-5_3DsTiNAbhEBT0BWinPQYnPqB8nbOgM993XuGsu0HQxkYAaZSYzDqdBqO88lFAQIPxnpcJ-OQFWy_KAl4xDggckizKgiYCwtRmkdImxSdLqqQF2WNiKYzcLajK6cSMWd6SLMc5zVLezVKPfejaX7QkHX9tubWUbb4w1ss8JlLDAUKlQY-9726jmdG_E1NAWWMbqbMYnYPGwb1sdaJ7VZJg0NaXaY_FjWTvGEM-HE2H3dXrf-n0jt3_NBrnk8Pjo032IKY0myYtboutV_Ma3iBOquzbxhSuADMAB7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mechanically+Robust+and+Versatile+Liquid%E2%80%90Free+Ionic+Conductive+Elastomer&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Burebi+Yiming&rft.au=Han%2C+Ying&rft.au=Han%2C+Zilong&rft.au=Zhang%2C+Xinning&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202006111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |