Telling truth from lie in individual subjects with fast event-related fMRI

Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. Th...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 26; no. 4; pp. 262 - 272
Main Authors Langleben, Daniel D., Loughead, James W., Bilker, Warren B., Ruparel, Kosha, Childress, Anna Rose, Busch, Samantha I., Gur, Ruben C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2005
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
DOI10.1002/hbm.20191

Cover

Abstract Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced‐choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single‐event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Hum Brain Mapp, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced‐choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single‐event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Hum Brain Mapp, 2005. © 2005 Wiley‐Liss, Inc.
Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single-event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms.
Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single-event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms.Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single-event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms.
Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single- event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Hum Brain Mapp, 2005.
Author Langleben, Daniel D.
Loughead, James W.
Bilker, Warren B.
Busch, Samantha I.
Gur, Ruben C.
Childress, Anna Rose
Ruparel, Kosha
AuthorAffiliation 1 University of Pennsylvania, Philadelphia, Pennsylvania
AuthorAffiliation_xml – name: 1 University of Pennsylvania, Philadelphia, Pennsylvania
Author_xml – sequence: 1
  givenname: Daniel D.
  surname: Langleben
  fullname: Langleben, Daniel D.
  email: langlebe@mail.med.upenn.edu
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 2
  givenname: James W.
  surname: Loughead
  fullname: Loughead, James W.
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 3
  givenname: Warren B.
  surname: Bilker
  fullname: Bilker, Warren B.
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 4
  givenname: Kosha
  surname: Ruparel
  fullname: Ruparel, Kosha
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 5
  givenname: Anna Rose
  surname: Childress
  fullname: Childress, Anna Rose
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 6
  givenname: Samantha I.
  surname: Busch
  fullname: Busch, Samantha I.
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 7
  givenname: Ruben C.
  surname: Gur
  fullname: Gur, Ruben C.
  organization: University of Pennsylvania, Philadelphia, Pennsylvania
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17538700$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16161128$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYNU7B998AvIvCj4MG3uzGSSvAi22G3LVkEqPoYkk3RTMzM1yWztt2_W3bYqqCSQC_mdw73n7qKtYRwMQi8B7wPG1cFC9fsVBg5P0A5gTstc11uruiUlbyhso90YrzAGIBieoW1o84GK7aCzC-O9Gy6LFKa0KGwY-8I7U7gh384tXTdJX8RJXRmdYnHjVpCMqTBLM6QyGC-T6Qp7_vn0OXpqpY_mxebdQ1-OP1wcnZTzT7PTo_fzUhOooNSmUqSjnNctrwhWWjJgtbJMN7gBpYhhWIFqiTUd2Ja2pKmBGFrzxlgrm3oPvVv7Xk-qN53OfQTpxXVwvQy3YpRO_P4zuIW4HJeiZRTalmaDNxuDMH6fTEyid1HnHORgxilmjuUAGfkvCBQzwmmVwVe_tvTQy33OGXi9AWTU0tsgB-3iI0dJzSjGmXu75nQYYwzGPiJYrHYt8q7Fz11n9uAPVrskkxtXUzv_L8WN8-b279bi5PD8XlGuFS4m8-NBIcM3kYOkRHz9OBOEz-b8EM_FWX0HLFLIyg
CitedBy_id crossref_primary_10_1016_j_ijpsycho_2013_09_005
crossref_primary_10_1146_annurev_orgpsych_012420_055324
crossref_primary_10_1371_journal_pone_0230837
crossref_primary_10_1080_17470919_2010_544135
crossref_primary_10_1038_srep01636
crossref_primary_10_2478_ep_2022_0005
crossref_primary_10_5812_ans_122202
crossref_primary_10_1016_j_actpsy_2010_05_011
crossref_primary_10_1016_j_bbr_2014_05_059
crossref_primary_10_1016_j_neuroimage_2008_01_035
crossref_primary_10_1162_jocn_2007_19_2_287
crossref_primary_10_1016_j_cmpb_2008_10_001
crossref_primary_10_1111_j_1556_4029_2008_00927_x
crossref_primary_10_1134_S0362119711060090
crossref_primary_10_1016_j_jecp_2017_05_009
crossref_primary_10_1002_ajmg_b_32394
crossref_primary_10_1016_j_jflm_2015_09_008
crossref_primary_10_3389_fnins_2017_00482
crossref_primary_10_1177_009885880703300206
crossref_primary_10_1002_hbm_20378
crossref_primary_10_1186_s12993_014_0046_4
crossref_primary_10_1016_j_pscychresns_2009_03_008
crossref_primary_10_1057_biosoc_2012_21
crossref_primary_10_1016_j_brainres_2011_02_084
crossref_primary_10_1016_j_neulet_2010_05_014
crossref_primary_10_1016_j_neuropsychologia_2010_08_013
crossref_primary_10_1016_j_tics_2007_11_008
crossref_primary_10_1177_009885880703300208
crossref_primary_10_1177_1073858410393359
crossref_primary_10_1002_acp_3214
crossref_primary_10_1080_01973533_2014_881288
crossref_primary_10_1093_scan_nsaa086
crossref_primary_10_1176_ps_2007_58_4_460
crossref_primary_10_1177_009885880703300211
crossref_primary_10_1080_15265160701518755
crossref_primary_10_1080_15265160701290249
crossref_primary_10_1097_01_pra_0000361279_11210_14
crossref_primary_10_1111_j_1526_4637_2009_00567_x
crossref_primary_10_1016_j_jvoice_2024_07_026
crossref_primary_10_1027_1016_9040_a000193
crossref_primary_10_1080_17470910802188370
crossref_primary_10_1371_journal_pone_0048639
crossref_primary_10_1093_scan_nsy069
crossref_primary_10_1155_2013_176027
crossref_primary_10_1371_journal_pone_0064704
crossref_primary_10_1080_17470910802424445
crossref_primary_10_1109_JBHI_2021_3095415
crossref_primary_10_1016_j_neuroimage_2013_10_023
crossref_primary_10_1002_hbm_21337
crossref_primary_10_1186_1471_2105_10_S9_S15
crossref_primary_10_2139_ssrn_1277208
crossref_primary_10_3758_PBR_16_5_901
crossref_primary_10_1093_scan_nsw151
crossref_primary_10_1007_s00221_007_0992_2
crossref_primary_10_3390_brainsci7080094
crossref_primary_10_1016_j_bandc_2008_09_002
crossref_primary_10_1016_j_ijpsycho_2012_04_009
crossref_primary_10_3389_fnbeh_2021_787905
crossref_primary_10_1080_17470910802109939
crossref_primary_10_17759_exppsy_2021140302
crossref_primary_10_1016_j_neucli_2014_04_002
crossref_primary_10_1016_j_neuroscience_2018_06_049
crossref_primary_10_1111_nyas_13098
crossref_primary_10_1016_j_neulet_2012_09_019
crossref_primary_10_1586_17434440_4_4_463
crossref_primary_10_1080_02699050802084894
crossref_primary_10_1007_s00221_017_5052_y
crossref_primary_10_1093_scan_nsp005
crossref_primary_10_1002_hbm_25849
crossref_primary_10_1016_j_tics_2022_06_005
crossref_primary_10_1038_nrn3665
crossref_primary_10_1016_j_brainres_2010_10_106
crossref_primary_10_1192_bjp_bp_106_025056
crossref_primary_10_1371_journal_pbio_1001289
crossref_primary_10_1080_15265160802617829
crossref_primary_10_1360_TB_2021_0963
crossref_primary_10_1111_jpr_12194
crossref_primary_10_3389_fnhum_2022_883337
crossref_primary_10_1080_13554790801992735
crossref_primary_10_1111_j_1747_9991_2012_00494_x
crossref_primary_10_1016_j_eurpsy_2007_09_001
crossref_primary_10_1371_journal_pone_0059383
crossref_primary_10_1038_s41598_020_72255_5
crossref_primary_10_1093_cercor_bhn037
crossref_primary_10_1007_s10548_014_0352_z
crossref_primary_10_1093_brain_awt040
crossref_primary_10_1007_s10202_005_0020_1
crossref_primary_10_1111_j_1469_8986_2009_00810_x
crossref_primary_10_1038_nrn1931
crossref_primary_10_1016_j_neures_2010_11_001
crossref_primary_10_1111_psyp_12609
crossref_primary_10_1515_revneuro_2016_0048
crossref_primary_10_1007_s00115_009_2921_z
crossref_primary_10_1016_j_neubiorev_2019_06_027
crossref_primary_10_3138_cjccj_50_3_367
crossref_primary_10_1007_s10676_018_9453_9
crossref_primary_10_1080_17588928_2010_493971
crossref_primary_10_1016_j_neuroimage_2014_05_034
crossref_primary_10_1038_srep33263
crossref_primary_10_1016_j_bbr_2011_07_028
crossref_primary_10_1111_j_1467_9280_2008_02156_x
crossref_primary_10_1016_j_tics_2009_12_004
crossref_primary_10_1080_13554790801992784
crossref_primary_10_1007_s12021_014_9223_8
crossref_primary_10_1080_17470910801928271
crossref_primary_10_1093_cercor_bhn189
crossref_primary_10_1080_17470910801903530
crossref_primary_10_1109_JBHI_2022_3172994
crossref_primary_10_1016_j_ijpsycho_2011_03_010
crossref_primary_10_1016_j_bandc_2012_01_009
crossref_primary_10_1016_j_ijpsycho_2006_05_009
crossref_primary_10_1002_brb3_656
crossref_primary_10_1016_j_brainres_2008_09_090
crossref_primary_10_3389_fpsyt_2018_00700
crossref_primary_10_1016_j_biopsycho_2011_12_019
crossref_primary_10_1016_j_brainres_2009_09_085
crossref_primary_10_3389_fnhum_2014_00149
crossref_primary_10_1007_s11158_016_9344_z
crossref_primary_10_1016_j_bandc_2015_11_007
crossref_primary_10_1348_135532507X251597
crossref_primary_10_1016_j_neuroscience_2021_06_005
crossref_primary_10_1017_S1134066500009152
crossref_primary_10_1093_cercor_bhm088
crossref_primary_10_1080_13554790801992792
crossref_primary_10_1016_j_bspc_2018_12_008
crossref_primary_10_1073_pnas_0900152106
crossref_primary_10_1088_1741_2560_9_2_026012
crossref_primary_10_1007_s10994_009_5153_3
crossref_primary_10_1027_0269_8803_a000230
crossref_primary_10_1111_j_1467_9221_2011_00860_x
crossref_primary_10_1016_j_neuroimage_2018_02_060
crossref_primary_10_4236_jbise_2013_61002
crossref_primary_10_1093_scan_nst134
crossref_primary_10_1177_0306312714531473
crossref_primary_10_1080_17470910801907168
crossref_primary_10_1093_brain_awp052
crossref_primary_10_1136_jnnp_2012_304674
crossref_primary_10_1002_bsl_860
crossref_primary_10_1016_j_bandc_2014_06_005
crossref_primary_10_1111_psyp_14701
crossref_primary_10_1097_WCO_0b013e328332c3cf
crossref_primary_10_1111_psyp_14029
crossref_primary_10_1192_bjp_bp_108_053199
crossref_primary_10_1080_13554790801992768
crossref_primary_10_17759_exppsy_2024170106
crossref_primary_10_1348_135532507X251641
crossref_primary_10_1016_j_neuron_2009_11_017
crossref_primary_10_1016_j_neuroimage_2005_08_009
crossref_primary_10_1016_j_neuroimage_2006_02_050
crossref_primary_10_1038_nn1900
crossref_primary_10_5674_jjppp_27_57
crossref_primary_10_1016_j_bandc_2008_08_033
crossref_primary_10_1038_nrn2414
crossref_primary_10_1016_j_neuropsychologia_2014_06_001
crossref_primary_10_1007_s11910_014_0513_1
crossref_primary_10_1016_j_neuropsychologia_2010_10_007
crossref_primary_10_1515_med_2024_1032
crossref_primary_10_1111_j_1460_9568_2011_07856_x
crossref_primary_10_1016_j_jofri_2017_03_003
crossref_primary_10_1177_10597123231166421
crossref_primary_10_3389_fnhum_2015_00553
crossref_primary_10_1016_j_ijpsycho_2014_06_001
crossref_primary_10_1002_hbm_24432
crossref_primary_10_1024_1016_264X_20_3_207
crossref_primary_10_2139_ssrn_922391
crossref_primary_10_7717_peerj_260
crossref_primary_10_1002_bsl_993
crossref_primary_10_1080_13554790801992776
crossref_primary_10_1080_17470919_2014_934392
crossref_primary_10_1016_j_neuroimage_2010_11_025
crossref_primary_10_1007_s12152_010_9080_6
crossref_primary_10_1371_journal_pone_0109700
crossref_primary_10_3389_fpsyg_2020_00776
crossref_primary_10_1111_j_1469_8986_2009_00933_x
crossref_primary_10_1002_acp_1691
crossref_primary_10_1038_nn_4426
crossref_primary_10_3389_fnhum_2016_00391
crossref_primary_10_1016_S0028_3843_14_60124_9
crossref_primary_10_1080_09541440802678347
crossref_primary_10_1016_j_jneuroling_2013_06_003
crossref_primary_10_1111_j_1469_8986_2010_01148_x
crossref_primary_10_1002_hbm_20343
crossref_primary_10_1177_0162243908328756
crossref_primary_10_1016_j_actpsy_2018_10_011
crossref_primary_10_1038_s41598_022_21569_7
crossref_primary_10_1371_journal_pone_0012291
crossref_primary_10_1080_13554790701881731
Cites_doi 10.3109/00207458808985770
10.1098/rstb.2004.1555
10.1002/cbm.559
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.1002/hbm.460010207
10.1073/pnas.082111099
10.1038/nn1176
10.1080/15265160590923367
10.1111/j.1469-8986.2004.00158.x
10.1002/hbm.460010306
10.1016/j.neuroimage.2003.10.034
10.1007/978-1-4899-4541-9
10.1016/j.neuroimage.2004.10.041
10.1093/cercor/bhh132
10.1016/S0028-3932(03)00125-8
10.1111/j.0006-341X.2000.00645.x
10.1006/nimg.2000.0572
10.1126/science.4012303
10.1162/08989290151137421
10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4
10.1126/science.276.5316.1272
10.1016/j.neuroimage.2003.09.060
10.1093/cercor/bhh059
10.1126/science.1088545
10.1176/appi.ajp.161.9.1650
10.1002/1097-0193(200011)11:3<146::AID-HBM20>3.0.CO;2-D
10.1097/00001756-200109170-00019
10.1016/j.neuroimage.2004.06.006
10.1126/science.1089504
10.1126/science.288.5471.1656
10.1016/j.neuroimage.2004.02.037
10.1002/mrm.1910250220
10.1523/JNEUROSCI.23-21-07776.2003
10.1037/0735-7044.118.4.852
10.1016/S1053-8119(03)00275-1
10.1016/S0028-3932(02)00170-7
10.1016/S0006-3223(99)00083-9
10.1002/mrm.1910330508
10.1006/nimg.2001.1003
10.1037/0022-3514.37.2.147
10.1523/JNEUROSCI.20-08-03033.2000
10.1016/j.neuropsychologia.2003.07.009
10.1093/cercor/13.8.830
10.1016/S0895-4356(01)00341-9
10.1111/j.1469-8986.1994.tb01046.x
10.1002/hbm.10020
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
2006 INIST-CNRS
(c) 2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: 2006 INIST-CNRS
– notice: (c) 2005 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/hbm.20191
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Telling Truth from Lie
EISSN 1097-0193
EndPage 272
ExternalDocumentID PMC6871667
16161128
17538700
10_1002_hbm_20191
HBM20191
ark_67375_WNG_59GL9B0L_J
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Defense Advanced Projects Agency through the Army Office of Research
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5121-ce2b5d799369250bca8183bf8c4041bb5e80b1b65fed1f67654315e7394effa43
IEDL.DBID DR2
ISSN 1065-9471
IngestDate Thu Aug 21 18:23:21 EDT 2025
Thu Sep 04 22:10:19 EDT 2025
Thu Sep 04 23:10:41 EDT 2025
Wed Feb 19 01:41:39 EST 2025
Mon Jul 21 09:14:48 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Tue Jul 01 04:25:53 EDT 2025
Wed Jan 22 17:08:49 EST 2025
Wed Oct 30 09:56:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
fMRI
Nervous system diseases
Radiodiagnosis
deception
guilty knowledge test
Nuclear magnetic resonance imaging
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
(c) 2005 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5121-ce2b5d799369250bca8183bf8c4041bb5e80b1b65fed1f67654315e7394effa43
Notes Defense Advanced Projects Agency through the Army Office of Research
ark:/67375/WNG-59GL9B0L-J
istex:248E325AE8F25894C6DB33A168B433A5D4A2C17F
ArticleID:HBM20191
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20191
PMID 16161128
PQID 17085972
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871667
proquest_miscellaneous_68801985
proquest_miscellaneous_17085972
pubmed_primary_16161128
pascalfrancis_primary_17538700
crossref_primary_10_1002_hbm_20191
crossref_citationtrail_10_1002_hbm_20191
wiley_primary_10_1002_hbm_20191_HBM20191
istex_primary_ark_67375_WNG_59GL9B0L_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2005
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: December 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Cohen JD (1988): Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum.
Konishi S, Jimura K, Asari T, Miyashita Y (2003): Transient activation of superior prefrontal cortex during inhibition of cognitive set. J Neurosci 23: 7776-7782.
Tranel D, Damasio AR (1985): Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science 228: 1453-1454.
Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1993): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1: 210-220.
Paulus MP, Feinstein JS, Tapert SF, Liu TT (2004): Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection. Neuroimage 21: 733-743.
Ashburner J, Friston KJ (1999): Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7: 254-266.
Rosenfeld PJ (2004): Simple, effective countermeasures to P-300-based tests of detection of concealed information. Psychophysiology 41: 205-219.
Huettel SA, McCarthy G (2004): What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia 42: 379-386.
Lau HC, Rogers RD, Ramnani N, Passingham RE (2004): Willed action and attention to the selection of action. Neuroimage 21: 1407-1415.
Langleben DD, Schroeder L, Maldjian JA, Gur RC, McDonald S, Ragland JD, O'Brien CP, Childress AR (2002): Brain activity during simulated deception: an event-related functional magnetic resonance study. Neuroimage 15: 727-732.
Hester R, Fassbender C, Garavan H (2004): Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex 14: 986-994.
Lee TM, Liu HL, Tan LH, Chan CC, Mahankali S, Feng CM, Hou J, Fox PT, Gao JH (2002): Lie detection by functional magnetic resonance imaging. Hum Brain Mapp 15: 157-164.
Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM, Halperin JM (2004): Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related fMRI study. Am J Psychiatry 161: 1650-1657.
Kozel FA, Padgett TM, George MS (2004): A replication study of the neural correlates of deception. Behav Neurosci 118: 852-856.
Zhang JX, Feng CM, Fox PT, Gao JH, Tan LH (2004): Is left inferior frontal gyrus a general mechanism for selection? Neuroimage 23: 596-603.
Berns GS, Cohen JD, Mintun MA (1997): Brain regions responsive to novelty in the absence of awareness. Science 276: 1272-1275.
Ganis G, Kosslyn SM, Stose S, Thompson WL, Yurgelun-Todd DA (2003): Neural correlates of different types of deception: an fMRI investigation. Cereb Cortex 13: 830-836.
Spence SA, Farrow TF, Herford AE, Wilkinson ID, Zheng Y, Woodruff PW (2001): Behavioural and functional anatomical correlates of deception in humans. Neuroreport 12: 2849-2853.
Rosenfeld JP, Cantwell B, Nasman VT, Wojdac V, Ivanov S, Mazzeri L (1988): A modified, event-related potential-based guilty knowledge test. Int J Neurosci 42: 157-161.
Williams RL (2000): A note on robust variance estimation for cluster-correlated data. Biometrics 56: 645-646.
Nunez JM, Casey BJ, Egner T, Hare T, Hirsch J (2005): Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 25: 267-277.
Vollm B, Richardson P, Stirling J, Elliott R, Dolan M, Chaudhry I, Del Ben C, McKie S, Anderson I, Deakin B (2004): Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Crim Behav Ment Health 14: 39-54.
Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004): Neural systems supporting interoceptive awareness. Nat Neurosci 7: 189-195.
Tranel D, Damasio H (1994): Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology 31: 427-438.
Spence SA, Hunter MD, Farrow TF, Green RD, Leung DH, Hughes CJ, Ganesan V (2004): A cognitive neurobiological account of deception: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol Sci 359: 1755-1762.
Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000): Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11: 424-446.
Wolpe PR, Foster KR, Langleben DD (2005): Emerging neurotechnologies for lie-detection: promises and perils. Am J Bioeth 5: 39-49.
Ekman P (2001): Telling lies. New York: Norton.
Mecklinger A, Bosch V, Gruenewald C, Bentin S, von Cramon DY (2000): What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Hum Brain Mapp 11: 146-161.
Pochon JB, Levy R, Fossati P, Lehericy S, Poline JB, Pillon B, Le Bihan D, Dubois B (2002): The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci U S A 99: 5669-5674.
Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992): Time course EPI of human brain function during task activation. Magn Reson Med 25: 390-397.
Zarahn E, Rakitin B, Abela D, Flynn J, Stern Y (2005): Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli. Cereb Cortex 15: 303-316.
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984): Classification or regression trees. Belmont, CA: Wadsworth International Group.
Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical.
Cabeza R, Dolcos F, Prince SE, Rice HJ, Weissman DH, Nyberg L (2003): Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia 41: 390-399.
Friston KJ, Jezzard P, Turner R (1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171.
Rubia K, Smith AB, Brammer MJ, Taylor E (2003): Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20: 351-358.
Critchley HD, Elliott R, Mathias CJ, Dolan RJ (2000): Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20: 3033-3040.
Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC (1997): Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5: 238-242.
Chute DL, Westall RF (1997): PowerLaboratory. Devon, PA: MacLaboratory.
Koechlin E, Ody C, Kouneiher F (2003): The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185.
Langleben DD, Loughead JW, Bilker W, Phend N, Busch S, Childress AR, Platek SM, Wolf R, Gur RC (2004): Imaging deception with fMRI: the effects of salience and ecological relevance. Program No. 372.312. Abstract Viewer/Itinerary Planner, www.sfn.org, online. San Diego: Society for Neuroscience.
Efron B, Tibshirani RJ (1993): An introduction to the bootstrap. London: Chapman & Hall.
Gur R, Sackeim HA (1979): Self-deception: a concept in search of a phenomenon. J Pers Soc Psychol 37: 147-169.
Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647.
Stern PC (2002): The polygraph and lie detection. Report of the National Research Council Committee to Review the Scientific Evidence on the Polygraph., 1st ed. Washington, DC: National Academies Press.
Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999): Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry 45: 1542-1552.
Styerberg EW, Harrell FE, Bosboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001): Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiology 54: 774-781.
Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JD (2004): Neural systems underlying the suppression of unwanted memories. Science 303: 232-235.
Hirsch J, Moreno DR, Kim KH (2001): Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci 13: 389-405.
Turk DJ, Banfield JF, Walling BR, Heatherton TF, Grafton ST, Handy TC, Gazzaniga MS, Macrae CN (2004): From facial cue to dinner for two: the neural substrates of personal choice. Neuroimage 22: 1281-1290.
Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000): The prefrontal cortex: response selection or maintenance within working memory? Science 288: 1656-1660.
Horwitz B, Amunts K, Bhattacharyya R, Patkin D, Jeffries K, Zilles K, Braun AR (2003): Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868-1876.
Vrij, A (2001): Detecting lies and deceit: the psychology of lying and the implications for professional practice. Chichester: Wiley; 2001.
2004; 21
2004; 22
2004; 41
2004; 42
2002; 15
2004; 303
1979; 37
2004; 7
1997; 276
1995; 33
2004; 161
2004; 23
2000; 20
2002; 99
2003; 13
1999; 45
1997
1993
2004
1985; 228
2002
1997; 5
1999; 7
1993; 1
2005; 25
2001
2000; 56
2004; 14
2000; 11
2005; 5
1984
1992; 25
1988; 42
2000; 288
1994; 1
2003; 302
2005; 15
2001; 12
2001; 13
2004; 118
1948
2003; 41
2004; 359
2003; 20
1988
2003; 23
2001; 54
1994; 31
e_1_2_7_5_1
Stern PC (e_1_2_7_47_1) 2002
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
Augustine St (e_1_2_7_4_1) 1948
e_1_2_7_26_1
e_1_2_7_28_1
Talairach J (e_1_2_7_49_1) 1988
Chute DL (e_1_2_7_10_1) 1997
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
Ekman P (e_1_2_7_16_1) 2001
e_1_2_7_18_1
Langleben DD (e_1_2_7_32_1) 2004
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
Cohen JD (e_1_2_7_12_1) 1988
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Clark LA (e_1_2_7_11_1) 1993
Breiman L (e_1_2_7_7_1) 1984
Vrij A (e_1_2_7_54_1) 2001
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Wolpe PR, Foster KR, Langleben DD (2005): Emerging neurotechnologies for lie-detection: promises and perils. Am J Bioeth 5: 39-49.
– reference: Cohen JD (1988): Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum.
– reference: Hirsch J, Moreno DR, Kim KH (2001): Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci 13: 389-405.
– reference: Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1993): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1: 210-220.
– reference: Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004): Neural systems supporting interoceptive awareness. Nat Neurosci 7: 189-195.
– reference: Turk DJ, Banfield JF, Walling BR, Heatherton TF, Grafton ST, Handy TC, Gazzaniga MS, Macrae CN (2004): From facial cue to dinner for two: the neural substrates of personal choice. Neuroimage 22: 1281-1290.
– reference: Cabeza R, Dolcos F, Prince SE, Rice HJ, Weissman DH, Nyberg L (2003): Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia 41: 390-399.
– reference: Lee TM, Liu HL, Tan LH, Chan CC, Mahankali S, Feng CM, Hou J, Fox PT, Gao JH (2002): Lie detection by functional magnetic resonance imaging. Hum Brain Mapp 15: 157-164.
– reference: Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000): The prefrontal cortex: response selection or maintenance within working memory? Science 288: 1656-1660.
– reference: Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999): Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry 45: 1542-1552.
– reference: Konishi S, Jimura K, Asari T, Miyashita Y (2003): Transient activation of superior prefrontal cortex during inhibition of cognitive set. J Neurosci 23: 7776-7782.
– reference: Stern PC (2002): The polygraph and lie detection. Report of the National Research Council Committee to Review the Scientific Evidence on the Polygraph., 1st ed. Washington, DC: National Academies Press.
– reference: Williams RL (2000): A note on robust variance estimation for cluster-correlated data. Biometrics 56: 645-646.
– reference: Kozel FA, Padgett TM, George MS (2004): A replication study of the neural correlates of deception. Behav Neurosci 118: 852-856.
– reference: Tranel D, Damasio AR (1985): Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science 228: 1453-1454.
– reference: Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992): Time course EPI of human brain function during task activation. Magn Reson Med 25: 390-397.
– reference: Koechlin E, Ody C, Kouneiher F (2003): The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185.
– reference: Ashburner J, Friston KJ (1999): Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7: 254-266.
– reference: Rosenfeld PJ (2004): Simple, effective countermeasures to P-300-based tests of detection of concealed information. Psychophysiology 41: 205-219.
– reference: Critchley HD, Elliott R, Mathias CJ, Dolan RJ (2000): Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20: 3033-3040.
– reference: Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647.
– reference: Mecklinger A, Bosch V, Gruenewald C, Bentin S, von Cramon DY (2000): What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Hum Brain Mapp 11: 146-161.
– reference: Vollm B, Richardson P, Stirling J, Elliott R, Dolan M, Chaudhry I, Del Ben C, McKie S, Anderson I, Deakin B (2004): Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Crim Behav Ment Health 14: 39-54.
– reference: Efron B, Tibshirani RJ (1993): An introduction to the bootstrap. London: Chapman & Hall.
– reference: Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC (1997): Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5: 238-242.
– reference: Berns GS, Cohen JD, Mintun MA (1997): Brain regions responsive to novelty in the absence of awareness. Science 276: 1272-1275.
– reference: Ekman P (2001): Telling lies. New York: Norton.
– reference: Friston KJ, Jezzard P, Turner R (1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171.
– reference: Zarahn E, Rakitin B, Abela D, Flynn J, Stern Y (2005): Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli. Cereb Cortex 15: 303-316.
– reference: Huettel SA, McCarthy G (2004): What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia 42: 379-386.
– reference: Paulus MP, Feinstein JS, Tapert SF, Liu TT (2004): Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection. Neuroimage 21: 733-743.
– reference: Pochon JB, Levy R, Fossati P, Lehericy S, Poline JB, Pillon B, Le Bihan D, Dubois B (2002): The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci U S A 99: 5669-5674.
– reference: Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JD (2004): Neural systems underlying the suppression of unwanted memories. Science 303: 232-235.
– reference: Horwitz B, Amunts K, Bhattacharyya R, Patkin D, Jeffries K, Zilles K, Braun AR (2003): Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868-1876.
– reference: Lau HC, Rogers RD, Ramnani N, Passingham RE (2004): Willed action and attention to the selection of action. Neuroimage 21: 1407-1415.
– reference: Rosenfeld JP, Cantwell B, Nasman VT, Wojdac V, Ivanov S, Mazzeri L (1988): A modified, event-related potential-based guilty knowledge test. Int J Neurosci 42: 157-161.
– reference: Vrij, A (2001): Detecting lies and deceit: the psychology of lying and the implications for professional practice. Chichester: Wiley; 2001.
– reference: Langleben DD, Loughead JW, Bilker W, Phend N, Busch S, Childress AR, Platek SM, Wolf R, Gur RC (2004): Imaging deception with fMRI: the effects of salience and ecological relevance. Program No. 372.312. Abstract Viewer/Itinerary Planner, www.sfn.org, online. San Diego: Society for Neuroscience.
– reference: Nunez JM, Casey BJ, Egner T, Hare T, Hirsch J (2005): Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 25: 267-277.
– reference: Langleben DD, Schroeder L, Maldjian JA, Gur RC, McDonald S, Ragland JD, O'Brien CP, Childress AR (2002): Brain activity during simulated deception: an event-related functional magnetic resonance study. Neuroimage 15: 727-732.
– reference: Ganis G, Kosslyn SM, Stose S, Thompson WL, Yurgelun-Todd DA (2003): Neural correlates of different types of deception: an fMRI investigation. Cereb Cortex 13: 830-836.
– reference: Tranel D, Damasio H (1994): Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology 31: 427-438.
– reference: Zhang JX, Feng CM, Fox PT, Gao JH, Tan LH (2004): Is left inferior frontal gyrus a general mechanism for selection? Neuroimage 23: 596-603.
– reference: Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical.
– reference: Rubia K, Smith AB, Brammer MJ, Taylor E (2003): Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20: 351-358.
– reference: Hester R, Fassbender C, Garavan H (2004): Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex 14: 986-994.
– reference: Breiman L, Friedman JH, Olshen RA, Stone CJ (1984): Classification or regression trees. Belmont, CA: Wadsworth International Group.
– reference: Spence SA, Farrow TF, Herford AE, Wilkinson ID, Zheng Y, Woodruff PW (2001): Behavioural and functional anatomical correlates of deception in humans. Neuroreport 12: 2849-2853.
– reference: Spence SA, Hunter MD, Farrow TF, Green RD, Leung DH, Hughes CJ, Ganesan V (2004): A cognitive neurobiological account of deception: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol Sci 359: 1755-1762.
– reference: Gur R, Sackeim HA (1979): Self-deception: a concept in search of a phenomenon. J Pers Soc Psychol 37: 147-169.
– reference: Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000): Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11: 424-446.
– reference: Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM, Halperin JM (2004): Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related fMRI study. Am J Psychiatry 161: 1650-1657.
– reference: Chute DL, Westall RF (1997): PowerLaboratory. Devon, PA: MacLaboratory.
– reference: Styerberg EW, Harrell FE, Bosboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001): Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiology 54: 774-781.
– volume: 25
  start-page: 390
  year: 1992
  end-page: 397
  article-title: Time course EPI of human brain function during task activation
  publication-title: Magn Reson Med
– volume: 359
  start-page: 1755
  year: 2004
  end-page: 1762
  article-title: A cognitive neurobiological account of deception: evidence from functional neuroimaging
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 21
  start-page: 733
  year: 2004
  end-page: 743
  article-title: Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection
  publication-title: Neuroimage
– volume: 41
  start-page: 205
  year: 2004
  end-page: 219
  article-title: Simple, effective countermeasures to P‐300‐based tests of detection of concealed information
  publication-title: Psychophysiology
– volume: 41
  start-page: 390
  year: 2003
  end-page: 399
  article-title: Attention‐related activity during episodic memory retrieval: a cross‐function fMRI study
  publication-title: Neuropsychologia
– year: 2001
– volume: 21
  start-page: 1407
  year: 2004
  end-page: 1415
  article-title: Willed action and attention to the selection of action
  publication-title: Neuroimage
– volume: 25
  start-page: 267
  year: 2005
  end-page: 277
  article-title: Intentional false responding shares neural substrates with response conflict and cognitive control
  publication-title: Neuroimage
– volume: 54
  start-page: 774
  year: 2001
  end-page: 781
  article-title: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis
  publication-title: J Clin Epidemiology
– volume: 15
  start-page: 303
  year: 2005
  end-page: 316
  article-title: Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli
  publication-title: Cereb Cortex
– volume: 5
  start-page: 238
  year: 1997
  end-page: 242
  article-title: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward‐transform method
  publication-title: Hum Brain Mapp
– volume: 11
  start-page: 146
  year: 2000
  end-page: 161
  article-title: What have Klingon letters and faces in common? An fMRI study on content‐specific working memory systems
  publication-title: Hum Brain Mapp
– volume: 161
  start-page: 1650
  year: 2004
  end-page: 1657
  article-title: Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event‐related fMRI study
  publication-title: Am J Psychiatry
– volume: 45
  start-page: 1542
  year: 1999
  end-page: 1552
  article-title: Anterior cingulate cortex dysfunction in attention‐deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop
  publication-title: Biol Psychiatry
– volume: 118
  start-page: 852
  year: 2004
  end-page: 856
  article-title: A replication study of the neural correlates of deception
  publication-title: Behav Neurosci
– volume: 303
  start-page: 232
  year: 2004
  end-page: 235
  article-title: Neural systems underlying the suppression of unwanted memories
  publication-title: Science
– volume: 14
  start-page: 39
  year: 2004
  end-page: 54
  article-title: Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study
  publication-title: Crim Behav Ment Health
– year: 2004
– year: 1997
– volume: 42
  start-page: 157
  year: 1988
  end-page: 161
  article-title: A modified, event‐related potential‐based guilty knowledge test
  publication-title: Int J Neurosci
– volume: 14
  start-page: 986
  year: 2004
  end-page: 994
  article-title: Individual differences in error processing: a review and reanalysis of three event‐related fMRI studies using the GO/NOGO task
  publication-title: Cereb Cortex
– volume: 22
  start-page: 1281
  year: 2004
  end-page: 1290
  article-title: From facial cue to dinner for two: the neural substrates of personal choice
  publication-title: Neuroimage
– volume: 41
  start-page: 1868
  year: 2003
  end-page: 1876
  article-title: Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis
  publication-title: Neuropsychologia
– year: 1993
– volume: 11
  start-page: 424
  year: 2000
  end-page: 446
  article-title: Working memory for letters, shapes, and locations: fMRI evidence against stimulus‐based regional organization in human prefrontal cortex
  publication-title: Neuroimage
– volume: 56
  start-page: 645
  year: 2000
  end-page: 646
  article-title: A note on robust variance estimation for cluster‐correlated data
  publication-title: Biometrics
– volume: 302
  start-page: 1181
  year: 2003
  end-page: 1185
  article-title: The architecture of cognitive control in the human prefrontal cortex
  publication-title: Science
– volume: 12
  start-page: 2849
  year: 2001
  end-page: 2853
  article-title: Behavioural and functional anatomical correlates of deception in humans
  publication-title: Neuroreport
– volume: 15
  start-page: 157
  year: 2002
  end-page: 164
  article-title: Lie detection by functional magnetic resonance imaging
  publication-title: Hum Brain Mapp
– start-page: 377
  year: 1993
  end-page: 419
– volume: 13
  start-page: 389
  year: 2001
  end-page: 405
  article-title: Interconnected large‐scale systems for three fundamental cognitive tasks revealed by functional MRI
  publication-title: J Cogn Neurosci
– volume: 23
  start-page: 596
  year: 2004
  end-page: 603
  article-title: Is left inferior frontal gyrus a general mechanism for selection?
  publication-title: Neuroimage
– volume: 288
  start-page: 1656
  year: 2000
  end-page: 1660
  article-title: The prefrontal cortex: response selection or maintenance within working memory?
  publication-title: Science
– start-page: 244
  year: 1948
  end-page: 245
– volume: 20
  start-page: 3033
  year: 2000
  end-page: 3040
  article-title: Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study
  publication-title: J Neurosci
– volume: 20
  start-page: 351
  year: 2003
  end-page: 358
  article-title: Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection
  publication-title: Neuroimage
– volume: 13
  start-page: 830
  year: 2003
  end-page: 836
  article-title: Neural correlates of different types of deception: an fMRI investigation
  publication-title: Cereb Cortex
– year: 1984
– volume: 228
  start-page: 1453
  year: 1985
  end-page: 1454
  article-title: Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics
  publication-title: Science
– volume: 276
  start-page: 1272
  year: 1997
  end-page: 1275
  article-title: Brain regions responsive to novelty in the absence of awareness
  publication-title: Science
– volume: 1
  start-page: 153
  year: 1994
  end-page: 171
  article-title: Analysis of functional MRI time‐series
  publication-title: Hum Brain Mapp
– volume: 1
  start-page: 210
  year: 1993
  end-page: 220
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum Brain Mapp
– volume: 99
  start-page: 5669
  year: 2002
  end-page: 5674
  article-title: The neural system that bridges reward and cognition in humans: an fMRI study
  publication-title: Proc Natl Acad Sci U S A
– year: 2002
– year: 1988
– volume: 42
  start-page: 379
  year: 2004
  end-page: 386
  article-title: What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy
  publication-title: Neuropsychologia
– volume: 5
  start-page: 39
  year: 2005
  end-page: 49
  article-title: Emerging neurotechnologies for lie‐detection: promises and perils
  publication-title: Am J Bioeth
– volume: 7
  start-page: 254
  year: 1999
  end-page: 266
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Hum Brain Mapp
– volume: 33
  start-page: 636
  year: 1995
  end-page: 647
  article-title: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster‐size threshold
  publication-title: Magn Reson Med
– volume: 37
  start-page: 147
  year: 1979
  end-page: 169
  article-title: Self‐deception: a concept in search of a phenomenon
  publication-title: J Pers Soc Psychol
– volume: 7
  start-page: 189
  year: 2004
  end-page: 195
  article-title: Neural systems supporting interoceptive awareness
  publication-title: Nat Neurosci
– volume: 15
  start-page: 727
  year: 2002
  end-page: 732
  article-title: Brain activity during simulated deception: an event‐related functional magnetic resonance study
  publication-title: Neuroimage
– volume: 23
  start-page: 7776
  year: 2003
  end-page: 7782
  article-title: Transient activation of superior prefrontal cortex during inhibition of cognitive set
  publication-title: J Neurosci
– volume: 31
  start-page: 427
  year: 1994
  end-page: 438
  article-title: Neuroanatomical correlates of electrodermal skin conductance responses
  publication-title: Psychophysiology
– ident: e_1_2_7_41_1
  doi: 10.3109/00207458808985770
– ident: e_1_2_7_46_1
  doi: 10.1098/rstb.2004.1555
– ident: e_1_2_7_53_1
  doi: 10.1002/cbm.559
– volume-title: The polygraph and lie detection
  year: 2002
  ident: e_1_2_7_47_1
– ident: e_1_2_7_3_1
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– volume-title: PowerLaboratory
  year: 1997
  ident: e_1_2_7_10_1
– ident: e_1_2_7_19_1
  doi: 10.1002/hbm.460010207
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.082111099
– ident: e_1_2_7_14_1
  doi: 10.1038/nn1176
– ident: e_1_2_7_56_1
  doi: 10.1080/15265160590923367
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1469-8986.2004.00158.x
– ident: e_1_2_7_18_1
  doi: 10.1002/hbm.460010306
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuroimage.2003.10.034
– ident: e_1_2_7_15_1
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2004.10.041
– ident: e_1_2_7_57_1
  doi: 10.1093/cercor/bhh132
– ident: e_1_2_7_25_1
  doi: 10.1016/S0028-3932(03)00125-8
– ident: e_1_2_7_55_1
  doi: 10.1111/j.0006-341X.2000.00645.x
– ident: e_1_2_7_37_1
  doi: 10.1006/nimg.2000.0572
– volume-title: Detecting lies and deceit: the psychology of lying and the implications for professional practice
  year: 2001
  ident: e_1_2_7_54_1
– ident: e_1_2_7_50_1
  doi: 10.1126/science.4012303
– start-page: 244
  volume-title: Opuscules. II. Problèmes moraux
  year: 1948
  ident: e_1_2_7_4_1
– ident: e_1_2_7_24_1
  doi: 10.1162/08989290151137421
– ident: e_1_2_7_30_1
  doi: 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4
– ident: e_1_2_7_6_1
  doi: 10.1126/science.276.5316.1272
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neuroimage.2003.09.060
– ident: e_1_2_7_23_1
  doi: 10.1093/cercor/bhh059
– ident: e_1_2_7_27_1
  doi: 10.1126/science.1088545
– ident: e_1_2_7_44_1
  doi: 10.1176/appi.ajp.161.9.1650
– ident: e_1_2_7_35_1
  doi: 10.1002/1097-0193(200011)11:3<146::AID-HBM20>3.0.CO;2-D
– ident: e_1_2_7_45_1
  doi: 10.1097/00001756-200109170-00019
– ident: e_1_2_7_58_1
  doi: 10.1016/j.neuroimage.2004.06.006
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1089504
– ident: e_1_2_7_42_1
  doi: 10.1126/science.288.5471.1656
– volume-title: Co‐planar stereotaxic atlas of the human brain. 3‐Dimensional proportional system: an approach to cerebral imaging
  year: 1988
  ident: e_1_2_7_49_1
– ident: e_1_2_7_52_1
  doi: 10.1016/j.neuroimage.2004.02.037
– ident: e_1_2_7_22_1
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.1910250220
– volume-title: Imaging deception with fMRI: the effects of salience and ecological relevance
  year: 2004
  ident: e_1_2_7_32_1
– ident: e_1_2_7_28_1
  doi: 10.1523/JNEUROSCI.23-21-07776.2003
– ident: e_1_2_7_29_1
  doi: 10.1037/0735-7044.118.4.852
– start-page: 377
  volume-title: Statistical models
  year: 1993
  ident: e_1_2_7_11_1
– ident: e_1_2_7_43_1
  doi: 10.1016/S1053-8119(03)00275-1
– ident: e_1_2_7_9_1
  doi: 10.1016/S0028-3932(02)00170-7
– volume-title: Telling lies
  year: 2001
  ident: e_1_2_7_16_1
– ident: e_1_2_7_8_1
  doi: 10.1016/S0006-3223(99)00083-9
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.1910330508
– ident: e_1_2_7_31_1
  doi: 10.1006/nimg.2001.1003
– ident: e_1_2_7_21_1
  doi: 10.1037/0022-3514.37.2.147
– volume-title: Classification or regression trees
  year: 1984
  ident: e_1_2_7_7_1
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: e_1_2_7_12_1
– ident: e_1_2_7_13_1
  doi: 10.1523/JNEUROSCI.20-08-03033.2000
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuropsychologia.2003.07.009
– ident: e_1_2_7_20_1
  doi: 10.1093/cercor/13.8.830
– ident: e_1_2_7_48_1
  doi: 10.1016/S0895-4356(01)00341-9
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1469-8986.1994.tb01046.x
– ident: e_1_2_7_34_1
  doi: 10.1002/hbm.10020
SSID ssj0011501
Score 2.3286147
Snippet Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Adolescent
Adult
Biological and medical sciences
Brain - anatomy & histology
Brain - physiology
Brain Mapping
Cognition - physiology
Cues
Deception
Evoked Potentials - physiology
fMRI
Functional Laterality - physiology
guilty knowledge test
Humans
Investigative techniques, diagnostic techniques (general aspects)
Lie Detection - psychology
Magnetic Resonance Imaging
Male
Medical sciences
Miscellaneous
Nervous system
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Neuropharmacology
Neuropsychological Tests
Pharmacology. Drug treatments
Predictive Value of Tests
Prefrontal Cortex - anatomy & histology
Prefrontal Cortex - physiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Reaction Time - physiology
Reproducibility of Results
Social Behavior
Time Factors
Title Telling truth from lie in individual subjects with fast event-related fMRI
URI https://api.istex.fr/ark:/67375/WNG-59GL9B0L-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20191
https://www.ncbi.nlm.nih.gov/pubmed/16161128
https://www.proquest.com/docview/17085972
https://www.proquest.com/docview/68801985
https://pubmed.ncbi.nlm.nih.gov/PMC6871667
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRUJc-GiBhkKxEKq4pI03tpOIUwu0S7XbQ9WKHpAi2-toV4W0arJSy4mfwG_klzDjbLIstBJCuUTKJJEnz-NnZ-YZ4HWSJRJHkSh0QsWhyEY81JGNQiusS7iV6chLCg0PVf9EHJzK0yV429bCNPoQ3YIb9Qwfr6mDa1Ntz0VDx4YKybmvXOexIt3890eddBQRHT_ZwiE2zDACt6pCUW-7u3NhLLpDbr2i3EhdoXuKZl-Lm4jn3_mTv_NaPzDtPYDPbZOafJSzrWlttuy3P9Qe_7PND-H-jLCynQZhj2DJlSuwulPiZP3rNdtkPoXUr82vwN3h7E_9KgyOnVf7ZvXltB4zqmJhSHfZpGSTrgaMVVND60AVo-VgVuiqZl5R6uf3H77Ixo1YMTz6-BhO9j4cv-uHs50bQosEgofW9YzEr0y7BSLHMlYjL4hNkVoRCW6MdGlkuFGycCNeqIQKXLl0SZwJVxRaxE9guTwv3RqwONWpVCZ2KUYORFCWOqSsSljkGvgyGcCb9hvmdiZrTrtrfMkbQeZejk7LvdMCeNWZXjRaHjcZbXogdBb68oyS3xKZfzrcz2W2P8h2o0F-EMDGAlLmj8QZIEbBKICXLXRy7LP0I0aX7nxaoQXJyiW92y0UhlWepdi6pw3U5k9XeCCpCCBZAGFnQHrhi1fKydjrhiuaHKsEPeYxdrsP8v7u0J88-3fTdbjXqNpSps9zWEZ0uRfI12qz4TvmLwC4O0w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQRceLQ8wqO1EKq4pE02tpNIXFqg3ZbsHqqt6AVZsdfRrgoparIScOIn8Bv5Jcw4mywLrYRQLpEySeTJePzNZOYzwIs4jQWuIoFvuYx8no5DPw9M4BtubBwakYwdpdBgKPun_PhMnK3Aq7YXpuGH6BJuNDOcv6YJTgnp3QVr6ERTJ3lIretrHIEGhV5vTjryKII6LtzCRdZP0Qe3vEJBb7e7dWk1WiPFfqHqyLxCBRXNzhZXQc-_Kyh_R7ZuaTq4Ax_aQTUVKec7s1rvmG9_8D3-76jvwu05ZmV7jZHdgxVbrsPGXonx-qevbJu5KlKXnl-HG4P5z_oNyEbWEX6z-nJWTxg1sjBEvGxasmnXBsaqmaZUUMUoI8yKvKqZI5X6-f2H67OxY1YMTo7uw-nB29Hrvj_fvME3iCFC39ieFvihacNAhFna5AgNIl0khgc81FrYJNChlqKw47CQMfW4hsLGUcptUeQ8egCr5UVpHwGLkjwRUkc2QeeBRpQmFlGr5AbhBr5MePCy_YjKzJnNaYONj6rhZO4pVJpySvPgeSf6uaHzuEpo21lCJ5FfnlP9WyzU--GhEulhlu4HmTr2YHPJVBaPxCAQHWHgwVZrOwqnLf2LyUt7MatQgpjl4t71EhI9a5gmOLqHja0tni7xQFzhQbxkhZ0AUYYvXymnE0cdLik-ljFqzBnZ9TpQ_f2BO3n876JbcLM_GmQqOxq-ewK3GpJbKvx5CqtoafYZwrdab7pZ-guYYD9r
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrVRx4aPlIy20FkIVl7TJxnYScWqB7bbsrlDVih6QrNhxtKtCWnWzEnDiJ_Ab-SXMOJssC62EUC6RMknkyfP42Zl5BngRp7HAUSTwLZeRz9M89LPABL7hxsahEUnuJIUGQ9k748fn4nwJXjW1MLU-RLvgRj3DxWvq4Fd5sTcXDR1pKiQPqXJ9hUtkEsSITlrtKGI6braFY6yfYghuZIWCzl5768JgtEJ-_ULJkdkE_VPUG1vcxDz_TqD8ndi6kal7Dz42baoTUi52p5XeNd_-kHv8z0bfh7szxsr2a4g9gCVbrsH6fomz9c9f2Q5zOaRucX4NVgezX_Xr0D-1Tu6bVdfTasSojIUh32Xjko3bIjA2mWpaCJowWg9mRTapmJOU-vn9h6uysTkrBidHD-Gs-_b0dc-fbd3gG2QQoW9sRwv8zLRdIJIsbTIkBpEuEsMDHmotbBLoUEtR2DwsZEwVrqGwcZRyWxQZjx7BcnlZ2ifAoiRLhNSRTTB0IITSxCJnldwg2cCXCQ9eNt9QmZmuOW2v8UnViswdhU5TzmkePG9Nr2oxj5uMdhwQWovs-oKy32KhPgwPlUgP--lB0FfHHmwtIGX-SJwCYhgMPNhuoKOw09KfmKy0l9MJWpCuXNy53UJiXA3TBFv3uIba_OkSD2QVHsQLIGwNSDB88Uo5HjnhcEmzYxmjxxzGbveB6h0M3MnGv5tuw-r7N13VPxq-24Q7tcItZf08hWUEmn2G3K3SW66P_gKvJT4a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telling+truth+from+lie+in+individual+subjects+with+fast+event%E2%80%90related+fMRI&rft.jtitle=Human+brain+mapping&rft.au=Langleben%2C+Daniel+D.&rft.au=Loughead%2C+James+W.&rft.au=Bilker%2C+Warren+B.&rft.au=Ruparel%2C+Kosha&rft.date=2005-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=26&rft.issue=4&rft.spage=262&rft.epage=272&rft_id=info:doi/10.1002%2Fhbm.20191&rft.externalDBID=10.1002%252Fhbm.20191&rft.externalDocID=HBM20191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon