Telling truth from lie in individual subjects with fast event-related fMRI
Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. Th...
Saved in:
Published in | Human brain mapping Vol. 26; no. 4; pp. 262 - 272 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2005
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 |
DOI | 10.1002/hbm.20191 |
Cover
Abstract | Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced‐choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single‐event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Hum Brain Mapp, 2005. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced‐choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single‐event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Hum Brain Mapp, 2005. © 2005 Wiley‐Liss, Inc. Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single-event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single-event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms.Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single-event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity during deception indicates that, on a multisubject group level, lie is distinguished from truth by increased prefrontal and parietal activity. These findings are theoretically important; however, their applied value will be determined by the accuracy of the discrimination between single deceptive and truthful responses in individual subjects. This study presents the first quantitative estimate of the accuracy of fMRI in conjunction with a formal forced-choice paradigm in detecting deception in individual subjects. We used a paradigm balancing the salience of the target cues to elicit deceptive and truthful responses and determined the accuracy of this model in the classification of single lie and truth events. The relative salience of the task cues affected the net activation associated with lie in the superior medial and inferolateral prefrontal cortices. Lie was discriminated from truth on a single- event level with an accuracy of 78%, while the predictive ability expressed as the area under the curve (AUC) of the receiver operator characteristic curve (ROC) was 85%. Our findings confirm that fMRI, in conjunction with a carefully controlled query procedure, could be used to detect deception in individual subjects. Salience of the task cues is a potential confounding factor in the fMRI pattern attributed to deception in forced choice deception paradigms. Hum Brain Mapp, 2005. |
Author | Langleben, Daniel D. Loughead, James W. Bilker, Warren B. Busch, Samantha I. Gur, Ruben C. Childress, Anna Rose Ruparel, Kosha |
AuthorAffiliation | 1 University of Pennsylvania, Philadelphia, Pennsylvania |
AuthorAffiliation_xml | – name: 1 University of Pennsylvania, Philadelphia, Pennsylvania |
Author_xml | – sequence: 1 givenname: Daniel D. surname: Langleben fullname: Langleben, Daniel D. email: langlebe@mail.med.upenn.edu organization: University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 2 givenname: James W. surname: Loughead fullname: Loughead, James W. organization: University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 3 givenname: Warren B. surname: Bilker fullname: Bilker, Warren B. organization: University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 4 givenname: Kosha surname: Ruparel fullname: Ruparel, Kosha organization: University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 5 givenname: Anna Rose surname: Childress fullname: Childress, Anna Rose organization: University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 6 givenname: Samantha I. surname: Busch fullname: Busch, Samantha I. organization: University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 7 givenname: Ruben C. surname: Gur fullname: Gur, Ruben C. organization: University of Pennsylvania, Philadelphia, Pennsylvania |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17538700$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16161128$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9rFDEUxYNU7B998AvIvCj4MG3uzGSSvAi22G3LVkEqPoYkk3RTMzM1yWztt2_W3bYqqCSQC_mdw73n7qKtYRwMQi8B7wPG1cFC9fsVBg5P0A5gTstc11uruiUlbyhso90YrzAGIBieoW1o84GK7aCzC-O9Gy6LFKa0KGwY-8I7U7gh384tXTdJX8RJXRmdYnHjVpCMqTBLM6QyGC-T6Qp7_vn0OXpqpY_mxebdQ1-OP1wcnZTzT7PTo_fzUhOooNSmUqSjnNctrwhWWjJgtbJMN7gBpYhhWIFqiTUd2Ja2pKmBGFrzxlgrm3oPvVv7Xk-qN53OfQTpxXVwvQy3YpRO_P4zuIW4HJeiZRTalmaDNxuDMH6fTEyid1HnHORgxilmjuUAGfkvCBQzwmmVwVe_tvTQy33OGXi9AWTU0tsgB-3iI0dJzSjGmXu75nQYYwzGPiJYrHYt8q7Fz11n9uAPVrskkxtXUzv_L8WN8-b279bi5PD8XlGuFS4m8-NBIcM3kYOkRHz9OBOEz-b8EM_FWX0HLFLIyg |
CitedBy_id | crossref_primary_10_1016_j_ijpsycho_2013_09_005 crossref_primary_10_1146_annurev_orgpsych_012420_055324 crossref_primary_10_1371_journal_pone_0230837 crossref_primary_10_1080_17470919_2010_544135 crossref_primary_10_1038_srep01636 crossref_primary_10_2478_ep_2022_0005 crossref_primary_10_5812_ans_122202 crossref_primary_10_1016_j_actpsy_2010_05_011 crossref_primary_10_1016_j_bbr_2014_05_059 crossref_primary_10_1016_j_neuroimage_2008_01_035 crossref_primary_10_1162_jocn_2007_19_2_287 crossref_primary_10_1016_j_cmpb_2008_10_001 crossref_primary_10_1111_j_1556_4029_2008_00927_x crossref_primary_10_1134_S0362119711060090 crossref_primary_10_1016_j_jecp_2017_05_009 crossref_primary_10_1002_ajmg_b_32394 crossref_primary_10_1016_j_jflm_2015_09_008 crossref_primary_10_3389_fnins_2017_00482 crossref_primary_10_1177_009885880703300206 crossref_primary_10_1002_hbm_20378 crossref_primary_10_1186_s12993_014_0046_4 crossref_primary_10_1016_j_pscychresns_2009_03_008 crossref_primary_10_1057_biosoc_2012_21 crossref_primary_10_1016_j_brainres_2011_02_084 crossref_primary_10_1016_j_neulet_2010_05_014 crossref_primary_10_1016_j_neuropsychologia_2010_08_013 crossref_primary_10_1016_j_tics_2007_11_008 crossref_primary_10_1177_009885880703300208 crossref_primary_10_1177_1073858410393359 crossref_primary_10_1002_acp_3214 crossref_primary_10_1080_01973533_2014_881288 crossref_primary_10_1093_scan_nsaa086 crossref_primary_10_1176_ps_2007_58_4_460 crossref_primary_10_1177_009885880703300211 crossref_primary_10_1080_15265160701518755 crossref_primary_10_1080_15265160701290249 crossref_primary_10_1097_01_pra_0000361279_11210_14 crossref_primary_10_1111_j_1526_4637_2009_00567_x crossref_primary_10_1016_j_jvoice_2024_07_026 crossref_primary_10_1027_1016_9040_a000193 crossref_primary_10_1080_17470910802188370 crossref_primary_10_1371_journal_pone_0048639 crossref_primary_10_1093_scan_nsy069 crossref_primary_10_1155_2013_176027 crossref_primary_10_1371_journal_pone_0064704 crossref_primary_10_1080_17470910802424445 crossref_primary_10_1109_JBHI_2021_3095415 crossref_primary_10_1016_j_neuroimage_2013_10_023 crossref_primary_10_1002_hbm_21337 crossref_primary_10_1186_1471_2105_10_S9_S15 crossref_primary_10_2139_ssrn_1277208 crossref_primary_10_3758_PBR_16_5_901 crossref_primary_10_1093_scan_nsw151 crossref_primary_10_1007_s00221_007_0992_2 crossref_primary_10_3390_brainsci7080094 crossref_primary_10_1016_j_bandc_2008_09_002 crossref_primary_10_1016_j_ijpsycho_2012_04_009 crossref_primary_10_3389_fnbeh_2021_787905 crossref_primary_10_1080_17470910802109939 crossref_primary_10_17759_exppsy_2021140302 crossref_primary_10_1016_j_neucli_2014_04_002 crossref_primary_10_1016_j_neuroscience_2018_06_049 crossref_primary_10_1111_nyas_13098 crossref_primary_10_1016_j_neulet_2012_09_019 crossref_primary_10_1586_17434440_4_4_463 crossref_primary_10_1080_02699050802084894 crossref_primary_10_1007_s00221_017_5052_y crossref_primary_10_1093_scan_nsp005 crossref_primary_10_1002_hbm_25849 crossref_primary_10_1016_j_tics_2022_06_005 crossref_primary_10_1038_nrn3665 crossref_primary_10_1016_j_brainres_2010_10_106 crossref_primary_10_1192_bjp_bp_106_025056 crossref_primary_10_1371_journal_pbio_1001289 crossref_primary_10_1080_15265160802617829 crossref_primary_10_1360_TB_2021_0963 crossref_primary_10_1111_jpr_12194 crossref_primary_10_3389_fnhum_2022_883337 crossref_primary_10_1080_13554790801992735 crossref_primary_10_1111_j_1747_9991_2012_00494_x crossref_primary_10_1016_j_eurpsy_2007_09_001 crossref_primary_10_1371_journal_pone_0059383 crossref_primary_10_1038_s41598_020_72255_5 crossref_primary_10_1093_cercor_bhn037 crossref_primary_10_1007_s10548_014_0352_z crossref_primary_10_1093_brain_awt040 crossref_primary_10_1007_s10202_005_0020_1 crossref_primary_10_1111_j_1469_8986_2009_00810_x crossref_primary_10_1038_nrn1931 crossref_primary_10_1016_j_neures_2010_11_001 crossref_primary_10_1111_psyp_12609 crossref_primary_10_1515_revneuro_2016_0048 crossref_primary_10_1007_s00115_009_2921_z crossref_primary_10_1016_j_neubiorev_2019_06_027 crossref_primary_10_3138_cjccj_50_3_367 crossref_primary_10_1007_s10676_018_9453_9 crossref_primary_10_1080_17588928_2010_493971 crossref_primary_10_1016_j_neuroimage_2014_05_034 crossref_primary_10_1038_srep33263 crossref_primary_10_1016_j_bbr_2011_07_028 crossref_primary_10_1111_j_1467_9280_2008_02156_x crossref_primary_10_1016_j_tics_2009_12_004 crossref_primary_10_1080_13554790801992784 crossref_primary_10_1007_s12021_014_9223_8 crossref_primary_10_1080_17470910801928271 crossref_primary_10_1093_cercor_bhn189 crossref_primary_10_1080_17470910801903530 crossref_primary_10_1109_JBHI_2022_3172994 crossref_primary_10_1016_j_ijpsycho_2011_03_010 crossref_primary_10_1016_j_bandc_2012_01_009 crossref_primary_10_1016_j_ijpsycho_2006_05_009 crossref_primary_10_1002_brb3_656 crossref_primary_10_1016_j_brainres_2008_09_090 crossref_primary_10_3389_fpsyt_2018_00700 crossref_primary_10_1016_j_biopsycho_2011_12_019 crossref_primary_10_1016_j_brainres_2009_09_085 crossref_primary_10_3389_fnhum_2014_00149 crossref_primary_10_1007_s11158_016_9344_z crossref_primary_10_1016_j_bandc_2015_11_007 crossref_primary_10_1348_135532507X251597 crossref_primary_10_1016_j_neuroscience_2021_06_005 crossref_primary_10_1017_S1134066500009152 crossref_primary_10_1093_cercor_bhm088 crossref_primary_10_1080_13554790801992792 crossref_primary_10_1016_j_bspc_2018_12_008 crossref_primary_10_1073_pnas_0900152106 crossref_primary_10_1088_1741_2560_9_2_026012 crossref_primary_10_1007_s10994_009_5153_3 crossref_primary_10_1027_0269_8803_a000230 crossref_primary_10_1111_j_1467_9221_2011_00860_x crossref_primary_10_1016_j_neuroimage_2018_02_060 crossref_primary_10_4236_jbise_2013_61002 crossref_primary_10_1093_scan_nst134 crossref_primary_10_1177_0306312714531473 crossref_primary_10_1080_17470910801907168 crossref_primary_10_1093_brain_awp052 crossref_primary_10_1136_jnnp_2012_304674 crossref_primary_10_1002_bsl_860 crossref_primary_10_1016_j_bandc_2014_06_005 crossref_primary_10_1111_psyp_14701 crossref_primary_10_1097_WCO_0b013e328332c3cf crossref_primary_10_1111_psyp_14029 crossref_primary_10_1192_bjp_bp_108_053199 crossref_primary_10_1080_13554790801992768 crossref_primary_10_17759_exppsy_2024170106 crossref_primary_10_1348_135532507X251641 crossref_primary_10_1016_j_neuron_2009_11_017 crossref_primary_10_1016_j_neuroimage_2005_08_009 crossref_primary_10_1016_j_neuroimage_2006_02_050 crossref_primary_10_1038_nn1900 crossref_primary_10_5674_jjppp_27_57 crossref_primary_10_1016_j_bandc_2008_08_033 crossref_primary_10_1038_nrn2414 crossref_primary_10_1016_j_neuropsychologia_2014_06_001 crossref_primary_10_1007_s11910_014_0513_1 crossref_primary_10_1016_j_neuropsychologia_2010_10_007 crossref_primary_10_1515_med_2024_1032 crossref_primary_10_1111_j_1460_9568_2011_07856_x crossref_primary_10_1016_j_jofri_2017_03_003 crossref_primary_10_1177_10597123231166421 crossref_primary_10_3389_fnhum_2015_00553 crossref_primary_10_1016_j_ijpsycho_2014_06_001 crossref_primary_10_1002_hbm_24432 crossref_primary_10_1024_1016_264X_20_3_207 crossref_primary_10_2139_ssrn_922391 crossref_primary_10_7717_peerj_260 crossref_primary_10_1002_bsl_993 crossref_primary_10_1080_13554790801992776 crossref_primary_10_1080_17470919_2014_934392 crossref_primary_10_1016_j_neuroimage_2010_11_025 crossref_primary_10_1007_s12152_010_9080_6 crossref_primary_10_1371_journal_pone_0109700 crossref_primary_10_3389_fpsyg_2020_00776 crossref_primary_10_1111_j_1469_8986_2009_00933_x crossref_primary_10_1002_acp_1691 crossref_primary_10_1038_nn_4426 crossref_primary_10_3389_fnhum_2016_00391 crossref_primary_10_1016_S0028_3843_14_60124_9 crossref_primary_10_1080_09541440802678347 crossref_primary_10_1016_j_jneuroling_2013_06_003 crossref_primary_10_1111_j_1469_8986_2010_01148_x crossref_primary_10_1002_hbm_20343 crossref_primary_10_1177_0162243908328756 crossref_primary_10_1016_j_actpsy_2018_10_011 crossref_primary_10_1038_s41598_022_21569_7 crossref_primary_10_1371_journal_pone_0012291 crossref_primary_10_1080_13554790701881731 |
Cites_doi | 10.3109/00207458808985770 10.1098/rstb.2004.1555 10.1002/cbm.559 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 10.1002/hbm.460010207 10.1073/pnas.082111099 10.1038/nn1176 10.1080/15265160590923367 10.1111/j.1469-8986.2004.00158.x 10.1002/hbm.460010306 10.1016/j.neuroimage.2003.10.034 10.1007/978-1-4899-4541-9 10.1016/j.neuroimage.2004.10.041 10.1093/cercor/bhh132 10.1016/S0028-3932(03)00125-8 10.1111/j.0006-341X.2000.00645.x 10.1006/nimg.2000.0572 10.1126/science.4012303 10.1162/08989290151137421 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4 10.1126/science.276.5316.1272 10.1016/j.neuroimage.2003.09.060 10.1093/cercor/bhh059 10.1126/science.1088545 10.1176/appi.ajp.161.9.1650 10.1002/1097-0193(200011)11:3<146::AID-HBM20>3.0.CO;2-D 10.1097/00001756-200109170-00019 10.1016/j.neuroimage.2004.06.006 10.1126/science.1089504 10.1126/science.288.5471.1656 10.1016/j.neuroimage.2004.02.037 10.1002/mrm.1910250220 10.1523/JNEUROSCI.23-21-07776.2003 10.1037/0735-7044.118.4.852 10.1016/S1053-8119(03)00275-1 10.1016/S0028-3932(02)00170-7 10.1016/S0006-3223(99)00083-9 10.1002/mrm.1910330508 10.1006/nimg.2001.1003 10.1037/0022-3514.37.2.147 10.1523/JNEUROSCI.20-08-03033.2000 10.1016/j.neuropsychologia.2003.07.009 10.1093/cercor/13.8.830 10.1016/S0895-4356(01)00341-9 10.1111/j.1469-8986.1994.tb01046.x 10.1002/hbm.10020 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. 2006 INIST-CNRS (c) 2005 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: 2006 INIST-CNRS – notice: (c) 2005 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.20191 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Telling Truth from Lie |
EISSN | 1097-0193 |
EndPage | 272 |
ExternalDocumentID | PMC6871667 16161128 17538700 10_1002_hbm_20191 HBM20191 ark_67375_WNG_59GL9B0L_J |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Defense Advanced Projects Agency through the Army Office of Research |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5121-ce2b5d799369250bca8183bf8c4041bb5e80b1b65fed1f67654315e7394effa43 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 18:23:21 EDT 2025 Thu Sep 04 22:10:19 EDT 2025 Thu Sep 04 23:10:41 EDT 2025 Wed Feb 19 01:41:39 EST 2025 Mon Jul 21 09:14:48 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Tue Jul 01 04:25:53 EDT 2025 Wed Jan 22 17:08:49 EST 2025 Wed Oct 30 09:56:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human fMRI Nervous system diseases Radiodiagnosis deception guilty knowledge test Nuclear magnetic resonance imaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 (c) 2005 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5121-ce2b5d799369250bca8183bf8c4041bb5e80b1b65fed1f67654315e7394effa43 |
Notes | Defense Advanced Projects Agency through the Army Office of Research ark:/67375/WNG-59GL9B0L-J istex:248E325AE8F25894C6DB33A168B433A5D4A2C17F ArticleID:HBM20191 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20191 |
PMID | 16161128 |
PQID | 17085972 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871667 proquest_miscellaneous_68801985 proquest_miscellaneous_17085972 pubmed_primary_16161128 pascalfrancis_primary_17538700 crossref_primary_10_1002_hbm_20191 crossref_citationtrail_10_1002_hbm_20191 wiley_primary_10_1002_hbm_20191_HBM20191 istex_primary_ark_67375_WNG_59GL9B0L_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2005 |
PublicationDateYYYYMMDD | 2005-12-01 |
PublicationDate_xml | – month: 12 year: 2005 text: December 2005 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2005 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Cohen JD (1988): Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum. Konishi S, Jimura K, Asari T, Miyashita Y (2003): Transient activation of superior prefrontal cortex during inhibition of cognitive set. J Neurosci 23: 7776-7782. Tranel D, Damasio AR (1985): Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science 228: 1453-1454. Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1993): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1: 210-220. Paulus MP, Feinstein JS, Tapert SF, Liu TT (2004): Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection. Neuroimage 21: 733-743. Ashburner J, Friston KJ (1999): Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7: 254-266. Rosenfeld PJ (2004): Simple, effective countermeasures to P-300-based tests of detection of concealed information. Psychophysiology 41: 205-219. Huettel SA, McCarthy G (2004): What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia 42: 379-386. Lau HC, Rogers RD, Ramnani N, Passingham RE (2004): Willed action and attention to the selection of action. Neuroimage 21: 1407-1415. Langleben DD, Schroeder L, Maldjian JA, Gur RC, McDonald S, Ragland JD, O'Brien CP, Childress AR (2002): Brain activity during simulated deception: an event-related functional magnetic resonance study. Neuroimage 15: 727-732. Hester R, Fassbender C, Garavan H (2004): Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex 14: 986-994. Lee TM, Liu HL, Tan LH, Chan CC, Mahankali S, Feng CM, Hou J, Fox PT, Gao JH (2002): Lie detection by functional magnetic resonance imaging. Hum Brain Mapp 15: 157-164. Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM, Halperin JM (2004): Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related fMRI study. Am J Psychiatry 161: 1650-1657. Kozel FA, Padgett TM, George MS (2004): A replication study of the neural correlates of deception. Behav Neurosci 118: 852-856. Zhang JX, Feng CM, Fox PT, Gao JH, Tan LH (2004): Is left inferior frontal gyrus a general mechanism for selection? Neuroimage 23: 596-603. Berns GS, Cohen JD, Mintun MA (1997): Brain regions responsive to novelty in the absence of awareness. Science 276: 1272-1275. Ganis G, Kosslyn SM, Stose S, Thompson WL, Yurgelun-Todd DA (2003): Neural correlates of different types of deception: an fMRI investigation. Cereb Cortex 13: 830-836. Spence SA, Farrow TF, Herford AE, Wilkinson ID, Zheng Y, Woodruff PW (2001): Behavioural and functional anatomical correlates of deception in humans. Neuroreport 12: 2849-2853. Rosenfeld JP, Cantwell B, Nasman VT, Wojdac V, Ivanov S, Mazzeri L (1988): A modified, event-related potential-based guilty knowledge test. Int J Neurosci 42: 157-161. Williams RL (2000): A note on robust variance estimation for cluster-correlated data. Biometrics 56: 645-646. Nunez JM, Casey BJ, Egner T, Hare T, Hirsch J (2005): Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 25: 267-277. Vollm B, Richardson P, Stirling J, Elliott R, Dolan M, Chaudhry I, Del Ben C, McKie S, Anderson I, Deakin B (2004): Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Crim Behav Ment Health 14: 39-54. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004): Neural systems supporting interoceptive awareness. Nat Neurosci 7: 189-195. Tranel D, Damasio H (1994): Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology 31: 427-438. Spence SA, Hunter MD, Farrow TF, Green RD, Leung DH, Hughes CJ, Ganesan V (2004): A cognitive neurobiological account of deception: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol Sci 359: 1755-1762. Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000): Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11: 424-446. Wolpe PR, Foster KR, Langleben DD (2005): Emerging neurotechnologies for lie-detection: promises and perils. Am J Bioeth 5: 39-49. Ekman P (2001): Telling lies. New York: Norton. Mecklinger A, Bosch V, Gruenewald C, Bentin S, von Cramon DY (2000): What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Hum Brain Mapp 11: 146-161. Pochon JB, Levy R, Fossati P, Lehericy S, Poline JB, Pillon B, Le Bihan D, Dubois B (2002): The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci U S A 99: 5669-5674. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992): Time course EPI of human brain function during task activation. Magn Reson Med 25: 390-397. Zarahn E, Rakitin B, Abela D, Flynn J, Stern Y (2005): Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli. Cereb Cortex 15: 303-316. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984): Classification or regression trees. Belmont, CA: Wadsworth International Group. Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical. Cabeza R, Dolcos F, Prince SE, Rice HJ, Weissman DH, Nyberg L (2003): Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia 41: 390-399. Friston KJ, Jezzard P, Turner R (1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171. Rubia K, Smith AB, Brammer MJ, Taylor E (2003): Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20: 351-358. Critchley HD, Elliott R, Mathias CJ, Dolan RJ (2000): Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20: 3033-3040. Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC (1997): Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5: 238-242. Chute DL, Westall RF (1997): PowerLaboratory. Devon, PA: MacLaboratory. Koechlin E, Ody C, Kouneiher F (2003): The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185. Langleben DD, Loughead JW, Bilker W, Phend N, Busch S, Childress AR, Platek SM, Wolf R, Gur RC (2004): Imaging deception with fMRI: the effects of salience and ecological relevance. Program No. 372.312. Abstract Viewer/Itinerary Planner, www.sfn.org, online. San Diego: Society for Neuroscience. Efron B, Tibshirani RJ (1993): An introduction to the bootstrap. London: Chapman & Hall. Gur R, Sackeim HA (1979): Self-deception: a concept in search of a phenomenon. J Pers Soc Psychol 37: 147-169. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647. Stern PC (2002): The polygraph and lie detection. Report of the National Research Council Committee to Review the Scientific Evidence on the Polygraph., 1st ed. Washington, DC: National Academies Press. Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999): Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry 45: 1542-1552. Styerberg EW, Harrell FE, Bosboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001): Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiology 54: 774-781. Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JD (2004): Neural systems underlying the suppression of unwanted memories. Science 303: 232-235. Hirsch J, Moreno DR, Kim KH (2001): Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci 13: 389-405. Turk DJ, Banfield JF, Walling BR, Heatherton TF, Grafton ST, Handy TC, Gazzaniga MS, Macrae CN (2004): From facial cue to dinner for two: the neural substrates of personal choice. Neuroimage 22: 1281-1290. Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000): The prefrontal cortex: response selection or maintenance within working memory? Science 288: 1656-1660. Horwitz B, Amunts K, Bhattacharyya R, Patkin D, Jeffries K, Zilles K, Braun AR (2003): Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868-1876. Vrij, A (2001): Detecting lies and deceit: the psychology of lying and the implications for professional practice. Chichester: Wiley; 2001. 2004; 21 2004; 22 2004; 41 2004; 42 2002; 15 2004; 303 1979; 37 2004; 7 1997; 276 1995; 33 2004; 161 2004; 23 2000; 20 2002; 99 2003; 13 1999; 45 1997 1993 2004 1985; 228 2002 1997; 5 1999; 7 1993; 1 2005; 25 2001 2000; 56 2004; 14 2000; 11 2005; 5 1984 1992; 25 1988; 42 2000; 288 1994; 1 2003; 302 2005; 15 2001; 12 2001; 13 2004; 118 1948 2003; 41 2004; 359 2003; 20 1988 2003; 23 2001; 54 1994; 31 e_1_2_7_5_1 Stern PC (e_1_2_7_47_1) 2002 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 Augustine St (e_1_2_7_4_1) 1948 e_1_2_7_26_1 e_1_2_7_28_1 Talairach J (e_1_2_7_49_1) 1988 Chute DL (e_1_2_7_10_1) 1997 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 Ekman P (e_1_2_7_16_1) 2001 e_1_2_7_18_1 Langleben DD (e_1_2_7_32_1) 2004 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 Cohen JD (e_1_2_7_12_1) 1988 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Clark LA (e_1_2_7_11_1) 1993 Breiman L (e_1_2_7_7_1) 1984 Vrij A (e_1_2_7_54_1) 2001 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – reference: Wolpe PR, Foster KR, Langleben DD (2005): Emerging neurotechnologies for lie-detection: promises and perils. Am J Bioeth 5: 39-49. – reference: Cohen JD (1988): Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum. – reference: Hirsch J, Moreno DR, Kim KH (2001): Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci 13: 389-405. – reference: Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1993): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1: 210-220. – reference: Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004): Neural systems supporting interoceptive awareness. Nat Neurosci 7: 189-195. – reference: Turk DJ, Banfield JF, Walling BR, Heatherton TF, Grafton ST, Handy TC, Gazzaniga MS, Macrae CN (2004): From facial cue to dinner for two: the neural substrates of personal choice. Neuroimage 22: 1281-1290. – reference: Cabeza R, Dolcos F, Prince SE, Rice HJ, Weissman DH, Nyberg L (2003): Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia 41: 390-399. – reference: Lee TM, Liu HL, Tan LH, Chan CC, Mahankali S, Feng CM, Hou J, Fox PT, Gao JH (2002): Lie detection by functional magnetic resonance imaging. Hum Brain Mapp 15: 157-164. – reference: Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000): The prefrontal cortex: response selection or maintenance within working memory? Science 288: 1656-1660. – reference: Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999): Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry 45: 1542-1552. – reference: Konishi S, Jimura K, Asari T, Miyashita Y (2003): Transient activation of superior prefrontal cortex during inhibition of cognitive set. J Neurosci 23: 7776-7782. – reference: Stern PC (2002): The polygraph and lie detection. Report of the National Research Council Committee to Review the Scientific Evidence on the Polygraph., 1st ed. Washington, DC: National Academies Press. – reference: Williams RL (2000): A note on robust variance estimation for cluster-correlated data. Biometrics 56: 645-646. – reference: Kozel FA, Padgett TM, George MS (2004): A replication study of the neural correlates of deception. Behav Neurosci 118: 852-856. – reference: Tranel D, Damasio AR (1985): Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science 228: 1453-1454. – reference: Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992): Time course EPI of human brain function during task activation. Magn Reson Med 25: 390-397. – reference: Koechlin E, Ody C, Kouneiher F (2003): The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181-1185. – reference: Ashburner J, Friston KJ (1999): Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7: 254-266. – reference: Rosenfeld PJ (2004): Simple, effective countermeasures to P-300-based tests of detection of concealed information. Psychophysiology 41: 205-219. – reference: Critchley HD, Elliott R, Mathias CJ, Dolan RJ (2000): Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20: 3033-3040. – reference: Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636-647. – reference: Mecklinger A, Bosch V, Gruenewald C, Bentin S, von Cramon DY (2000): What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Hum Brain Mapp 11: 146-161. – reference: Vollm B, Richardson P, Stirling J, Elliott R, Dolan M, Chaudhry I, Del Ben C, McKie S, Anderson I, Deakin B (2004): Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Crim Behav Ment Health 14: 39-54. – reference: Efron B, Tibshirani RJ (1993): An introduction to the bootstrap. London: Chapman & Hall. – reference: Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC (1997): Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5: 238-242. – reference: Berns GS, Cohen JD, Mintun MA (1997): Brain regions responsive to novelty in the absence of awareness. Science 276: 1272-1275. – reference: Ekman P (2001): Telling lies. New York: Norton. – reference: Friston KJ, Jezzard P, Turner R (1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171. – reference: Zarahn E, Rakitin B, Abela D, Flynn J, Stern Y (2005): Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli. Cereb Cortex 15: 303-316. – reference: Huettel SA, McCarthy G (2004): What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia 42: 379-386. – reference: Paulus MP, Feinstein JS, Tapert SF, Liu TT (2004): Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection. Neuroimage 21: 733-743. – reference: Pochon JB, Levy R, Fossati P, Lehericy S, Poline JB, Pillon B, Le Bihan D, Dubois B (2002): The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci U S A 99: 5669-5674. – reference: Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JD (2004): Neural systems underlying the suppression of unwanted memories. Science 303: 232-235. – reference: Horwitz B, Amunts K, Bhattacharyya R, Patkin D, Jeffries K, Zilles K, Braun AR (2003): Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868-1876. – reference: Lau HC, Rogers RD, Ramnani N, Passingham RE (2004): Willed action and attention to the selection of action. Neuroimage 21: 1407-1415. – reference: Rosenfeld JP, Cantwell B, Nasman VT, Wojdac V, Ivanov S, Mazzeri L (1988): A modified, event-related potential-based guilty knowledge test. Int J Neurosci 42: 157-161. – reference: Vrij, A (2001): Detecting lies and deceit: the psychology of lying and the implications for professional practice. Chichester: Wiley; 2001. – reference: Langleben DD, Loughead JW, Bilker W, Phend N, Busch S, Childress AR, Platek SM, Wolf R, Gur RC (2004): Imaging deception with fMRI: the effects of salience and ecological relevance. Program No. 372.312. Abstract Viewer/Itinerary Planner, www.sfn.org, online. San Diego: Society for Neuroscience. – reference: Nunez JM, Casey BJ, Egner T, Hare T, Hirsch J (2005): Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage 25: 267-277. – reference: Langleben DD, Schroeder L, Maldjian JA, Gur RC, McDonald S, Ragland JD, O'Brien CP, Childress AR (2002): Brain activity during simulated deception: an event-related functional magnetic resonance study. Neuroimage 15: 727-732. – reference: Ganis G, Kosslyn SM, Stose S, Thompson WL, Yurgelun-Todd DA (2003): Neural correlates of different types of deception: an fMRI investigation. Cereb Cortex 13: 830-836. – reference: Tranel D, Damasio H (1994): Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology 31: 427-438. – reference: Zhang JX, Feng CM, Fox PT, Gao JH, Tan LH (2004): Is left inferior frontal gyrus a general mechanism for selection? Neuroimage 23: 596-603. – reference: Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical. – reference: Rubia K, Smith AB, Brammer MJ, Taylor E (2003): Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20: 351-358. – reference: Hester R, Fassbender C, Garavan H (2004): Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex 14: 986-994. – reference: Breiman L, Friedman JH, Olshen RA, Stone CJ (1984): Classification or regression trees. Belmont, CA: Wadsworth International Group. – reference: Spence SA, Farrow TF, Herford AE, Wilkinson ID, Zheng Y, Woodruff PW (2001): Behavioural and functional anatomical correlates of deception in humans. Neuroreport 12: 2849-2853. – reference: Spence SA, Hunter MD, Farrow TF, Green RD, Leung DH, Hughes CJ, Ganesan V (2004): A cognitive neurobiological account of deception: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol Sci 359: 1755-1762. – reference: Gur R, Sackeim HA (1979): Self-deception: a concept in search of a phenomenon. J Pers Soc Psychol 37: 147-169. – reference: Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000): Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11: 424-446. – reference: Schulz KP, Fan J, Tang CY, Newcorn JH, Buchsbaum MS, Cheung AM, Halperin JM (2004): Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related fMRI study. Am J Psychiatry 161: 1650-1657. – reference: Chute DL, Westall RF (1997): PowerLaboratory. Devon, PA: MacLaboratory. – reference: Styerberg EW, Harrell FE, Bosboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001): Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiology 54: 774-781. – volume: 25 start-page: 390 year: 1992 end-page: 397 article-title: Time course EPI of human brain function during task activation publication-title: Magn Reson Med – volume: 359 start-page: 1755 year: 2004 end-page: 1762 article-title: A cognitive neurobiological account of deception: evidence from functional neuroimaging publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 21 start-page: 733 year: 2004 end-page: 743 article-title: Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection publication-title: Neuroimage – volume: 41 start-page: 205 year: 2004 end-page: 219 article-title: Simple, effective countermeasures to P‐300‐based tests of detection of concealed information publication-title: Psychophysiology – volume: 41 start-page: 390 year: 2003 end-page: 399 article-title: Attention‐related activity during episodic memory retrieval: a cross‐function fMRI study publication-title: Neuropsychologia – year: 2001 – volume: 21 start-page: 1407 year: 2004 end-page: 1415 article-title: Willed action and attention to the selection of action publication-title: Neuroimage – volume: 25 start-page: 267 year: 2005 end-page: 277 article-title: Intentional false responding shares neural substrates with response conflict and cognitive control publication-title: Neuroimage – volume: 54 start-page: 774 year: 2001 end-page: 781 article-title: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis publication-title: J Clin Epidemiology – volume: 15 start-page: 303 year: 2005 end-page: 316 article-title: Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli publication-title: Cereb Cortex – volume: 5 start-page: 238 year: 1997 end-page: 242 article-title: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward‐transform method publication-title: Hum Brain Mapp – volume: 11 start-page: 146 year: 2000 end-page: 161 article-title: What have Klingon letters and faces in common? An fMRI study on content‐specific working memory systems publication-title: Hum Brain Mapp – volume: 161 start-page: 1650 year: 2004 end-page: 1657 article-title: Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event‐related fMRI study publication-title: Am J Psychiatry – volume: 45 start-page: 1542 year: 1999 end-page: 1552 article-title: Anterior cingulate cortex dysfunction in attention‐deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop publication-title: Biol Psychiatry – volume: 118 start-page: 852 year: 2004 end-page: 856 article-title: A replication study of the neural correlates of deception publication-title: Behav Neurosci – volume: 303 start-page: 232 year: 2004 end-page: 235 article-title: Neural systems underlying the suppression of unwanted memories publication-title: Science – volume: 14 start-page: 39 year: 2004 end-page: 54 article-title: Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study publication-title: Crim Behav Ment Health – year: 2004 – year: 1997 – volume: 42 start-page: 157 year: 1988 end-page: 161 article-title: A modified, event‐related potential‐based guilty knowledge test publication-title: Int J Neurosci – volume: 14 start-page: 986 year: 2004 end-page: 994 article-title: Individual differences in error processing: a review and reanalysis of three event‐related fMRI studies using the GO/NOGO task publication-title: Cereb Cortex – volume: 22 start-page: 1281 year: 2004 end-page: 1290 article-title: From facial cue to dinner for two: the neural substrates of personal choice publication-title: Neuroimage – volume: 41 start-page: 1868 year: 2003 end-page: 1876 article-title: Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis publication-title: Neuropsychologia – year: 1993 – volume: 11 start-page: 424 year: 2000 end-page: 446 article-title: Working memory for letters, shapes, and locations: fMRI evidence against stimulus‐based regional organization in human prefrontal cortex publication-title: Neuroimage – volume: 56 start-page: 645 year: 2000 end-page: 646 article-title: A note on robust variance estimation for cluster‐correlated data publication-title: Biometrics – volume: 302 start-page: 1181 year: 2003 end-page: 1185 article-title: The architecture of cognitive control in the human prefrontal cortex publication-title: Science – volume: 12 start-page: 2849 year: 2001 end-page: 2853 article-title: Behavioural and functional anatomical correlates of deception in humans publication-title: Neuroreport – volume: 15 start-page: 157 year: 2002 end-page: 164 article-title: Lie detection by functional magnetic resonance imaging publication-title: Hum Brain Mapp – start-page: 377 year: 1993 end-page: 419 – volume: 13 start-page: 389 year: 2001 end-page: 405 article-title: Interconnected large‐scale systems for three fundamental cognitive tasks revealed by functional MRI publication-title: J Cogn Neurosci – volume: 23 start-page: 596 year: 2004 end-page: 603 article-title: Is left inferior frontal gyrus a general mechanism for selection? publication-title: Neuroimage – volume: 288 start-page: 1656 year: 2000 end-page: 1660 article-title: The prefrontal cortex: response selection or maintenance within working memory? publication-title: Science – start-page: 244 year: 1948 end-page: 245 – volume: 20 start-page: 3033 year: 2000 end-page: 3040 article-title: Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study publication-title: J Neurosci – volume: 20 start-page: 351 year: 2003 end-page: 358 article-title: Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection publication-title: Neuroimage – volume: 13 start-page: 830 year: 2003 end-page: 836 article-title: Neural correlates of different types of deception: an fMRI investigation publication-title: Cereb Cortex – year: 1984 – volume: 228 start-page: 1453 year: 1985 end-page: 1454 article-title: Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics publication-title: Science – volume: 276 start-page: 1272 year: 1997 end-page: 1275 article-title: Brain regions responsive to novelty in the absence of awareness publication-title: Science – volume: 1 start-page: 153 year: 1994 end-page: 171 article-title: Analysis of functional MRI time‐series publication-title: Hum Brain Mapp – volume: 1 start-page: 210 year: 1993 end-page: 220 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum Brain Mapp – volume: 99 start-page: 5669 year: 2002 end-page: 5674 article-title: The neural system that bridges reward and cognition in humans: an fMRI study publication-title: Proc Natl Acad Sci U S A – year: 2002 – year: 1988 – volume: 42 start-page: 379 year: 2004 end-page: 386 article-title: What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy publication-title: Neuropsychologia – volume: 5 start-page: 39 year: 2005 end-page: 49 article-title: Emerging neurotechnologies for lie‐detection: promises and perils publication-title: Am J Bioeth – volume: 7 start-page: 254 year: 1999 end-page: 266 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum Brain Mapp – volume: 33 start-page: 636 year: 1995 end-page: 647 article-title: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster‐size threshold publication-title: Magn Reson Med – volume: 37 start-page: 147 year: 1979 end-page: 169 article-title: Self‐deception: a concept in search of a phenomenon publication-title: J Pers Soc Psychol – volume: 7 start-page: 189 year: 2004 end-page: 195 article-title: Neural systems supporting interoceptive awareness publication-title: Nat Neurosci – volume: 15 start-page: 727 year: 2002 end-page: 732 article-title: Brain activity during simulated deception: an event‐related functional magnetic resonance study publication-title: Neuroimage – volume: 23 start-page: 7776 year: 2003 end-page: 7782 article-title: Transient activation of superior prefrontal cortex during inhibition of cognitive set publication-title: J Neurosci – volume: 31 start-page: 427 year: 1994 end-page: 438 article-title: Neuroanatomical correlates of electrodermal skin conductance responses publication-title: Psychophysiology – ident: e_1_2_7_41_1 doi: 10.3109/00207458808985770 – ident: e_1_2_7_46_1 doi: 10.1098/rstb.2004.1555 – ident: e_1_2_7_53_1 doi: 10.1002/cbm.559 – volume-title: The polygraph and lie detection year: 2002 ident: e_1_2_7_47_1 – ident: e_1_2_7_3_1 doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G – volume-title: PowerLaboratory year: 1997 ident: e_1_2_7_10_1 – ident: e_1_2_7_19_1 doi: 10.1002/hbm.460010207 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.082111099 – ident: e_1_2_7_14_1 doi: 10.1038/nn1176 – ident: e_1_2_7_56_1 doi: 10.1080/15265160590923367 – ident: e_1_2_7_40_1 doi: 10.1111/j.1469-8986.2004.00158.x – ident: e_1_2_7_18_1 doi: 10.1002/hbm.460010306 – ident: e_1_2_7_33_1 doi: 10.1016/j.neuroimage.2003.10.034 – ident: e_1_2_7_15_1 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2004.10.041 – ident: e_1_2_7_57_1 doi: 10.1093/cercor/bhh132 – ident: e_1_2_7_25_1 doi: 10.1016/S0028-3932(03)00125-8 – ident: e_1_2_7_55_1 doi: 10.1111/j.0006-341X.2000.00645.x – ident: e_1_2_7_37_1 doi: 10.1006/nimg.2000.0572 – volume-title: Detecting lies and deceit: the psychology of lying and the implications for professional practice year: 2001 ident: e_1_2_7_54_1 – ident: e_1_2_7_50_1 doi: 10.1126/science.4012303 – start-page: 244 volume-title: Opuscules. II. Problèmes moraux year: 1948 ident: e_1_2_7_4_1 – ident: e_1_2_7_24_1 doi: 10.1162/08989290151137421 – ident: e_1_2_7_30_1 doi: 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4 – ident: e_1_2_7_6_1 doi: 10.1126/science.276.5316.1272 – ident: e_1_2_7_38_1 doi: 10.1016/j.neuroimage.2003.09.060 – ident: e_1_2_7_23_1 doi: 10.1093/cercor/bhh059 – ident: e_1_2_7_27_1 doi: 10.1126/science.1088545 – ident: e_1_2_7_44_1 doi: 10.1176/appi.ajp.161.9.1650 – ident: e_1_2_7_35_1 doi: 10.1002/1097-0193(200011)11:3<146::AID-HBM20>3.0.CO;2-D – ident: e_1_2_7_45_1 doi: 10.1097/00001756-200109170-00019 – ident: e_1_2_7_58_1 doi: 10.1016/j.neuroimage.2004.06.006 – ident: e_1_2_7_2_1 doi: 10.1126/science.1089504 – ident: e_1_2_7_42_1 doi: 10.1126/science.288.5471.1656 – volume-title: Co‐planar stereotaxic atlas of the human brain. 3‐Dimensional proportional system: an approach to cerebral imaging year: 1988 ident: e_1_2_7_49_1 – ident: e_1_2_7_52_1 doi: 10.1016/j.neuroimage.2004.02.037 – ident: e_1_2_7_22_1 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.1910250220 – volume-title: Imaging deception with fMRI: the effects of salience and ecological relevance year: 2004 ident: e_1_2_7_32_1 – ident: e_1_2_7_28_1 doi: 10.1523/JNEUROSCI.23-21-07776.2003 – ident: e_1_2_7_29_1 doi: 10.1037/0735-7044.118.4.852 – start-page: 377 volume-title: Statistical models year: 1993 ident: e_1_2_7_11_1 – ident: e_1_2_7_43_1 doi: 10.1016/S1053-8119(03)00275-1 – ident: e_1_2_7_9_1 doi: 10.1016/S0028-3932(02)00170-7 – volume-title: Telling lies year: 2001 ident: e_1_2_7_16_1 – ident: e_1_2_7_8_1 doi: 10.1016/S0006-3223(99)00083-9 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.1910330508 – ident: e_1_2_7_31_1 doi: 10.1006/nimg.2001.1003 – ident: e_1_2_7_21_1 doi: 10.1037/0022-3514.37.2.147 – volume-title: Classification or regression trees year: 1984 ident: e_1_2_7_7_1 – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: e_1_2_7_12_1 – ident: e_1_2_7_13_1 doi: 10.1523/JNEUROSCI.20-08-03033.2000 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuropsychologia.2003.07.009 – ident: e_1_2_7_20_1 doi: 10.1093/cercor/13.8.830 – ident: e_1_2_7_48_1 doi: 10.1016/S0895-4356(01)00341-9 – ident: e_1_2_7_51_1 doi: 10.1111/j.1469-8986.1994.tb01046.x – ident: e_1_2_7_34_1 doi: 10.1002/hbm.10020 |
SSID | ssj0011501 |
Score | 2.3286147 |
Snippet | Deception is a clinically important behavior with poorly understood neurobiological correlates. Published functional MRI (fMRI) data on the brain activity... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | Adolescent Adult Biological and medical sciences Brain - anatomy & histology Brain - physiology Brain Mapping Cognition - physiology Cues Deception Evoked Potentials - physiology fMRI Functional Laterality - physiology guilty knowledge test Humans Investigative techniques, diagnostic techniques (general aspects) Lie Detection - psychology Magnetic Resonance Imaging Male Medical sciences Miscellaneous Nervous system Nervous system (semeiology, syndromes) Nervous system as a whole Neurology Neuropharmacology Neuropsychological Tests Pharmacology. Drug treatments Predictive Value of Tests Prefrontal Cortex - anatomy & histology Prefrontal Cortex - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry Reaction Time - physiology Reproducibility of Results Social Behavior Time Factors |
Title | Telling truth from lie in individual subjects with fast event-related fMRI |
URI | https://api.istex.fr/ark:/67375/WNG-59GL9B0L-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20191 https://www.ncbi.nlm.nih.gov/pubmed/16161128 https://www.proquest.com/docview/17085972 https://www.proquest.com/docview/68801985 https://pubmed.ncbi.nlm.nih.gov/PMC6871667 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRUJc-GiBhkKxEKq4pI03tpOIUwu0S7XbQ9WKHpAi2-toV4W0arJSy4mfwG_klzDjbLIstBJCuUTKJJEnz-NnZ-YZ4HWSJRJHkSh0QsWhyEY81JGNQiusS7iV6chLCg0PVf9EHJzK0yV429bCNPoQ3YIb9Qwfr6mDa1Ntz0VDx4YKybmvXOexIt3890eddBQRHT_ZwiE2zDACt6pCUW-7u3NhLLpDbr2i3EhdoXuKZl-Lm4jn3_mTv_NaPzDtPYDPbZOafJSzrWlttuy3P9Qe_7PND-H-jLCynQZhj2DJlSuwulPiZP3rNdtkPoXUr82vwN3h7E_9KgyOnVf7ZvXltB4zqmJhSHfZpGSTrgaMVVND60AVo-VgVuiqZl5R6uf3H77Ixo1YMTz6-BhO9j4cv-uHs50bQosEgofW9YzEr0y7BSLHMlYjL4hNkVoRCW6MdGlkuFGycCNeqIQKXLl0SZwJVxRaxE9guTwv3RqwONWpVCZ2KUYORFCWOqSsSljkGvgyGcCb9hvmdiZrTrtrfMkbQeZejk7LvdMCeNWZXjRaHjcZbXogdBb68oyS3xKZfzrcz2W2P8h2o0F-EMDGAlLmj8QZIEbBKICXLXRy7LP0I0aX7nxaoQXJyiW92y0UhlWepdi6pw3U5k9XeCCpCCBZAGFnQHrhi1fKydjrhiuaHKsEPeYxdrsP8v7u0J88-3fTdbjXqNpSps9zWEZ0uRfI12qz4TvmLwC4O0w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQRceLQ8wqO1EKq4pE02tpNIXFqg3ZbsHqqt6AVZsdfRrgoparIScOIn8Bv5Jcw4mywLrYRQLpEySeTJePzNZOYzwIs4jQWuIoFvuYx8no5DPw9M4BtubBwakYwdpdBgKPun_PhMnK3Aq7YXpuGH6BJuNDOcv6YJTgnp3QVr6ERTJ3lIretrHIEGhV5vTjryKII6LtzCRdZP0Qe3vEJBb7e7dWk1WiPFfqHqyLxCBRXNzhZXQc-_Kyh_R7ZuaTq4Ax_aQTUVKec7s1rvmG9_8D3-76jvwu05ZmV7jZHdgxVbrsPGXonx-qevbJu5KlKXnl-HG4P5z_oNyEbWEX6z-nJWTxg1sjBEvGxasmnXBsaqmaZUUMUoI8yKvKqZI5X6-f2H67OxY1YMTo7uw-nB29Hrvj_fvME3iCFC39ieFvihacNAhFna5AgNIl0khgc81FrYJNChlqKw47CQMfW4hsLGUcptUeQ8egCr5UVpHwGLkjwRUkc2QeeBRpQmFlGr5AbhBr5MePCy_YjKzJnNaYONj6rhZO4pVJpySvPgeSf6uaHzuEpo21lCJ5FfnlP9WyzU--GhEulhlu4HmTr2YHPJVBaPxCAQHWHgwVZrOwqnLf2LyUt7MatQgpjl4t71EhI9a5gmOLqHja0tni7xQFzhQbxkhZ0AUYYvXymnE0cdLik-ljFqzBnZ9TpQ_f2BO3n876JbcLM_GmQqOxq-ewK3GpJbKvx5CqtoafYZwrdab7pZ-guYYD9r |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrVRx4aPlIy20FkIVl7TJxnYScWqB7bbsrlDVih6QrNhxtKtCWnWzEnDiJ_Ab-SXMOJssC62EUC6RMknkyfP42Zl5BngRp7HAUSTwLZeRz9M89LPABL7hxsahEUnuJIUGQ9k748fn4nwJXjW1MLU-RLvgRj3DxWvq4Fd5sTcXDR1pKiQPqXJ9hUtkEsSITlrtKGI6braFY6yfYghuZIWCzl5768JgtEJ-_ULJkdkE_VPUG1vcxDz_TqD8ndi6kal7Dz42baoTUi52p5XeNd_-kHv8z0bfh7szxsr2a4g9gCVbrsH6fomz9c9f2Q5zOaRucX4NVgezX_Xr0D-1Tu6bVdfTasSojIUh32Xjko3bIjA2mWpaCJowWg9mRTapmJOU-vn9h6uysTkrBidHD-Gs-_b0dc-fbd3gG2QQoW9sRwv8zLRdIJIsbTIkBpEuEsMDHmotbBLoUEtR2DwsZEwVrqGwcZRyWxQZjx7BcnlZ2ifAoiRLhNSRTTB0IITSxCJnldwg2cCXCQ9eNt9QmZmuOW2v8UnViswdhU5TzmkePG9Nr2oxj5uMdhwQWovs-oKy32KhPgwPlUgP--lB0FfHHmwtIGX-SJwCYhgMPNhuoKOw09KfmKy0l9MJWpCuXNy53UJiXA3TBFv3uIba_OkSD2QVHsQLIGwNSDB88Uo5HjnhcEmzYxmjxxzGbveB6h0M3MnGv5tuw-r7N13VPxq-24Q7tcItZf08hWUEmn2G3K3SW66P_gKvJT4a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telling+truth+from+lie+in+individual+subjects+with+fast+event%E2%80%90related+fMRI&rft.jtitle=Human+brain+mapping&rft.au=Langleben%2C+Daniel+D.&rft.au=Loughead%2C+James+W.&rft.au=Bilker%2C+Warren+B.&rft.au=Ruparel%2C+Kosha&rft.date=2005-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=26&rft.issue=4&rft.spage=262&rft.epage=272&rft_id=info:doi/10.1002%2Fhbm.20191&rft.externalDBID=10.1002%252Fhbm.20191&rft.externalDocID=HBM20191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |