Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China

Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality pre...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 17; no. 21; pp. 13103 - 13118
Main Authors Hu, Jianlin, Li, Xun, Huang, Lin, Ying, Qi, Zhang, Qiang, Zhao, Bin, Wang, Shuxiao, Zhang, Hongliang
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 07.11.2017
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25 to −0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1h. The study demonstrates that ensemble predictions from combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories, and the results are publicly available for future health effect studies.
AbstractList Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25 to −0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1h. The study demonstrates that ensemble predictions from combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories, and the results are publicly available for future health effect studies.
Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 to -0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1h. The study demonstrates that ensemble predictions from combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories, and the results are publicly available for future health effect studies.
Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM2.5 in the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25 to −0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual daily maximum 1 h O3 (O3-1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1h. The study demonstrates that ensemble predictions from combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories, and the results are publicly available for future health effect studies.
Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to provide spatial distribution, chemical composition, particle size fractions, and source origins of air pollutants. The accuracy of air quality predictions in China is greatly affected by the uncertainties of emission inventories. The Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the Weather Research and Forecasting (WRF) model were used in this study to simulate air pollutants in China in 2013. Four simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance of each simulation was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O.sub.3 and PM.sub.2.5 generally meet the model performance criteria, but performance differences exist in different regions, for different pollutants, and among inventories. Ensemble predictions were calculated by linearly combining the results from different inventories to minimize the sum of the squared errors between the ensemble results and the observations in all cities. The ensemble concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFEs) of the ensemble annual PM.sub.2.5 in the 60 cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 to -0.16) and MFE (0.26-0.31) of individual simulations. The ensemble annual daily maximum 1 h O.sub.3 (O.sub.3 -1h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06-0.19 and MNE of 0.16-0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM.sub.2.5 and O.sub.3 -1h. The study demonstrates that ensemble predictions from combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories, and the results are publicly available for future health effect studies.
Audience Academic
Author Zhang, Hongliang
Li, Xun
Hu, Jianlin
Zhang, Qiang
Huang, Lin
Zhao, Bin
Ying, Qi
Wang, Shuxiao
Author_xml – sequence: 1
  fullname: Hu, Jianlin
– sequence: 2
  fullname: Li, Xun
– sequence: 3
  fullname: Huang, Lin
– sequence: 4
  fullname: Ying, Qi
– sequence: 5
  fullname: Zhang, Qiang
– sequence: 6
  fullname: Zhao, Bin
– sequence: 7
  fullname: Wang, Shuxiao
– sequence: 8
  fullname: Zhang, Hongliang
BookMark eNp9kk1rGzEQhpeSQpM0P6A3QU89bKLZ1X7oaEzSGlJKk0COQh8jW2Z35UhaiP99lbg0NZSig8TwzPsOo_esOJn8hEXxCehlA5xdSb0roSuhBlqXFYXuXXEKbU_Lrq7YyV_vD8VZjFtKq4YCOy3weoo4qgHJLqBxOjk_EW-JdIE8zXJwaU_m6KY1SRskj3c3V8vvi59k9AYHEvcx4UisD2SDckgbgtaiTiSm2TiMxE1kuXGT_Fi8t3KIePH7Pi8ebq4flt_K2x9fV8vFbakbgFRa5D2aTjKloLe9RmY7hayue94abWteI5e0b_tOK60bpoBaQy1vlKy0MvV5sTrIGi-3YhfcKMNeeOnEa8GHtZAhOT2gkHlP2alTqgXWW87RVNnb8FbZbKSz1ueD1i74pxljEls_hylPLyoGrKIN67r_UcDbPCoD6N-otczWbrI-BalHF7VYNFC3nEFfZeryH1Q-Bken83dbl-tHDV-OGjKT8Dmt5RyjWN3fHbNwYHXwMQa0f9YDVLwkSOQECejEa4LES4LqX7JOuOw
CitedBy_id crossref_primary_10_1016_j_envres_2022_114196
crossref_primary_10_5194_acp_22_4615_2022
crossref_primary_10_5194_acp_21_2725_2021
crossref_primary_10_5194_gmd_15_7791_2022
crossref_primary_10_1038_s41370_024_00658_x
crossref_primary_10_1016_j_scitotenv_2022_155231
crossref_primary_10_1007_s10546_019_00483_y
crossref_primary_10_1016_j_atmosenv_2023_120116
crossref_primary_10_1016_j_envpol_2021_116793
crossref_primary_10_1016_j_atmosenv_2022_119446
crossref_primary_10_1016_j_atmosenv_2023_120231
crossref_primary_10_1029_2022JD038360
crossref_primary_10_1016_j_scitotenv_2024_172606
crossref_primary_10_1016_j_uclim_2022_101185
crossref_primary_10_1016_j_envpol_2022_120926
crossref_primary_10_3390_atmos13040538
crossref_primary_10_5194_acp_21_6365_2021
crossref_primary_10_1098_rsta_2019_0325
crossref_primary_10_1016_j_envint_2021_106482
crossref_primary_10_1016_j_scitotenv_2019_135620
crossref_primary_10_1007_s11869_021_01023_9
crossref_primary_10_5194_acp_19_5905_2019
crossref_primary_10_1007_s11427_021_2098_7
crossref_primary_10_1016_j_atmosenv_2023_120269
crossref_primary_10_1029_2022JD038373
crossref_primary_10_1038_s43856_024_00557_0
crossref_primary_10_1016_j_atmosenv_2020_118087
crossref_primary_10_1016_j_apr_2021_101211
crossref_primary_10_1016_j_scitotenv_2018_10_174
crossref_primary_10_1016_j_jclepro_2023_136801
crossref_primary_10_5194_acp_20_7531_2020
crossref_primary_10_1016_j_envint_2020_105927
crossref_primary_10_1016_j_resconrec_2021_105620
crossref_primary_10_1016_j_chemosphere_2024_141548
crossref_primary_10_5194_acp_19_8339_2019
crossref_primary_10_1038_s41467_021_21305_1
crossref_primary_10_3389_fenvs_2022_872249
crossref_primary_10_3390_atmos11070733
crossref_primary_10_1016_j_envpol_2023_123183
crossref_primary_10_1016_j_envint_2023_107861
crossref_primary_10_1021_acs_est_0c02958
crossref_primary_10_1016_j_atmosenv_2020_118131
crossref_primary_10_1016_j_oneear_2023_04_006
crossref_primary_10_1029_2021GL093668
crossref_primary_10_5194_acp_19_12413_2019
crossref_primary_10_1016_j_ecoenv_2021_112498
crossref_primary_10_1016_j_jes_2021_08_048
crossref_primary_10_3390_atmos14020393
crossref_primary_10_1016_j_envint_2023_108200
crossref_primary_10_1016_j_jenvman_2022_115480
crossref_primary_10_3390_atmos12080983
crossref_primary_10_1016_j_envres_2023_116326
crossref_primary_10_1016_j_jes_2023_11_002
crossref_primary_10_1007_s40808_024_02086_0
crossref_primary_10_1021_acs_est_0c05815
crossref_primary_10_1016_j_atmosenv_2020_118022
crossref_primary_10_1016_j_jes_2022_07_019
crossref_primary_10_1016_j_scitotenv_2020_144796
crossref_primary_10_1021_acs_est_1c01567
crossref_primary_10_1016_j_atmosenv_2020_117896
crossref_primary_10_1016_j_ijheh_2021_113912
crossref_primary_10_1016_j_scitotenv_2021_151459
Cites_doi 10.1021/es404810z
10.1016/j.envint.2016.04.034
10.1029/2002JD003093
10.1021/acs.est.7b03193
10.5194/acp-9-5131-2009
10.1016/j.atmosenv.2008.08.021
10.1016/j.atmosenv.2010.09.034
10.5194/acp-13-11019-2013
10.1289/ehp.1510133
10.1021/es201656f
10.1016/j.envpol.2015.08.037
10.5194/acp-16-10333-2016
10.1115/1.2128636
10.1098/rsta.2007.2076
10.1016/j.atmosenv.2006.07.052
10.1016/j.atmosenv.2009.11.011
10.1016/j.scitotenv.2016.05.165
10.1016/j.atmosenv.2014.05.056
10.1016/j.atmosenv.2013.05.012
10.5194/acp-14-9787-2014
10.5194/acp-11-2295-2011
10.5194/acp-11-4105-2011
10.1016/j.scitotenv.2015.05.062
10.5194/acp-12-4429-2012
10.5194/gmd-5-1471-2012
10.5194/acp-17-5379-2017
10.5194/acp-17-6393-2017
10.1021/acs.est.5b02514
10.1021/es404809j
10.1289/ehp.1408565
10.1016/j.atmosenv.2008.02.012
10.1016/j.atmosenv.2009.10.011
10.1016/j.envint.2014.08.016
10.1016/j.atmosenv.2011.08.054
10.5194/acp-14-5617-2014
10.5194/acp-14-8679-2014
10.1088/1748-9326/8/2/024031
10.1021/es502965b
10.1016/j.atmosenv.2005.09.087
10.5194/acp-11-931-2011
10.1016/j.atmosenv.2014.07.019
10.5194/acp-10-3273-2010
10.1016/j.atmosenv.2014.08.020
10.5194/acp-12-481-2012
10.1016/j.atmosenv.2005.10.038
10.1038/nature15371
10.1038/nature02771
10.1029/2004JD004718
10.1016/j.atmosenv.2014.11.054
10.5194/acp-15-3445-2015
10.1016/j.atmosenv.2009.04.060
10.1016/j.scitotenv.2015.05.108
10.1016/j.atmosenv.2012.08.014
10.5194/gmd-4-625-2011
10.1073/pnas.1404727111
10.5194/acp-17-77-2017
10.1016/j.scitotenv.2017.03.267
10.1038/srep14884
10.1021/acs.est.5b03709
ContentType Journal Article
Copyright COPYRIGHT 2017 Copernicus GmbH
Copyright Copernicus GmbH 2017
2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2017 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2017
– notice: 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.5194/acp-17-13103-2017
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Continental Europe Database
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Public Health
EISSN 1680-7324
EndPage 13118
ExternalDocumentID oai_doaj_org_article_a103d7a7bb6148f99ed28edd96bff39c
A513694182
10_5194_acp_17_13103_2017
GeographicLocations China
Asia
GeographicLocations_xml – name: China
– name: Asia
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
ID FETCH-LOGICAL-c511t-fe98ed7a4bb18f8ce4f7be433896dcf393e9a08687cbcc54b10fd0f95ba2cbd3
IEDL.DBID 8FG
ISSN 1680-7324
1680-7316
IngestDate Thu Jul 04 21:11:42 EDT 2024
Mon Oct 07 13:01:31 EDT 2024
Fri Sep 13 02:17:08 EDT 2024
Thu Feb 22 23:47:46 EST 2024
Wed Oct 25 09:15:20 EDT 2023
Thu Aug 01 20:00:09 EDT 2024
Fri Aug 23 00:58:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-fe98ed7a4bb18f8ce4f7be433896dcf393e9a08687cbcc54b10fd0f95ba2cbd3
ORCID 0000-0001-7709-439X
0000-0002-1797-2311
0000-0001-8438-9188
OpenAccessLink https://www.proquest.com/docview/1960864118/abstract/?pq-origsite=%requestingapplication%
PQID 1960864118
PQPubID 105744
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a103d7a7bb6148f99ed28edd96bff39c
proquest_journals_2414205477
proquest_journals_1960864118
gale_infotracmisc_A513694182
gale_infotracacademiconefile_A513694182
gale_incontextgauss_ISR_A513694182
crossref_primary_10_5194_acp_17_13103_2017
PublicationCentury 2000
PublicationDate 2017-11-07
PublicationDateYYYYMMDD 2017-11-07
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-07
  day: 07
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2017
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref12
  doi: 10.1021/es404810z
– ident: ref5
– ident: ref24
  doi: 10.1016/j.envint.2016.04.034
– ident: ref39
  doi: 10.1029/2002JD003093
– ident: ref43
– ident: ref16
  doi: 10.1021/acs.est.7b03193
– ident: ref56
  doi: 10.5194/acp-9-5131-2009
– ident: ref62
  doi: 10.1016/j.atmosenv.2008.08.021
– ident: ref26
  doi: 10.1016/j.atmosenv.2010.09.034
– ident: ref22
  doi: 10.5194/acp-13-11019-2013
– ident: ref23
  doi: 10.1289/ehp.1510133
– ident: ref40
  doi: 10.1021/es201656f
– ident: ref13
  doi: 10.1016/j.envpol.2015.08.037
– ident: ref15
  doi: 10.5194/acp-16-10333-2016
– ident: ref4
  doi: 10.1115/1.2128636
– ident: ref42
  doi: 10.1098/rsta.2007.2076
– ident: ref1
  doi: 10.1016/j.atmosenv.2006.07.052
– ident: ref6
– ident: ref47
  doi: 10.1016/j.atmosenv.2009.11.011
– ident: ref30
  doi: 10.1016/j.scitotenv.2016.05.165
– ident: ref51
  doi: 10.1016/j.atmosenv.2014.05.056
– ident: ref61
  doi: 10.1016/j.atmosenv.2013.05.012
– ident: ref64
  doi: 10.5194/acp-14-9787-2014
– ident: ref63
  doi: 10.5194/acp-11-2295-2011
– ident: ref20
  doi: 10.5194/acp-11-4105-2011
– ident: ref34
  doi: 10.1016/j.scitotenv.2015.05.062
– ident: ref46
  doi: 10.5194/acp-12-4429-2012
– ident: ref8
  doi: 10.5194/gmd-5-1471-2012
– ident: ref17
  doi: 10.5194/acp-17-5379-2017
– ident: ref37
  doi: 10.5194/acp-17-6393-2017
– ident: ref52
  doi: 10.1021/acs.est.5b02514
– ident: ref11
  doi: 10.1021/es404809j
– ident: ref33
  doi: 10.1289/ehp.1408565
– ident: ref55
  doi: 10.1016/j.atmosenv.2008.02.012
– ident: ref9
  doi: 10.1016/j.atmosenv.2009.10.011
– ident: ref48
  doi: 10.1016/j.envint.2014.08.016
– ident: ref45
  doi: 10.1016/j.atmosenv.2011.08.054
– ident: ref29
  doi: 10.5194/acp-14-5617-2014
– ident: ref41
  doi: 10.5194/acp-14-8679-2014
– ident: ref60
  doi: 10.1088/1748-9326/8/2/024031
– ident: ref7
– ident: ref35
  doi: 10.1021/es502965b
– ident: ref2
  doi: 10.1016/j.atmosenv.2005.09.087
– ident: ref25
  doi: 10.5194/acp-11-931-2011
– ident: ref10
  doi: 10.1016/j.atmosenv.2014.07.019
– ident: ref32
– ident: ref21
  doi: 10.5194/acp-10-3273-2010
– ident: ref44
  doi: 10.1016/j.atmosenv.2014.08.020
– ident: ref59
  doi: 10.5194/acp-12-481-2012
– ident: ref19
  doi: 10.1016/j.atmosenv.2005.10.038
– ident: ref27
  doi: 10.1038/nature15371
– ident: ref38
– ident: ref31
  doi: 10.1038/nature02771
– ident: ref53
  doi: 10.1029/2004JD004718
– ident: ref28
  doi: 10.1016/j.atmosenv.2014.11.054
– ident: ref14
  doi: 10.5194/acp-15-3445-2015
– ident: ref65
  doi: 10.1016/j.atmosenv.2009.04.060
– ident: ref36
  doi: 10.1016/j.scitotenv.2015.05.108
– ident: ref54
  doi: 10.1016/j.atmosenv.2012.08.014
– ident: ref49
  doi: 10.5194/gmd-4-625-2011
– ident: ref57
  doi: 10.1073/pnas.1404727111
– ident: ref18
  doi: 10.5194/acp-17-77-2017
– ident: ref50
  doi: 10.1016/j.scitotenv.2017.03.267
– ident: ref58
  doi: 10.1038/srep14884
– ident: ref3
  doi: 10.1021/acs.est.5b03709
SSID ssj0025014
Score 2.52866
Snippet Accurate exposure estimates are required for health effect analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 13103
SubjectTerms Accuracy
Air pollution
Air pollution effects
Air quality
Air quality models
Analysis
Anthropogenic factors
Atmospheric models
Atmospheric research
Bias
Chemical composition
Chemical pollution
Chemical transport
Cities
Composition
Computer simulation
Emission analysis
Emission inventories
Emissions
Errors
Health
Health aspects
Industrial plant emissions
Numerical weather prediction
Outdoor air quality
Particle size distribution
Particulate matter
Pollutants
Pollution dispersion
Pollution effects
Predictions
Public health
Regions
Simulation
Spatial distribution
Studies
Weather forecasting
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT17EJ0ZXKUQUhDBJupNOH8dhh1VYwXXFvTX9XAZ2M8Nk9uC_t6o7ow4oXjwmqUPyVT--Sld9xdhrz3vf8oaXrqldKWqLU4oLWQrcij2VOnKb1D4_dadfxcfL9vK3Vl-UE5blgTNwM1NX3EsjrSXJyqhU8E0fvFedjZErl1bfut0HU1OoRadlFGp1fVVSb6Z8nolsRcyM25S4MtfUYAvHSOpU9mtHSsL9f1ue056zvM_uTWQR5vklH7A7YXjIijPkuett-h0Ob2BxvULSma4esXAyjOHGXgfYbOkEhlCHdQSz2kIun_wOlOl-Bcj74Nv5crY4m3-G1A4HsqgzIIuFXB0JOdkDxpxrCKsBUrvtx-xieXKxOC2nRgqlQz61K2NQCJk0wtq6j70LIkobBEanqvMOUeRBGYxteumsc62wdRV9FVVrTeOs50_Y0bAewlMGTYNOEJZb4SohfVCx73nXopVUwfBYsHd7LPUmy2VoDDMIeI3A61rqBLwm4Av2ntD-aUhK1-kG-l9P_tf_8n_BXpGvNGlZDJQsc2Vux1F_-HKu523NqU63bwr2djKK693WODPVHuBHkfzVgeXxgSVONnf4eD8k9DTZR42LGIInMFT742PkSKJBZizls__xwc_ZXQIv1UPKY3a0296GF0iMdvZlmgM_AEUICRo
  priority: 102
  providerName: Directory of Open Access Journals
Title Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China
URI https://www.proquest.com/docview/1960864118/abstract/
https://www.proquest.com/docview/2414205477/abstract/
https://doaj.org/article/a103d7a7bb6148f99ed28edd96bff39c
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdd-7KXsU-WrQtijA0GxrElW_bTSEO8bJCyZh3tm9BnCHR2ZqcP--93JzstgW1PxvYZrNNJ-p109ztC3llW2IylLDJpYiKeaBhSjIuIw1JsMdWR6cD2eZ4vfvCv19n1EVnsc2EwrHI_J4aJ2jYG98hjsBRA3xzwcKw07gKYXfxp-yvC-lF4zjoU03hAThLkxMOc8erzneuFp2foeuXFJMJaTf35JqAXHiuzjWCmTrDgFthMqFx2v0IFIv9_TddhDaoek0cDeKTTvrefkCNXPyWjJeDepg3b4_Q9nd1sAISGu2fEzevO_dQ3jm5bPJHBXqCNp2rT0j6d8jfFyPc1BRxIr1ZVPFtOL2goj0N7kmcKqJb22ZK0D_6gXR97SDc1DeW3n5PLan45W0RDYYXIAL7aRd6VhbNCca2TwhfGcS-04-Ctlrk1npXMlQq0XQijjcm4TibeTnyZaZUabdkLclw3tXtJaJqCO8U109xMuLCu9EXB8gykROkU8yPyca9Lue3pMyS4Hah4CYqXiZBB8RIVPyJnqO07QWS-Dg-adi2HgSQVSMOvC62RwtSXpbMpNMaWufbw52ZE3mJfSeS2qDF4Zq1uu05--b6S0yxhmLdbpCPyYRDyDZqSGnIRoFFIh3UgeXogCYPPHL7em4QcBn8n7031r68BM_EUkLIQr_7_9WvyENUSMh_FKTnetbfuDUCgnR4H6x6Tk7P5-bcVXqvlxdU4bCj8AQFPBzA
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33779,43635,43840,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgPMAL4ioyBlgIgYQUtYmdOH5CpVrpYJ3EKGJvlq9VpZGUpHvg33OOk26qBDwmOZHsz8f2d-xzIeSNY5UrWM5Sm2c25ZmBKcW4SDlsxQ5DHZmJ2T7Pyvl3_vmiuBgO3LrBrXK3JsaF2jUWz8hHoCnAvjnw4Q-bXylWjcLb1aGExm1yhzPYOjFSfPbp2uDCOzM0uMpqnGKFpv5WEzgLH2m7SWF9zrDMFmhKrFd2sy_F9P3_WqTjzjN7QO4PlJFO-jF-SG75-hFJFsB2mzYeitO3dHq5BuoZnx4Tf1x3_qe59HTT4j0MYk-bQPW6pX0Q5W-K_u4rCuyP_jifjaaLyVcai-LQPrUzBS5L-xhJ2rt80K73OKTrmsai20_Icna8nM7ToZxCaoFVbdPgZeWd0NyYrAqV9TwI4znYqLJ0NjDJvNSAcSWssbbgJhsHNw6yMDq3xrGn5KBuav-M0DwHI4obZrgdc-G8DFXFygKkhPSahYS832GpNn3SDAXGBgKvAHiVCRWBVwh8Qj4i2teCmO86vmjalRqmj9IgDU0XxmDi0iCldzl0xsnSBGi5TchrHCuFGS1qdJlZ6auuUyffztWkyBhG61Z5Qt4NQqHZttrqIQIBOoVJsPYkj_YkYcrZ_c87lVDDlO_UjYL-9TMwJZ4DPxbi8P9_vyJ358vFqTo9OfvynNxDiGLsozgiB9v2yr8AErQ1L6Om_wFbbAIv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAvaHyJwgALIZCQojaxEydPqCutNmDVKEPszfJnVWkkXdI98N9z57ibKgGPSS6SfT6ff-f7IuStZaXNWcYSk6Um4amGLcW4SDgcxRZTHZkO1T7nxfEP_vkiv4jxT10Mq9zqxKCobWPwjnwIkgLomwMeHvoYFnH2afZxfZVgByn0tMZ2GnfJvuBFDhK-fzSdny1uzC_0oKH5VZSjBPs19T5OQDB8qMw6AW2dYtMtkJvQvez2lArF_P-lssM5NDsgDyKApON-xR-SO65-RAangH2bNlyR03d0crkCIBqeHhM3rTv3S186um7RK4MrQRtP1aqlfUrlb4rR70sKWJD-XMyGk9PxNxpa5NC-0DMFZEv7jEnaB4DQro8_pKuahhbcT8j5bHo-OU5ic4XEAMbaJN5VpbNCca3T0pfGcS-042CxVoU1nlXMVQo4Xgqjjcm5TkfejnyVa5UZbdlTslc3tXtGaJaBScU109yMuLCu8mXJihyoROUU8wPyYctLue5LaEgwPZDxEhgvUyED4yUyfkCOkNs3hFj9Orxo2qWMm0kqoIahC62xjKmvKmczmIytCu1h5GZA3uBaSaxvUaOkLNV118mT7ws5zlOGubtlNiDvI5FvNq0yKuYjwKSwJNYO5eEOJWxAs_t5KxIyKoBO3orrXz8DbuIZoGUhnv__79fkHoi5_Hoy__KC3EcOhURIcUj2Nu21ewmIaKNfRVH_AxG1B9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+prediction+of+air+quality+using+the+WRF%2FCMAQ+model+system+for+health+effect+studies+in+China&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Hu%2C+Jianlin&rft.au=Li%2C+Xun&rft.au=Huang%2C+Lin&rft.au=Qi%2C+Ying&rft.date=2017-11-07&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=17&rft.issue=21&rft.spage=13103&rft_id=info:doi/10.5194%2Facp-17-13103-2017&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon