Dopamine-Mediated Reinforcement Learning Signals in the Striatum and Ventromedial Prefrontal Cortex Underlie Value-Based Choices
A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functiona...
Saved in:
Published in | The Journal of neuroscience Vol. 31; no. 5; pp. 1606 - 1613 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
02.02.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.3904-10.2011 |
Cover
Loading…
Abstract | A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions. |
---|---|
AbstractList | A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D
2
receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions. A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions. A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D(2) receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D(2) receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions. A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions. |
Author | Ullsperger, Markus Klein, Tilmann A. Jocham, Gerhard |
Author_xml | – sequence: 1 givenname: Gerhard surname: Jocham fullname: Jocham, Gerhard – sequence: 2 givenname: Tilmann A. surname: Klein fullname: Klein, Tilmann A. – sequence: 3 givenname: Markus surname: Ullsperger fullname: Ullsperger, Markus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21289169$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFr1D5ximt7XjtREJIEAoULRR12V4tJ57sGiX2Yjuo3PjoOOofAZeebM385s2T_Y7QgfMOEDqh5JQuWXn26cv55upy3VycljXhRS4zQukTtMjdumCc0AO0IEySQnDJD9FRjN8JIZJQ-QwdMsqqmop6gX6_83s9WgfFZzBWJzD4CqzrfehgBJfwCnRw1m3x2m6dHiK2Dqcd4HUKGZ9GrJ3B15kMfpwVBvw1QB-8S_na-JDgBm-cgTBYwNd6mKB4q2Ne0-y87SA-R0_7LAsv7s5jtHl__q35WKwuP1w0b1ZFt6Q0FX0LtNWVBEJK05mStVXPZN2ynmtKoZdctERWpWRCdEaUsDS9EUIbTY1oKS-P0etb3f3UZqPd7FgPah_sqMMv5bVV_3ac3amt_6mEYKXkdRZ4eScQ_I8JYlKjjR0Mg3bgp6hqIumSE1I9Sla85iWrqMjkyd-mHtzc_08GXt0CXfAx5odVnU06WT97tIOiRM1xUA9xUHMc5vIchzwu_hu_3_DI4B8smr2j |
CitedBy_id | crossref_primary_10_1186_s13063_023_07788_x crossref_primary_10_1016_j_cortex_2013_04_002 crossref_primary_10_3389_fnins_2014_00401 crossref_primary_10_1177_2158244018822376 crossref_primary_10_7554_eLife_28098 crossref_primary_10_1523_JNEUROSCI_0457_18_2018 crossref_primary_10_1038_s41386_020_0678_z crossref_primary_10_3390_brainsci12010090 crossref_primary_10_1007_s11055_021_01154_7 crossref_primary_10_1038_npp_2014_84 crossref_primary_10_1523_JNEUROSCI_0757_14_2014 crossref_primary_10_1093_scan_nst106 crossref_primary_10_1016_j_biopsycho_2023_108524 crossref_primary_10_1093_schbul_sbr168 crossref_primary_10_1038_nn_3364 crossref_primary_10_1523_JNEUROSCI_1301_24_2024 crossref_primary_10_1016_j_cub_2015_04_022 crossref_primary_10_1016_j_neuroimage_2013_11_051 crossref_primary_10_1007_s00213_024_06541_9 crossref_primary_10_1016_j_cortex_2014_08_026 crossref_primary_10_1038_s41467_023_39823_5 crossref_primary_10_1523_JNEUROSCI_0919_12_2013 crossref_primary_10_1016_j_cortex_2013_12_008 crossref_primary_10_1007_s11920_015_0559_z crossref_primary_10_3389_fnbeh_2022_938403 crossref_primary_10_1016_j_celrep_2023_112931 crossref_primary_10_3389_fpsyt_2018_00346 crossref_primary_10_1016_j_dcn_2020_100813 crossref_primary_10_1016_j_neuroimage_2011_04_038 crossref_primary_10_1038_ncomms16033 crossref_primary_10_1523_JNEUROSCI_2036_14_2015 crossref_primary_10_3389_fnbeh_2020_617402 crossref_primary_10_1016_j_addbeh_2021_107070 crossref_primary_10_7554_eLife_26801 crossref_primary_10_1523_JNEUROSCI_2051_14_2014 crossref_primary_10_7554_eLife_51260 crossref_primary_10_1016_j_addbeh_2021_106816 crossref_primary_10_1016_j_brainresbull_2012_05_007 crossref_primary_10_1016_j_neubiorev_2013_01_015 crossref_primary_10_1021_acschemneuro_5b00029 crossref_primary_10_3389_fnins_2020_00281 crossref_primary_10_1016_j_psyneuen_2021_105214 crossref_primary_10_1016_j_neubiorev_2021_12_006 crossref_primary_10_3758_s13423_018_1446_5 crossref_primary_10_1002_hbm_21456 crossref_primary_10_1016_j_neuropsychologia_2015_10_016 crossref_primary_10_1093_schbul_sbw060 crossref_primary_10_1038_s44284_024_00158_x crossref_primary_10_1016_j_neubiorev_2017_06_003 crossref_primary_10_1038_s41386_022_01517_9 crossref_primary_10_1038_s41598_023_44293_2 crossref_primary_10_1016_j_nlm_2017_04_009 crossref_primary_10_1016_j_neubiorev_2016_06_004 crossref_primary_10_1523_ENEURO_0330_18_2018 crossref_primary_10_1162_jocn_a_01660 crossref_primary_10_5465_amp_2015_0163 crossref_primary_10_1038_s41598_022_18245_1 crossref_primary_10_1038_srep41028 crossref_primary_10_1016_j_ijpsycho_2020_08_008 crossref_primary_10_1111_j_1460_9568_2012_08043_x crossref_primary_10_1038_s41380_023_02001_6 crossref_primary_10_1523_JNEUROSCI_1901_15_2016 crossref_primary_10_1093_brain_aws083 crossref_primary_10_1093_brain_awz276 crossref_primary_10_1080_16066359_2022_2123474 crossref_primary_10_1111_acer_13166 crossref_primary_10_1016_j_biopsych_2018_05_014 crossref_primary_10_1016_j_neubiorev_2015_05_005 crossref_primary_10_1016_j_addicn_2023_100066 crossref_primary_10_1002_da_23012 crossref_primary_10_3758_s13415_023_01064_w crossref_primary_10_1111_jnc_14916 crossref_primary_10_1007_s13668_019_0270_5 crossref_primary_10_3758_s13415_022_01001_3 crossref_primary_10_1016_j_neuroimage_2012_11_029 crossref_primary_10_1007_s00213_015_3986_y crossref_primary_10_1016_j_bbr_2015_11_016 crossref_primary_10_1038_npp_2012_51 crossref_primary_10_1162_jocn_a_00987 crossref_primary_10_1093_cercor_bhaa104 crossref_primary_10_3389_fendo_2018_00060 crossref_primary_10_1016_j_bbr_2020_112672 crossref_primary_10_1523_ENEURO_0437_23_2024 crossref_primary_10_1016_j_euroneuro_2020_04_008 crossref_primary_10_1093_scan_nsz082 crossref_primary_10_1038_ncomms6394 crossref_primary_10_3389_fnbeh_2014_00139 crossref_primary_10_1038_s41386_018_0032_x crossref_primary_10_1177_0269881116668591 crossref_primary_10_1523_JNEUROSCI_2326_15_2016 crossref_primary_10_1093_cercor_bhw288 crossref_primary_10_3758_s13415_021_00893_x crossref_primary_10_1016_j_neuroimage_2015_09_040 crossref_primary_10_1162_jocn_a_00677 crossref_primary_10_1080_13825585_2015_1020917 crossref_primary_10_1016_j_bbr_2020_112521 crossref_primary_10_1016_j_neuron_2016_02_014 crossref_primary_10_1093_ijnp_pyab041 crossref_primary_10_7554_eLife_12029 crossref_primary_10_1016_j_cobeha_2020_10_002 crossref_primary_10_1038_npp_2016_68 crossref_primary_10_1016_j_yhbeh_2015_06_001 crossref_primary_10_12688_wellcomeopenres_17423_1 crossref_primary_10_1089_psymed_2023_0049 crossref_primary_10_1002_wcs_1420 crossref_primary_10_1371_journal_pone_0094339 crossref_primary_10_1523_JNEUROSCI_1979_16_2016 crossref_primary_10_1007_s11920_013_0396_x crossref_primary_10_1371_journal_pcbi_1006632 crossref_primary_10_2131_fts_2_249 crossref_primary_10_1093_cercor_bhs344 crossref_primary_10_1152_physrev_00041_2012 crossref_primary_10_1016_j_xcrm_2022_100677 crossref_primary_10_3758_s13415_014_0250_6 crossref_primary_10_1016_j_inpa_2023_08_006 crossref_primary_10_1093_cercor_bhab334 crossref_primary_10_1109_TBME_2014_2319294 crossref_primary_10_1007_s00213_019_05292_2 crossref_primary_10_1016_j_neubiorev_2020_11_004 crossref_primary_10_1016_j_neuroimage_2023_119983 crossref_primary_10_1016_j_neuropsychologia_2015_03_028 crossref_primary_10_1016_j_biopsych_2016_05_021 crossref_primary_10_1093_cercor_bhz218 crossref_primary_10_1038_npp_2015_370 crossref_primary_10_1038_s41398_020_00969_1 crossref_primary_10_1517_17530059_2012_673583 crossref_primary_10_3758_s13415_015_0338_7 crossref_primary_10_1016_j_cobeha_2018_03_010 crossref_primary_10_1038_s41467_022_32679_1 crossref_primary_10_1371_journal_pone_0199013 crossref_primary_10_1523_JNEUROSCI_2700_16_2017 crossref_primary_10_1126_science_aaz5891 crossref_primary_10_1007_s12311_015_0702_8 crossref_primary_10_1016_j_yhbeh_2021_105022 crossref_primary_10_1038_s41467_023_41130_y crossref_primary_10_1073_pnas_1912330117 crossref_primary_10_1016_j_physbeh_2019_04_007 crossref_primary_10_1038_s41562_024_01844_5 crossref_primary_10_1371_journal_pone_0176205 crossref_primary_10_1016_j_neuroimage_2013_02_074 crossref_primary_10_1016_j_jad_2024_09_066 crossref_primary_10_1007_s00213_019_05409_7 crossref_primary_10_1371_journal_pbio_3002714 crossref_primary_10_1523_JNEUROSCI_1859_15_2015 crossref_primary_10_3389_fnbeh_2015_00238 crossref_primary_10_1002_ima_22387 crossref_primary_10_1016_j_neubiorev_2015_06_015 crossref_primary_10_1016_j_neuroimage_2014_09_011 crossref_primary_10_1111_j_1460_9568_2011_07980_x crossref_primary_10_1016_j_tics_2014_01_003 crossref_primary_10_1017_S0033291718003306 crossref_primary_10_1016_j_neuropsychologia_2016_05_023 crossref_primary_10_7554_eLife_26424 crossref_primary_10_1016_j_neuroimage_2019_03_050 crossref_primary_10_1093_cercor_bhy076 crossref_primary_10_3389_fnbeh_2022_903100 crossref_primary_10_1093_cercor_bhz045 crossref_primary_10_1016_j_tins_2013_11_003 crossref_primary_10_1016_j_jesp_2021_104267 crossref_primary_10_1038_s41467_017_02174_z crossref_primary_10_1176_appi_ajp_2016_16010111 crossref_primary_10_1162_jocn_a_01873 crossref_primary_10_3945_ajcn_116_140145 crossref_primary_10_7554_eLife_12678 crossref_primary_10_1016_j_bbr_2020_112474 crossref_primary_10_7554_eLife_65280 |
Cites_doi | 10.1002/cne.20229 10.1523/JNEUROSCI.1640-06.2006 10.1523/JNEUROSCI.2131-07.2007 10.1097/00004714-200104000-00013 10.1016/S1474-6670(17)38315-5 10.1006/nimg.2001.0931 10.1176/appi.ajp.160.8.1413 10.1016/0010-0277(94)90018-3 10.1073/pnas.0605569104 10.1016/S1053-8119(02)91132-8 10.1038/nature04676 10.1523/JNEUROSCI.1309-08.2008 10.1002/mrm.10354 10.1016/0306-4522(91)90003-7 10.1016/S0306-4522(98)00319-4 10.1016/j.pneurobio.2004.05.006 10.1523/JNEUROSCI.2575-09.2009 10.1016/j.neuroimage.2004.07.051 10.1093/brain/123.11.2189 10.1016/0014-2999(82)90178-9 10.1016/S0166-4328(02)00281-4 10.1038/nature05051 10.1016/S0022-3565(24)37762-6 10.1523/JNEUROSCI.07-12-03961.1987 10.1016/S0301-0082(96)00042-1 10.1016/S0166-4328(89)80112-3 10.1002/(SICI)1098-2396(199606)23:2<115::AID-SYN7>3.0.CO;2-C 10.1016/j.conb.2004.10.016 10.1038/nrn1406 10.1111/j.2044-8341.1974.tb02285.x 10.1162/0898929052880093 10.1016/S0166-4328(02)00282-6 10.1126/science.1094285 10.1523/JNEUROSCI.0349-09.2009 10.1016/S1361-8415(01)00036-6 10.1126/science.1145044 10.1016/0166-4328(94)90153-8 10.1093/cercor/bhn098 10.1126/science.1102941 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the authors 0270-6474/11/311606-08$15.00/0 2011 |
Copyright_xml | – notice: Copyright © 2011 the authors 0270-6474/11/311606-08$15.00/0 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.3904-10.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 1613 |
ExternalDocumentID | PMC6623749 21289169 10_1523_JNEUROSCI_3904_10_2011 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c511t-fbe1ba87e003dcd32b8f279b2f4a11ef746b07837266cd63e5dfd66ada1d6b143 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:17:20 EDT 2025 Fri Jul 11 05:18:23 EDT 2025 Fri Jul 11 04:58:33 EDT 2025 Wed Feb 19 02:34:40 EST 2025 Tue Jul 01 05:26:35 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-fbe1ba87e003dcd32b8f279b2f4a11ef746b07837266cd63e5dfd66ada1d6b143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/31/5/1606.full.pdf |
PMID | 21289169 |
PQID | 849432816 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6623749 proquest_miscellaneous_907154008 proquest_miscellaneous_849432816 pubmed_primary_21289169 crossref_citationtrail_10_1523_JNEUROSCI_3904_10_2011 crossref_primary_10_1523_JNEUROSCI_3904_10_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-02 2011-Feb-02 20110202 |
PublicationDateYYYYMMDD | 2011-02-02 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2011 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041303484166000_31.5.1606.19 Kilts (2023041303484166000_31.5.1606.21) 1987; 7 2023041303484166000_31.5.1606.17 2023041303484166000_31.5.1606.39 2023041303484166000_31.5.1606.18 2023041303484166000_31.5.1606.15 2023041303484166000_31.5.1606.37 2023041303484166000_31.5.1606.16 2023041303484166000_31.5.1606.38 2023041303484166000_31.5.1606.13 2023041303484166000_31.5.1606.35 2023041303484166000_31.5.1606.14 2023041303484166000_31.5.1606.36 2023041303484166000_31.5.1606.11 2023041303484166000_31.5.1606.33 2023041303484166000_31.5.1606.12 2023041303484166000_31.5.1606.34 2023041303484166000_31.5.1606.31 2023041303484166000_31.5.1606.32 2023041303484166000_31.5.1606.5 2023041303484166000_31.5.1606.4 2023041303484166000_31.5.1606.30 2023041303484166000_31.5.1606.3 2023041303484166000_31.5.1606.2 2023041303484166000_31.5.1606.9 2023041303484166000_31.5.1606.8 2023041303484166000_31.5.1606.7 2023041303484166000_31.5.1606.6 2023041303484166000_31.5.1606.28 2023041303484166000_31.5.1606.29 2023041303484166000_31.5.1606.26 Di Giovanni (2023041303484166000_31.5.1606.10) 1998; 287 2023041303484166000_31.5.1606.27 2023041303484166000_31.5.1606.24 2023041303484166000_31.5.1606.25 2023041303484166000_31.5.1606.1 2023041303484166000_31.5.1606.22 2023041303484166000_31.5.1606.23 2023041303484166000_31.5.1606.20 |
References_xml | – ident: 2023041303484166000_31.5.1606.9 doi: 10.1002/cne.20229 – ident: 2023041303484166000_31.5.1606.5 doi: 10.1523/JNEUROSCI.1640-06.2006 – ident: 2023041303484166000_31.5.1606.29 doi: 10.1523/JNEUROSCI.2131-07.2007 – ident: 2023041303484166000_31.5.1606.39 doi: 10.1097/00004714-200104000-00013 – ident: 2023041303484166000_31.5.1606.36 doi: 10.1016/S1474-6670(17)38315-5 – ident: 2023041303484166000_31.5.1606.38 doi: 10.1006/nimg.2001.0931 – ident: 2023041303484166000_31.5.1606.7 doi: 10.1176/appi.ajp.160.8.1413 – ident: 2023041303484166000_31.5.1606.1 doi: 10.1016/0010-0277(94)90018-3 – ident: 2023041303484166000_31.5.1606.11 doi: 10.1073/pnas.0605569104 – ident: 2023041303484166000_31.5.1606.19 doi: 10.1016/S1053-8119(02)91132-8 – ident: 2023041303484166000_31.5.1606.27 doi: 10.1038/nature04676 – ident: 2023041303484166000_31.5.1606.16 doi: 10.1523/JNEUROSCI.1309-08.2008 – ident: 2023041303484166000_31.5.1606.17 doi: 10.1002/mrm.10354 – ident: 2023041303484166000_31.5.1606.23 doi: 10.1016/0306-4522(91)90003-7 – ident: 2023041303484166000_31.5.1606.30 doi: 10.1016/S0306-4522(98)00319-4 – ident: 2023041303484166000_31.5.1606.34 doi: 10.1016/j.pneurobio.2004.05.006 – ident: 2023041303484166000_31.5.1606.8 doi: 10.1523/JNEUROSCI.2575-09.2009 – ident: 2023041303484166000_31.5.1606.35 doi: 10.1016/j.neuroimage.2004.07.051 – ident: 2023041303484166000_31.5.1606.2 doi: 10.1093/brain/123.11.2189 – ident: 2023041303484166000_31.5.1606.4 doi: 10.1016/0014-2999(82)90178-9 – ident: 2023041303484166000_31.5.1606.32 doi: 10.1016/S0166-4328(02)00281-4 – ident: 2023041303484166000_31.5.1606.28 doi: 10.1038/nature05051 – volume: 287 start-page: 51 year: 1998 ident: 2023041303484166000_31.5.1606.10 article-title: Effects of acute and repeated administration of amisulpride, a dopamine D2/D3 receptor antagonist, on the electrical activity of midbrain dopaminergic neurons publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)37762-6 – volume: 7 start-page: 3961 year: 1987 ident: 2023041303484166000_31.5.1606.21 article-title: Absence of synthesis-modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations publication-title: J Neurosci doi: 10.1523/JNEUROSCI.07-12-03961.1987 – ident: 2023041303484166000_31.5.1606.24 doi: 10.1016/S0301-0082(96)00042-1 – ident: 2023041303484166000_31.5.1606.3 doi: 10.1016/S0166-4328(89)80112-3 – ident: 2023041303484166000_31.5.1606.15 doi: 10.1002/(SICI)1098-2396(199606)23:2<115::AID-SYN7>3.0.CO;2-C – ident: 2023041303484166000_31.5.1606.25 doi: 10.1016/j.conb.2004.10.016 – ident: 2023041303484166000_31.5.1606.37 doi: 10.1038/nrn1406 – ident: 2023041303484166000_31.5.1606.6 doi: 10.1111/j.2044-8341.1974.tb02285.x – ident: 2023041303484166000_31.5.1606.12 doi: 10.1162/0898929052880093 – ident: 2023041303484166000_31.5.1606.33 doi: 10.1016/S0166-4328(02)00282-6 – ident: 2023041303484166000_31.5.1606.26 doi: 10.1126/science.1094285 – ident: 2023041303484166000_31.5.1606.20 doi: 10.1523/JNEUROSCI.0349-09.2009 – ident: 2023041303484166000_31.5.1606.18 doi: 10.1016/S1361-8415(01)00036-6 – ident: 2023041303484166000_31.5.1606.22 doi: 10.1126/science.1145044 – ident: 2023041303484166000_31.5.1606.31 doi: 10.1016/0166-4328(94)90153-8 – ident: 2023041303484166000_31.5.1606.14 doi: 10.1093/cercor/bhn098 – ident: 2023041303484166000_31.5.1606.13 doi: 10.1126/science.1102941 |
SSID | ssj0007017 |
Score | 2.4557254 |
Snippet | A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1606 |
SubjectTerms | Adult Amisulpride Choice Behavior - drug effects Corpus Striatum - drug effects Corpus Striatum - physiology Dopamine - physiology Dopamine Antagonists - pharmacology Dopamine D2 Receptor Antagonists Female Humans Magnetic Resonance Imaging Male Models, Neurological Neuropsychological Tests Prefrontal Cortex - drug effects Prefrontal Cortex - physiology Psychomotor Performance - drug effects Reinforcement (Psychology) Reinforcement Schedule Reward Signal Transduction - drug effects Signal Transduction - physiology Sulpiride - analogs & derivatives Sulpiride - pharmacology Time Factors |
Title | Dopamine-Mediated Reinforcement Learning Signals in the Striatum and Ventromedial Prefrontal Cortex Underlie Value-Based Choices |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21289169 https://www.proquest.com/docview/849432816 https://www.proquest.com/docview/907154008 https://pubmed.ncbi.nlm.nih.gov/PMC6623749 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIL-0BcYnc-r32sYSWEtoASlLlZu3LaZBjo-BIwIkbf5vZ9dqxaVCBSxQ5dlb2fJ79ZnbnG4ReRDwlNuHcElJQy6dpbLGICIt7EZGOcDxHt2Q5H4enM380D-a93s_WrqVNyQ749511Jf9jVTgGdlVVsv9g2eZP4QB8B_vCJ1gYPv_Kxq8h4l0BTbTOdcMNqUoNtRIq10m_Wjx1MZgsF1on2WxqnKheHeWm6o5xofK7hakg-QATppI00CmFdSm_DnRjJCCqgwuabaT1CmY9MRheFsrBtJnttsZMs9uWTmYDnVHBTVX2G7muy_m1t89My83pMlvRPN8mWGdZpqTMFxWwVGFRN1GhMq-uZbdzly6BSNWvmvIcSONvXb3A47QdspkWlu0lb-1dndAOWzM1kFVv5ywQaDWKT_WdqryOb6lN77Zx7B3Z7fH75GR2dpZMj-fTG-imC_GGaoXx7uNWdp7YunVzcwem1BzGOdw9SpflXAldft-B26I00zvotrEWPqqAdRf1ZH4P7R_ltCxW3_BLrHcH62WXffTjCtZwB2u4xho2WMPLHAPWcI01DFjDbazhLdZwhTVcYw23sIYN1u6j2cnxdHhqme4dFgcSX1opkw6j8MbDvCG48FwWpS6JmZv61HFkSvyQqTVkAhSRi9CTgUhFGFJBHREyoPEP0F5e5PIRwkHE4KEyIkLp-jR2KGM-Exy4uWCExnEfBfXTTriRtlcdVrJEhbhgpWQ0VhtjJ8O3ibKSOqys1EeHzXWfK3GXa6_AtTET8MNqcY3msth8SSI_9j03csI_nxIDnYcAyY766GFl_mZUIJARBGpwJ6QDjOYEpQLf_SVfXmo1-BACGOLHj68f9gm6tX0vn6K9cr2Rz4BSl-y5hvsvT9rUDg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine-Mediated+Reinforcement+Learning+Signals+in+the+Striatum+and+Ventromedial+Prefrontal+Cortex+Underlie+Value-Based+Choices&rft.jtitle=The+Journal+of+neuroscience&rft.au=Jocham%2C+Gerhard&rft.au=Klein%2C+Tilmann+A&rft.au=Ullsperger%2C+Markus&rft.date=2011-02-02&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=31&rft.issue=5&rft.spage=1606&rft.epage=1613&rft_id=info:doi/10.1523%2Fjneurosci.3904-10.2011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |