Dopamine-Mediated Reinforcement Learning Signals in the Striatum and Ventromedial Prefrontal Cortex Underlie Value-Based Choices

A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functiona...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 31; no. 5; pp. 1606 - 1613
Main Authors Jocham, Gerhard, Klein, Tilmann A., Ullsperger, Markus
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 02.02.2011
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.3904-10.2011

Cover

Loading…
Abstract A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.
AbstractList A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.
A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D 2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.
A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D(2) receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D(2) receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.
A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D2 receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.
Author Ullsperger, Markus
Klein, Tilmann A.
Jocham, Gerhard
Author_xml – sequence: 1
  givenname: Gerhard
  surname: Jocham
  fullname: Jocham, Gerhard
– sequence: 2
  givenname: Tilmann A.
  surname: Klein
  fullname: Klein, Tilmann A.
– sequence: 3
  givenname: Markus
  surname: Ullsperger
  fullname: Ullsperger, Markus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21289169$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLeFr1D5ximt7XjtREJIEAoULRR12V4tJ57sGiX2Yjuo3PjoOOofAZeebM385s2T_Y7QgfMOEDqh5JQuWXn26cv55upy3VycljXhRS4zQukTtMjdumCc0AO0IEySQnDJD9FRjN8JIZJQ-QwdMsqqmop6gX6_83s9WgfFZzBWJzD4CqzrfehgBJfwCnRw1m3x2m6dHiK2Dqcd4HUKGZ9GrJ3B15kMfpwVBvw1QB-8S_na-JDgBm-cgTBYwNd6mKB4q2Ne0-y87SA-R0_7LAsv7s5jtHl__q35WKwuP1w0b1ZFt6Q0FX0LtNWVBEJK05mStVXPZN2ynmtKoZdctERWpWRCdEaUsDS9EUIbTY1oKS-P0etb3f3UZqPd7FgPah_sqMMv5bVV_3ac3amt_6mEYKXkdRZ4eScQ_I8JYlKjjR0Mg3bgp6hqIumSE1I9Sla85iWrqMjkyd-mHtzc_08GXt0CXfAx5odVnU06WT97tIOiRM1xUA9xUHMc5vIchzwu_hu_3_DI4B8smr2j
CitedBy_id crossref_primary_10_1186_s13063_023_07788_x
crossref_primary_10_1016_j_cortex_2013_04_002
crossref_primary_10_3389_fnins_2014_00401
crossref_primary_10_1177_2158244018822376
crossref_primary_10_7554_eLife_28098
crossref_primary_10_1523_JNEUROSCI_0457_18_2018
crossref_primary_10_1038_s41386_020_0678_z
crossref_primary_10_3390_brainsci12010090
crossref_primary_10_1007_s11055_021_01154_7
crossref_primary_10_1038_npp_2014_84
crossref_primary_10_1523_JNEUROSCI_0757_14_2014
crossref_primary_10_1093_scan_nst106
crossref_primary_10_1016_j_biopsycho_2023_108524
crossref_primary_10_1093_schbul_sbr168
crossref_primary_10_1038_nn_3364
crossref_primary_10_1523_JNEUROSCI_1301_24_2024
crossref_primary_10_1016_j_cub_2015_04_022
crossref_primary_10_1016_j_neuroimage_2013_11_051
crossref_primary_10_1007_s00213_024_06541_9
crossref_primary_10_1016_j_cortex_2014_08_026
crossref_primary_10_1038_s41467_023_39823_5
crossref_primary_10_1523_JNEUROSCI_0919_12_2013
crossref_primary_10_1016_j_cortex_2013_12_008
crossref_primary_10_1007_s11920_015_0559_z
crossref_primary_10_3389_fnbeh_2022_938403
crossref_primary_10_1016_j_celrep_2023_112931
crossref_primary_10_3389_fpsyt_2018_00346
crossref_primary_10_1016_j_dcn_2020_100813
crossref_primary_10_1016_j_neuroimage_2011_04_038
crossref_primary_10_1038_ncomms16033
crossref_primary_10_1523_JNEUROSCI_2036_14_2015
crossref_primary_10_3389_fnbeh_2020_617402
crossref_primary_10_1016_j_addbeh_2021_107070
crossref_primary_10_7554_eLife_26801
crossref_primary_10_1523_JNEUROSCI_2051_14_2014
crossref_primary_10_7554_eLife_51260
crossref_primary_10_1016_j_addbeh_2021_106816
crossref_primary_10_1016_j_brainresbull_2012_05_007
crossref_primary_10_1016_j_neubiorev_2013_01_015
crossref_primary_10_1021_acschemneuro_5b00029
crossref_primary_10_3389_fnins_2020_00281
crossref_primary_10_1016_j_psyneuen_2021_105214
crossref_primary_10_1016_j_neubiorev_2021_12_006
crossref_primary_10_3758_s13423_018_1446_5
crossref_primary_10_1002_hbm_21456
crossref_primary_10_1016_j_neuropsychologia_2015_10_016
crossref_primary_10_1093_schbul_sbw060
crossref_primary_10_1038_s44284_024_00158_x
crossref_primary_10_1016_j_neubiorev_2017_06_003
crossref_primary_10_1038_s41386_022_01517_9
crossref_primary_10_1038_s41598_023_44293_2
crossref_primary_10_1016_j_nlm_2017_04_009
crossref_primary_10_1016_j_neubiorev_2016_06_004
crossref_primary_10_1523_ENEURO_0330_18_2018
crossref_primary_10_1162_jocn_a_01660
crossref_primary_10_5465_amp_2015_0163
crossref_primary_10_1038_s41598_022_18245_1
crossref_primary_10_1038_srep41028
crossref_primary_10_1016_j_ijpsycho_2020_08_008
crossref_primary_10_1111_j_1460_9568_2012_08043_x
crossref_primary_10_1038_s41380_023_02001_6
crossref_primary_10_1523_JNEUROSCI_1901_15_2016
crossref_primary_10_1093_brain_aws083
crossref_primary_10_1093_brain_awz276
crossref_primary_10_1080_16066359_2022_2123474
crossref_primary_10_1111_acer_13166
crossref_primary_10_1016_j_biopsych_2018_05_014
crossref_primary_10_1016_j_neubiorev_2015_05_005
crossref_primary_10_1016_j_addicn_2023_100066
crossref_primary_10_1002_da_23012
crossref_primary_10_3758_s13415_023_01064_w
crossref_primary_10_1111_jnc_14916
crossref_primary_10_1007_s13668_019_0270_5
crossref_primary_10_3758_s13415_022_01001_3
crossref_primary_10_1016_j_neuroimage_2012_11_029
crossref_primary_10_1007_s00213_015_3986_y
crossref_primary_10_1016_j_bbr_2015_11_016
crossref_primary_10_1038_npp_2012_51
crossref_primary_10_1162_jocn_a_00987
crossref_primary_10_1093_cercor_bhaa104
crossref_primary_10_3389_fendo_2018_00060
crossref_primary_10_1016_j_bbr_2020_112672
crossref_primary_10_1523_ENEURO_0437_23_2024
crossref_primary_10_1016_j_euroneuro_2020_04_008
crossref_primary_10_1093_scan_nsz082
crossref_primary_10_1038_ncomms6394
crossref_primary_10_3389_fnbeh_2014_00139
crossref_primary_10_1038_s41386_018_0032_x
crossref_primary_10_1177_0269881116668591
crossref_primary_10_1523_JNEUROSCI_2326_15_2016
crossref_primary_10_1093_cercor_bhw288
crossref_primary_10_3758_s13415_021_00893_x
crossref_primary_10_1016_j_neuroimage_2015_09_040
crossref_primary_10_1162_jocn_a_00677
crossref_primary_10_1080_13825585_2015_1020917
crossref_primary_10_1016_j_bbr_2020_112521
crossref_primary_10_1016_j_neuron_2016_02_014
crossref_primary_10_1093_ijnp_pyab041
crossref_primary_10_7554_eLife_12029
crossref_primary_10_1016_j_cobeha_2020_10_002
crossref_primary_10_1038_npp_2016_68
crossref_primary_10_1016_j_yhbeh_2015_06_001
crossref_primary_10_12688_wellcomeopenres_17423_1
crossref_primary_10_1089_psymed_2023_0049
crossref_primary_10_1002_wcs_1420
crossref_primary_10_1371_journal_pone_0094339
crossref_primary_10_1523_JNEUROSCI_1979_16_2016
crossref_primary_10_1007_s11920_013_0396_x
crossref_primary_10_1371_journal_pcbi_1006632
crossref_primary_10_2131_fts_2_249
crossref_primary_10_1093_cercor_bhs344
crossref_primary_10_1152_physrev_00041_2012
crossref_primary_10_1016_j_xcrm_2022_100677
crossref_primary_10_3758_s13415_014_0250_6
crossref_primary_10_1016_j_inpa_2023_08_006
crossref_primary_10_1093_cercor_bhab334
crossref_primary_10_1109_TBME_2014_2319294
crossref_primary_10_1007_s00213_019_05292_2
crossref_primary_10_1016_j_neubiorev_2020_11_004
crossref_primary_10_1016_j_neuroimage_2023_119983
crossref_primary_10_1016_j_neuropsychologia_2015_03_028
crossref_primary_10_1016_j_biopsych_2016_05_021
crossref_primary_10_1093_cercor_bhz218
crossref_primary_10_1038_npp_2015_370
crossref_primary_10_1038_s41398_020_00969_1
crossref_primary_10_1517_17530059_2012_673583
crossref_primary_10_3758_s13415_015_0338_7
crossref_primary_10_1016_j_cobeha_2018_03_010
crossref_primary_10_1038_s41467_022_32679_1
crossref_primary_10_1371_journal_pone_0199013
crossref_primary_10_1523_JNEUROSCI_2700_16_2017
crossref_primary_10_1126_science_aaz5891
crossref_primary_10_1007_s12311_015_0702_8
crossref_primary_10_1016_j_yhbeh_2021_105022
crossref_primary_10_1038_s41467_023_41130_y
crossref_primary_10_1073_pnas_1912330117
crossref_primary_10_1016_j_physbeh_2019_04_007
crossref_primary_10_1038_s41562_024_01844_5
crossref_primary_10_1371_journal_pone_0176205
crossref_primary_10_1016_j_neuroimage_2013_02_074
crossref_primary_10_1016_j_jad_2024_09_066
crossref_primary_10_1007_s00213_019_05409_7
crossref_primary_10_1371_journal_pbio_3002714
crossref_primary_10_1523_JNEUROSCI_1859_15_2015
crossref_primary_10_3389_fnbeh_2015_00238
crossref_primary_10_1002_ima_22387
crossref_primary_10_1016_j_neubiorev_2015_06_015
crossref_primary_10_1016_j_neuroimage_2014_09_011
crossref_primary_10_1111_j_1460_9568_2011_07980_x
crossref_primary_10_1016_j_tics_2014_01_003
crossref_primary_10_1017_S0033291718003306
crossref_primary_10_1016_j_neuropsychologia_2016_05_023
crossref_primary_10_7554_eLife_26424
crossref_primary_10_1016_j_neuroimage_2019_03_050
crossref_primary_10_1093_cercor_bhy076
crossref_primary_10_3389_fnbeh_2022_903100
crossref_primary_10_1093_cercor_bhz045
crossref_primary_10_1016_j_tins_2013_11_003
crossref_primary_10_1016_j_jesp_2021_104267
crossref_primary_10_1038_s41467_017_02174_z
crossref_primary_10_1176_appi_ajp_2016_16010111
crossref_primary_10_1162_jocn_a_01873
crossref_primary_10_3945_ajcn_116_140145
crossref_primary_10_7554_eLife_12678
crossref_primary_10_1016_j_bbr_2020_112474
crossref_primary_10_7554_eLife_65280
Cites_doi 10.1002/cne.20229
10.1523/JNEUROSCI.1640-06.2006
10.1523/JNEUROSCI.2131-07.2007
10.1097/00004714-200104000-00013
10.1016/S1474-6670(17)38315-5
10.1006/nimg.2001.0931
10.1176/appi.ajp.160.8.1413
10.1016/0010-0277(94)90018-3
10.1073/pnas.0605569104
10.1016/S1053-8119(02)91132-8
10.1038/nature04676
10.1523/JNEUROSCI.1309-08.2008
10.1002/mrm.10354
10.1016/0306-4522(91)90003-7
10.1016/S0306-4522(98)00319-4
10.1016/j.pneurobio.2004.05.006
10.1523/JNEUROSCI.2575-09.2009
10.1016/j.neuroimage.2004.07.051
10.1093/brain/123.11.2189
10.1016/0014-2999(82)90178-9
10.1016/S0166-4328(02)00281-4
10.1038/nature05051
10.1016/S0022-3565(24)37762-6
10.1523/JNEUROSCI.07-12-03961.1987
10.1016/S0301-0082(96)00042-1
10.1016/S0166-4328(89)80112-3
10.1002/(SICI)1098-2396(199606)23:2<115::AID-SYN7>3.0.CO;2-C
10.1016/j.conb.2004.10.016
10.1038/nrn1406
10.1111/j.2044-8341.1974.tb02285.x
10.1162/0898929052880093
10.1016/S0166-4328(02)00282-6
10.1126/science.1094285
10.1523/JNEUROSCI.0349-09.2009
10.1016/S1361-8415(01)00036-6
10.1126/science.1145044
10.1016/0166-4328(94)90153-8
10.1093/cercor/bhn098
10.1126/science.1102941
ContentType Journal Article
Copyright Copyright © 2011 the authors 0270-6474/11/311606-08$15.00/0 2011
Copyright_xml – notice: Copyright © 2011 the authors 0270-6474/11/311606-08$15.00/0 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.3904-10.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1613
ExternalDocumentID PMC6623749
21289169
10_1523_JNEUROSCI_3904_10_2011
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
ID FETCH-LOGICAL-c511t-fbe1ba87e003dcd32b8f279b2f4a11ef746b07837266cd63e5dfd66ada1d6b143
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:17:20 EDT 2025
Fri Jul 11 05:18:23 EDT 2025
Fri Jul 11 04:58:33 EDT 2025
Wed Feb 19 02:34:40 EST 2025
Tue Jul 01 05:26:35 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-fbe1ba87e003dcd32b8f279b2f4a11ef746b07837266cd63e5dfd66ada1d6b143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.jneurosci.org/content/jneuro/31/5/1606.full.pdf
PMID 21289169
PQID 849432816
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6623749
proquest_miscellaneous_907154008
proquest_miscellaneous_849432816
pubmed_primary_21289169
crossref_citationtrail_10_1523_JNEUROSCI_3904_10_2011
crossref_primary_10_1523_JNEUROSCI_3904_10_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-02
2011-Feb-02
20110202
PublicationDateYYYYMMDD 2011-02-02
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2011
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041303484166000_31.5.1606.19
Kilts (2023041303484166000_31.5.1606.21) 1987; 7
2023041303484166000_31.5.1606.17
2023041303484166000_31.5.1606.39
2023041303484166000_31.5.1606.18
2023041303484166000_31.5.1606.15
2023041303484166000_31.5.1606.37
2023041303484166000_31.5.1606.16
2023041303484166000_31.5.1606.38
2023041303484166000_31.5.1606.13
2023041303484166000_31.5.1606.35
2023041303484166000_31.5.1606.14
2023041303484166000_31.5.1606.36
2023041303484166000_31.5.1606.11
2023041303484166000_31.5.1606.33
2023041303484166000_31.5.1606.12
2023041303484166000_31.5.1606.34
2023041303484166000_31.5.1606.31
2023041303484166000_31.5.1606.32
2023041303484166000_31.5.1606.5
2023041303484166000_31.5.1606.4
2023041303484166000_31.5.1606.30
2023041303484166000_31.5.1606.3
2023041303484166000_31.5.1606.2
2023041303484166000_31.5.1606.9
2023041303484166000_31.5.1606.8
2023041303484166000_31.5.1606.7
2023041303484166000_31.5.1606.6
2023041303484166000_31.5.1606.28
2023041303484166000_31.5.1606.29
2023041303484166000_31.5.1606.26
Di Giovanni (2023041303484166000_31.5.1606.10) 1998; 287
2023041303484166000_31.5.1606.27
2023041303484166000_31.5.1606.24
2023041303484166000_31.5.1606.25
2023041303484166000_31.5.1606.1
2023041303484166000_31.5.1606.22
2023041303484166000_31.5.1606.23
2023041303484166000_31.5.1606.20
References_xml – ident: 2023041303484166000_31.5.1606.9
  doi: 10.1002/cne.20229
– ident: 2023041303484166000_31.5.1606.5
  doi: 10.1523/JNEUROSCI.1640-06.2006
– ident: 2023041303484166000_31.5.1606.29
  doi: 10.1523/JNEUROSCI.2131-07.2007
– ident: 2023041303484166000_31.5.1606.39
  doi: 10.1097/00004714-200104000-00013
– ident: 2023041303484166000_31.5.1606.36
  doi: 10.1016/S1474-6670(17)38315-5
– ident: 2023041303484166000_31.5.1606.38
  doi: 10.1006/nimg.2001.0931
– ident: 2023041303484166000_31.5.1606.7
  doi: 10.1176/appi.ajp.160.8.1413
– ident: 2023041303484166000_31.5.1606.1
  doi: 10.1016/0010-0277(94)90018-3
– ident: 2023041303484166000_31.5.1606.11
  doi: 10.1073/pnas.0605569104
– ident: 2023041303484166000_31.5.1606.19
  doi: 10.1016/S1053-8119(02)91132-8
– ident: 2023041303484166000_31.5.1606.27
  doi: 10.1038/nature04676
– ident: 2023041303484166000_31.5.1606.16
  doi: 10.1523/JNEUROSCI.1309-08.2008
– ident: 2023041303484166000_31.5.1606.17
  doi: 10.1002/mrm.10354
– ident: 2023041303484166000_31.5.1606.23
  doi: 10.1016/0306-4522(91)90003-7
– ident: 2023041303484166000_31.5.1606.30
  doi: 10.1016/S0306-4522(98)00319-4
– ident: 2023041303484166000_31.5.1606.34
  doi: 10.1016/j.pneurobio.2004.05.006
– ident: 2023041303484166000_31.5.1606.8
  doi: 10.1523/JNEUROSCI.2575-09.2009
– ident: 2023041303484166000_31.5.1606.35
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 2023041303484166000_31.5.1606.2
  doi: 10.1093/brain/123.11.2189
– ident: 2023041303484166000_31.5.1606.4
  doi: 10.1016/0014-2999(82)90178-9
– ident: 2023041303484166000_31.5.1606.32
  doi: 10.1016/S0166-4328(02)00281-4
– ident: 2023041303484166000_31.5.1606.28
  doi: 10.1038/nature05051
– volume: 287
  start-page: 51
  year: 1998
  ident: 2023041303484166000_31.5.1606.10
  article-title: Effects of acute and repeated administration of amisulpride, a dopamine D2/D3 receptor antagonist, on the electrical activity of midbrain dopaminergic neurons
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(24)37762-6
– volume: 7
  start-page: 3961
  year: 1987
  ident: 2023041303484166000_31.5.1606.21
  article-title: Absence of synthesis-modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.07-12-03961.1987
– ident: 2023041303484166000_31.5.1606.24
  doi: 10.1016/S0301-0082(96)00042-1
– ident: 2023041303484166000_31.5.1606.3
  doi: 10.1016/S0166-4328(89)80112-3
– ident: 2023041303484166000_31.5.1606.15
  doi: 10.1002/(SICI)1098-2396(199606)23:2<115::AID-SYN7>3.0.CO;2-C
– ident: 2023041303484166000_31.5.1606.25
  doi: 10.1016/j.conb.2004.10.016
– ident: 2023041303484166000_31.5.1606.37
  doi: 10.1038/nrn1406
– ident: 2023041303484166000_31.5.1606.6
  doi: 10.1111/j.2044-8341.1974.tb02285.x
– ident: 2023041303484166000_31.5.1606.12
  doi: 10.1162/0898929052880093
– ident: 2023041303484166000_31.5.1606.33
  doi: 10.1016/S0166-4328(02)00282-6
– ident: 2023041303484166000_31.5.1606.26
  doi: 10.1126/science.1094285
– ident: 2023041303484166000_31.5.1606.20
  doi: 10.1523/JNEUROSCI.0349-09.2009
– ident: 2023041303484166000_31.5.1606.18
  doi: 10.1016/S1361-8415(01)00036-6
– ident: 2023041303484166000_31.5.1606.22
  doi: 10.1126/science.1145044
– ident: 2023041303484166000_31.5.1606.31
  doi: 10.1016/0166-4328(94)90153-8
– ident: 2023041303484166000_31.5.1606.14
  doi: 10.1093/cercor/bhn098
– ident: 2023041303484166000_31.5.1606.13
  doi: 10.1126/science.1102941
SSID ssj0007017
Score 2.4557254
Snippet A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1606
SubjectTerms Adult
Amisulpride
Choice Behavior - drug effects
Corpus Striatum - drug effects
Corpus Striatum - physiology
Dopamine - physiology
Dopamine Antagonists - pharmacology
Dopamine D2 Receptor Antagonists
Female
Humans
Magnetic Resonance Imaging
Male
Models, Neurological
Neuropsychological Tests
Prefrontal Cortex - drug effects
Prefrontal Cortex - physiology
Psychomotor Performance - drug effects
Reinforcement (Psychology)
Reinforcement Schedule
Reward
Signal Transduction - drug effects
Signal Transduction - physiology
Sulpiride - analogs & derivatives
Sulpiride - pharmacology
Time Factors
Title Dopamine-Mediated Reinforcement Learning Signals in the Striatum and Ventromedial Prefrontal Cortex Underlie Value-Based Choices
URI https://www.ncbi.nlm.nih.gov/pubmed/21289169
https://www.proquest.com/docview/849432816
https://www.proquest.com/docview/907154008
https://pubmed.ncbi.nlm.nih.gov/PMC6623749
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIL-0BcYnc-r32sYSWEtoASlLlZu3LaZBjo-BIwIkbf5vZ9dqxaVCBSxQ5dlb2fJ79ZnbnG4ReRDwlNuHcElJQy6dpbLGICIt7EZGOcDxHt2Q5H4enM380D-a93s_WrqVNyQ749511Jf9jVTgGdlVVsv9g2eZP4QB8B_vCJ1gYPv_Kxq8h4l0BTbTOdcMNqUoNtRIq10m_Wjx1MZgsF1on2WxqnKheHeWm6o5xofK7hakg-QATppI00CmFdSm_DnRjJCCqgwuabaT1CmY9MRheFsrBtJnttsZMs9uWTmYDnVHBTVX2G7muy_m1t89My83pMlvRPN8mWGdZpqTMFxWwVGFRN1GhMq-uZbdzly6BSNWvmvIcSONvXb3A47QdspkWlu0lb-1dndAOWzM1kFVv5ywQaDWKT_WdqryOb6lN77Zx7B3Z7fH75GR2dpZMj-fTG-imC_GGaoXx7uNWdp7YunVzcwem1BzGOdw9SpflXAldft-B26I00zvotrEWPqqAdRf1ZH4P7R_ltCxW3_BLrHcH62WXffTjCtZwB2u4xho2WMPLHAPWcI01DFjDbazhLdZwhTVcYw23sIYN1u6j2cnxdHhqme4dFgcSX1opkw6j8MbDvCG48FwWpS6JmZv61HFkSvyQqTVkAhSRi9CTgUhFGFJBHREyoPEP0F5e5PIRwkHE4KEyIkLp-jR2KGM-Exy4uWCExnEfBfXTTriRtlcdVrJEhbhgpWQ0VhtjJ8O3ibKSOqys1EeHzXWfK3GXa6_AtTET8MNqcY3msth8SSI_9j03csI_nxIDnYcAyY766GFl_mZUIJARBGpwJ6QDjOYEpQLf_SVfXmo1-BACGOLHj68f9gm6tX0vn6K9cr2Rz4BSl-y5hvsvT9rUDg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine-Mediated+Reinforcement+Learning+Signals+in+the+Striatum+and+Ventromedial+Prefrontal+Cortex+Underlie+Value-Based+Choices&rft.jtitle=The+Journal+of+neuroscience&rft.au=Jocham%2C+Gerhard&rft.au=Klein%2C+Tilmann+A&rft.au=Ullsperger%2C+Markus&rft.date=2011-02-02&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=31&rft.issue=5&rft.spage=1606&rft.epage=1613&rft_id=info:doi/10.1523%2Fjneurosci.3904-10.2011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon