Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects

Background and Objectives Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin...

Full description

Saved in:
Bibliographic Details
Published inClinical pharmacokinetics Vol. 52; no. 9; pp. 783 - 792
Main Authors Haschke, Manuel, Schuster, Manfred, Poglitsch, Marko, Loibner, Hans, Salzberg, Marc, Bruggisser, Marcel, Penninger, Joseph, Krähenbühl, Stephan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2013
Adis International
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0312-5963
1179-1926
1179-1926
DOI10.1007/s40262-013-0072-7

Cover

Loading…
Abstract Background and Objectives Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin–aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Methods Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography–tandem mass spectrometry method. Results Single rhACE2 doses of 100–1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400–1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Conclusions Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
AbstractList Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers.BACKGROUND AND OBJECTIVESAngiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers.Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method.METHODSRecombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method.Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period.RESULTSSingle rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period.Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.CONCLUSIONSAdministration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method. Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
Background and Objectives Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin–aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Methods Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography–tandem mass spectrometry method. Results Single rhACE2 doses of 100–1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400–1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Conclusions Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method. Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
Author Salzberg, Marc
Schuster, Manfred
Poglitsch, Marko
Loibner, Hans
Bruggisser, Marcel
Krähenbühl, Stephan
Haschke, Manuel
Penninger, Joseph
Author_xml – sequence: 1
  givenname: Manuel
  surname: Haschke
  fullname: Haschke, Manuel
  email: manuel.haschke@unibas.ch, manuel.haschke@usb.ch
  organization: Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Department of Biomedicine, University of Basel
– sequence: 2
  givenname: Manfred
  surname: Schuster
  fullname: Schuster, Manfred
  organization: Apeiron Biologics AG
– sequence: 3
  givenname: Marko
  surname: Poglitsch
  fullname: Poglitsch, Marko
  organization: Apeiron Biologics AG
– sequence: 4
  givenname: Hans
  surname: Loibner
  fullname: Loibner, Hans
  organization: Apeiron Biologics AG
– sequence: 5
  givenname: Marc
  surname: Salzberg
  fullname: Salzberg, Marc
  organization: Medpace Switzerland
– sequence: 6
  givenname: Marcel
  surname: Bruggisser
  fullname: Bruggisser, Marcel
  organization: Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Department of Biomedicine, University of Basel
– sequence: 7
  givenname: Joseph
  surname: Penninger
  fullname: Penninger, Joseph
  organization: Institute of Molecular Biotechnology, Austrian Academy of Sciences
– sequence: 8
  givenname: Stephan
  surname: Krähenbühl
  fullname: Krähenbühl, Stephan
  organization: Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Department of Biomedicine, University of Basel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27699438$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23681967$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNU7Lb6A7yRARG8Gc13di7LUrtCQfHjOuRrtllnTmqSEdZf31l2F6WgV-EcnuckOe8FOoMEAaGXBL8jGKv3hWMqaYsJa-eStuoJWhCiupZ0VJ6hBWaEtqKT7BxdlLLFGC8pxs_QOWVySTqpFqh-vjN5NC79iBBqdKUx4JtT0-_AjPtm6psvwaXRRjBQm_U0GmiuYBNTDVAitKsEv0KuETbNNfzejaGhTYRmHcxQ73ZH4etkt8HV8hw97c1QwovjeYm-f7j-tlq3t59uPq6ublsnCKmtM9YJya2wVgilsPGEYYe9sUoKjyllnnnuufKBC0lMbzkV0ipHuOXdkrFL9PYw9z6nn1MoVY-xuDAMBkKaiiacLqkiHVcz-voRuk1Thvl1MyWFwIKybqZeHanJjsHr-xxHk3f6tM8ZeHMETHFm6LMBF8sfTsmu42w5c-rAuZxKyaHXLlZTY4KaTRw0wXqfsD4krOeE9T5hvb-BPDJPw__n0INTZhY2If_1uX9KD7ijtz0
CODEN CPKNDH
CitedBy_id crossref_primary_10_3389_fimmu_2021_625732
crossref_primary_10_1007_s00408_020_00408_4
crossref_primary_10_1016_j_ejmech_2021_113157
crossref_primary_10_1016_j_transci_2022_103418
crossref_primary_10_3390_v13112243
crossref_primary_10_1016_j_lfs_2020_118421
crossref_primary_10_1177_1470320317705232
crossref_primary_10_3390_biomedicines10020502
crossref_primary_10_1093_pnasnexus_pgad403
crossref_primary_10_2174_1389557522666220201154845
crossref_primary_10_1016_j_antiviral_2021_105197
crossref_primary_10_2222_jsv_73_163
crossref_primary_10_2174_0929866527666191218091823
crossref_primary_10_1165_rcmb_2020_0322PS
crossref_primary_10_1210_en_2015_1556
crossref_primary_10_1016_j_cytogfr_2020_11_001
crossref_primary_10_1371_journal_ppat_1009471
crossref_primary_10_1136_openhrt_2020_001302
crossref_primary_10_3390_biom12010076
crossref_primary_10_1016_j_cell_2020_04_004
crossref_primary_10_1161_HYPERTENSIONAHA_120_15256
crossref_primary_10_1038_srep27911
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1016_j_dsx_2020_05_022
crossref_primary_10_12688_f1000research_10117_1
crossref_primary_10_1124_pr_118_017129
crossref_primary_10_1161_HYPERTENSIONAHA_119_12786
crossref_primary_10_1021_acs_jmedchem_0c00606
crossref_primary_10_1038_s41392_021_00821_y
crossref_primary_10_1007_s11906_019_0978_z
crossref_primary_10_1161_HYPERTENSIONAHA_115_05185
crossref_primary_10_21307_PM_2020_59_3_15
crossref_primary_10_3390_v15040964
crossref_primary_10_1016_j_exer_2019_05_020
crossref_primary_10_18705_1607_419X_2021_27_6_608_616
crossref_primary_10_1016_j_actbio_2022_09_048
crossref_primary_10_1016_j_pupt_2019_101833
crossref_primary_10_3389_fphar_2021_629935
crossref_primary_10_1038_s41392_021_00756_4
crossref_primary_10_1161_HYPERTENSIONAHA_116_07471
crossref_primary_10_1161_HYPERTENSIONAHA_124_22064
crossref_primary_10_1038_s41392_021_00733_x
crossref_primary_10_1021_acsanm_2c04275
crossref_primary_10_1128_spectrum_01100_23
crossref_primary_10_3390_vaccines11020204
crossref_primary_10_1002_biot_202000566
crossref_primary_10_1016_j_phrs_2021_105924
crossref_primary_10_1016_j_metabol_2019_03_006
crossref_primary_10_1161_CIRCRESAHA_116_307708
crossref_primary_10_3390_ijms22094503
crossref_primary_10_1002_adhm_202302803
crossref_primary_10_1016_j_bbi_2020_04_046
crossref_primary_10_1016_j_omtm_2024_101301
crossref_primary_10_3389_fbioe_2023_1180044
crossref_primary_10_2174_1871526521666210301143441
crossref_primary_10_1007_s00134_020_05985_9
crossref_primary_10_1161_HYPERTENSIONAHA_120_15353
crossref_primary_10_2139_ssrn_4087366
crossref_primary_10_3389_fmolb_2022_803314
crossref_primary_10_3389_fpls_2021_742875
crossref_primary_10_1080_22221751_2023_2275598
crossref_primary_10_1152_ajpcell_00478_2020
crossref_primary_10_1038_s41565_022_01174_5
crossref_primary_10_1038_mt_2016_115
crossref_primary_10_2174_2666796701999201209144207
crossref_primary_10_1038_s42003_021_02030_3
crossref_primary_10_1042_CS20200899
crossref_primary_10_1007_s11696_022_02067_6
crossref_primary_10_1016_j_apsb_2021_09_004
crossref_primary_10_15406_jlprr_2020_07_00221
crossref_primary_10_1093_clinchem_hvaa001
crossref_primary_10_3390_cells10030650
crossref_primary_10_1021_acsinfecdis_0c00456
crossref_primary_10_1038_s41589_021_00965_6
crossref_primary_10_1055_s_0041_1729781
crossref_primary_10_1183_13993003_02638_2017
crossref_primary_10_1007_s12012_021_09649_y
crossref_primary_10_1016_j_virol_2024_109988
crossref_primary_10_1016_j_bcp_2022_115370
crossref_primary_10_1016_j_kint_2020_04_009
crossref_primary_10_1038_s41569_020_0413_9
crossref_primary_10_1016_j_arr_2020_101123
crossref_primary_10_1161_CIRCRESAHA_116_303603
crossref_primary_10_4291_wjgp_v10_i1_1
crossref_primary_10_1007_s10072_021_05505_7
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_1007_s10620_022_07480_1
crossref_primary_10_1016_j_ctrv_2020_102041
crossref_primary_10_1016_j_bcp_2021_114724
crossref_primary_10_1111_jvim_15548
crossref_primary_10_1038_nrcardio_2014_59
crossref_primary_10_1016_j_ijcard_2016_10_069
crossref_primary_10_1016_S2213_2600_20_30418_5
crossref_primary_10_1007_s00210_024_03029_3
crossref_primary_10_1016_j_antiviral_2021_105147
crossref_primary_10_1038_s41598_023_27636_x
crossref_primary_10_1002_rmv_2174
crossref_primary_10_1038_s41421_021_00302_0
crossref_primary_10_3390_cells10102755
crossref_primary_10_1016_j_ijbiomac_2024_134066
crossref_primary_10_2174_0118715265298816240321045741
crossref_primary_10_1021_acs_jcim_1c00783
crossref_primary_10_1038_s41467_021_26401_w
crossref_primary_10_3389_fphys_2021_813012
crossref_primary_10_1016_j_phrs_2017_05_020
crossref_primary_10_26508_lsa_202301969
crossref_primary_10_1093_ckj_sfaa104
crossref_primary_10_1016_j_phrs_2016_03_018
crossref_primary_10_1016_j_tips_2015_03_001
crossref_primary_10_1073_pnas_1900152116
crossref_primary_10_1007_s11906_018_0890_y
crossref_primary_10_3389_fphys_2014_00227
crossref_primary_10_1007_s13738_020_02049_z
crossref_primary_10_15406_jlprr_2018_05_00221
crossref_primary_10_1038_s41440_021_00800_4
crossref_primary_10_1016_j_tips_2022_06_011
crossref_primary_10_1097_HCO_0000000000000529
crossref_primary_10_1016_j_intimp_2021_107516
crossref_primary_10_1016_j_crphar_2021_100056
crossref_primary_10_1038_s41598_021_89957_z
crossref_primary_10_1016_j_intimp_2021_107995
crossref_primary_10_1155_2016_8917578
crossref_primary_10_1007_s43440_021_00303_6
crossref_primary_10_3390_jcm10040702
crossref_primary_10_1111_pbi_13657
crossref_primary_10_1016_j_peptides_2016_03_008
crossref_primary_10_1186_s12967_015_0616_8
crossref_primary_10_3389_fcimb_2021_789180
crossref_primary_10_1038_s41467_020_16048_4
crossref_primary_10_1016_j_jacc_2016_11_064
crossref_primary_10_1038_s41392_020_00374_6
crossref_primary_10_1097_FJC_0000000000000307
crossref_primary_10_1097_MNH_0000000000000254
crossref_primary_10_1097_MNH_0000000000000378
crossref_primary_10_15252_emmm_202012828
crossref_primary_10_1016_j_ccc_2018_11_002
crossref_primary_10_1042_CS20201268
crossref_primary_10_1152_ajpheart_00933_2015
crossref_primary_10_1002_jmv_29304
crossref_primary_10_1007_s11906_015_0557_x
crossref_primary_10_1080_10408363_2021_1942782
crossref_primary_10_3390_v15030596
crossref_primary_10_3390_diagnostics13010016
crossref_primary_10_1016_j_coviro_2021_08_010
crossref_primary_10_1080_14779072_2022_2105204
crossref_primary_10_1007_s41030_021_00164_7
crossref_primary_10_51987_revhospitalbaires_v42i4_237
crossref_primary_10_1186_s43141_022_00368_7
crossref_primary_10_1073_pnas_2016093117
crossref_primary_10_1080_19420862_2021_1987180
crossref_primary_10_1093_infdis_jiad329
crossref_primary_10_1038_s41580_021_00418_x
crossref_primary_10_1681_ASN_2020101537
crossref_primary_10_1016_j_ejphar_2020_173656
crossref_primary_10_1111_obr_13225
crossref_primary_10_2147_IJN_S446093
crossref_primary_10_1007_s11906_019_0923_1
crossref_primary_10_1126_science_abe0010
crossref_primary_10_1016_j_phrs_2021_106035
crossref_primary_10_1152_ajprenal_00375_2023
crossref_primary_10_1042_CS20200480
crossref_primary_10_3390_md20110657
crossref_primary_10_1016_j_ymthe_2023_11_019
crossref_primary_10_1042_CS20200482
crossref_primary_10_1002_bmc_5318
crossref_primary_10_3390_bioengineering10060652
crossref_primary_10_1080_17474086_2022_2110061
crossref_primary_10_1007_s10741_020_10066_6
crossref_primary_10_1016_j_cell_2023_01_039
crossref_primary_10_3390_ijms21186471
crossref_primary_10_3390_genes11091044
crossref_primary_10_3389_fimmu_2020_570927
crossref_primary_10_3389_fmicb_2022_1042200
crossref_primary_10_1080_19420862_2022_2057832
crossref_primary_10_3389_fcimb_2021_753721
crossref_primary_10_1016_j_jacc_2020_04_028
crossref_primary_10_1042_CS20130291
crossref_primary_10_3389_fnins_2017_00092
crossref_primary_10_1128_mbio_00768_24
crossref_primary_10_3389_fphar_2021_667254
crossref_primary_10_1016_j_arr_2021_101299
crossref_primary_10_1016_j_cdtm_2020_05_003
crossref_primary_10_1126_science_abc0870
crossref_primary_10_1042_CS20200476
crossref_primary_10_1038_s41467_021_24013_y
crossref_primary_10_1007_s10557_020_07073_y
crossref_primary_10_1111_apha_13513
crossref_primary_10_1177_1535370216660211
crossref_primary_10_1016_j_bbi_2021_01_039
crossref_primary_10_1016_j_omtm_2022_07_003
crossref_primary_10_1080_07391102_2020_1768150
crossref_primary_10_3390_ijms241612728
crossref_primary_10_3390_cells9071704
crossref_primary_10_1038_s41401_020_0430_6
crossref_primary_10_1038_s41421_021_00293_y
crossref_primary_10_3892_ijmm_2020_4608
crossref_primary_10_3390_jcm11154362
crossref_primary_10_1016_j_isci_2023_107470
crossref_primary_10_1016_j_npep_2015_10_003
crossref_primary_10_3390_ijms23031776
crossref_primary_10_1016_j_jtbi_2020_110425
crossref_primary_10_2174_1381612829666221123111849
crossref_primary_10_1038_nrendo_2015_6
crossref_primary_10_15406_jlprr_2021_08_00251
crossref_primary_10_3389_fimmu_2022_1084331
crossref_primary_10_1038_s41371_020_00459_3
crossref_primary_10_1038_s41569_019_0244_8
crossref_primary_10_3389_fphys_2021_806062
crossref_primary_10_1016_j_omtn_2017_04_006
crossref_primary_10_1590_1678_9199_jvatitd_2020_0181
crossref_primary_10_1016_j_phrs_2017_06_005
crossref_primary_10_1016_S2666_5247_23_00011_3
crossref_primary_10_2174_0929866529666220715101357
crossref_primary_10_1016_j_jpha_2021_12_003
crossref_primary_10_1161_HYPERTENSIONAHA_115_06892
crossref_primary_10_12688_f1000research_22211_2
crossref_primary_10_3389_fimmu_2023_1204543
crossref_primary_10_1152_ajpheart_00960_2015
crossref_primary_10_1186_s40246_021_00304_9
crossref_primary_10_1002_pul2_12024
crossref_primary_10_1016_j_ijbiomac_2021_10_144
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104941
crossref_primary_10_1007_s00210_021_02108_z
crossref_primary_10_1016_j_fmre_2021_01_013
crossref_primary_10_1017_S0007114523000776
crossref_primary_10_15252_emmm_202013426
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_1186_s13293_020_00330_7
crossref_primary_10_1152_physrev_00023_2016
crossref_primary_10_1016_j_celrep_2020_108528
crossref_primary_10_1016_j_biopha_2020_111193
crossref_primary_10_1007_s11255_016_1334_8
crossref_primary_10_1093_ehjcvp_pvaa053
crossref_primary_10_1155_2023_8451931
crossref_primary_10_1080_17460441_2017_1335301
crossref_primary_10_1002_rmv_2227
crossref_primary_10_1016_j_nantod_2022_101580
crossref_primary_10_1039_D2MD00009A
crossref_primary_10_1002_prot_26140
crossref_primary_10_1016_j_advms_2023_01_001
crossref_primary_10_1080_1061186X_2021_2013852
crossref_primary_10_1080_19420862_2020_1782600
crossref_primary_10_1161_CIRCHEARTFAILURE_120_006939
crossref_primary_10_1016_j_matt_2022_11_027
crossref_primary_10_1016_j_ejim_2023_06_008
crossref_primary_10_1161_HYPERTENSIONAHA_122_20262
crossref_primary_10_1038_s41577_021_00634_8
crossref_primary_10_3390_ijms21103474
crossref_primary_10_1097_FJC_0000000000000126
crossref_primary_10_1007_s12016_021_08912_y
crossref_primary_10_1016_j_kint_2018_01_029
crossref_primary_10_1016_j_biomaterials_2019_119750
crossref_primary_10_1128_mBio_02451_20
crossref_primary_10_1002_jcp_30041
crossref_primary_10_1007_s00228_020_02963_4
crossref_primary_10_1161_HYPERTENSIONAHA_120_14871
crossref_primary_10_1016_j_ejmech_2023_115719
crossref_primary_10_3389_fphar_2022_987816
crossref_primary_10_1002_advs_202202556
crossref_primary_10_3389_fmed_2020_00248
crossref_primary_10_1002_cti2_1421
crossref_primary_10_1111_jvim_70036
crossref_primary_10_12998_wjcc_v10_i3_762
crossref_primary_10_1152_ajpheart_00618_2015
crossref_primary_10_1186_s13054_017_1823_x
crossref_primary_10_19163_2307_9266_2020_8_6_380_391
crossref_primary_10_1016_j_drup_2020_100733
crossref_primary_10_1016_j_jacc_2021_01_052
crossref_primary_10_2478_jtim_2020_0003
crossref_primary_10_1007_s11906_022_01207_3
crossref_primary_10_2147_IJN_S448005
crossref_primary_10_1016_j_ddstr_2013_11_001
crossref_primary_10_1007_s00109_015_1285_z
crossref_primary_10_1002_prp2_917
crossref_primary_10_3390_ph13050096
crossref_primary_10_1038_s41536_021_00154_y
crossref_primary_10_1080_14789450_2018_1545577
crossref_primary_10_1038_s41594_020_00549_3
crossref_primary_10_1161_JAHA_123_029511
crossref_primary_10_15252_emmm_202115230
Cites_doi 10.1016/j.virol.2006.06.011
10.1161/HYPERTENSIONAHA.109.138420
10.1016/S0165-6147(00)01994-5
10.1161/01.RES.87.5.e1
10.1074/jbc.M200581200
10.1002/path.2162
10.1161/HYPERTENSIONAHA.110.164244
10.1038/375146a0
10.1159/000060153
10.1093/ndt/16.suppl_1.22
10.1152/physrev.1990.70.4.1067
10.1152/ajpheart.01198.2006
10.1016/j.cardiores.2007.04.007
10.1016/j.ejphar.2008.02.090
10.1074/jbc.M002615200
10.1161/01.HYP.32.3.496
10.1097/CCM.0b013e3181c03009
10.1152/ajpheart.00618.2005
10.1038/nature00786
10.1016/S0008-6363(97)00171-5
10.1161/HYPERTENSIONAHA.106.076216
10.1016/S0021-9258(18)31697-1
10.1371/journal.pone.0028501
10.2337/db09-1218
10.1161/01.RES.85.7.643
10.1161/CIRCULATIONAHA.110.955369
10.1073/pnas.92.8.3521
10.1161/hy1201.100589
10.1161/hy09t1.094234
10.1016/j.ygyno.2008.02.019
10.1152/ajprenal.00519.2009
10.1002/hep.23104
10.1152/ajpheart.00331.2008
10.2165/00003088-200544040-00001
10.1016/S0272-6386(12)80441-0
10.1016/S0008-6363(96)00133-2
ContentType Journal Article
Copyright Springer International Publishing Switzerland 2013
2014 INIST-CNRS
Copyright Wolters Kluwer Health Adis International Sep 2013
Copyright_xml – notice: Springer International Publishing Switzerland 2013
– notice: 2014 INIST-CNRS
– notice: Copyright Wolters Kluwer Health Adis International Sep 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s40262-013-0072-7
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Docstoc
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Academic Middle East (New)

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1179-1926
EndPage 792
ExternalDocumentID 3148187621
23681967
27699438
10_1007_s40262_013_0072_7
Genre Randomized Controlled Trial
Journal Article
Clinical Trial, Phase I
GroupedDBID ---
.GJ
.XZ
0R~
0VX
199
29B
2JY
34G
36B
39C
4.4
406
53G
5GY
5RE
6I2
6J9
6PF
7X7
88E
8FI
8FJ
8R4
8R5
95.
AAAUJ
AABHQ
AACDK
AADNT
AAIAL
AAIKX
AAJKR
AAKAS
AANZL
AARHV
AASML
AATNV
AAWTL
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABFTV
ABIPD
ABJNI
ABJOX
ABKCH
ABKMS
ABKTR
ABOCM
ABPLI
ABTKH
ABTMW
ABUWG
ABWHX
ABXPI
ACAOD
ACCOQ
ACCUX
ACDTI
ACGFO
ACGFS
ACMFV
ACMJI
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADJJI
ADQRH
ADRFC
ADURQ
ADYOE
ADZCM
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEYRQ
AFBBN
AFDZB
AFFNX
AFKRA
AFOHR
AFWTZ
AFZKB
AGAYW
AGDGC
AGQEE
AGQMX
AGRTI
AHIZS
AHMBA
AHSBF
AIAKS
AIGIU
AILAN
AIZAD
AJRNO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ASPBG
ATHPR
AVWKF
AWSVR
AXYYD
AYFIA
AZFZN
A~4
BENPR
BGNMA
BPHCQ
BVXVI
BYPQX
CAG
CCPQU
COF
CS3
DCUDU
DNIVK
DPUIP
DU5
EBLON
EBS
EJD
EMOBN
F5P
F8P
FERAY
FIGPU
FLLZZ
FNLPD
FSGXE
FYUFA
HF~
HMCUK
IAO
IEA
IHR
IMOTQ
INH
INR
ITC
IWAJR
J-C
JZLTJ
LGEZI
LLZTM
LOTEE
M1P
M4Y
NADUK
NQJWS
NU0
NXXTH
OAC
OPC
OVD
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
ROL
RSV
RZALA
SISQX
SJYHP
SNPRN
SNX
SOHCF
SOJ
SPKJE
SRMVM
SSLCW
TEORI
TSG
U5U
U9L
UAX
UG4
UKHRP
UNMZH
UTJUX
VDBLX
VFIZW
W48
WAF
YQY
Z0Y
ZGI
ZMTXR
ZXP
~JE
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ABRTQ
IQODW
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c511t-cabc564b5bb55770ad130c0dab765d0223d3d4d47de4561afb4256b7c14b49833
IEDL.DBID 7X7
ISSN 0312-5963
1179-1926
IngestDate Fri Jul 11 07:11:04 EDT 2025
Fri Jul 25 02:39:32 EDT 2025
Fri Apr 18 01:24:09 EDT 2025
Mon Jul 21 09:17:32 EDT 2025
Tue Jul 01 05:01:35 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Thu May 22 04:28:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ACE2 Knockout Mouse
Study Drug Administration
Endogenous Peptide Signal
Good Manufacture Practice Guideline
Healthy Human Subject
Human
Pharmacokinetic pharmacodynamic relationship
Recombinant protein
Healthy subject
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-cabc564b5bb55770ad130c0dab765d0223d3d4d47de4561afb4256b7c14b49833
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s40262-013-0072-7.pdf
PMID 23681967
PQID 1465505239
PQPubID 32335
PageCount 10
ParticipantIDs proquest_miscellaneous_1428271947
proquest_journals_1465505239
pubmed_primary_23681967
pascalfrancis_primary_27699438
crossref_citationtrail_10_1007_s40262_013_0072_7
crossref_primary_10_1007_s40262_013_0072_7
springer_journals_10_1007_s40262_013_0072_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Auckland
– name: Switzerland
PublicationTitle Clinical pharmacokinetics
PublicationTitleAbbrev Clin Pharmacokinet
PublicationTitleAlternate Clin Pharmacokinet
PublicationYear 2013
Publisher Springer International Publishing
Adis International
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Adis International
– name: Springer Nature B.V
References J Wysocki (72_CR30) 2010; 55
C Vickers (72_CR15) 2002; 277
J Zhong (72_CR26) 2010; 122
GY Oudit (72_CR27) 2010; 59
DE Dostal (72_CR1) 1999; 85
K Tanimoto (72_CR5) 1994; 269
JH Krege (72_CR3) 1995; 375
M Ruiz-Ortega (72_CR10) 2001; 38
A de Lang (72_CR22) 2006; 353
J Baan Jr (72_CR35) 1996; 32
MA Crackower (72_CR12) 2002; 417
S Park (72_CR34) 2010; 298
DE Newby (72_CR36) 1997; 36
KE Bernstein (72_CR6) 1993; 22
M Ito (72_CR2) 1995; 92
M Donoghue (72_CR13) 2000; 87
B Treml (72_CR29) 2010; 38
MC Chappell (72_CR16) 2007; 50
GY Oudit (72_CR24) 2007; 75
CM Ferrario (72_CR21) 2005; 289
D Herr (72_CR11) 2008; 109
AJ Trask (72_CR17) 2007; 292
J Zhong (72_CR25) 2011; 57
SR Tipnis (72_CR14) 2000; 275
I Hamming (72_CR23) 2007; 212
SA Mezzano (72_CR8) 2001; 38
M Ruiz-Ortega (72_CR9) 2001; 135
I Mahmood (72_CR31) 2005; 44
MC Chappell (72_CR19) 2001; 16
CH Osterreicher (72_CR28) 2009; 50
S Ahmad (72_CR33) 2011; 6
D Iusuf (72_CR32) 2008; 585
F Lovren (72_CR18) 2008; 295
AJ Turner (72_CR7) 2002; 23
E Hackenthal (72_CR4) 1990; 70
K Yamada (72_CR20) 1998; 32
References_xml – volume: 353
  start-page: 474
  issue: 2
  year: 2006
  ident: 72_CR22
  publication-title: Virology
  doi: 10.1016/j.virol.2006.06.011
– volume: 55
  start-page: 90
  issue: 1
  year: 2010
  ident: 72_CR30
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.109.138420
– volume: 23
  start-page: 177
  issue: 4
  year: 2002
  ident: 72_CR7
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/S0165-6147(00)01994-5
– volume: 87
  start-page: E1
  issue: 5
  year: 2000
  ident: 72_CR13
  publication-title: Circ Res
  doi: 10.1161/01.RES.87.5.e1
– volume: 277
  start-page: 14838
  issue: 17
  year: 2002
  ident: 72_CR15
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M200581200
– volume: 212
  start-page: 1
  issue: 1
  year: 2007
  ident: 72_CR23
  publication-title: J Pathol
  doi: 10.1002/path.2162
– volume: 57
  start-page: 314
  issue: 2
  year: 2011
  ident: 72_CR25
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.110.164244
– volume: 375
  start-page: 146
  issue: 6527
  year: 1995
  ident: 72_CR3
  publication-title: Nature
  doi: 10.1038/375146a0
– volume: 135
  start-page: 123
  year: 2001
  ident: 72_CR9
  publication-title: Contrib Nephrol
  doi: 10.1159/000060153
– volume: 16
  start-page: 22
  issue: Suppl 1
  year: 2001
  ident: 72_CR19
  publication-title: Nephrol Dial Transpl
  doi: 10.1093/ndt/16.suppl_1.22
– volume: 70
  start-page: 1067
  issue: 4
  year: 1990
  ident: 72_CR4
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1990.70.4.1067
– volume: 292
  start-page: H3019
  issue: 6
  year: 2007
  ident: 72_CR17
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.01198.2006
– volume: 75
  start-page: 29
  issue: 1
  year: 2007
  ident: 72_CR24
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2007.04.007
– volume: 585
  start-page: 303
  issue: 2–3
  year: 2008
  ident: 72_CR32
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2008.02.090
– volume: 275
  start-page: 33238
  issue: 43
  year: 2000
  ident: 72_CR14
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M002615200
– volume: 32
  start-page: 496
  issue: 3
  year: 1998
  ident: 72_CR20
  publication-title: Hypertension
  doi: 10.1161/01.HYP.32.3.496
– volume: 38
  start-page: 596
  issue: 2
  year: 2010
  ident: 72_CR29
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181c03009
– volume: 289
  start-page: H2281
  issue: 6
  year: 2005
  ident: 72_CR21
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00618.2005
– volume: 417
  start-page: 822
  issue: 6891
  year: 2002
  ident: 72_CR12
  publication-title: Nature
  doi: 10.1038/nature00786
– volume: 36
  start-page: 268
  issue: 2
  year: 1997
  ident: 72_CR36
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(97)00171-5
– volume: 50
  start-page: 596
  issue: 4
  year: 2007
  ident: 72_CR16
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.106.076216
– volume: 269
  start-page: 31334
  issue: 50
  year: 1994
  ident: 72_CR5
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)31697-1
– volume: 6
  start-page: e28501
  issue: 12
  year: 2011
  ident: 72_CR33
  publication-title: PloS one
  doi: 10.1371/journal.pone.0028501
– volume: 59
  start-page: 529
  issue: 2
  year: 2010
  ident: 72_CR27
  publication-title: Diabetes
  doi: 10.2337/db09-1218
– volume: 85
  start-page: 643
  issue: 7
  year: 1999
  ident: 72_CR1
  publication-title: Circ Res
  doi: 10.1161/01.RES.85.7.643
– volume: 122
  start-page: 717
  issue: 7
  year: 2010
  ident: 72_CR26
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.955369
– volume: 92
  start-page: 3521
  issue: 8
  year: 1995
  ident: 72_CR2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.8.3521
– volume: 38
  start-page: 1382
  issue: 6
  year: 2001
  ident: 72_CR10
  publication-title: Hypertension
  doi: 10.1161/hy1201.100589
– volume: 38
  start-page: 635
  issue: 3 Pt 2
  year: 2001
  ident: 72_CR8
  publication-title: Hypertension
  doi: 10.1161/hy09t1.094234
– volume: 109
  start-page: 418
  issue: 3
  year: 2008
  ident: 72_CR11
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2008.02.019
– volume: 298
  start-page: F37
  issue: 1
  year: 2010
  ident: 72_CR34
  publication-title: Am J Physiol Ren Physiol
  doi: 10.1152/ajprenal.00519.2009
– volume: 50
  start-page: 929
  issue: 3
  year: 2009
  ident: 72_CR28
  publication-title: Hepatology
  doi: 10.1002/hep.23104
– volume: 295
  start-page: H1377
  issue: 4
  year: 2008
  ident: 72_CR18
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00331.2008
– volume: 44
  start-page: 331
  issue: 4
  year: 2005
  ident: 72_CR31
  publication-title: Clin Pharmacokinet
  doi: 10.2165/00003088-200544040-00001
– volume: 22
  start-page: 745
  issue: 5
  year: 1993
  ident: 72_CR6
  publication-title: Am J Kidney Dis
  doi: 10.1016/S0272-6386(12)80441-0
– volume: 32
  start-page: 973
  issue: 5
  year: 1996
  ident: 72_CR35
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(96)00133-2
SSID ssj0008200
Score 2.5468814
Snippet Background and Objectives Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of...
Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory,...
SourceID proquest
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 783
SubjectTerms Angiotensin I - blood
Angiotensin II - blood
Angiotensin-Converting Enzyme 2
Biological and medical sciences
Double-Blind Method
Female
General pharmacology
Humans
Internal Medicine
Male
Medical sciences
Medicine
Medicine & Public Health
Original Research Article
Peptide Fragments - blood
Peptidyl-Dipeptidase A - administration & dosage
Peptidyl-Dipeptidase A - pharmacokinetics
Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions
Pharmacology. Drug treatments
Pharmacology/Toxicology
Pharmacotherapy
Recombinant Proteins - administration & dosage
Recombinant Proteins - pharmacokinetics
Title Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects
URI https://link.springer.com/article/10.1007/s40262-013-0072-7
https://www.ncbi.nlm.nih.gov/pubmed/23681967
https://www.proquest.com/docview/1465505239
https://www.proquest.com/docview/1428271947
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZtcimU0nedJkaFkkMbUdt67Z6CHWxCocaUBHxbpJUUQhqtm3UOzq_PzL7c0DanZVlJKzQjzVPfEPJZGq-tU4KFkGsmggvMeu1Z4mSONlEqAvohf8zV6bn4vpTLxuFWNmmV7ZlYHdSuyNFH_m2IQF_ow0yPV78ZVo3C6GpTQuMp2UXoMjS-9LIzuFC6DeqLOmBwAae1UU28Ogd2k8KkBM4QPJvpB3Lp-cqUsEShrm3xL-Xzr8BpJY9mL8mLRpGk45ryr8gTH1-Tw0WNRL05omfbi1XlET2kiy1G9eYNWbevV6BlYhNqouvauLpMfUmLQNE-vbZVvgytPP50HC8uiyrxPbITTFpHIIILOo13m2tPR_Qy0vpy06bpAIcTenvKt-R8Nj07OWVNAQaWgx62ZrmxuVTCSmul1HpgHEi8fOCM1Uo6kP7ccSec0M6jHmaChRNAWZ0PhRVpwvk7shOL6D8Qqrn2wQSTBOWEVT5NFHejRFrnE5ukoUcG7fJneYNOjkUyfmUdrnJFsQwoliHFMt0jX7ouqxqa47HG_Qc07XqMtEpTwZMe2W-JnDXbuMy2TNcjn7rPsAExqmKiL26xDVitepgK-Mf7mjm2g3MFGpeCL19bbvlj8P_Nde_xqXwkz0YV32Ki2z7ZWd_c-gPQjNa2X7F_n-yOZ5PJHJ6T6Xzx8x4Mvg4o
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KraA0gIsTOlFCNBD1CLTOLYyQGhqrSa0kU9TKW5BTu2q4qOM5CpqvSj-o28l22ogN56TLzEynt--0LIu1hZqY3gzLlcMu6MY9pKyxIT56gTpdyhHfLwSIxO-LdJPFki110uDIZVdjSxJtSmyNFG_mmIhb7Qhpl-mf1k2DUKvatdC40GLfZtdQkqW_l57yvA930Y7u6Mt0es7SrAchAu5ixXOo8F17HWcSxloAyQ8TwwSksRG2BpkYkMN1wai8KFchrQWmiZD7nmaYIGUCD5K8B4AwwhlJNewUNuGjSJQaDgAWZ3XlRM1QM9TWAQRMSwWDeTN_jgg5kqASSu6aXxL2H3L0dtzf92H5GHreBKtxpMe0yWrH9CNo6bytfVJh0vErnKTbpBjxc1saunZN49_gCpFqdQ5U0_x1ReTfFl4Sjqw1Ndx-fQ2sNAt_zpWVEH2nu2jUHyWPjglO74q2pqaUjPPG2Sqap2ARBDtC6Vz8jJnYDmOVn2hbcvCZWRtE45lThhuBY2TURkwiTWxiY6Sd2ABN3vz_K2Gjo25TjP-jrONcQygFiGEMvkgHzol8yaUiC3TV6_AdN-RShFmvIoGZC1DshZSzbKbIHkA_K2H4YLj14c5W1xgXNAS5bDlMM3XjTIsdg8EiDhCRj52GHLH5v_76yrtx_lDbk3Gh8eZAd7R_uvyP2wxmEMslsjy_NfF_Y1SGVzvV5fBUq-3_Xd-w0B5kfL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1La9RAeCgVRBDx7dZaR9AetEN3k8lMchApbZfWatlDC3uL8yxFd7I1WyT-NH-d35fXWtTeekwykwz53m9CXifKSW0FZ94bybi3nmknHUttYtAmyrhHP-TnY3Fwyj9Ok-kK-dXVwmBaZccTa0ZtC4M-8u0RNvpCH2a27du0iMne-MP8guEEKYy0duM0GhQ5ctUPMN_K94d7AOs3UTTeP9k9YO2EAWZA0Vgwo7RJBNeJ1kki5VBZYOlmaJWWIrEg3mIbW265tA4VDeU1oLjQ0oy45lmKzlBg_7dkDGITaElOe2MPJeuwKRICYw-wvIuoYtke2GwCEyJiho27mbwiE-_OVQng8c1cjX8pvn8FbWtZOL5P7rVKLN1psO4BWXHhIdmcNF2wqy16sizqKrfoJp0s-2NXj8iiu_wKGi4uoSrYfo2tgprhzcJTtI1nus7VoXW0ge6Es_OiTroPbBcT5rEJwhndDz-rmaMRPQ-0Kayq2g3AGNHTVD4mpzcCmidkNRTBPSNUxtJ55VXqheVauCwVsY3SRFuX6jTzAzLsfn9u2s7oOKDjW973dK4hlgPEcoRYLgfkbb9l3rQFuW7xxhWY9jsiKbKMx-mArHdAzlsWUuZLhB-QV_1jIH6M6KjgiktcAxazHGUcvvG0QY7ly2MB2p6AJ-86bPnj5f8769r1R3lJbgPV5Z8Oj4-ekztRjcKYb7dOVhffL90LUNAWeqOmBEq-3DTp_QZgKkwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacokinetics+and+pharmacodynamics+of+recombinant+human+angiotensin-converting+enzyme+2+in+healthy+human+subjects&rft.jtitle=Clinical+pharmacokinetics&rft.au=Haschke%2C+Manuel&rft.au=Schuster%2C+Manfred&rft.au=Poglitsch%2C+Marko&rft.au=Loibner%2C+Hans&rft.date=2013-09-01&rft.eissn=1179-1926&rft.volume=52&rft.issue=9&rft.spage=783&rft_id=info:doi/10.1007%2Fs40262-013-0072-7&rft_id=info%3Apmid%2F23681967&rft.externalDocID=23681967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0312-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0312-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0312-5963&client=summon