Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects
Background and Objectives Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin...
Saved in:
Published in | Clinical pharmacokinetics Vol. 52; no. 9; pp. 783 - 792 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2013
Adis International Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0312-5963 1179-1926 1179-1926 |
DOI | 10.1007/s40262-013-0072-7 |
Cover
Loading…
Abstract | Background and Objectives
Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin–aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers.
Methods
Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography–tandem mass spectrometry method.
Results
Single rhACE2 doses of 100–1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400–1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period.
Conclusions
Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers. |
---|---|
AbstractList | Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers.BACKGROUND AND OBJECTIVESAngiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers.Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method.METHODSRecombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method.Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period.RESULTSSingle rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period.Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.CONCLUSIONSAdministration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers. Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method. Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers. Background and Objectives Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin–angiotensin–aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Methods Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography–tandem mass spectrometry method. Results Single rhACE2 doses of 100–1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400–1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Conclusions Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers. Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method. Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers. |
Author | Salzberg, Marc Schuster, Manfred Poglitsch, Marko Loibner, Hans Bruggisser, Marcel Krähenbühl, Stephan Haschke, Manuel Penninger, Joseph |
Author_xml | – sequence: 1 givenname: Manuel surname: Haschke fullname: Haschke, Manuel email: manuel.haschke@unibas.ch, manuel.haschke@usb.ch organization: Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Department of Biomedicine, University of Basel – sequence: 2 givenname: Manfred surname: Schuster fullname: Schuster, Manfred organization: Apeiron Biologics AG – sequence: 3 givenname: Marko surname: Poglitsch fullname: Poglitsch, Marko organization: Apeiron Biologics AG – sequence: 4 givenname: Hans surname: Loibner fullname: Loibner, Hans organization: Apeiron Biologics AG – sequence: 5 givenname: Marc surname: Salzberg fullname: Salzberg, Marc organization: Medpace Switzerland – sequence: 6 givenname: Marcel surname: Bruggisser fullname: Bruggisser, Marcel organization: Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Department of Biomedicine, University of Basel – sequence: 7 givenname: Joseph surname: Penninger fullname: Penninger, Joseph organization: Institute of Molecular Biotechnology, Austrian Academy of Sciences – sequence: 8 givenname: Stephan surname: Krähenbühl fullname: Krähenbühl, Stephan organization: Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Department of Biomedicine, University of Basel |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27699438$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23681967$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoNU7Lb6A7yRARG8Gc13di7LUrtCQfHjOuRrtllnTmqSEdZf31l2F6WgV-EcnuckOe8FOoMEAaGXBL8jGKv3hWMqaYsJa-eStuoJWhCiupZ0VJ6hBWaEtqKT7BxdlLLFGC8pxs_QOWVySTqpFqh-vjN5NC79iBBqdKUx4JtT0-_AjPtm6psvwaXRRjBQm_U0GmiuYBNTDVAitKsEv0KuETbNNfzejaGhTYRmHcxQ73ZH4etkt8HV8hw97c1QwovjeYm-f7j-tlq3t59uPq6ublsnCKmtM9YJya2wVgilsPGEYYe9sUoKjyllnnnuufKBC0lMbzkV0ipHuOXdkrFL9PYw9z6nn1MoVY-xuDAMBkKaiiacLqkiHVcz-voRuk1Thvl1MyWFwIKybqZeHanJjsHr-xxHk3f6tM8ZeHMETHFm6LMBF8sfTsmu42w5c-rAuZxKyaHXLlZTY4KaTRw0wXqfsD4krOeE9T5hvb-BPDJPw__n0INTZhY2If_1uX9KD7ijtz0 |
CODEN | CPKNDH |
CitedBy_id | crossref_primary_10_3389_fimmu_2021_625732 crossref_primary_10_1007_s00408_020_00408_4 crossref_primary_10_1016_j_ejmech_2021_113157 crossref_primary_10_1016_j_transci_2022_103418 crossref_primary_10_3390_v13112243 crossref_primary_10_1016_j_lfs_2020_118421 crossref_primary_10_1177_1470320317705232 crossref_primary_10_3390_biomedicines10020502 crossref_primary_10_1093_pnasnexus_pgad403 crossref_primary_10_2174_1389557522666220201154845 crossref_primary_10_1016_j_antiviral_2021_105197 crossref_primary_10_2222_jsv_73_163 crossref_primary_10_2174_0929866527666191218091823 crossref_primary_10_1165_rcmb_2020_0322PS crossref_primary_10_1210_en_2015_1556 crossref_primary_10_1016_j_cytogfr_2020_11_001 crossref_primary_10_1371_journal_ppat_1009471 crossref_primary_10_1136_openhrt_2020_001302 crossref_primary_10_3390_biom12010076 crossref_primary_10_1016_j_cell_2020_04_004 crossref_primary_10_1161_HYPERTENSIONAHA_120_15256 crossref_primary_10_1038_srep27911 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1016_j_dsx_2020_05_022 crossref_primary_10_12688_f1000research_10117_1 crossref_primary_10_1124_pr_118_017129 crossref_primary_10_1161_HYPERTENSIONAHA_119_12786 crossref_primary_10_1021_acs_jmedchem_0c00606 crossref_primary_10_1038_s41392_021_00821_y crossref_primary_10_1007_s11906_019_0978_z crossref_primary_10_1161_HYPERTENSIONAHA_115_05185 crossref_primary_10_21307_PM_2020_59_3_15 crossref_primary_10_3390_v15040964 crossref_primary_10_1016_j_exer_2019_05_020 crossref_primary_10_18705_1607_419X_2021_27_6_608_616 crossref_primary_10_1016_j_actbio_2022_09_048 crossref_primary_10_1016_j_pupt_2019_101833 crossref_primary_10_3389_fphar_2021_629935 crossref_primary_10_1038_s41392_021_00756_4 crossref_primary_10_1161_HYPERTENSIONAHA_116_07471 crossref_primary_10_1161_HYPERTENSIONAHA_124_22064 crossref_primary_10_1038_s41392_021_00733_x crossref_primary_10_1021_acsanm_2c04275 crossref_primary_10_1128_spectrum_01100_23 crossref_primary_10_3390_vaccines11020204 crossref_primary_10_1002_biot_202000566 crossref_primary_10_1016_j_phrs_2021_105924 crossref_primary_10_1016_j_metabol_2019_03_006 crossref_primary_10_1161_CIRCRESAHA_116_307708 crossref_primary_10_3390_ijms22094503 crossref_primary_10_1002_adhm_202302803 crossref_primary_10_1016_j_bbi_2020_04_046 crossref_primary_10_1016_j_omtm_2024_101301 crossref_primary_10_3389_fbioe_2023_1180044 crossref_primary_10_2174_1871526521666210301143441 crossref_primary_10_1007_s00134_020_05985_9 crossref_primary_10_1161_HYPERTENSIONAHA_120_15353 crossref_primary_10_2139_ssrn_4087366 crossref_primary_10_3389_fmolb_2022_803314 crossref_primary_10_3389_fpls_2021_742875 crossref_primary_10_1080_22221751_2023_2275598 crossref_primary_10_1152_ajpcell_00478_2020 crossref_primary_10_1038_s41565_022_01174_5 crossref_primary_10_1038_mt_2016_115 crossref_primary_10_2174_2666796701999201209144207 crossref_primary_10_1038_s42003_021_02030_3 crossref_primary_10_1042_CS20200899 crossref_primary_10_1007_s11696_022_02067_6 crossref_primary_10_1016_j_apsb_2021_09_004 crossref_primary_10_15406_jlprr_2020_07_00221 crossref_primary_10_1093_clinchem_hvaa001 crossref_primary_10_3390_cells10030650 crossref_primary_10_1021_acsinfecdis_0c00456 crossref_primary_10_1038_s41589_021_00965_6 crossref_primary_10_1055_s_0041_1729781 crossref_primary_10_1183_13993003_02638_2017 crossref_primary_10_1007_s12012_021_09649_y crossref_primary_10_1016_j_virol_2024_109988 crossref_primary_10_1016_j_bcp_2022_115370 crossref_primary_10_1016_j_kint_2020_04_009 crossref_primary_10_1038_s41569_020_0413_9 crossref_primary_10_1016_j_arr_2020_101123 crossref_primary_10_1161_CIRCRESAHA_116_303603 crossref_primary_10_4291_wjgp_v10_i1_1 crossref_primary_10_1007_s10072_021_05505_7 crossref_primary_10_1042_BCJ20200514 crossref_primary_10_1007_s10620_022_07480_1 crossref_primary_10_1016_j_ctrv_2020_102041 crossref_primary_10_1016_j_bcp_2021_114724 crossref_primary_10_1111_jvim_15548 crossref_primary_10_1038_nrcardio_2014_59 crossref_primary_10_1016_j_ijcard_2016_10_069 crossref_primary_10_1016_S2213_2600_20_30418_5 crossref_primary_10_1007_s00210_024_03029_3 crossref_primary_10_1016_j_antiviral_2021_105147 crossref_primary_10_1038_s41598_023_27636_x crossref_primary_10_1002_rmv_2174 crossref_primary_10_1038_s41421_021_00302_0 crossref_primary_10_3390_cells10102755 crossref_primary_10_1016_j_ijbiomac_2024_134066 crossref_primary_10_2174_0118715265298816240321045741 crossref_primary_10_1021_acs_jcim_1c00783 crossref_primary_10_1038_s41467_021_26401_w crossref_primary_10_3389_fphys_2021_813012 crossref_primary_10_1016_j_phrs_2017_05_020 crossref_primary_10_26508_lsa_202301969 crossref_primary_10_1093_ckj_sfaa104 crossref_primary_10_1016_j_phrs_2016_03_018 crossref_primary_10_1016_j_tips_2015_03_001 crossref_primary_10_1073_pnas_1900152116 crossref_primary_10_1007_s11906_018_0890_y crossref_primary_10_3389_fphys_2014_00227 crossref_primary_10_1007_s13738_020_02049_z crossref_primary_10_15406_jlprr_2018_05_00221 crossref_primary_10_1038_s41440_021_00800_4 crossref_primary_10_1016_j_tips_2022_06_011 crossref_primary_10_1097_HCO_0000000000000529 crossref_primary_10_1016_j_intimp_2021_107516 crossref_primary_10_1016_j_crphar_2021_100056 crossref_primary_10_1038_s41598_021_89957_z crossref_primary_10_1016_j_intimp_2021_107995 crossref_primary_10_1155_2016_8917578 crossref_primary_10_1007_s43440_021_00303_6 crossref_primary_10_3390_jcm10040702 crossref_primary_10_1111_pbi_13657 crossref_primary_10_1016_j_peptides_2016_03_008 crossref_primary_10_1186_s12967_015_0616_8 crossref_primary_10_3389_fcimb_2021_789180 crossref_primary_10_1038_s41467_020_16048_4 crossref_primary_10_1016_j_jacc_2016_11_064 crossref_primary_10_1038_s41392_020_00374_6 crossref_primary_10_1097_FJC_0000000000000307 crossref_primary_10_1097_MNH_0000000000000254 crossref_primary_10_1097_MNH_0000000000000378 crossref_primary_10_15252_emmm_202012828 crossref_primary_10_1016_j_ccc_2018_11_002 crossref_primary_10_1042_CS20201268 crossref_primary_10_1152_ajpheart_00933_2015 crossref_primary_10_1002_jmv_29304 crossref_primary_10_1007_s11906_015_0557_x crossref_primary_10_1080_10408363_2021_1942782 crossref_primary_10_3390_v15030596 crossref_primary_10_3390_diagnostics13010016 crossref_primary_10_1016_j_coviro_2021_08_010 crossref_primary_10_1080_14779072_2022_2105204 crossref_primary_10_1007_s41030_021_00164_7 crossref_primary_10_51987_revhospitalbaires_v42i4_237 crossref_primary_10_1186_s43141_022_00368_7 crossref_primary_10_1073_pnas_2016093117 crossref_primary_10_1080_19420862_2021_1987180 crossref_primary_10_1093_infdis_jiad329 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_1681_ASN_2020101537 crossref_primary_10_1016_j_ejphar_2020_173656 crossref_primary_10_1111_obr_13225 crossref_primary_10_2147_IJN_S446093 crossref_primary_10_1007_s11906_019_0923_1 crossref_primary_10_1126_science_abe0010 crossref_primary_10_1016_j_phrs_2021_106035 crossref_primary_10_1152_ajprenal_00375_2023 crossref_primary_10_1042_CS20200480 crossref_primary_10_3390_md20110657 crossref_primary_10_1016_j_ymthe_2023_11_019 crossref_primary_10_1042_CS20200482 crossref_primary_10_1002_bmc_5318 crossref_primary_10_3390_bioengineering10060652 crossref_primary_10_1080_17474086_2022_2110061 crossref_primary_10_1007_s10741_020_10066_6 crossref_primary_10_1016_j_cell_2023_01_039 crossref_primary_10_3390_ijms21186471 crossref_primary_10_3390_genes11091044 crossref_primary_10_3389_fimmu_2020_570927 crossref_primary_10_3389_fmicb_2022_1042200 crossref_primary_10_1080_19420862_2022_2057832 crossref_primary_10_3389_fcimb_2021_753721 crossref_primary_10_1016_j_jacc_2020_04_028 crossref_primary_10_1042_CS20130291 crossref_primary_10_3389_fnins_2017_00092 crossref_primary_10_1128_mbio_00768_24 crossref_primary_10_3389_fphar_2021_667254 crossref_primary_10_1016_j_arr_2021_101299 crossref_primary_10_1016_j_cdtm_2020_05_003 crossref_primary_10_1126_science_abc0870 crossref_primary_10_1042_CS20200476 crossref_primary_10_1038_s41467_021_24013_y crossref_primary_10_1007_s10557_020_07073_y crossref_primary_10_1111_apha_13513 crossref_primary_10_1177_1535370216660211 crossref_primary_10_1016_j_bbi_2021_01_039 crossref_primary_10_1016_j_omtm_2022_07_003 crossref_primary_10_1080_07391102_2020_1768150 crossref_primary_10_3390_ijms241612728 crossref_primary_10_3390_cells9071704 crossref_primary_10_1038_s41401_020_0430_6 crossref_primary_10_1038_s41421_021_00293_y crossref_primary_10_3892_ijmm_2020_4608 crossref_primary_10_3390_jcm11154362 crossref_primary_10_1016_j_isci_2023_107470 crossref_primary_10_1016_j_npep_2015_10_003 crossref_primary_10_3390_ijms23031776 crossref_primary_10_1016_j_jtbi_2020_110425 crossref_primary_10_2174_1381612829666221123111849 crossref_primary_10_1038_nrendo_2015_6 crossref_primary_10_15406_jlprr_2021_08_00251 crossref_primary_10_3389_fimmu_2022_1084331 crossref_primary_10_1038_s41371_020_00459_3 crossref_primary_10_1038_s41569_019_0244_8 crossref_primary_10_3389_fphys_2021_806062 crossref_primary_10_1016_j_omtn_2017_04_006 crossref_primary_10_1590_1678_9199_jvatitd_2020_0181 crossref_primary_10_1016_j_phrs_2017_06_005 crossref_primary_10_1016_S2666_5247_23_00011_3 crossref_primary_10_2174_0929866529666220715101357 crossref_primary_10_1016_j_jpha_2021_12_003 crossref_primary_10_1161_HYPERTENSIONAHA_115_06892 crossref_primary_10_12688_f1000research_22211_2 crossref_primary_10_3389_fimmu_2023_1204543 crossref_primary_10_1152_ajpheart_00960_2015 crossref_primary_10_1186_s40246_021_00304_9 crossref_primary_10_1002_pul2_12024 crossref_primary_10_1016_j_ijbiomac_2021_10_144 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104941 crossref_primary_10_1007_s00210_021_02108_z crossref_primary_10_1016_j_fmre_2021_01_013 crossref_primary_10_1017_S0007114523000776 crossref_primary_10_15252_emmm_202013426 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1186_s13293_020_00330_7 crossref_primary_10_1152_physrev_00023_2016 crossref_primary_10_1016_j_celrep_2020_108528 crossref_primary_10_1016_j_biopha_2020_111193 crossref_primary_10_1007_s11255_016_1334_8 crossref_primary_10_1093_ehjcvp_pvaa053 crossref_primary_10_1155_2023_8451931 crossref_primary_10_1080_17460441_2017_1335301 crossref_primary_10_1002_rmv_2227 crossref_primary_10_1016_j_nantod_2022_101580 crossref_primary_10_1039_D2MD00009A crossref_primary_10_1002_prot_26140 crossref_primary_10_1016_j_advms_2023_01_001 crossref_primary_10_1080_1061186X_2021_2013852 crossref_primary_10_1080_19420862_2020_1782600 crossref_primary_10_1161_CIRCHEARTFAILURE_120_006939 crossref_primary_10_1016_j_matt_2022_11_027 crossref_primary_10_1016_j_ejim_2023_06_008 crossref_primary_10_1161_HYPERTENSIONAHA_122_20262 crossref_primary_10_1038_s41577_021_00634_8 crossref_primary_10_3390_ijms21103474 crossref_primary_10_1097_FJC_0000000000000126 crossref_primary_10_1007_s12016_021_08912_y crossref_primary_10_1016_j_kint_2018_01_029 crossref_primary_10_1016_j_biomaterials_2019_119750 crossref_primary_10_1128_mBio_02451_20 crossref_primary_10_1002_jcp_30041 crossref_primary_10_1007_s00228_020_02963_4 crossref_primary_10_1161_HYPERTENSIONAHA_120_14871 crossref_primary_10_1016_j_ejmech_2023_115719 crossref_primary_10_3389_fphar_2022_987816 crossref_primary_10_1002_advs_202202556 crossref_primary_10_3389_fmed_2020_00248 crossref_primary_10_1002_cti2_1421 crossref_primary_10_1111_jvim_70036 crossref_primary_10_12998_wjcc_v10_i3_762 crossref_primary_10_1152_ajpheart_00618_2015 crossref_primary_10_1186_s13054_017_1823_x crossref_primary_10_19163_2307_9266_2020_8_6_380_391 crossref_primary_10_1016_j_drup_2020_100733 crossref_primary_10_1016_j_jacc_2021_01_052 crossref_primary_10_2478_jtim_2020_0003 crossref_primary_10_1007_s11906_022_01207_3 crossref_primary_10_2147_IJN_S448005 crossref_primary_10_1016_j_ddstr_2013_11_001 crossref_primary_10_1007_s00109_015_1285_z crossref_primary_10_1002_prp2_917 crossref_primary_10_3390_ph13050096 crossref_primary_10_1038_s41536_021_00154_y crossref_primary_10_1080_14789450_2018_1545577 crossref_primary_10_1038_s41594_020_00549_3 crossref_primary_10_1161_JAHA_123_029511 crossref_primary_10_15252_emmm_202115230 |
Cites_doi | 10.1016/j.virol.2006.06.011 10.1161/HYPERTENSIONAHA.109.138420 10.1016/S0165-6147(00)01994-5 10.1161/01.RES.87.5.e1 10.1074/jbc.M200581200 10.1002/path.2162 10.1161/HYPERTENSIONAHA.110.164244 10.1038/375146a0 10.1159/000060153 10.1093/ndt/16.suppl_1.22 10.1152/physrev.1990.70.4.1067 10.1152/ajpheart.01198.2006 10.1016/j.cardiores.2007.04.007 10.1016/j.ejphar.2008.02.090 10.1074/jbc.M002615200 10.1161/01.HYP.32.3.496 10.1097/CCM.0b013e3181c03009 10.1152/ajpheart.00618.2005 10.1038/nature00786 10.1016/S0008-6363(97)00171-5 10.1161/HYPERTENSIONAHA.106.076216 10.1016/S0021-9258(18)31697-1 10.1371/journal.pone.0028501 10.2337/db09-1218 10.1161/01.RES.85.7.643 10.1161/CIRCULATIONAHA.110.955369 10.1073/pnas.92.8.3521 10.1161/hy1201.100589 10.1161/hy09t1.094234 10.1016/j.ygyno.2008.02.019 10.1152/ajprenal.00519.2009 10.1002/hep.23104 10.1152/ajpheart.00331.2008 10.2165/00003088-200544040-00001 10.1016/S0272-6386(12)80441-0 10.1016/S0008-6363(96)00133-2 |
ContentType | Journal Article |
Copyright | Springer International Publishing Switzerland 2013 2014 INIST-CNRS Copyright Wolters Kluwer Health Adis International Sep 2013 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2013 – notice: 2014 INIST-CNRS – notice: Copyright Wolters Kluwer Health Adis International Sep 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 4T- 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s40262-013-0072-7 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Docstoc Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1179-1926 |
EndPage | 792 |
ExternalDocumentID | 3148187621 23681967 27699438 10_1007_s40262_013_0072_7 |
Genre | Randomized Controlled Trial Journal Article Clinical Trial, Phase I |
GroupedDBID | --- .GJ .XZ 0R~ 0VX 199 29B 2JY 34G 36B 39C 4.4 406 53G 5GY 5RE 6I2 6J9 6PF 7X7 88E 8FI 8FJ 8R4 8R5 95. AAAUJ AABHQ AACDK AADNT AAIAL AAIKX AAJKR AAKAS AANZL AARHV AASML AATNV AAWTL AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABFTV ABIPD ABJNI ABJOX ABKCH ABKMS ABKTR ABOCM ABPLI ABTKH ABTMW ABUWG ABWHX ABXPI ACAOD ACCOQ ACCUX ACDTI ACGFO ACGFS ACMFV ACMJI ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADFRT ADHHG ADJJI ADQRH ADRFC ADURQ ADYOE ADZCM ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AEYRQ AFBBN AFDZB AFFNX AFKRA AFOHR AFWTZ AFZKB AGAYW AGDGC AGQEE AGQMX AGRTI AHIZS AHMBA AHSBF AIAKS AIGIU AILAN AIZAD AJRNO ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ASPBG ATHPR AVWKF AWSVR AXYYD AYFIA AZFZN A~4 BENPR BGNMA BPHCQ BVXVI BYPQX CAG CCPQU COF CS3 DCUDU DNIVK DPUIP DU5 EBLON EBS EJD EMOBN F5P F8P FERAY FIGPU FLLZZ FNLPD FSGXE FYUFA HF~ HMCUK IAO IEA IHR IMOTQ INH INR ITC IWAJR J-C JZLTJ LGEZI LLZTM LOTEE M1P M4Y NADUK NQJWS NU0 NXXTH OAC OPC OVD P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X ROL RSV RZALA SISQX SJYHP SNPRN SNX SOHCF SOJ SPKJE SRMVM SSLCW TEORI TSG U5U U9L UAX UG4 UKHRP UNMZH UTJUX VDBLX VFIZW W48 WAF YQY Z0Y ZGI ZMTXR ZXP ~JE AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION ABRTQ IQODW PJZUB PPXIY CGR CUY CVF ECM EIF NPM 3V. 4T- 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c511t-cabc564b5bb55770ad130c0dab765d0223d3d4d47de4561afb4256b7c14b49833 |
IEDL.DBID | 7X7 |
ISSN | 0312-5963 1179-1926 |
IngestDate | Fri Jul 11 07:11:04 EDT 2025 Fri Jul 25 02:39:32 EDT 2025 Fri Apr 18 01:24:09 EDT 2025 Mon Jul 21 09:17:32 EDT 2025 Tue Jul 01 05:01:35 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Thu May 22 04:28:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | ACE2 Knockout Mouse Study Drug Administration Endogenous Peptide Signal Good Manufacture Practice Guideline Healthy Human Subject Human Pharmacokinetic pharmacodynamic relationship Recombinant protein Healthy subject |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-cabc564b5bb55770ad130c0dab765d0223d3d4d47de4561afb4256b7c14b49833 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Feature-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s40262-013-0072-7.pdf |
PMID | 23681967 |
PQID | 1465505239 |
PQPubID | 32335 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1428271947 proquest_journals_1465505239 pubmed_primary_23681967 pascalfrancis_primary_27699438 crossref_citationtrail_10_1007_s40262_013_0072_7 crossref_primary_10_1007_s40262_013_0072_7 springer_journals_10_1007_s40262_013_0072_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Auckland – name: Switzerland |
PublicationTitle | Clinical pharmacokinetics |
PublicationTitleAbbrev | Clin Pharmacokinet |
PublicationTitleAlternate | Clin Pharmacokinet |
PublicationYear | 2013 |
Publisher | Springer International Publishing Adis International Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Adis International – name: Springer Nature B.V |
References | J Wysocki (72_CR30) 2010; 55 C Vickers (72_CR15) 2002; 277 J Zhong (72_CR26) 2010; 122 GY Oudit (72_CR27) 2010; 59 DE Dostal (72_CR1) 1999; 85 K Tanimoto (72_CR5) 1994; 269 JH Krege (72_CR3) 1995; 375 M Ruiz-Ortega (72_CR10) 2001; 38 A de Lang (72_CR22) 2006; 353 J Baan Jr (72_CR35) 1996; 32 MA Crackower (72_CR12) 2002; 417 S Park (72_CR34) 2010; 298 DE Newby (72_CR36) 1997; 36 KE Bernstein (72_CR6) 1993; 22 M Ito (72_CR2) 1995; 92 M Donoghue (72_CR13) 2000; 87 B Treml (72_CR29) 2010; 38 MC Chappell (72_CR16) 2007; 50 GY Oudit (72_CR24) 2007; 75 CM Ferrario (72_CR21) 2005; 289 D Herr (72_CR11) 2008; 109 AJ Trask (72_CR17) 2007; 292 J Zhong (72_CR25) 2011; 57 SR Tipnis (72_CR14) 2000; 275 I Hamming (72_CR23) 2007; 212 SA Mezzano (72_CR8) 2001; 38 M Ruiz-Ortega (72_CR9) 2001; 135 I Mahmood (72_CR31) 2005; 44 MC Chappell (72_CR19) 2001; 16 CH Osterreicher (72_CR28) 2009; 50 S Ahmad (72_CR33) 2011; 6 D Iusuf (72_CR32) 2008; 585 F Lovren (72_CR18) 2008; 295 AJ Turner (72_CR7) 2002; 23 E Hackenthal (72_CR4) 1990; 70 K Yamada (72_CR20) 1998; 32 |
References_xml | – volume: 353 start-page: 474 issue: 2 year: 2006 ident: 72_CR22 publication-title: Virology doi: 10.1016/j.virol.2006.06.011 – volume: 55 start-page: 90 issue: 1 year: 2010 ident: 72_CR30 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.109.138420 – volume: 23 start-page: 177 issue: 4 year: 2002 ident: 72_CR7 publication-title: Trends Pharmacol Sci doi: 10.1016/S0165-6147(00)01994-5 – volume: 87 start-page: E1 issue: 5 year: 2000 ident: 72_CR13 publication-title: Circ Res doi: 10.1161/01.RES.87.5.e1 – volume: 277 start-page: 14838 issue: 17 year: 2002 ident: 72_CR15 publication-title: J Biol Chem doi: 10.1074/jbc.M200581200 – volume: 212 start-page: 1 issue: 1 year: 2007 ident: 72_CR23 publication-title: J Pathol doi: 10.1002/path.2162 – volume: 57 start-page: 314 issue: 2 year: 2011 ident: 72_CR25 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.164244 – volume: 375 start-page: 146 issue: 6527 year: 1995 ident: 72_CR3 publication-title: Nature doi: 10.1038/375146a0 – volume: 135 start-page: 123 year: 2001 ident: 72_CR9 publication-title: Contrib Nephrol doi: 10.1159/000060153 – volume: 16 start-page: 22 issue: Suppl 1 year: 2001 ident: 72_CR19 publication-title: Nephrol Dial Transpl doi: 10.1093/ndt/16.suppl_1.22 – volume: 70 start-page: 1067 issue: 4 year: 1990 ident: 72_CR4 publication-title: Physiol Rev doi: 10.1152/physrev.1990.70.4.1067 – volume: 292 start-page: H3019 issue: 6 year: 2007 ident: 72_CR17 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.01198.2006 – volume: 75 start-page: 29 issue: 1 year: 2007 ident: 72_CR24 publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2007.04.007 – volume: 585 start-page: 303 issue: 2–3 year: 2008 ident: 72_CR32 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2008.02.090 – volume: 275 start-page: 33238 issue: 43 year: 2000 ident: 72_CR14 publication-title: J Biol Chem doi: 10.1074/jbc.M002615200 – volume: 32 start-page: 496 issue: 3 year: 1998 ident: 72_CR20 publication-title: Hypertension doi: 10.1161/01.HYP.32.3.496 – volume: 38 start-page: 596 issue: 2 year: 2010 ident: 72_CR29 publication-title: Crit Care Med doi: 10.1097/CCM.0b013e3181c03009 – volume: 289 start-page: H2281 issue: 6 year: 2005 ident: 72_CR21 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00618.2005 – volume: 417 start-page: 822 issue: 6891 year: 2002 ident: 72_CR12 publication-title: Nature doi: 10.1038/nature00786 – volume: 36 start-page: 268 issue: 2 year: 1997 ident: 72_CR36 publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(97)00171-5 – volume: 50 start-page: 596 issue: 4 year: 2007 ident: 72_CR16 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.106.076216 – volume: 269 start-page: 31334 issue: 50 year: 1994 ident: 72_CR5 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)31697-1 – volume: 6 start-page: e28501 issue: 12 year: 2011 ident: 72_CR33 publication-title: PloS one doi: 10.1371/journal.pone.0028501 – volume: 59 start-page: 529 issue: 2 year: 2010 ident: 72_CR27 publication-title: Diabetes doi: 10.2337/db09-1218 – volume: 85 start-page: 643 issue: 7 year: 1999 ident: 72_CR1 publication-title: Circ Res doi: 10.1161/01.RES.85.7.643 – volume: 122 start-page: 717 issue: 7 year: 2010 ident: 72_CR26 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.955369 – volume: 92 start-page: 3521 issue: 8 year: 1995 ident: 72_CR2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.8.3521 – volume: 38 start-page: 1382 issue: 6 year: 2001 ident: 72_CR10 publication-title: Hypertension doi: 10.1161/hy1201.100589 – volume: 38 start-page: 635 issue: 3 Pt 2 year: 2001 ident: 72_CR8 publication-title: Hypertension doi: 10.1161/hy09t1.094234 – volume: 109 start-page: 418 issue: 3 year: 2008 ident: 72_CR11 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2008.02.019 – volume: 298 start-page: F37 issue: 1 year: 2010 ident: 72_CR34 publication-title: Am J Physiol Ren Physiol doi: 10.1152/ajprenal.00519.2009 – volume: 50 start-page: 929 issue: 3 year: 2009 ident: 72_CR28 publication-title: Hepatology doi: 10.1002/hep.23104 – volume: 295 start-page: H1377 issue: 4 year: 2008 ident: 72_CR18 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00331.2008 – volume: 44 start-page: 331 issue: 4 year: 2005 ident: 72_CR31 publication-title: Clin Pharmacokinet doi: 10.2165/00003088-200544040-00001 – volume: 22 start-page: 745 issue: 5 year: 1993 ident: 72_CR6 publication-title: Am J Kidney Dis doi: 10.1016/S0272-6386(12)80441-0 – volume: 32 start-page: 973 issue: 5 year: 1996 ident: 72_CR35 publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(96)00133-2 |
SSID | ssj0008200 |
Score | 2.5468814 |
Snippet | Background and Objectives
Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of... Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory,... |
SourceID | proquest pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 783 |
SubjectTerms | Angiotensin I - blood Angiotensin II - blood Angiotensin-Converting Enzyme 2 Biological and medical sciences Double-Blind Method Female General pharmacology Humans Internal Medicine Male Medical sciences Medicine Medicine & Public Health Original Research Article Peptide Fragments - blood Peptidyl-Dipeptidase A - administration & dosage Peptidyl-Dipeptidase A - pharmacokinetics Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions Pharmacology. Drug treatments Pharmacology/Toxicology Pharmacotherapy Recombinant Proteins - administration & dosage Recombinant Proteins - pharmacokinetics |
Title | Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects |
URI | https://link.springer.com/article/10.1007/s40262-013-0072-7 https://www.ncbi.nlm.nih.gov/pubmed/23681967 https://www.proquest.com/docview/1465505239 https://www.proquest.com/docview/1428271947 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZtcimU0nedJkaFkkMbUdt67Z6CHWxCocaUBHxbpJUUQhqtm3UOzq_PzL7c0DanZVlJKzQjzVPfEPJZGq-tU4KFkGsmggvMeu1Z4mSONlEqAvohf8zV6bn4vpTLxuFWNmmV7ZlYHdSuyNFH_m2IQF_ow0yPV78ZVo3C6GpTQuMp2UXoMjS-9LIzuFC6DeqLOmBwAae1UU28Ogd2k8KkBM4QPJvpB3Lp-cqUsEShrm3xL-Xzr8BpJY9mL8mLRpGk45ryr8gTH1-Tw0WNRL05omfbi1XlET2kiy1G9eYNWbevV6BlYhNqouvauLpMfUmLQNE-vbZVvgytPP50HC8uiyrxPbITTFpHIIILOo13m2tPR_Qy0vpy06bpAIcTenvKt-R8Nj07OWVNAQaWgx62ZrmxuVTCSmul1HpgHEi8fOCM1Uo6kP7ccSec0M6jHmaChRNAWZ0PhRVpwvk7shOL6D8Qqrn2wQSTBOWEVT5NFHejRFrnE5ukoUcG7fJneYNOjkUyfmUdrnJFsQwoliHFMt0jX7ouqxqa47HG_Qc07XqMtEpTwZMe2W-JnDXbuMy2TNcjn7rPsAExqmKiL26xDVitepgK-Mf7mjm2g3MFGpeCL19bbvlj8P_Nde_xqXwkz0YV32Ki2z7ZWd_c-gPQjNa2X7F_n-yOZ5PJHJ6T6Xzx8x4Mvg4o |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KraA0gIsTOlFCNBD1CLTOLYyQGhqrSa0kU9TKW5BTu2q4qOM5CpqvSj-o28l22ogN56TLzEynt--0LIu1hZqY3gzLlcMu6MY9pKyxIT56gTpdyhHfLwSIxO-LdJPFki110uDIZVdjSxJtSmyNFG_mmIhb7Qhpl-mf1k2DUKvatdC40GLfZtdQkqW_l57yvA930Y7u6Mt0es7SrAchAu5ixXOo8F17HWcSxloAyQ8TwwSksRG2BpkYkMN1wai8KFchrQWmiZD7nmaYIGUCD5K8B4AwwhlJNewUNuGjSJQaDgAWZ3XlRM1QM9TWAQRMSwWDeTN_jgg5kqASSu6aXxL2H3L0dtzf92H5GHreBKtxpMe0yWrH9CNo6bytfVJh0vErnKTbpBjxc1saunZN49_gCpFqdQ5U0_x1ReTfFl4Sjqw1Ndx-fQ2sNAt_zpWVEH2nu2jUHyWPjglO74q2pqaUjPPG2Sqap2ARBDtC6Vz8jJnYDmOVn2hbcvCZWRtE45lThhuBY2TURkwiTWxiY6Sd2ABN3vz_K2Gjo25TjP-jrONcQygFiGEMvkgHzol8yaUiC3TV6_AdN-RShFmvIoGZC1DshZSzbKbIHkA_K2H4YLj14c5W1xgXNAS5bDlMM3XjTIsdg8EiDhCRj52GHLH5v_76yrtx_lDbk3Gh8eZAd7R_uvyP2wxmEMslsjy_NfF_Y1SGVzvV5fBUq-3_Xd-w0B5kfL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1La9RAeCgVRBDx7dZaR9AetEN3k8lMchApbZfWatlDC3uL8yxFd7I1WyT-NH-d35fXWtTeekwykwz53m9CXifKSW0FZ94bybi3nmknHUttYtAmyrhHP-TnY3Fwyj9Ok-kK-dXVwmBaZccTa0ZtC4M-8u0RNvpCH2a27du0iMne-MP8guEEKYy0duM0GhQ5ctUPMN_K94d7AOs3UTTeP9k9YO2EAWZA0Vgwo7RJBNeJ1kki5VBZYOlmaJWWIrEg3mIbW265tA4VDeU1oLjQ0oy45lmKzlBg_7dkDGITaElOe2MPJeuwKRICYw-wvIuoYtke2GwCEyJiho27mbwiE-_OVQng8c1cjX8pvn8FbWtZOL5P7rVKLN1psO4BWXHhIdmcNF2wqy16sizqKrfoJp0s-2NXj8iiu_wKGi4uoSrYfo2tgprhzcJTtI1nus7VoXW0ge6Es_OiTroPbBcT5rEJwhndDz-rmaMRPQ-0Kayq2g3AGNHTVD4mpzcCmidkNRTBPSNUxtJ55VXqheVauCwVsY3SRFuX6jTzAzLsfn9u2s7oOKDjW973dK4hlgPEcoRYLgfkbb9l3rQFuW7xxhWY9jsiKbKMx-mArHdAzlsWUuZLhB-QV_1jIH6M6KjgiktcAxazHGUcvvG0QY7ly2MB2p6AJ-86bPnj5f8769r1R3lJbgPV5Z8Oj4-ekztRjcKYb7dOVhffL90LUNAWeqOmBEq-3DTp_QZgKkwB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacokinetics+and+pharmacodynamics+of+recombinant+human+angiotensin-converting+enzyme+2+in+healthy+human+subjects&rft.jtitle=Clinical+pharmacokinetics&rft.au=Haschke%2C+Manuel&rft.au=Schuster%2C+Manfred&rft.au=Poglitsch%2C+Marko&rft.au=Loibner%2C+Hans&rft.date=2013-09-01&rft.eissn=1179-1926&rft.volume=52&rft.issue=9&rft.spage=783&rft_id=info:doi/10.1007%2Fs40262-013-0072-7&rft_id=info%3Apmid%2F23681967&rft.externalDocID=23681967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0312-5963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0312-5963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0312-5963&client=summon |