Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model

Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly....

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 13; p. 1028409
Main Authors Moriyama, Minoru, Fukatsu, Takema
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 30.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera . Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima . We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont’s synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug- Ishikawaella gut symbiotic association as in the aphid- Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
AbstractList Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera . Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima . We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont’s synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug- Ishikawaella gut symbiotic association as in the aphid- Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont's synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont's synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont’s synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
Author Fukatsu, Takema
Moriyama, Minoru
AuthorAffiliation 2 Department of Biological Sciences , Graduate School of Science , University of Tokyo , Tokyo , Japan
1 Bioproduction Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
3 Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
AuthorAffiliation_xml – name: 3 Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
– name: 1 Bioproduction Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
– name: 2 Department of Biological Sciences , Graduate School of Science , University of Tokyo , Tokyo , Japan
Author_xml – sequence: 1
  givenname: Minoru
  surname: Moriyama
  fullname: Moriyama, Minoru
– sequence: 2
  givenname: Takema
  surname: Fukatsu
  fullname: Fukatsu, Takema
BookMark eNp9Uk1v1DAQtVARLaV_gJOPXHbxV5zkgoQqoJUqcQGJmzWxJ11XiR1sL2KlHvgb_L3-kia7K0Q5MBeP5s17Y4_fS3ISYkBCXnO2lrJp3_bTZpfXggmx5kw0irXPyBnXWq2YEt9O_spPyUXOd2wOxQRj_AU5lVoozWV7Ru6vYi4Pv35n6nCE4GgfE8WcMRQPA4XRh0jBepepz9TGccKQoaCj3Y5CoPizJLA4DNsBEu3AFkwLMe_GzsdQqA8U6AZHP83ITPAhoy10jA6HV-R5D0PGi-N5Tr5-_PDl8mp18_nT9eX7m5WtOC8r29Ytt63oLUjXaHSuk42oFLNNpZyTKDqOXWNRwQwrISRzivfcup4LXdXynFwfdF2EOzMlP0LamQje7Asx3RpIxdsBjWqU1Yo5V3egKie6ea5mTFZVK7juu1nr3UFr2nYjOjsvKsHwRPQpEvzG3MYfpq00F_vLvDkKpPh9i7mY0edlgxAwbrMR9fw0VTW1nlvFodWmmHPC_s8YzsziArN3gVlcYI4umEnNPyTrC5TlMxL44X_URwTBvWM
CitedBy_id crossref_primary_10_1186_s40851_024_00238_9
crossref_primary_10_1007_s10340_023_01708_3
crossref_primary_10_3390_foods12081721
crossref_primary_10_3389_finsc_2024_1396984
crossref_primary_10_1099_mgen_0_001333
crossref_primary_10_1007_s00248_024_02403_1
crossref_primary_10_1038_s41522_024_00539_z
crossref_primary_10_1134_S2079086424600954
crossref_primary_10_31993_2308_6459_2023_106_1_15625
crossref_primary_10_1002_ece3_70611
crossref_primary_10_1016_j_cois_2024_101270
crossref_primary_10_3390_microorganisms12091885
Cites_doi 10.1016/0022-1910(94)00080-Z
10.1016/bs.aiip.2020.04.004
10.1073/pnas.1306068111
10.1146/annurev.genet.41.110306.130119
10.1111/j.1365-2435.2008.01442.x
10.1073/pnas.1916748117
10.1039/c5np00010f
10.1093/jee/tov090
10.1098/rspb.2012.0414
10.1111/1744-7917.12038
10.1186/1471-2164-14-235
10.1073/pnas.1712857114
10.1093/jxb/42.2.207
10.1016/j.ibmb.2010.12.003
10.1016/S0020-1790(77)90068-3
10.1038/s41564-022-01179-9
10.1073/pnas.0906424106
10.1098/rsbl.2007.0510
10.1242/jeb.204.2.349
10.1038/35024074
10.1104/pp.113.1.259
10.1098/rspb.2014.2957
10.1002/(SICI)1520-6327(1998)38:4<193::AID-ARCH5>3.0.CO;2-S
10.1016/0022-1910(94)90133-3
10.1016/S0065-2806(03)31004-5
10.1093/gbe/evt210
10.1016/0020-1790(88)90012-1
10.1016/j.femsec.2005.06.002
10.1038/ismej.2015.119
10.5772/intechopen.68992
10.1016/j.aca.2008.11.055
10.1371/journal.pone.0089107
10.1146/annurev-ento-010814-020822
10.1038/nmicrobiol.2015.11
10.1016/0022-1910(90)90148-9
10.1128/AEM.01543-13
10.1046/j.0307-6962.2001.00235.x
10.1146/annurev.micro.59.030804.121041
10.1128/AEM.01118-06
10.1111/j.1365-294X.2011.05031.x
10.1073/pnas.1013465108
10.1186/s40851-019-0134-2
10.1016/bs.aiip.2020.03.001
10.1111/j.1570-7458.2009.00953.x
10.1104/pp.56.6.807
10.1046/j.1365-3032.2002.00297.x
10.1016/S0022-1910(03)00031-3
10.1111/mec.12479
10.1093/jxb/erj067
10.3390/ijms17091570
10.1111/1574-6976.12025
10.1098/rspb.2008.1476
10.1128/JB.187.12.4229-4237.2005
10.1038/nrmicro3182
10.1016/0022-1910(95)00105-0
10.1007/s13355-012-0146-2
10.1146/annurev-ento-061421-063433
10.1038/srep34321
10.1111/mec.12366
10.1016/j.crvi.2010.03.008
10.1016/j.cub.2014.08.065
10.1038/s41396-017-0024-6
10.1098/rspb.2007.0620
10.1016/j.cub.2020.05.043
10.1111/ivb.12184
10.1146/annurev.ento.43.1.17
10.1007/BF01945084
10.1038/s41598-021-86574-8
10.1038/nrmicro2670
10.1098/rstb.2019.0603
10.1073/pnas.1900917116
10.1073/pnas.1421388112
10.1016/j.cub.2014.07.065
10.1073/pnas.1511454112
10.1111/j.1365-2583.2009.00942.x
10.1073/pnas.1420037112
10.1038/s42003-021-02057-6
10.1073/pnas.2103957118
10.1073/pnas.1603910113
10.1303/aez.2003.241
10.1093/femsec/fiab117
10.1038/s41598-022-11895-1
10.1016/0022-1910(91)90104-8
10.1093/gbe/evr064
10.1242/jeb.202.19.2639
10.1371/journal.pbio.0040337
10.1128/AEM.00067-07
10.1016/j.biocontrol.2017.04.003
10.1016/j.cois.2020.03.004
10.1038/s41598-020-60340-8
10.1093/molbev/msz082
10.1128/aem.68.1.389-396.2002
ContentType Journal Article
Copyright Copyright © 2022 Moriyama and Fukatsu.
Copyright © 2022 Moriyama and Fukatsu. 2022 Moriyama and Fukatsu
Copyright_xml – notice: Copyright © 2022 Moriyama and Fukatsu.
– notice: Copyright © 2022 Moriyama and Fukatsu. 2022 Moriyama and Fukatsu
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fphys.2022.1028409
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Moriyama and Fukatsu
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_484c640dd7ba45d2bc926003559216fb
PMC9561257
10_3389_fphys_2022_1028409
GrantInformation_xml – fundername: ;
  grantid: JPMJER 1803 JPMJER1902
– fundername: ;
  grantid: JP17K15399 JP19H02973
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c511t-c9791c92fca3d86eddb382540c854dd3e2b1eb8ce4ad8642230d41f1cdf126573
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:24:38 EDT 2025
Thu Aug 21 18:40:02 EDT 2025
Fri Jul 11 09:17:59 EDT 2025
Tue Jul 01 01:43:41 EDT 2025
Thu Apr 24 22:59:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-c9791c92fca3d86eddb382540c854dd3e2b1eb8ce4ad8642230d41f1cdf126573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology
Xiaoli Bing, Nanjing Agricultural University, China
Edited by: Federica Calevro, UMR 203 INRAE / INSA Lyon BF2i, France
Reviewed by: Jun-Bo Luan, Shenyang Agricultural University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2022.1028409
PMID 36246139
PQID 2725445876
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_484c640dd7ba45d2bc926003559216fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9561257
proquest_miscellaneous_2725445876
crossref_primary_10_3389_fphys_2022_1028409
crossref_citationtrail_10_3389_fphys_2022_1028409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in physiology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References McCutcheon (B53) 2009; 106
Douglas (B21) 2009; 23
Hosokawa (B40) 2008; 4
Dhammi (B15) 2016; 17
Rochat (B73) 1991; 42
Engel (B26) 2013; 37
Thompson (B89) 2003; 31
Bernays (B7) 2002; 27
Douglas (B23) 1996; 42
Hosokawa (B37) 2005; 54
Oakeson (B63) 2014; 6
Hansen (B31) 2011; 108
Akman Gündüz (B1) 2012; 276
Febvay (B27) 1999; 202
Moran (B57) 2015; 112
Smith (B87) 2020; 117
Selvaraj (B84) 2021; 97
Bursell (B12) 1977; 7
Husnik (B42) 2016; 113
Hosokawa (B38) 2006; 4
Bennett (B5) 2015; 112
Uutela (B90) 2009; 633
Nikoh (B61) 2011; 3
Nishide (B62) 2020; 10
Blount (B8) 2015; 108
Brune (B10) 2014; 12
Koga (B49) 2021; 118
Douglas (B22) 2006; 57
Stubbins (B88) 2017; 136
Hopkins (B33) 1998; 38
Hopkins (B34) 1982; 38
Salem (B76) 2015; 282
Koga (B48) 2022; 7
Sandström (B80) 1994; 40
MacDonald (B52) 2011; 20
Eger (B25) 2010; 121
Kutsukake (B50) 2019; 116
Futahashi (B30) 2011; 41
Moriwaki (B58) 2003; 38
Klein (B47) 2016; 10
Moran (B56) 2008; 42
Otero-Bravo (B67) 2018; 116
Ruberson (B74) 2012; 48
Vavricka (B91) 2014; 21
McCutcheon (B54) 2012; 10
Rabatel (B71) 2013; 14
Bermingham (B6) 2010; 134
Shigenobu (B85) 2000; 407
Ohyama (B65) 2017
Brown (B9) 2014; 23
Kaiwa (B43) 2014; 24
Moran (B55) 2005; 187
Neo (B60) 1997; 113
Salem (B77) 2022; 67
Oishi (B66) 2019; 5
Scaraffia (B83) 2003; 49
Price (B69) 2014; 111
Wilson (B94) 2010; 19
Hansen (B32) 2020; 58
Douglas (B19) 2015; 60
Hosokawa (B39) 2007; 274
Sasaki (B82) 1995; 41
Flórez (B28) 2015; 32
Sandström (B79) 2001; 26
Buchner (B11) 1965
Kikuchi (B46) 2007; 73
Simonet (B86) 2016; 6
Salem (B78) 2020; 30
Anbutsu (B2) 2017; 114
Moriyama (B59) 2022; 12
Reymond (B72) 2006; 72
Hosokawa (B36) 2016; 1
MacDonald (B51) 2012; 279
Douglas (B20) 1998; 43
Chong (B13) 2018; 12
Dinant (B16) 2010; 333
Sasaki (B81) 1990; 36
Wilson (B93) 2020; 58
Russell (B75) 2013; 79
Baumann (B4) 2005; 59
Vigneron (B92) 2014; 24
Douglas (B17) 2020; 375
Kiefer (B44) 2021; 4
Douglas (B18) 2001; 204
Fukatsu (B29) 2002; 68
Kikuchi (B45) 2014; 23
Chong (B14) 2019; 36
Douglas (B24) 1988; 18
Hosokawa (B35) 2020; 39
Hosokawa (B41) 2014; 9
Ohbayashi (B64) 2015; 112
Atkins (B3) 1975; 56
Prosser (B70) 1991; 37
Otero-Bravo (B68) 2021; 11
References_xml – volume: 41
  start-page: 41
  year: 1995
  ident: B82
  article-title: Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(94)00080-Z
– volume: 58
  start-page: 207
  year: 2020
  ident: B93
  article-title: Regulation of an insect symbiosis
  publication-title: Adv. Insect Physiol.
  doi: 10.1016/bs.aiip.2020.04.004
– volume: 111
  start-page: 320
  year: 2014
  ident: B69
  article-title: Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1306068111
– volume: 42
  start-page: 165
  year: 2008
  ident: B56
  article-title: Genomics and evolution of heritable bacterial symbionts
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.41.110306.130119
– volume: 23
  start-page: 38
  year: 2009
  ident: B21
  article-title: The microbial dimension in insect nutritional ecology
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01442.x
– volume: 117
  start-page: 2113
  year: 2020
  ident: B87
  article-title: Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1916748117
– volume: 32
  start-page: 904
  year: 2015
  ident: B28
  article-title: Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c5np00010f
– volume: 108
  start-page: 1094
  year: 2015
  ident: B8
  article-title: Host preference of Megacopta cribraria (Hemiptera: Plataspidae) on selected edible beans and soybean
  publication-title: J. Econ. Entomol.
  doi: 10.1093/jee/tov090
– volume: 279
  start-page: 2965
  year: 2012
  ident: B51
  article-title: The central role of the host cell in symbiotic nitrogen metabolism
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2012.0414
– volume: 21
  start-page: 13
  year: 2014
  ident: B91
  article-title: Tyrosine metabolic enzymes from insects and mammals: A comparative perspective
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12038
– volume: 14
  start-page: 235
  year: 2013
  ident: B71
  article-title: Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-235
– volume: 114
  start-page: E8382
  year: 2017
  ident: B2
  article-title: Small genome symbiont underlies cuticle hardness in beetles
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1712857114
– volume: 42
  start-page: 207
  year: 1991
  ident: B73
  article-title: Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants (Pisum sativum L.)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/42.2.207
– volume: 41
  start-page: 191
  year: 2011
  ident: B30
  article-title: Laccase2 is required for cuticular pigmentation in stinkbugs
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2010.12.003
– volume: 7
  start-page: 427
  year: 1977
  ident: B12
  article-title: Synthesis of proline by fat body of the tsetse fly (Glossina morsitans): metabolic pathways
  publication-title: Insect Biochem.
  doi: 10.1016/S0020-1790(77)90068-3
– volume: 7
  start-page: 1141
  year: 2022
  ident: B48
  article-title: Single mutation makes Escherichia coli an insect mutualist
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01179-9
– volume: 106
  start-page: 15394
  year: 2009
  ident: B53
  article-title: Convergent evolution of metabolic roles in bacterial co-symbionts of insects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0906424106
– volume: 4
  start-page: 45
  year: 2008
  ident: B40
  article-title: Symbiont acquisition alters behaviour of stinkbug nymphs
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2007.0510
– volume: 204
  start-page: 349
  year: 2001
  ident: B18
  article-title: Quantifying nutrient production by the microbial symbionts in an aphid
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.2.349
– volume: 407
  start-page: 81
  year: 2000
  ident: B85
  article-title: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS
  publication-title: Nature
  doi: 10.1038/35024074
– volume: 113
  start-page: 259
  year: 1997
  ident: B60
  article-title: Phloem glutamine and the regulation of O2 diffusion in legume nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.1.259
– volume: 282
  start-page: 20142957
  year: 2015
  ident: B76
  article-title: An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2014.2957
– volume: 38
  start-page: 193
  year: 1998
  ident: B33
  article-title: Tyrosine and catecholamine levels in the hemolymph of tobacco hornworm larvae, Manduca sexta, parasitized by the braconid wasp, Cotesia congregata, and in the developing parasitoids
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/(SICI)1520-6327(1998)38:4<193::AID-ARCH5>3.0.CO;2-S
– volume: 40
  start-page: 947
  year: 1994
  ident: B80
  article-title: Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(94)90133-3
– volume: 31
  start-page: 205
  year: 2003
  ident: B89
  article-title: Trehalose - the insect “blood” sugar
  publication-title: Adv. Insect Physiol.
  doi: 10.1016/S0065-2806(03)31004-5
– volume: 6
  start-page: 76
  year: 2014
  ident: B63
  article-title: Genome degeneration and adaptation in a nascent stage of symbiosis
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evt210
– volume: 18
  start-page: 599
  year: 1988
  ident: B24
  article-title: Sulphate utilization in an aphid symbiosis
  publication-title: Insect Biochem.
  doi: 10.1016/0020-1790(88)90012-1
– volume: 54
  start-page: 471
  year: 2005
  ident: B37
  article-title: The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/j.femsec.2005.06.002
– volume: 10
  start-page: 376
  year: 2016
  ident: B47
  article-title: A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.119
– start-page: 171
  volume-title: Amino acid - new insights and roles in plant and animal
  year: 2017
  ident: B65
  article-title: Amino acid metabolism and transport in soybean plants
  doi: 10.5772/intechopen.68992
– volume: 633
  start-page: 223
  year: 2009
  ident: B90
  article-title: Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.11.055
– volume: 9
  start-page: e89107
  year: 2014
  ident: B41
  article-title: Fine-scale geographical origin of an insect pest invading North America
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089107
– volume: 60
  start-page: 17
  year: 2015
  ident: B19
  article-title: Multiorganismal insects: diversity and function of resident microorganisms
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-010814-020822
– volume: 1
  start-page: 15011
  year: 2016
  ident: B36
  article-title: Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2015.11
– volume: 36
  start-page: 35
  year: 1990
  ident: B81
  article-title: Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(90)90148-9
– volume: 79
  start-page: 6117
  year: 2013
  ident: B75
  article-title: Shared metabolic pathways in a coevolved insect-bacterial symbiosis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01543-13
– volume: 26
  start-page: 202
  year: 2001
  ident: B79
  article-title: Amino acid budgets in three aphid species using the same host plant
  publication-title: Physiol. Entomol.
  doi: 10.1046/j.0307-6962.2001.00235.x
– volume: 59
  start-page: 155
  year: 2005
  ident: B4
  article-title: Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.030804.121041
– volume: 72
  start-page: 7760
  year: 2006
  ident: B72
  article-title: Different levels of transcriptional regulation due to trophic constraints in the reduced genome of Buchnera aphidicola APS
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01118-06
– volume: 20
  start-page: 2073
  year: 2011
  ident: B52
  article-title: Genetic and metabolic determinants of nutritional phenotype in an insect-bacterial symbiosis
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2011.05031.x
– volume-title: Endosymbiosis of animals with plant microorganims
  year: 1965
  ident: B11
– volume: 108
  start-page: 2849
  year: 2011
  ident: B31
  article-title: Aphid genome expression reveals host-symbiont cooperation in the production of amino acids
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1013465108
– volume: 5
  start-page: 16
  year: 2019
  ident: B66
  article-title: Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae)
  publication-title: Zool. Lett.
  doi: 10.1186/s40851-019-0134-2
– volume: 58
  start-page: 161
  year: 2020
  ident: B32
  article-title: Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets
  publication-title: Adv. Insect Physiol.
  doi: 10.1016/bs.aiip.2020.03.001
– volume: 134
  start-page: 272
  year: 2010
  ident: B6
  article-title: The role of intracellular symbiotic bacteria in the amino acid nutrition of embryos from the black bean aphid, Aphis fabae
  publication-title: Entomol. Exp. Appl.
  doi: 10.1111/j.1570-7458.2009.00953.x
– volume: 56
  start-page: 807
  year: 1975
  ident: B3
  article-title: Asparagine metabolism—key to the nitrogen nutrition of developing legume seeds
  publication-title: Plant Physiol.
  doi: 10.1104/pp.56.6.807
– volume: 27
  start-page: 275
  year: 2002
  ident: B7
  article-title: Quantifying the symbiont contribution to essential amino acids in aphids: the importance of tryptophan for Uroleucon ambrosiae
  publication-title: Physiol. Entomol.
  doi: 10.1046/j.1365-3032.2002.00297.x
– volume: 49
  start-page: 591
  year: 2003
  ident: B83
  article-title: Proline can be utilized as an energy substrate during flight of Aedes aegypti females
  publication-title: J. Insect Physiol.
  doi: 10.1016/S0022-1910(03)00031-3
– volume: 23
  start-page: 1445
  year: 2014
  ident: B45
  article-title: Live imaging of symbiosis: Spatiotemporal infection dynamics of a GFP-labelled burkholderia symbiont in the bean bug Riptortus pedestris
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12479
– volume: 57
  start-page: 747
  year: 2006
  ident: B22
  article-title: Phloem-sap feeding by animals: problems and solutions
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj067
– volume: 17
  start-page: 1570
  year: 2016
  ident: B15
  article-title: Biology, pest status, microbiome and control of kudzu bug (Hemiptera: Heteroptera: Plataspidae): A new invasive pest in the U.S
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17091570
– volume: 37
  start-page: 699
  year: 2013
  ident: B26
  article-title: The gut microbiota of insects - diversity in structure and function
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/1574-6976.12025
– volume: 276
  start-page: 987
  year: 2012
  ident: B1
  article-title: Symbiotic bacteria enable insect to use a nutritionally inadequate diet
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2008.1476
– volume: 187
  start-page: 4229
  year: 2005
  ident: B55
  article-title: Regulation of transcription in a reduced bacterial genome: Nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.12.4229-4237.2005
– volume: 12
  start-page: 168
  year: 2014
  ident: B10
  article-title: Symbiotic digestion of lignocellulose in termite guts
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3182
– volume: 42
  start-page: 247
  year: 1996
  ident: B23
  article-title: Reproductive failure and the free amino acid pools in pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(95)00105-0
– volume: 48
  start-page: 3
  year: 2012
  ident: B74
  article-title: From Asian curiosity to eruptive American pest: Megacopta cribraria (Hemiptera: Plataspidae) and prospects for its biological control
  publication-title: Appl. Entomol. Zool.
  doi: 10.1007/s13355-012-0146-2
– volume: 67
  start-page: 201
  year: 2022
  ident: B77
  article-title: Beetle-bacterial symbioses: endless forms most functional
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-061421-063433
– volume: 6
  start-page: 34321
  year: 2016
  ident: B86
  article-title: Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids
  publication-title: Sci. Rep.
  doi: 10.1038/srep34321
– volume: 23
  start-page: 1516
  year: 2014
  ident: B9
  article-title: Population genomics of a symbiont in the early stages of a pest invasion
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12366
– volume: 333
  start-page: 504
  year: 2010
  ident: B16
  article-title: Phloem sap intricacy and interplay with aphid feeding
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2010.03.008
– volume: 24
  start-page: 2465
  year: 2014
  ident: B43
  article-title: Symbiont-supplemented maternal investment underpinning host’s ecological adaptation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.08.065
– volume: 12
  start-page: 898
  year: 2018
  ident: B13
  article-title: Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids
  publication-title: ISME J.
  doi: 10.1038/s41396-017-0024-6
– volume: 274
  start-page: 1979
  year: 2007
  ident: B39
  article-title: Obligate symbiont involved in pest status of host insect
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2007.0620
– volume: 30
  start-page: 2875
  year: 2020
  ident: B78
  article-title: Symbiont digestive range reflects host plant breadth in herbivorous beetles
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.05.043
– volume: 136
  start-page: 309
  year: 2017
  ident: B88
  article-title: Mouthpart morphology and feeding behavior of the invasive kudzu bug, Megacopta cribraria (Hemiptera: Plataspidae)
  publication-title: Invertebr. Biol.
  doi: 10.1111/ivb.12184
– volume: 43
  start-page: 17
  year: 1998
  ident: B20
  article-title: Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.43.1.17
– volume: 38
  start-page: 235
  year: 1982
  ident: B34
  article-title: Tyrosine hydroxylase activity and tyrosine titers during cockroach metamorphosis
  publication-title: Experientia
  doi: 10.1007/BF01945084
– volume: 11
  start-page: 7731
  year: 2021
  ident: B68
  article-title: Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86574-8
– volume: 10
  start-page: 13
  year: 2012
  ident: B54
  article-title: Extreme genome reduction in symbiotic bacteria
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2670
– volume: 375
  start-page: 20190603
  year: 2020
  ident: B17
  article-title: Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2019.0603
– volume: 116
  start-page: 8950
  year: 2019
  ident: B50
  article-title: Exaggeration and cooption of innate immunity for social defense
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1900917116
– volume: 112
  start-page: 10169
  year: 2015
  ident: B5
  article-title: Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421388112
– volume: 121
  start-page: 1
  year: 2010
  ident: B25
  article-title: Occurrence of the old world bug Megacopta cribraria (Fabricius) (Heteroptera: Plataspidae) in Georgia: A serious home invader and potential legume pest
  publication-title: Insecta Mundi
– volume: 24
  start-page: 2267
  year: 2014
  ident: B92
  article-title: Insects recycle endosymbionts when the benefit is over
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.07.065
– volume: 112
  start-page: E5179
  year: 2015
  ident: B64
  article-title: Insect’s intestinal organ for symbiont sorting
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1511454112
– volume: 19
  start-page: 249
  year: 2010
  ident: B94
  article-title: Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2009.00942.x
– volume: 112
  start-page: 2093
  year: 2015
  ident: B57
  article-title: Experimental replacement of an obligate insect symbiont
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1420037112
– volume: 4
  start-page: 554
  year: 2021
  ident: B44
  article-title: Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02057-6
– volume: 118
  start-page: e2103957118
  year: 2021
  ident: B49
  article-title: Host’s guardian protein counters degenerative symbiont evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2103957118
– volume: 113
  start-page: E5416
  year: 2016
  ident: B42
  article-title: Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1603910113
– volume: 38
  start-page: 241
  year: 2003
  ident: B58
  article-title: High concentrations of trehalose in aphid hemolymph
  publication-title: Appl. Entomol. Zool.
  doi: 10.1303/aez.2003.241
– volume: 97
  start-page: fiab117
  year: 2021
  ident: B84
  article-title: An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiab117
– volume: 12
  start-page: 7782
  year: 2022
  ident: B59
  article-title: A mucin protein predominantly expressed in the female-specific symbiotic organ of the stinkbug Plautia stali
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11895-1
– volume: 37
  start-page: 713
  year: 1991
  ident: B70
  article-title: The aposymbiotic aphid: an analysis of chlortetracycline-treated pea aphid, Acyrthosiphon pisum
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(91)90104-8
– volume: 3
  start-page: 702
  year: 2011
  ident: B61
  article-title: Reductive evolution of bacterial genome in insect gut environment
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evr064
– volume: 202
  start-page: 2639
  year: 1999
  ident: B27
  article-title: Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, Acyrthosiphon pisum, reared on different diets
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.19.2639
– volume: 4
  start-page: e337
  year: 2006
  ident: B38
  article-title: Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040337
– volume: 73
  start-page: 4308
  year: 2007
  ident: B46
  article-title: Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00067-07
– volume: 116
  start-page: 10
  year: 2018
  ident: B67
  article-title: Comparing the utility of host and primary endosymbiont loci for predicting global invasive insect genetic structuring and migration patterns
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2017.04.003
– volume: 39
  start-page: 91
  year: 2020
  ident: B35
  article-title: Relevance of microbial symbiosis to insect behavior
  publication-title: Curr. Opin. Insect Sci.
  doi: 10.1016/j.cois.2020.03.004
– volume: 10
  start-page: 3464
  year: 2020
  ident: B62
  article-title: Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60340-8
– volume: 36
  start-page: 1481
  year: 2019
  ident: B14
  article-title: Genome evolution of the obligate endosymbiont Buchnera aphidicola
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msz082
– volume: 68
  start-page: 389
  year: 2002
  ident: B29
  article-title: Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.68.1.389-396.2002
SSID ssj0000402001
Score 2.3982506
Snippet Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1028409
SubjectTerms essential amino acids
extracellular symbiosis
gut bacterial symbiont
nutritional mutualism
phloem sap
Physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lat0wEBUlq2xK27T09sUUSjfFxJJlyVqmJeHSRVcNZGf0MjXk6obYWVzIor_R3-uXdEZ2wvWm2WTpF5I1o5lzxOiIsU8K07jqnC6UsXUhlfOFbQIv0JXLShgE0VOB7A-1PpffL-qLvaO-qCZskgeeBu5YNtIrWYagnZV1EM4b0lTHNGkEx1Yo-mLO2yNTOQYTLSr5tEsGWZg57milAPmgEKRWQLRmkYmyYP8CZS5rJPeSztkz9nRGi3Ay9fI5exLTC3Z0kpApb3bwGXL9Zl4YP2K36-0w_v39Z4AQNzYFQDgKpAyecBJfgt30aQvW92GAfgAqJUcGi0gzgNuBTYBR-trSOj4VpoKbVJzxw2G3cWi8EfoEFkhf4Ip2LSe8HjBaQj5L5yU7Pzv9-W1dzGcrFB4h1lh4ow3Hoey8rUKjYgiuIrJY-qaWIVRROB5d46O0-FgiiCiD5B33oeNC1bp6xQ7SNsXXDHQdowq2iVp0smuME5WtDeISmXfF6hXjd-Pc-ll4nM6_uGyRgJBt2myblmzTzrZZsS_331xNshv_ffsrme_-TZLMzjfQkdrZkdqHHGnFPt4Zv8UpRuNtU9zeYFM667hh3lgxvfCKRYvLJ6n_lcW6aeMwhsU3j9HFt-yQfnsqV3nHDsbrm_geMdHoPmT3_wdN6wzL
  priority: 102
  providerName: Directory of Open Access Journals
Title Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model
URI https://www.proquest.com/docview/2725445876
https://pubmed.ncbi.nlm.nih.gov/PMC9561257
https://doaj.org/article/484c640dd7ba45d2bc926003559216fb
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9RAEG3WFWQvoq7i-LGUIF4kmnQ63clBZBWXQdCTA3sL_RUdmOnsTrLgwB72b_j3_CVWdTKLAfXgcSZpQrq6qt7rVL9i7LnENC4boxJZ6SIR0thEly5LcCmnOa8QRA8Fsp_lfCE-nhane2zX7micwO6P1I76SS02q1ffz7dv0eHfEOPEfPu6oU0ApHqckxABMZYb7CZmJkWO-mmE-zEyE1lKs-HszF-GHrBbGNMFZrlqkqqiov8Ehk6LKH_LSid32O0RTsLxYP-7bM-He-zwOCCVXm_hBcQCz7hzfsgu523X_7z60YHzax0cIF4Fkg4P6OUr0OtlaEHbpetg2QHVmiPFRSjqwGxBB8AwvtG00U-Vq2AGmWcc2G3XBq3bwzKABhIgOKNjzQF_dxhOITbbuc8WJx--vJ8nY_OFxCIG6xNbqSqzFW-szl0pvXMmJzaZ2rIQzuWem8yb0nqh8bJAlJE6kTWZdU3GZaHyB2w_tME_ZKAK76XTpVe8EU1ZGZ7rokLgIuKxWTVj2W6eazsqk1ODjFWNDIXMVEcz1WSmejTTjL28HnM26HL88-53ZL7rO0lTO_7Rbr7Wo4vWohRWitQ5ZbQoHDf49pK-tBYVz3A9z9iznfFr9EGabx18e4GPUlHoDRPLjKnJqpg8cXolLL9FNW86WYxx89F_j3zMDuhdhyKWJ2y_31z4p4iUenMUdxiOohP8AkmrF2s
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host%E2%80%99s+demand+for+essential+amino+acids+is+compensated+by+an+extracellular+bacterial+symbiont+in+a+hemipteran+insect+model&rft.jtitle=Frontiers+in+physiology&rft.au=Moriyama%2C+Minoru&rft.au=Fukatsu%2C+Takema&rft.date=2022-09-30&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=13&rft_id=info:doi/10.3389%2Ffphys.2022.1028409&rft_id=info%3Apmid%2F36246139&rft.externalDocID=PMC9561257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon