Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information

A bstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen th...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 8; pp. 44 - 72
Main Authors Marolf, Donald, Maxfield, Henry
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 10.08.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble.
AbstractList A bstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble.
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble.
Abstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble.
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble.
ArticleNumber 44
Author Maxfield, Henry
Marolf, Donald
Author_xml – sequence: 1
  givenname: Donald
  surname: Marolf
  fullname: Marolf, Donald
  organization: Department of Physics, University of California
– sequence: 2
  givenname: Henry
  orcidid: 0000-0002-7821-7889
  surname: Maxfield
  fullname: Maxfield, Henry
  email: hmaxfield@physics.ucsb.edu
  organization: Department of Physics, University of California
BookMark eNp9kc1v1DAQxS3USrSFM9dIXEBi6diJY4cbqvqFKrWH9myNncnWS9ZebC-o_z3ZDQKERE_2jN7v-cnvmB2EGIixNxw-cgB1-uXq_A70OwEC3kPTvGBHHES30I3qDv66v2THOa8AuOQdHLFynzBkR6H3YVmVR6ooZFrbkT5VFu1TtQ3-O6VM-UOVN-io-DVVP2JaP8Zxt8TQ77GYekr7qfd5HuJQ2RHd12onrXwYJgqLj-EVOxxwzPT613nCHi7O78-uFje3l9dnn28WTnJeFk7JWmrXKgIOLRdKkO77Bu2AvWgbrbRW1EocBuTUEUoQSveWS2dFp7iuT9j17NtHXJlN8mtMTyaiN_tFTEuDqXg3ktGk7CBa3rmBGrDOkgMJHJV0nRR1N3m9nb02KX7bUi5mFbcpTPFNzaXutIRaPacSTS3aqQHJJ9XprHIp5pxo-J2Ng9mVaeYyza5MM5U5EfIfwvmy_8uS0I_PcDBzeXohLCn9yfM_5Ce-PLPT
CitedBy_id crossref_primary_10_1007_JHEP09_2022_070
crossref_primary_10_1103_PhysRevD_103_046014
crossref_primary_10_1007_JHEP12_2021_025
crossref_primary_10_1103_PhysRevD_104_026007
crossref_primary_10_1103_PhysRevResearch_2_043164
crossref_primary_10_1007_JHEP02_2021_136
crossref_primary_10_21468_SciPostPhys_12_1_004
crossref_primary_10_1007_JHEP09_2022_075
crossref_primary_10_21468_SciPostPhys_15_3_125
crossref_primary_10_1007_JHEP12_2022_069
crossref_primary_10_1007_s00220_024_04963_2
crossref_primary_10_1007_JHEP02_2022_056
crossref_primary_10_1007_JHEP06_2024_155
crossref_primary_10_1007_JHEP09_2021_036
crossref_primary_10_1007_JHEP08_2024_199
crossref_primary_10_1007_s00220_024_05111_6
crossref_primary_10_4213_tmf10386
crossref_primary_10_1007_JHEP04_2024_140
crossref_primary_10_1007_JHEP09_2021_156
crossref_primary_10_1103_PhysRevD_105_126019
crossref_primary_10_1007_JHEP09_2022_080
crossref_primary_10_1007_JHEP01_2021_073
crossref_primary_10_1007_JHEP12_2021_013
crossref_primary_10_3390_universe7120464
crossref_primary_10_1007_JHEP03_2023_026
crossref_primary_10_1007_JHEP11_2020_056
crossref_primary_10_1007_JHEP04_2021_289
crossref_primary_10_1103_PhysRevX_14_011024
crossref_primary_10_1103_PhysRevD_108_104059
crossref_primary_10_1007_JHEP01_2021_065
crossref_primary_10_1103_PhysRevD_103_046021
crossref_primary_10_1007_JHEP11_2023_122
crossref_primary_10_1007_JHEP05_2021_233
crossref_primary_10_1007_JHEP02_2023_080
crossref_primary_10_1007_JHEP09_2022_171
crossref_primary_10_1007_JHEP08_2022_118
crossref_primary_10_1007_JHEP09_2020_125
crossref_primary_10_1007_JHEP06_2022_094
crossref_primary_10_1007_JHEP09_2022_179
crossref_primary_10_1088_1751_8121_acef7d
crossref_primary_10_1007_JHEP02_2025_004
crossref_primary_10_1007_JHEP07_2021_138
crossref_primary_10_1007_JHEP08_2022_002
crossref_primary_10_21468_SciPostPhys_14_6_150
crossref_primary_10_1007_JHEP10_2021_010
crossref_primary_10_1007_JHEP10_2024_220
crossref_primary_10_21468_SciPostPhys_14_3_026
crossref_primary_10_1103_PhysRevD_109_086011
crossref_primary_10_1007_JHEP11_2021_067
crossref_primary_10_21468_SciPostPhys_12_2_073
crossref_primary_10_1103_PhysRevD_106_105015
crossref_primary_10_1103_PhysRevD_109_086024
crossref_primary_10_1007_JHEP12_2021_156
crossref_primary_10_1103_PhysRevD_108_066014
crossref_primary_10_1007_JHEP03_2021_214
crossref_primary_10_1103_PhysRevD_110_046007
crossref_primary_10_1007_JHEP02_2021_009
crossref_primary_10_1007_JHEP01_2022_119
crossref_primary_10_1007_JHEP04_2021_272
crossref_primary_10_1007_JHEP09_2022_069
crossref_primary_10_1103_PhysRevD_110_046008
crossref_primary_10_1103_PhysRevD_106_024050
crossref_primary_10_1007_JHEP11_2020_155
crossref_primary_10_1088_1361_6382_acbe8b
crossref_primary_10_1103_PhysRevD_108_066012
crossref_primary_10_1007_JHEP05_2021_117
crossref_primary_10_1103_PhysRevD_105_086021
crossref_primary_10_1007_JHEP03_2022_136
crossref_primary_10_1103_PhysRevD_105_086022
crossref_primary_10_21468_SciPostPhys_9_4_045
crossref_primary_10_1103_PhysRevD_106_065011
crossref_primary_10_1007_JHEP03_2025_004
crossref_primary_10_1007_JHEP04_2021_080
crossref_primary_10_3390_e25121663
crossref_primary_10_1007_JHEP09_2022_158
crossref_primary_10_1007_JHEP10_2024_249
crossref_primary_10_1007_JHEP04_2023_122
crossref_primary_10_1038_s41467_024_55463_9
crossref_primary_10_1088_1361_6382_ad1d46
crossref_primary_10_1007_JHEP02_2023_195
crossref_primary_10_1103_PhysRevD_103_044042
crossref_primary_10_3390_galaxies9010016
crossref_primary_10_1103_PhysRevD_104_024039
crossref_primary_10_1142_S0217751X2250097X
crossref_primary_10_1007_JHEP03_2023_067
crossref_primary_10_1007_JHEP11_2024_151
crossref_primary_10_22331_q_2022_02_16_655
crossref_primary_10_1103_PhysRevD_110_086002
crossref_primary_10_1007_JHEP10_2021_048
crossref_primary_10_1142_S021773232130007X
crossref_primary_10_1103_PhysRevResearch_6_033286
crossref_primary_10_1007_s00023_023_01358_2
crossref_primary_10_1007_JHEP11_2021_212
crossref_primary_10_21468_SciPostPhys_12_4_135
crossref_primary_10_1007_JHEP03_2022_039
crossref_primary_10_1007_JHEP12_2023_179
crossref_primary_10_1007_JHEP05_2022_118
crossref_primary_10_1007_JHEP11_2024_164
crossref_primary_10_1007_JHEP09_2022_136
crossref_primary_10_1007_JHEP11_2022_110
crossref_primary_10_21468_SciPostPhys_17_2_051
crossref_primary_10_1007_JHEP10_2021_052
crossref_primary_10_1007_JHEP07_2022_073
crossref_primary_10_1007_JHEP11_2023_035
crossref_primary_10_1088_1572_9494_acde6b
crossref_primary_10_1007_JHEP07_2024_240
crossref_primary_10_1103_PhysRevD_103_126020
crossref_primary_10_1103_PhysRevD_111_L041503
crossref_primary_10_1007_JHEP07_2021_051
crossref_primary_10_1007_JHEP09_2022_024
crossref_primary_10_1007_JHEP01_2025_063
crossref_primary_10_1007_JHEP04_2021_069
crossref_primary_10_1007_JHEP02_2022_126
crossref_primary_10_1007_JHEP10_2024_131
crossref_primary_10_1016_j_aop_2022_168898
crossref_primary_10_1142_S0218271822420214
crossref_primary_10_1007_JHEP06_2023_079
crossref_primary_10_1088_1361_6382_ad5bb7
crossref_primary_10_1088_1475_7516_2024_10_031
crossref_primary_10_1007_s10701_022_00540_6
crossref_primary_10_1007_JHEP01_2021_118
crossref_primary_10_1007_JHEP02_2024_191
crossref_primary_10_1007_JHEP08_2022_189
crossref_primary_10_1007_JHEP10_2021_196
crossref_primary_10_1103_PhysRevD_103_066024
crossref_primary_10_1007_JHEP10_2023_005
crossref_primary_10_1007_JHEP08_2022_062
crossref_primary_10_1103_PhysRevD_107_066020
crossref_primary_10_1103_PhysRevD_103_106013
crossref_primary_10_1007_JHEP10_2020_166
crossref_primary_10_1007_JHEP05_2021_062
crossref_primary_10_1142_S0217751X2250227X
crossref_primary_10_1103_PhysRevLett_126_061604
crossref_primary_10_1088_1751_8121_acc8a5
crossref_primary_10_1007_JHEP05_2024_039
crossref_primary_10_1007_JHEP09_2022_002
crossref_primary_10_1140_epjc_s10052_022_10376_z
crossref_primary_10_1007_JHEP08_2022_195
crossref_primary_10_1088_1361_6382_ad6e4d
crossref_primary_10_1103_PhysRevD_109_106013
crossref_primary_10_3390_e24010101
crossref_primary_10_1007_JHEP02_2024_183
crossref_primary_10_1007_JHEP03_2021_040
crossref_primary_10_1007_JHEP08_2022_071
crossref_primary_10_1103_PhysRevD_103_066011
crossref_primary_10_1007_JHEP12_2023_050
crossref_primary_10_1103_PhysRevD_102_086021
crossref_primary_10_1007_JHEP07_2024_274
crossref_primary_10_1007_JHEP08_2024_010
crossref_primary_10_1103_PhysRevLett_132_161601
crossref_primary_10_1007_JHEP01_2022_071
crossref_primary_10_1088_1475_7516_2024_09_040
crossref_primary_10_1007_JHEP10_2024_063
crossref_primary_10_1134_S004057792303008X
crossref_primary_10_1007_JHEP09_2020_194
crossref_primary_10_1007_JHEP10_2020_187
crossref_primary_10_1007_JHEP09_2020_192
crossref_primary_10_1007_JHEP07_2023_122
crossref_primary_10_1103_PhysRevD_107_026016
crossref_primary_10_1103_PhysRevD_104_086007
crossref_primary_10_1007_JHEP01_2022_085
crossref_primary_10_1088_1751_8121_ad9cd4
crossref_primary_10_1007_JHEP07_2022_128
crossref_primary_10_1007_JHEP02_2024_145
crossref_primary_10_1007_JHEP08_2021_171
crossref_primary_10_1007_JHEP10_2023_040
crossref_primary_10_1007_JHEP06_2022_109
crossref_primary_10_1088_1361_6633_acceb4
crossref_primary_10_1007_JHEP09_2021_196
crossref_primary_10_1007_JHEP09_2024_163
crossref_primary_10_1007_JHEP08_2022_026
crossref_primary_10_1103_PhysRevD_103_L061901
crossref_primary_10_1007_JHEP03_2021_073
crossref_primary_10_1007_JHEP01_2021_032
crossref_primary_10_1093_ptep_ptab090
crossref_primary_10_1088_1361_6382_acaba5
crossref_primary_10_1088_1751_8121_ad1d24
crossref_primary_10_1007_JHEP01_2022_132
crossref_primary_10_1088_1751_8121_ad8196
crossref_primary_10_1007_JHEP02_2024_135
crossref_primary_10_1007_JHEP03_2021_086
crossref_primary_10_1007_JHEP10_2021_201
crossref_primary_10_1007_JHEP08_2020_126
crossref_primary_10_1007_JHEP09_2024_033
crossref_primary_10_1007_JHEP10_2021_202
crossref_primary_10_1007_JHEP04_2021_245
crossref_primary_10_1007_JHEP02_2021_072
crossref_primary_10_1007_JHEP02_2025_052
crossref_primary_10_1007_JHEP10_2024_076
crossref_primary_10_1007_JHEP12_2020_025
crossref_primary_10_1007_JHEP07_2022_143
crossref_primary_10_21468_SciPostPhys_11_2_034
crossref_primary_10_1007_JHEP10_2021_205
crossref_primary_10_1007_JHEP05_2021_135
crossref_primary_10_1007_JHEP03_2025_068
crossref_primary_10_1007_JHEP07_2022_108
crossref_primary_10_1142_S0217751X22500257
crossref_primary_10_1007_JHEP10_2022_147
crossref_primary_10_1007_JHEP06_2024_017
crossref_primary_10_1007_JHEP01_2022_038
crossref_primary_10_1007_s41114_023_00046_1
crossref_primary_10_1007_JHEP01_2021_130
crossref_primary_10_1088_1361_6382_ac2cb7
crossref_primary_10_1007_JHEP04_2023_061
crossref_primary_10_1088_1361_6382_ace14a
crossref_primary_10_1007_JHEP09_2024_126
crossref_primary_10_1140_epjc_s10052_023_12164_9
crossref_primary_10_1002_prop_202200102
crossref_primary_10_1103_PhysRevD_109_104053
crossref_primary_10_1007_JHEP02_2022_087
crossref_primary_10_1007_JHEP09_2021_185
crossref_primary_10_1007_JHEP09_2024_133
crossref_primary_10_21468_SciPostPhys_14_2_019
crossref_primary_10_1007_JHEP04_2021_103
crossref_primary_10_1007_JHEP02_2025_032
crossref_primary_10_1007_JHEP02_2025_150
crossref_primary_10_1007_JHEP10_2021_226
crossref_primary_10_1007_JHEP02_2021_173
crossref_primary_10_1007_JHEP10_2021_227
crossref_primary_10_1007_JHEP10_2021_107
Cites_doi 10.1103/PhysRevD.85.044038
10.1103/PhysRevD.53.6979
10.1103/PhysRevD.88.024018
10.1088/1126-6708/2007/07/062
10.1142/S0217751X03016380
10.1007/JHEP09(2013)018
10.1016/0550-3213(88)90109-5
10.1016/0550-3213(88)90446-4
10.1103/PhysRevD.92.104020
10.1007/JHEP02(2020)177
10.1007/JHEP11(2013)074
10.1103/PhysRevD.15.2752
10.1103/PhysRevD.94.084035
10.1103/PhysRevD.56.3490
10.1007/JHEP01(2016)008
10.1006/aphy.2002.6305
10.1103/PhysRevD.43.1170
10.1088/0264-9381/25/21/214004
10.1088/1126-6708/2006/08/045
10.1103/PhysRevD.50.7403
10.1007/JHEP01(2018)081
10.1007/JHEP06(2020)117
10.1088/1126-6708/2004/02/008
10.1103/PhysRevLett.116.231301
10.1016/j.physrep.2008.08.001
10.1007/JHEP12(2019)063
10.1007/JHEP08(2013)090
10.1007/s10714-010-1034-0
10.1103/PhysRevLett.111.171301
10.1088/1361-6633/aa77cc
10.1093/ptep/ptw124
10.1007/JHEP07(2016)139
10.1016/0550-3213(89)90353-2
10.1007/JHEP10(2013)107
10.1007/JHEP03(2013)059
10.1088/0264-9381/12/5/011
10.1088/0264-9381/30/2/025001
10.1016/j.physletb.2020.135280
10.1007/JHEP03(2020)149
10.1088/1126-6708/2007/12/018
10.1007/JHEP05(2020)013
10.1088/1361-6633/aa778e
10.1142/S0218271814420267
10.1103/PhysRevLett.112.041102
10.1088/1126-6708/2003/04/021
10.1142/S0218271814500412
10.1142/9789814538992_0007
10.1016/0550-3213(89)90290-3
10.1103/PhysRevLett.96.181602
10.1007/JHEP03(2020)033
10.1007/JHEP12(2017)047
10.1002/prop.201300020
10.21468/SciPostPhys.9.1.001
10.1103/PhysRevD.37.904
10.1103/RevModPhys.88.015002
10.1016/S0370-2693(98)00377-3
10.1007/JHEP10(2013)212
10.1088/1126-6708/2003/07/056
10.1063/1.531252
10.1103/PhysRevD.49.6606
10.1103/PhysRevD.48.3743
10.1142/S0218271813420029
10.1007/JHEP06(2015)064
10.1016/0550-3213(88)90110-1
10.1007/JHEP11(2016)009
10.1103/PhysRevD.52.6997
10.1103/PhysRevD.88.084035
10.1103/PhysRevD.73.064016
10.1007/JHEP11(2019)040
10.1007/JHEP01(2016)122
10.1103/PhysRevD.14.2460
10.1007/0-387-24992-3_2
10.1103/PhysRevD.74.106005
10.1007/JHEP02(2013)062
10.1088/1126-6708/2004/02/053
10.1515/zna-2001-1216
10.1007/s10714-019-2505-6
10.4310/ATMP.1998.v2.n2.a2
10.1088/1126-6708/2009/10/079
10.1016/0550-3213(89)90592-0
10.1103/PhysRevLett.71.1291
10.1007/JHEP01(2014)034
10.1007/JHEP10(2017)008
10.1007/BF01645738
10.1103/PhysRev.101.860
10.1103/PhysRevD.100.046002
10.21468/SciPostPhys.3.2.016
10.1002/prop.200410203
10.1103/PhysRevLett.71.2367
10.1103/PhysRevD.88.064023
10.1016/j.nuclphysb.2014.05.012
10.1103/PhysRevD.28.2960
10.1103/PhysRevD.56.6247
10.1016/0370-2693(87)90028-1
10.1103/PhysRevD.72.084013
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
Copyright Springer Nature B.V. Aug 2020
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: Copyright Springer Nature B.V. Aug 2020
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP08(2020)044
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central China
DatabaseTitleList
Publicly Available Content Database

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 72
ExternalDocumentID oai_doaj_org_article_8e7bf2619cfe40bcbec0501a75c95239
10_1007_JHEP08_2020_044
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c511t-c75358c67e01061272e8dd4abfad26487887e65affa1e9ea50278db15cb297183
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:26:43 EDT 2025
Sun Jul 13 05:07:45 EDT 2025
Sat Jul 26 00:26:03 EDT 2025
Tue Jul 01 03:55:34 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:37:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords AdS-CFT Correspondence
Black Holes
Models of Quantum Gravity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-c75358c67e01061272e8dd4abfad26487887e65affa1e9ea50278db15cb297183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7821-7889
OpenAccessLink https://doaj.org/article/8e7bf2619cfe40bcbec0501a75c95239
PQID 2432684751
PQPubID 2034718
PageCount 72
ParticipantIDs doaj_primary_oai_doaj_org_article_8e7bf2619cfe40bcbec0501a75c95239
proquest_journals_3158985037
proquest_journals_2432684751
crossref_primary_10_1007_JHEP08_2020_044
crossref_citationtrail_10_1007_JHEP08_2020_044
springer_journals_10_1007_JHEP08_2020_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-10
PublicationDateYYYYMMDD 2020-08-10
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References A Giveon (13575_CR38) 2020; 06
13575_CR71
13575_CR73
13575_CR72
13575_CR74
13575_CR77
Y Chen (13575_CR123) 2020; 03
D Marolf (13575_CR126) 2016; 01
D Marolf (13575_CR6) 2017; 80
13575_CR76
A Almheiri (13575_CR23) 2013; 02
13575_CR78
K Osterwalder (13575_CR81) 1973; 31
N Goheer (13575_CR106) 2003; 07
SR Coleman (13575_CR55) 1988; 307
VE Hubeny (13575_CR52) 2007; 07
F Winterberg (13575_CR13) 2001; 56
D Harlow (13575_CR4) 2016; 88
A Almheiri (13575_CR43) 2019; 12
13575_CR82
D Harlow (13575_CR83) 2016; 01
L Susskind (13575_CR7) 1993; 48
OY Shvedov (13575_CR75) 2002; 302
T Faulkner (13575_CR53) 2013; 11
13575_CR86
13575_CR88
13575_CR87
SB Giddings (13575_CR22) 2013; 88
A Almheiri (13575_CR40) 2013; 09
M Guica (13575_CR84) 2017; 3
JB Hartle (13575_CR68) 1983; 28
A Giveon (13575_CR35) 2015; 06
13575_CR2
13575_CR1
13575_CR90
V Balasubramanian (13575_CR128) 2008; 25
SB Giddings (13575_CR30) 2013; 88
13575_CR3
SS Gubser (13575_CR59) 1998; 428
13575_CR92
13575_CR103
13575_CR104
JJ Halliwell (13575_CR69) 1991; 43
13575_CR94
HM Haggard (13575_CR34) 2015; 92
13575_CR97
13575_CR107
13575_CR108
13575_CR10
13575_CR98
13575_CR12
R Bousso (13575_CR124) 2013; 88
GW Gibbons (13575_CR61) 1977; 15
K Skenderis (13575_CR129) 2008; 467
SB Giddings (13575_CR66) 1988; 306
A Almheiri (13575_CR46) 2020; 9
SB Giddings (13575_CR56) 1988; 307
13575_CR110
13575_CR111
13575_CR112
S Ryu (13575_CR50) 2006; 08
D Harlow (13575_CR85) 2020; 02
13575_CR115
M Van Raamsdonk (13575_CR121) 2010; 42
13575_CR119
JM Maldacena (13575_CR11) 2003; 04
SD Mathur (13575_CR29) 2014; 884
J Polchinski (13575_CR100) 1994; 50
T Jacobson (13575_CR133) 2019; 100
13575_CR19
C Rovelli (13575_CR33) 2014; 23
BD Chowdhury (13575_CR130) 2010
A Almheiri (13575_CR44) 2020; 03
T Jacobson (13575_CR132) 2013; 22
SD Mathur (13575_CR117) 2019; 51
WG Unruh (13575_CR5) 2017; 80
13575_CR120
H Massam (13575_CR93) 2003; 31
SW Hawking (13575_CR36) 2016; 116
JM Maldacena (13575_CR58) 2004; 02
13575_CR127
Y Nomura (13575_CR27) 2013; 03
13575_CR32
13575_CR28
M Christodoulou (13575_CR37) 2016; 94
Z Fu (13575_CR109) 2019; 11
D Marolf (13575_CR122) 2013; 30
E Witten (13575_CR60) 1998; 2
SB Giddings (13575_CR20) 2012; 85
AF Möbius (13575_CR89) 1863; 15
13575_CR131
I Heemskerk (13575_CR113) 2009; 10
SD Mathur (13575_CR17) 2005; 53
13575_CR42
J Engelsöy (13575_CR95) 2016; 07
13575_CR45
L Susskind (13575_CR8) 1993; 71
SB Giddings (13575_CR18) 2006; 74
A Davidson (13575_CR21) 2014; 23
13575_CR39
SB Giddings (13575_CR116) 2017; 12
PAM Dirac (13575_CR70) 1964
K Papadodimas (13575_CR25) 2013; 10
HZ Chen (13575_CR47) 2020; 03
A Lewkowycz (13575_CR114) 2013; 08
GT Horowitz (13575_CR16) 2006; 73
RF Streater (13575_CR80) 2016
E Verlinde (13575_CR26) 2013; 10
A Almheiri (13575_CR48) 2020; 05
L Susskind (13575_CR9) 1994; 49
S Ryu (13575_CR51) 2006; 96
DA Lowe (13575_CR105) 1995; 52
D Marolf (13575_CR41) 2013; 111
SW Hawking (13575_CR65) 1988; 37
13575_CR49
N Arkani-Hamed (13575_CR63) 2007; 12
SD Mathur (13575_CR24) 2014; 01
D Stanford (13575_CR96) 2017; 10
GT Horowitz (13575_CR14) 2004; 02
J Preskill (13575_CR102) 1989; 323
K Okuyama (13575_CR91) 2020; 803
R Bousso (13575_CR125) 2014; 112
W Fischler (13575_CR101) 1989; 327
P Hayden (13575_CR118) 2016; 11
SW Hawking (13575_CR15) 2005; 72
13575_CR62
SW Hawking (13575_CR64) 1987; 195
13575_CR67
SW Hawking (13575_CR99) 1976; 14
J Maldacena (13575_CR31) 2013; 61
X Dong (13575_CR54) 2018; 01
SB Giddings (13575_CR57) 1989; 321
AS Wightman (13575_CR79) 1956; 101
References_xml – volume: 85
  year: 2012
  ident: 13575_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.044038
– ident: 13575_CR90
– ident: 13575_CR76
  doi: 10.1103/PhysRevD.53.6979
– volume: 88
  year: 2013
  ident: 13575_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.024018
– volume: 07
  start-page: 062
  year: 2007
  ident: 13575_CR52
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/062
– ident: 13575_CR98
– ident: 13575_CR107
– ident: 13575_CR10
  doi: 10.1142/S0217751X03016380
– ident: 13575_CR32
– volume: 09
  start-page: 018
  year: 2013
  ident: 13575_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)018
– volume: 307
  start-page: 854
  year: 1988
  ident: 13575_CR56
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90109-5
– volume: 306
  start-page: 890
  year: 1988
  ident: 13575_CR66
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90446-4
– volume: 92
  year: 2015
  ident: 13575_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.104020
– volume: 02
  start-page: 177
  year: 2020
  ident: 13575_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)177
– ident: 13575_CR3
– volume: 11
  start-page: 074
  year: 2013
  ident: 13575_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)074
– volume: 15
  start-page: 2752
  year: 1977
  ident: 13575_CR61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2752
– volume: 94
  year: 2016
  ident: 13575_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.084035
– ident: 13575_CR104
– ident: 13575_CR28
– ident: 13575_CR77
  doi: 10.1103/PhysRevD.56.3490
– volume: 01
  start-page: 008
  year: 2016
  ident: 13575_CR126
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)008
– volume: 302
  start-page: 2
  year: 2002
  ident: 13575_CR75
  publication-title: Annals Phys.
  doi: 10.1006/aphy.2002.6305
– volume: 15
  start-page: 19
  year: 1863
  ident: 13575_CR89
  publication-title: Mathematisch-physikalische Klasse
– volume: 43
  start-page: 1170
  year: 1991
  ident: 13575_CR69
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.43.1170
– volume: 25
  year: 2008
  ident: 13575_CR128
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/25/21/214004
– ident: 13575_CR49
– ident: 13575_CR119
– ident: 13575_CR87
– volume: 08
  start-page: 045
  year: 2006
  ident: 13575_CR50
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– ident: 13575_CR19
– volume: 50
  start-page: 7403
  year: 1994
  ident: 13575_CR100
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.50.7403
– volume: 01
  start-page: 081
  year: 2018
  ident: 13575_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)081
– volume: 06
  start-page: 117
  year: 2020
  ident: 13575_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)117
– volume: 02
  start-page: 008
  year: 2004
  ident: 13575_CR14
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/02/008
– volume: 116
  year: 2016
  ident: 13575_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.231301
– volume: 467
  start-page: 117
  year: 2008
  ident: 13575_CR129
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2008.08.001
– ident: 13575_CR92
– volume: 12
  start-page: 063
  year: 2019
  ident: 13575_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)063
– volume: 08
  start-page: 090
  year: 2013
  ident: 13575_CR114
  publication-title: JHEP
  doi: 10.1007/JHEP08(2013)090
– volume: 42
  start-page: 2323
  year: 2010
  ident: 13575_CR121
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-010-1034-0
– volume: 111
  year: 2013
  ident: 13575_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.171301
– volume: 80
  start-page: 092001
  year: 2017
  ident: 13575_CR6
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/aa77cc
– ident: 13575_CR86
– ident: 13575_CR67
– ident: 13575_CR94
  doi: 10.1093/ptep/ptw124
– volume: 07
  start-page: 139
  year: 2016
  ident: 13575_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)139
– volume: 321
  start-page: 481
  year: 1989
  ident: 13575_CR57
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90353-2
– ident: 13575_CR110
– volume-title: 5th Modave Summer School in Mathematical Physics
  year: 2010
  ident: 13575_CR130
– volume: 10
  start-page: 107
  year: 2013
  ident: 13575_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)107
– volume: 03
  start-page: 059
  year: 2013
  ident: 13575_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP03(2013)059
– ident: 13575_CR72
  doi: 10.1088/0264-9381/12/5/011
– volume: 30
  year: 2013
  ident: 13575_CR122
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/30/2/025001
– volume: 803
  year: 2020
  ident: 13575_CR91
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135280
– ident: 13575_CR127
– volume: 03
  start-page: 149
  year: 2020
  ident: 13575_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)149
– volume: 12
  start-page: 018
  year: 2007
  ident: 13575_CR63
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/12/018
– volume: 05
  start-page: 013
  year: 2020
  ident: 13575_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)013
– volume: 80
  start-page: 092002
  year: 2017
  ident: 13575_CR5
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/aa778e
– volume: 23
  year: 2014
  ident: 13575_CR33
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271814420267
– volume: 112
  year: 2014
  ident: 13575_CR125
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.041102
– ident: 13575_CR42
– volume: 04
  start-page: 021
  year: 2003
  ident: 13575_CR11
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/04/021
– volume: 23
  year: 2014
  ident: 13575_CR21
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271814500412
– ident: 13575_CR88
  doi: 10.1142/9789814538992_0007
– volume: 327
  start-page: 157
  year: 1989
  ident: 13575_CR101
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90290-3
– volume: 96
  start-page: 181602
  year: 2006
  ident: 13575_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 03
  start-page: 152
  year: 2020
  ident: 13575_CR47
  publication-title: JHEP
– ident: 13575_CR71
– ident: 13575_CR103
– volume: 03
  start-page: 033
  year: 2020
  ident: 13575_CR123
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)033
– volume: 12
  start-page: 047
  year: 2017
  ident: 13575_CR116
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)047
– volume: 61
  start-page: 781
  year: 2013
  ident: 13575_CR31
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201300020
– volume: 9
  start-page: 001
  year: 2020
  ident: 13575_CR46
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.9.1.001
– volume: 37
  start-page: 904
  year: 1988
  ident: 13575_CR65
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.37.904
– volume: 88
  start-page: 015002
  year: 2016
  ident: 13575_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.015002
– volume: 428
  start-page: 105
  year: 1998
  ident: 13575_CR59
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 10
  year: 2013
  ident: 13575_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)212
– volume: 07
  start-page: 056
  year: 2003
  ident: 13575_CR106
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/07/056
– ident: 13575_CR73
  doi: 10.1063/1.531252
– ident: 13575_CR112
– ident: 13575_CR39
– volume: 49
  start-page: 6606
  year: 1994
  ident: 13575_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.6606
– volume: 48
  start-page: 3743
  year: 1993
  ident: 13575_CR7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.48.3743
– ident: 13575_CR62
– volume: 22
  year: 2013
  ident: 13575_CR132
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271813420029
– volume: 06
  start-page: 064
  year: 2015
  ident: 13575_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)064
– volume: 307
  start-page: 867
  year: 1988
  ident: 13575_CR55
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90110-1
– volume: 11
  start-page: 009
  year: 2016
  ident: 13575_CR118
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)009
– volume: 52
  start-page: 6997
  year: 1995
  ident: 13575_CR105
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.6997
– ident: 13575_CR108
– ident: 13575_CR97
– volume: 88
  year: 2013
  ident: 13575_CR124
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.084035
– volume: 73
  start-page: 064016
  year: 2006
  ident: 13575_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.064016
– volume-title: Lectures on quantum mechanics
  year: 1964
  ident: 13575_CR70
– volume: 11
  start-page: 040
  year: 2019
  ident: 13575_CR109
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)040
– volume: 01
  start-page: 122
  year: 2016
  ident: 13575_CR83
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)122
– volume: 14
  start-page: 2460
  year: 1976
  ident: 13575_CR99
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.14.2460
– ident: 13575_CR2
  doi: 10.1007/0-387-24992-3_2
– ident: 13575_CR45
– volume: 74
  year: 2006
  ident: 13575_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.106005
– volume: 02
  start-page: 062
  year: 2013
  ident: 13575_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP02(2013)062
– volume: 02
  start-page: 053
  year: 2004
  ident: 13575_CR58
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/02/053
– ident: 13575_CR115
– ident: 13575_CR111
– volume: 56
  start-page: 889
  year: 2001
  ident: 13575_CR13
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2001-1216
– volume: 31
  start-page: 287
  year: 2003
  ident: 13575_CR93
  publication-title: Annals Statist.
– volume: 51
  start-page: 24
  year: 2019
  ident: 13575_CR117
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-019-2505-6
– volume: 2
  start-page: 253
  year: 1998
  ident: 13575_CR60
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 10
  start-page: 079
  year: 2009
  ident: 13575_CR113
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– volume: 323
  start-page: 141
  year: 1989
  ident: 13575_CR102
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90592-0
– ident: 13575_CR1
  doi: 10.1103/PhysRevLett.71.1291
– volume-title: PCT, spin and statistics and all that
  year: 2016
  ident: 13575_CR80
– ident: 13575_CR82
– ident: 13575_CR131
– volume: 01
  start-page: 034
  year: 2014
  ident: 13575_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP01(2014)034
– volume: 10
  start-page: 008
  year: 2017
  ident: 13575_CR96
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)008
– volume: 31
  start-page: 83
  year: 1973
  ident: 13575_CR81
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01645738
– ident: 13575_CR12
– volume: 101
  start-page: 860
  year: 1956
  ident: 13575_CR79
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.101.860
– volume: 100
  year: 2019
  ident: 13575_CR133
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.046002
– volume: 3
  year: 2017
  ident: 13575_CR84
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.3.2.016
– ident: 13575_CR74
– ident: 13575_CR120
– volume: 53
  start-page: 793
  year: 2005
  ident: 13575_CR17
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.200410203
– volume: 71
  start-page: 2367
  year: 1993
  ident: 13575_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.2367
– volume: 88
  start-page: 064023
  year: 2013
  ident: 13575_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.064023
– volume: 884
  start-page: 566
  year: 2014
  ident: 13575_CR29
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.05.012
– volume: 28
  start-page: 2960
  year: 1983
  ident: 13575_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.28.2960
– ident: 13575_CR78
  doi: 10.1103/PhysRevD.56.6247
– volume: 195
  start-page: 337
  year: 1987
  ident: 13575_CR64
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(87)90028-1
– volume: 72
  start-page: 084013
  year: 2005
  ident: 13575_CR15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.084013
SSID ssj0015190
Score 2.7039626
Snippet A bstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of...
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We...
Abstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms AdS-CFT Correspondence
Asymptotic properties
Black Holes
Classical and Quantum Gravitation
Cosmological constant
Elementary Particles
Gravitation
High energy physics
Hilbert space
Integrals
Models of Quantum Gravity
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Random variables
Regular Article - Theoretical Physics
Relativity
Relativity Theory
Spacetime
String Theory
Wormholes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyQxDC-6Ivgiftzheip98EHhenZm2p2ZezlUVhZBEVHwbWjT1hfdVXdF7r836XZWFPVx2pQpTZomTfoLY7sQbK210SJIUIKeXgrjdCFUACVdLzdlfFt1dt4bXKvTG32TLtzGKa2y1YlRUbsR0B35Qa4KAiYpdfbv4VFQ1SiKrqYSGvNsAVVwVXXYwlH__OJyFkdA-0S2gD6yPDgd9C9ktYcOv9yXSr07iyJk_zs780NoNJ44JytsOZmK_HDK21U254drbDGmbMJ4nU3iMQM-PkvhaMdx9Ej9vb3zf7k19j9_nuZc-PFvjmoDPJWR5y9oo1JJXGw0QxeHRfTN-OUSFCcfBW7pZo8TKU_gqsTCH-z6pH91PBCphoIANKUmAtAd0RX0Sh-dv7zMfeWcMjYYR8ltlEzoe9qEYDJfe6MpEulspsHmNZ5bxU_WGY6GfoNxp2rCrteQ66AMKFsoBQ49TJC5z2zdZX_a1WwgAYxTnYu7poVGni5_Q8vf4PJ32d5swMMUW-Nr0iNiz4yMQLFjw-jptkl7rKl8aQN5hBC8khZQPKWWmSk11Ohv4wS3WuY2aaeOmze5-rS7yHRVV1oWZZftt_Lw1v3FdDe__9MvtkSUIiLrbrHO5OnZb6NtM7E7SYBfAW3891A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2DAN2KdY90LRZocMOLTCvsi36sdsWJAgCbNhhAXozJEo6pUnRJCj670sqdoa0y2E3W6IAQaRM0iQ_CvEZg60BDCRBoU649DIxDvJEB9TKFZkpY23Vz1_FZKan13DdgiRxLcyT-P3VdDL6raoLctHVpdL6pXgFaV5yj4ZhMdyFC8gMUR1uz_NFeyonIvPvmZNPIqBRsYzfiqPWIpTftyw8Fi_84p14HTMzcfVerKM2QR-rTySZa5IcT39j5_6btMY-yM02tcKvvkj6OqDnbvHynkxR7nxLg2bh4rIIshnfXIu4KZdBWv6BJ5lUthiqzKkPYjYe_RlOkrZVQoJkMa0TJK8DKixKH328rMx85Zw2NhjHOWycM-gLMCGY1NfeAAccnU0BbVaTeso_it5iufAnQjpdM0Q9YAZBG9Q21xodOZKoMp_aui--dqfZYIsjzu0s5k2HgLw9_oaPv6Hj74uL3YLbLYTGYdIfzJ4dGWNfxwESiaa9Sk3lSxvY8cPgtbJIUqhApaYErMmtpg0OOuY27YVcNZnOGdemhPSf03kKVV2Bysu-uOzk4e_0ge2e_gftmXjDj0lE0x2I3vpu4z-RPbO251GWHwEBgu1s
  priority: 102
  providerName: Springer Nature
Title Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information
URI https://link.springer.com/article/10.1007/JHEP08(2020)044
https://www.proquest.com/docview/2432684751
https://www.proquest.com/docview/3158985037
https://doaj.org/article/8e7bf2619cfe40bcbec0501a75c95239
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RUKVeUAutui1d-cABpKY4jp1Hb7DaZYUEQlVX4hbZY_tEl6q7CPXfd8ZJoFRFvfQSya_EGk8y38TjbwD2MbrGGGuyKFFnfPQys94UmY6opS-VrdLZqvOLcr7QZ1fm6rdUXxwT1tEDd4I7qkPlIsN8jEFLh_RMaWRuK4MNOVHp6B7ZvMGZ6vcPCJfIgchHVkdn8-mlrA_I0ZeHUutHNihR9T_Cl39siSZLM3sJ2z1EFMfd1F7BRljuwPMUqomrXVgn84IhHUcRhN8EeaLhm7sOn4Wz7qe47WItwuqjoM8FBk4fL-4Im3IqXKq0S5-GJdbNVPI9Bae4icLxHz3BXUVPqspL9xoWs-nXyTzrcydkSBBqnSG5IabGsgrJ6VOVCrX32rpoPQe1cRBhKI2N0eahCdbwDqR3uUGnGrJXxRvYXN4sw1sQXjfMWW9QmagtaldojZ48S5Qq5K4ZwadBmi32xOKc3-K6HSiRO_G3LP6WxD-Cg_sB3ztOjae7nvDy3HdjMuxUQSrS9irS_ktFRrA3LG7bv6GrVumCiW4qk_-1uchN3dRGFtUIDgd9eGh-Yrrv_sd038MLvl-WeHf3YHP94zZ8IOSzdmN4Vs9Ox7B1Mr24_EKlidJ8LSfjpP50XajjX0UqA_8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWCvgAUith6jj2JkFCiEeX7VMcWqk3Y49tLu1u6W6F-qf4jcw4yVZFlFuPcezEGo_HM56Zbxh7Bck3xjgjkgQtKPVSuGBKoRNoGYbKVTm3andvOD7QW4fmcIn97nNhKKyyl4lZUIcp0B35utIlAZNUpvhw8lNQ1SjyrvYlNFq22I7nv9Bkm73f_ILr-1qp0cb-57HoqgoIQOViLgAVdFPDsIrZHFKVinUI2vnkAoV7UXhdHBqXkitiE50h31zwhQGvGpTkJX73BrupSzzJKTN99HXhtUBtSPbwQbJa3xpvfJP1qkKNbE1qfenkywUCLmm1fzli8_k2usfudoop_9hy0n22FCcP2K0cIAqzh2yeDzWIOQmGo9bI0f6Nx_4ovuPe-XN-1kZ4xNkbjkIKIhWt50inYyrAi41uEvKwjPWZn0IH_MmniXu6R-TUlXdQrsQwj9jBtdD2MVueTCfxCeNBN4SUb0CZpB1oX2oNAe1ZkCoWvhmwtz01LXRw5lRV48j2QMwt-S2R3yL5B2x1MeCkRfK4uusnWp5FN4Lgzg3T0x-229G2jpVPZH9Cilp6wM0gjSxcZaBB6x4nuNIvru3kwsxecPE_X5eFqZvayLIasLWeHy5eXzHdp___00t2e7y_u2N3Nve2n7E7NEpkTN8Vtjw_PYvPUaua-xeZlTn7ft175w_TuTJb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBe0PgShTH8ANImEeo4dpMgTRNjrboNqgoxaW-ZP3nZ2rF2QvvX-Ou4c5JOQ4y3PcaxE-t8Pt_57n4H8NYGUyqlVRK4lQmlXibaqSyRwUru-kLnMbfq67g_OpIHx-p4BX63uTAUVtnKxCio3czSHXlPyIyASXKV9kITFjHZG-6c_0yoghR5WttyGjWLHPqrX2i-zbf393Ct3wkxHHz_PEqaCgOJRUVjkVhU1lVh-7mPppHIhS-ck9oE7Sj0i0LtfF_pEHTqS68V-emcSZU1okSpnuF378FqTlZRB1Z3B-PJt6UPA3Uj3oIJ8bx3MBpMeLEpUD_b4lLeOAdjuYAbOu5fbtl42g3X4FGjprJPNV89hhU_fQL3Y7ionT-FRTzirI8pMQx1SIbWsD8zp_4jM9pcscs63sPP3zMUWdZTCXuGlDqjcrzYqKcuDovIn_HJNTCgbBaYoVtFRl1ZA-xK7PMMju6Eus-hM51N_QtgTpaEm6-sUEFqK00mpXVo3VoufGrKLnxoqVnZBtycamycVi0sc03-ishfIfm7sLkccF7jetzedZeWZ9mNALljw-ziR9Xs76rwuQlkjdrgJTcWtwZXPNW5siXa-jjB9XZxq0ZKzKtrnv7n6yxVRVkonuVd2Gr54fr1LdN9-f8_vYEHuG-qL_vjw1fwkAYlEeB3HTqLi0v_GlWshdloeJnByV1vnz9DZDft
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcending+the+ensemble%3A+baby+universes%2C+spacetime+wormholes%2C+and+the+order+and+disorder+of+black+hole+information&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Donald+Marolf&rft.au=Henry+Maxfield&rft.date=2020-08-10&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=8&rft.spage=1&rft.epage=72&rft_id=info:doi/10.1007%2FJHEP08%282020%29044&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e7bf2619cfe40bcbec0501a75c95239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon