Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information
A bstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen th...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 8; pp. 44 - 72 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
10.08.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable
Z
, whose value can be less than the naive number
k
of independent states in the theory. For
k > Z
, consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble. |
---|---|
AbstractList | A
bstract
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable
Z
, whose value can be less than the naive number
k
of independent states in the theory. For
k > Z
, consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble. In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble. Abstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble. In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble. |
ArticleNumber | 44 |
Author | Maxfield, Henry Marolf, Donald |
Author_xml | – sequence: 1 givenname: Donald surname: Marolf fullname: Marolf, Donald organization: Department of Physics, University of California – sequence: 2 givenname: Henry orcidid: 0000-0002-7821-7889 surname: Maxfield fullname: Maxfield, Henry email: hmaxfield@physics.ucsb.edu organization: Department of Physics, University of California |
BookMark | eNp9kc1v1DAQxS3USrSFM9dIXEBi6diJY4cbqvqFKrWH9myNncnWS9ZebC-o_z3ZDQKERE_2jN7v-cnvmB2EGIixNxw-cgB1-uXq_A70OwEC3kPTvGBHHES30I3qDv66v2THOa8AuOQdHLFynzBkR6H3YVmVR6ooZFrbkT5VFu1TtQ3-O6VM-UOVN-io-DVVP2JaP8Zxt8TQ77GYekr7qfd5HuJQ2RHd12onrXwYJgqLj-EVOxxwzPT613nCHi7O78-uFje3l9dnn28WTnJeFk7JWmrXKgIOLRdKkO77Bu2AvWgbrbRW1EocBuTUEUoQSveWS2dFp7iuT9j17NtHXJlN8mtMTyaiN_tFTEuDqXg3ktGk7CBa3rmBGrDOkgMJHJV0nRR1N3m9nb02KX7bUi5mFbcpTPFNzaXutIRaPacSTS3aqQHJJ9XprHIp5pxo-J2Ng9mVaeYyza5MM5U5EfIfwvmy_8uS0I_PcDBzeXohLCn9yfM_5Ce-PLPT |
CitedBy_id | crossref_primary_10_1007_JHEP09_2022_070 crossref_primary_10_1103_PhysRevD_103_046014 crossref_primary_10_1007_JHEP12_2021_025 crossref_primary_10_1103_PhysRevD_104_026007 crossref_primary_10_1103_PhysRevResearch_2_043164 crossref_primary_10_1007_JHEP02_2021_136 crossref_primary_10_21468_SciPostPhys_12_1_004 crossref_primary_10_1007_JHEP09_2022_075 crossref_primary_10_21468_SciPostPhys_15_3_125 crossref_primary_10_1007_JHEP12_2022_069 crossref_primary_10_1007_s00220_024_04963_2 crossref_primary_10_1007_JHEP02_2022_056 crossref_primary_10_1007_JHEP06_2024_155 crossref_primary_10_1007_JHEP09_2021_036 crossref_primary_10_1007_JHEP08_2024_199 crossref_primary_10_1007_s00220_024_05111_6 crossref_primary_10_4213_tmf10386 crossref_primary_10_1007_JHEP04_2024_140 crossref_primary_10_1007_JHEP09_2021_156 crossref_primary_10_1103_PhysRevD_105_126019 crossref_primary_10_1007_JHEP09_2022_080 crossref_primary_10_1007_JHEP01_2021_073 crossref_primary_10_1007_JHEP12_2021_013 crossref_primary_10_3390_universe7120464 crossref_primary_10_1007_JHEP03_2023_026 crossref_primary_10_1007_JHEP11_2020_056 crossref_primary_10_1007_JHEP04_2021_289 crossref_primary_10_1103_PhysRevX_14_011024 crossref_primary_10_1103_PhysRevD_108_104059 crossref_primary_10_1007_JHEP01_2021_065 crossref_primary_10_1103_PhysRevD_103_046021 crossref_primary_10_1007_JHEP11_2023_122 crossref_primary_10_1007_JHEP05_2021_233 crossref_primary_10_1007_JHEP02_2023_080 crossref_primary_10_1007_JHEP09_2022_171 crossref_primary_10_1007_JHEP08_2022_118 crossref_primary_10_1007_JHEP09_2020_125 crossref_primary_10_1007_JHEP06_2022_094 crossref_primary_10_1007_JHEP09_2022_179 crossref_primary_10_1088_1751_8121_acef7d crossref_primary_10_1007_JHEP02_2025_004 crossref_primary_10_1007_JHEP07_2021_138 crossref_primary_10_1007_JHEP08_2022_002 crossref_primary_10_21468_SciPostPhys_14_6_150 crossref_primary_10_1007_JHEP10_2021_010 crossref_primary_10_1007_JHEP10_2024_220 crossref_primary_10_21468_SciPostPhys_14_3_026 crossref_primary_10_1103_PhysRevD_109_086011 crossref_primary_10_1007_JHEP11_2021_067 crossref_primary_10_21468_SciPostPhys_12_2_073 crossref_primary_10_1103_PhysRevD_106_105015 crossref_primary_10_1103_PhysRevD_109_086024 crossref_primary_10_1007_JHEP12_2021_156 crossref_primary_10_1103_PhysRevD_108_066014 crossref_primary_10_1007_JHEP03_2021_214 crossref_primary_10_1103_PhysRevD_110_046007 crossref_primary_10_1007_JHEP02_2021_009 crossref_primary_10_1007_JHEP01_2022_119 crossref_primary_10_1007_JHEP04_2021_272 crossref_primary_10_1007_JHEP09_2022_069 crossref_primary_10_1103_PhysRevD_110_046008 crossref_primary_10_1103_PhysRevD_106_024050 crossref_primary_10_1007_JHEP11_2020_155 crossref_primary_10_1088_1361_6382_acbe8b crossref_primary_10_1103_PhysRevD_108_066012 crossref_primary_10_1007_JHEP05_2021_117 crossref_primary_10_1103_PhysRevD_105_086021 crossref_primary_10_1007_JHEP03_2022_136 crossref_primary_10_1103_PhysRevD_105_086022 crossref_primary_10_21468_SciPostPhys_9_4_045 crossref_primary_10_1103_PhysRevD_106_065011 crossref_primary_10_1007_JHEP03_2025_004 crossref_primary_10_1007_JHEP04_2021_080 crossref_primary_10_3390_e25121663 crossref_primary_10_1007_JHEP09_2022_158 crossref_primary_10_1007_JHEP10_2024_249 crossref_primary_10_1007_JHEP04_2023_122 crossref_primary_10_1038_s41467_024_55463_9 crossref_primary_10_1088_1361_6382_ad1d46 crossref_primary_10_1007_JHEP02_2023_195 crossref_primary_10_1103_PhysRevD_103_044042 crossref_primary_10_3390_galaxies9010016 crossref_primary_10_1103_PhysRevD_104_024039 crossref_primary_10_1142_S0217751X2250097X crossref_primary_10_1007_JHEP03_2023_067 crossref_primary_10_1007_JHEP11_2024_151 crossref_primary_10_22331_q_2022_02_16_655 crossref_primary_10_1103_PhysRevD_110_086002 crossref_primary_10_1007_JHEP10_2021_048 crossref_primary_10_1142_S021773232130007X crossref_primary_10_1103_PhysRevResearch_6_033286 crossref_primary_10_1007_s00023_023_01358_2 crossref_primary_10_1007_JHEP11_2021_212 crossref_primary_10_21468_SciPostPhys_12_4_135 crossref_primary_10_1007_JHEP03_2022_039 crossref_primary_10_1007_JHEP12_2023_179 crossref_primary_10_1007_JHEP05_2022_118 crossref_primary_10_1007_JHEP11_2024_164 crossref_primary_10_1007_JHEP09_2022_136 crossref_primary_10_1007_JHEP11_2022_110 crossref_primary_10_21468_SciPostPhys_17_2_051 crossref_primary_10_1007_JHEP10_2021_052 crossref_primary_10_1007_JHEP07_2022_073 crossref_primary_10_1007_JHEP11_2023_035 crossref_primary_10_1088_1572_9494_acde6b crossref_primary_10_1007_JHEP07_2024_240 crossref_primary_10_1103_PhysRevD_103_126020 crossref_primary_10_1103_PhysRevD_111_L041503 crossref_primary_10_1007_JHEP07_2021_051 crossref_primary_10_1007_JHEP09_2022_024 crossref_primary_10_1007_JHEP01_2025_063 crossref_primary_10_1007_JHEP04_2021_069 crossref_primary_10_1007_JHEP02_2022_126 crossref_primary_10_1007_JHEP10_2024_131 crossref_primary_10_1016_j_aop_2022_168898 crossref_primary_10_1142_S0218271822420214 crossref_primary_10_1007_JHEP06_2023_079 crossref_primary_10_1088_1361_6382_ad5bb7 crossref_primary_10_1088_1475_7516_2024_10_031 crossref_primary_10_1007_s10701_022_00540_6 crossref_primary_10_1007_JHEP01_2021_118 crossref_primary_10_1007_JHEP02_2024_191 crossref_primary_10_1007_JHEP08_2022_189 crossref_primary_10_1007_JHEP10_2021_196 crossref_primary_10_1103_PhysRevD_103_066024 crossref_primary_10_1007_JHEP10_2023_005 crossref_primary_10_1007_JHEP08_2022_062 crossref_primary_10_1103_PhysRevD_107_066020 crossref_primary_10_1103_PhysRevD_103_106013 crossref_primary_10_1007_JHEP10_2020_166 crossref_primary_10_1007_JHEP05_2021_062 crossref_primary_10_1142_S0217751X2250227X crossref_primary_10_1103_PhysRevLett_126_061604 crossref_primary_10_1088_1751_8121_acc8a5 crossref_primary_10_1007_JHEP05_2024_039 crossref_primary_10_1007_JHEP09_2022_002 crossref_primary_10_1140_epjc_s10052_022_10376_z crossref_primary_10_1007_JHEP08_2022_195 crossref_primary_10_1088_1361_6382_ad6e4d crossref_primary_10_1103_PhysRevD_109_106013 crossref_primary_10_3390_e24010101 crossref_primary_10_1007_JHEP02_2024_183 crossref_primary_10_1007_JHEP03_2021_040 crossref_primary_10_1007_JHEP08_2022_071 crossref_primary_10_1103_PhysRevD_103_066011 crossref_primary_10_1007_JHEP12_2023_050 crossref_primary_10_1103_PhysRevD_102_086021 crossref_primary_10_1007_JHEP07_2024_274 crossref_primary_10_1007_JHEP08_2024_010 crossref_primary_10_1103_PhysRevLett_132_161601 crossref_primary_10_1007_JHEP01_2022_071 crossref_primary_10_1088_1475_7516_2024_09_040 crossref_primary_10_1007_JHEP10_2024_063 crossref_primary_10_1134_S004057792303008X crossref_primary_10_1007_JHEP09_2020_194 crossref_primary_10_1007_JHEP10_2020_187 crossref_primary_10_1007_JHEP09_2020_192 crossref_primary_10_1007_JHEP07_2023_122 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1103_PhysRevD_104_086007 crossref_primary_10_1007_JHEP01_2022_085 crossref_primary_10_1088_1751_8121_ad9cd4 crossref_primary_10_1007_JHEP07_2022_128 crossref_primary_10_1007_JHEP02_2024_145 crossref_primary_10_1007_JHEP08_2021_171 crossref_primary_10_1007_JHEP10_2023_040 crossref_primary_10_1007_JHEP06_2022_109 crossref_primary_10_1088_1361_6633_acceb4 crossref_primary_10_1007_JHEP09_2021_196 crossref_primary_10_1007_JHEP09_2024_163 crossref_primary_10_1007_JHEP08_2022_026 crossref_primary_10_1103_PhysRevD_103_L061901 crossref_primary_10_1007_JHEP03_2021_073 crossref_primary_10_1007_JHEP01_2021_032 crossref_primary_10_1093_ptep_ptab090 crossref_primary_10_1088_1361_6382_acaba5 crossref_primary_10_1088_1751_8121_ad1d24 crossref_primary_10_1007_JHEP01_2022_132 crossref_primary_10_1088_1751_8121_ad8196 crossref_primary_10_1007_JHEP02_2024_135 crossref_primary_10_1007_JHEP03_2021_086 crossref_primary_10_1007_JHEP10_2021_201 crossref_primary_10_1007_JHEP08_2020_126 crossref_primary_10_1007_JHEP09_2024_033 crossref_primary_10_1007_JHEP10_2021_202 crossref_primary_10_1007_JHEP04_2021_245 crossref_primary_10_1007_JHEP02_2021_072 crossref_primary_10_1007_JHEP02_2025_052 crossref_primary_10_1007_JHEP10_2024_076 crossref_primary_10_1007_JHEP12_2020_025 crossref_primary_10_1007_JHEP07_2022_143 crossref_primary_10_21468_SciPostPhys_11_2_034 crossref_primary_10_1007_JHEP10_2021_205 crossref_primary_10_1007_JHEP05_2021_135 crossref_primary_10_1007_JHEP03_2025_068 crossref_primary_10_1007_JHEP07_2022_108 crossref_primary_10_1142_S0217751X22500257 crossref_primary_10_1007_JHEP10_2022_147 crossref_primary_10_1007_JHEP06_2024_017 crossref_primary_10_1007_JHEP01_2022_038 crossref_primary_10_1007_s41114_023_00046_1 crossref_primary_10_1007_JHEP01_2021_130 crossref_primary_10_1088_1361_6382_ac2cb7 crossref_primary_10_1007_JHEP04_2023_061 crossref_primary_10_1088_1361_6382_ace14a crossref_primary_10_1007_JHEP09_2024_126 crossref_primary_10_1140_epjc_s10052_023_12164_9 crossref_primary_10_1002_prop_202200102 crossref_primary_10_1103_PhysRevD_109_104053 crossref_primary_10_1007_JHEP02_2022_087 crossref_primary_10_1007_JHEP09_2021_185 crossref_primary_10_1007_JHEP09_2024_133 crossref_primary_10_21468_SciPostPhys_14_2_019 crossref_primary_10_1007_JHEP04_2021_103 crossref_primary_10_1007_JHEP02_2025_032 crossref_primary_10_1007_JHEP02_2025_150 crossref_primary_10_1007_JHEP10_2021_226 crossref_primary_10_1007_JHEP02_2021_173 crossref_primary_10_1007_JHEP10_2021_227 crossref_primary_10_1007_JHEP10_2021_107 |
Cites_doi | 10.1103/PhysRevD.85.044038 10.1103/PhysRevD.53.6979 10.1103/PhysRevD.88.024018 10.1088/1126-6708/2007/07/062 10.1142/S0217751X03016380 10.1007/JHEP09(2013)018 10.1016/0550-3213(88)90109-5 10.1016/0550-3213(88)90446-4 10.1103/PhysRevD.92.104020 10.1007/JHEP02(2020)177 10.1007/JHEP11(2013)074 10.1103/PhysRevD.15.2752 10.1103/PhysRevD.94.084035 10.1103/PhysRevD.56.3490 10.1007/JHEP01(2016)008 10.1006/aphy.2002.6305 10.1103/PhysRevD.43.1170 10.1088/0264-9381/25/21/214004 10.1088/1126-6708/2006/08/045 10.1103/PhysRevD.50.7403 10.1007/JHEP01(2018)081 10.1007/JHEP06(2020)117 10.1088/1126-6708/2004/02/008 10.1103/PhysRevLett.116.231301 10.1016/j.physrep.2008.08.001 10.1007/JHEP12(2019)063 10.1007/JHEP08(2013)090 10.1007/s10714-010-1034-0 10.1103/PhysRevLett.111.171301 10.1088/1361-6633/aa77cc 10.1093/ptep/ptw124 10.1007/JHEP07(2016)139 10.1016/0550-3213(89)90353-2 10.1007/JHEP10(2013)107 10.1007/JHEP03(2013)059 10.1088/0264-9381/12/5/011 10.1088/0264-9381/30/2/025001 10.1016/j.physletb.2020.135280 10.1007/JHEP03(2020)149 10.1088/1126-6708/2007/12/018 10.1007/JHEP05(2020)013 10.1088/1361-6633/aa778e 10.1142/S0218271814420267 10.1103/PhysRevLett.112.041102 10.1088/1126-6708/2003/04/021 10.1142/S0218271814500412 10.1142/9789814538992_0007 10.1016/0550-3213(89)90290-3 10.1103/PhysRevLett.96.181602 10.1007/JHEP03(2020)033 10.1007/JHEP12(2017)047 10.1002/prop.201300020 10.21468/SciPostPhys.9.1.001 10.1103/PhysRevD.37.904 10.1103/RevModPhys.88.015002 10.1016/S0370-2693(98)00377-3 10.1007/JHEP10(2013)212 10.1088/1126-6708/2003/07/056 10.1063/1.531252 10.1103/PhysRevD.49.6606 10.1103/PhysRevD.48.3743 10.1142/S0218271813420029 10.1007/JHEP06(2015)064 10.1016/0550-3213(88)90110-1 10.1007/JHEP11(2016)009 10.1103/PhysRevD.52.6997 10.1103/PhysRevD.88.084035 10.1103/PhysRevD.73.064016 10.1007/JHEP11(2019)040 10.1007/JHEP01(2016)122 10.1103/PhysRevD.14.2460 10.1007/0-387-24992-3_2 10.1103/PhysRevD.74.106005 10.1007/JHEP02(2013)062 10.1088/1126-6708/2004/02/053 10.1515/zna-2001-1216 10.1007/s10714-019-2505-6 10.4310/ATMP.1998.v2.n2.a2 10.1088/1126-6708/2009/10/079 10.1016/0550-3213(89)90592-0 10.1103/PhysRevLett.71.1291 10.1007/JHEP01(2014)034 10.1007/JHEP10(2017)008 10.1007/BF01645738 10.1103/PhysRev.101.860 10.1103/PhysRevD.100.046002 10.21468/SciPostPhys.3.2.016 10.1002/prop.200410203 10.1103/PhysRevLett.71.2367 10.1103/PhysRevD.88.064023 10.1016/j.nuclphysb.2014.05.012 10.1103/PhysRevD.28.2960 10.1103/PhysRevD.56.6247 10.1016/0370-2693(87)90028-1 10.1103/PhysRevD.72.084013 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. Copyright Springer Nature B.V. Aug 2020 |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: Copyright Springer Nature B.V. Aug 2020 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP08(2020)044 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 72 |
ExternalDocumentID | oai_doaj_org_article_8e7bf2619cfe40bcbec0501a75c95239 10_1007_JHEP08_2020_044 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c511t-c75358c67e01061272e8dd4abfad26487887e65affa1e9ea50278db15cb297183 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Sun Jul 13 05:07:45 EDT 2025 Sat Jul 26 00:26:03 EDT 2025 Tue Jul 01 03:55:34 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:37:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | AdS-CFT Correspondence Black Holes Models of Quantum Gravity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-c75358c67e01061272e8dd4abfad26487887e65affa1e9ea50278db15cb297183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7821-7889 |
OpenAccessLink | https://doaj.org/article/8e7bf2619cfe40bcbec0501a75c95239 |
PQID | 2432684751 |
PQPubID | 2034718 |
PageCount | 72 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8e7bf2619cfe40bcbec0501a75c95239 proquest_journals_3158985037 proquest_journals_2432684751 crossref_primary_10_1007_JHEP08_2020_044 crossref_citationtrail_10_1007_JHEP08_2020_044 springer_journals_10_1007_JHEP08_2020_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-10 |
PublicationDateYYYYMMDD | 2020-08-10 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | A Giveon (13575_CR38) 2020; 06 13575_CR71 13575_CR73 13575_CR72 13575_CR74 13575_CR77 Y Chen (13575_CR123) 2020; 03 D Marolf (13575_CR126) 2016; 01 D Marolf (13575_CR6) 2017; 80 13575_CR76 A Almheiri (13575_CR23) 2013; 02 13575_CR78 K Osterwalder (13575_CR81) 1973; 31 N Goheer (13575_CR106) 2003; 07 SR Coleman (13575_CR55) 1988; 307 VE Hubeny (13575_CR52) 2007; 07 F Winterberg (13575_CR13) 2001; 56 D Harlow (13575_CR4) 2016; 88 A Almheiri (13575_CR43) 2019; 12 13575_CR82 D Harlow (13575_CR83) 2016; 01 L Susskind (13575_CR7) 1993; 48 OY Shvedov (13575_CR75) 2002; 302 T Faulkner (13575_CR53) 2013; 11 13575_CR86 13575_CR88 13575_CR87 SB Giddings (13575_CR22) 2013; 88 A Almheiri (13575_CR40) 2013; 09 M Guica (13575_CR84) 2017; 3 JB Hartle (13575_CR68) 1983; 28 A Giveon (13575_CR35) 2015; 06 13575_CR2 13575_CR1 13575_CR90 V Balasubramanian (13575_CR128) 2008; 25 SB Giddings (13575_CR30) 2013; 88 13575_CR3 SS Gubser (13575_CR59) 1998; 428 13575_CR92 13575_CR103 13575_CR104 JJ Halliwell (13575_CR69) 1991; 43 13575_CR94 HM Haggard (13575_CR34) 2015; 92 13575_CR97 13575_CR107 13575_CR108 13575_CR10 13575_CR98 13575_CR12 R Bousso (13575_CR124) 2013; 88 GW Gibbons (13575_CR61) 1977; 15 K Skenderis (13575_CR129) 2008; 467 SB Giddings (13575_CR66) 1988; 306 A Almheiri (13575_CR46) 2020; 9 SB Giddings (13575_CR56) 1988; 307 13575_CR110 13575_CR111 13575_CR112 S Ryu (13575_CR50) 2006; 08 D Harlow (13575_CR85) 2020; 02 13575_CR115 M Van Raamsdonk (13575_CR121) 2010; 42 13575_CR119 JM Maldacena (13575_CR11) 2003; 04 SD Mathur (13575_CR29) 2014; 884 J Polchinski (13575_CR100) 1994; 50 T Jacobson (13575_CR133) 2019; 100 13575_CR19 C Rovelli (13575_CR33) 2014; 23 BD Chowdhury (13575_CR130) 2010 A Almheiri (13575_CR44) 2020; 03 T Jacobson (13575_CR132) 2013; 22 SD Mathur (13575_CR117) 2019; 51 WG Unruh (13575_CR5) 2017; 80 13575_CR120 H Massam (13575_CR93) 2003; 31 SW Hawking (13575_CR36) 2016; 116 JM Maldacena (13575_CR58) 2004; 02 13575_CR127 Y Nomura (13575_CR27) 2013; 03 13575_CR32 13575_CR28 M Christodoulou (13575_CR37) 2016; 94 Z Fu (13575_CR109) 2019; 11 D Marolf (13575_CR122) 2013; 30 E Witten (13575_CR60) 1998; 2 SB Giddings (13575_CR20) 2012; 85 AF Möbius (13575_CR89) 1863; 15 13575_CR131 I Heemskerk (13575_CR113) 2009; 10 SD Mathur (13575_CR17) 2005; 53 13575_CR42 J Engelsöy (13575_CR95) 2016; 07 13575_CR45 L Susskind (13575_CR8) 1993; 71 SB Giddings (13575_CR18) 2006; 74 A Davidson (13575_CR21) 2014; 23 13575_CR39 SB Giddings (13575_CR116) 2017; 12 PAM Dirac (13575_CR70) 1964 K Papadodimas (13575_CR25) 2013; 10 HZ Chen (13575_CR47) 2020; 03 A Lewkowycz (13575_CR114) 2013; 08 GT Horowitz (13575_CR16) 2006; 73 RF Streater (13575_CR80) 2016 E Verlinde (13575_CR26) 2013; 10 A Almheiri (13575_CR48) 2020; 05 L Susskind (13575_CR9) 1994; 49 S Ryu (13575_CR51) 2006; 96 DA Lowe (13575_CR105) 1995; 52 D Marolf (13575_CR41) 2013; 111 SW Hawking (13575_CR65) 1988; 37 13575_CR49 N Arkani-Hamed (13575_CR63) 2007; 12 SD Mathur (13575_CR24) 2014; 01 D Stanford (13575_CR96) 2017; 10 GT Horowitz (13575_CR14) 2004; 02 J Preskill (13575_CR102) 1989; 323 K Okuyama (13575_CR91) 2020; 803 R Bousso (13575_CR125) 2014; 112 W Fischler (13575_CR101) 1989; 327 P Hayden (13575_CR118) 2016; 11 SW Hawking (13575_CR15) 2005; 72 13575_CR62 SW Hawking (13575_CR64) 1987; 195 13575_CR67 SW Hawking (13575_CR99) 1976; 14 J Maldacena (13575_CR31) 2013; 61 X Dong (13575_CR54) 2018; 01 SB Giddings (13575_CR57) 1989; 321 AS Wightman (13575_CR79) 1956; 101 |
References_xml | – volume: 85 year: 2012 ident: 13575_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.044038 – ident: 13575_CR90 – ident: 13575_CR76 doi: 10.1103/PhysRevD.53.6979 – volume: 88 year: 2013 ident: 13575_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.024018 – volume: 07 start-page: 062 year: 2007 ident: 13575_CR52 publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 – ident: 13575_CR98 – ident: 13575_CR107 – ident: 13575_CR10 doi: 10.1142/S0217751X03016380 – ident: 13575_CR32 – volume: 09 start-page: 018 year: 2013 ident: 13575_CR40 publication-title: JHEP doi: 10.1007/JHEP09(2013)018 – volume: 307 start-page: 854 year: 1988 ident: 13575_CR56 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90109-5 – volume: 306 start-page: 890 year: 1988 ident: 13575_CR66 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90446-4 – volume: 92 year: 2015 ident: 13575_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.104020 – volume: 02 start-page: 177 year: 2020 ident: 13575_CR85 publication-title: JHEP doi: 10.1007/JHEP02(2020)177 – ident: 13575_CR3 – volume: 11 start-page: 074 year: 2013 ident: 13575_CR53 publication-title: JHEP doi: 10.1007/JHEP11(2013)074 – volume: 15 start-page: 2752 year: 1977 ident: 13575_CR61 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2752 – volume: 94 year: 2016 ident: 13575_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.084035 – ident: 13575_CR104 – ident: 13575_CR28 – ident: 13575_CR77 doi: 10.1103/PhysRevD.56.3490 – volume: 01 start-page: 008 year: 2016 ident: 13575_CR126 publication-title: JHEP doi: 10.1007/JHEP01(2016)008 – volume: 302 start-page: 2 year: 2002 ident: 13575_CR75 publication-title: Annals Phys. doi: 10.1006/aphy.2002.6305 – volume: 15 start-page: 19 year: 1863 ident: 13575_CR89 publication-title: Mathematisch-physikalische Klasse – volume: 43 start-page: 1170 year: 1991 ident: 13575_CR69 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.43.1170 – volume: 25 year: 2008 ident: 13575_CR128 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/25/21/214004 – ident: 13575_CR49 – ident: 13575_CR119 – ident: 13575_CR87 – volume: 08 start-page: 045 year: 2006 ident: 13575_CR50 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – ident: 13575_CR19 – volume: 50 start-page: 7403 year: 1994 ident: 13575_CR100 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.50.7403 – volume: 01 start-page: 081 year: 2018 ident: 13575_CR54 publication-title: JHEP doi: 10.1007/JHEP01(2018)081 – volume: 06 start-page: 117 year: 2020 ident: 13575_CR38 publication-title: JHEP doi: 10.1007/JHEP06(2020)117 – volume: 02 start-page: 008 year: 2004 ident: 13575_CR14 publication-title: JHEP doi: 10.1088/1126-6708/2004/02/008 – volume: 116 year: 2016 ident: 13575_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.231301 – volume: 467 start-page: 117 year: 2008 ident: 13575_CR129 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2008.08.001 – ident: 13575_CR92 – volume: 12 start-page: 063 year: 2019 ident: 13575_CR43 publication-title: JHEP doi: 10.1007/JHEP12(2019)063 – volume: 08 start-page: 090 year: 2013 ident: 13575_CR114 publication-title: JHEP doi: 10.1007/JHEP08(2013)090 – volume: 42 start-page: 2323 year: 2010 ident: 13575_CR121 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-010-1034-0 – volume: 111 year: 2013 ident: 13575_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.171301 – volume: 80 start-page: 092001 year: 2017 ident: 13575_CR6 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/aa77cc – ident: 13575_CR86 – ident: 13575_CR67 – ident: 13575_CR94 doi: 10.1093/ptep/ptw124 – volume: 07 start-page: 139 year: 2016 ident: 13575_CR95 publication-title: JHEP doi: 10.1007/JHEP07(2016)139 – volume: 321 start-page: 481 year: 1989 ident: 13575_CR57 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90353-2 – ident: 13575_CR110 – volume-title: 5th Modave Summer School in Mathematical Physics year: 2010 ident: 13575_CR130 – volume: 10 start-page: 107 year: 2013 ident: 13575_CR26 publication-title: JHEP doi: 10.1007/JHEP10(2013)107 – volume: 03 start-page: 059 year: 2013 ident: 13575_CR27 publication-title: JHEP doi: 10.1007/JHEP03(2013)059 – ident: 13575_CR72 doi: 10.1088/0264-9381/12/5/011 – volume: 30 year: 2013 ident: 13575_CR122 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/30/2/025001 – volume: 803 year: 2020 ident: 13575_CR91 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135280 – ident: 13575_CR127 – volume: 03 start-page: 149 year: 2020 ident: 13575_CR44 publication-title: JHEP doi: 10.1007/JHEP03(2020)149 – volume: 12 start-page: 018 year: 2007 ident: 13575_CR63 publication-title: JHEP doi: 10.1088/1126-6708/2007/12/018 – volume: 05 start-page: 013 year: 2020 ident: 13575_CR48 publication-title: JHEP doi: 10.1007/JHEP05(2020)013 – volume: 80 start-page: 092002 year: 2017 ident: 13575_CR5 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/aa778e – volume: 23 year: 2014 ident: 13575_CR33 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271814420267 – volume: 112 year: 2014 ident: 13575_CR125 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.041102 – ident: 13575_CR42 – volume: 04 start-page: 021 year: 2003 ident: 13575_CR11 publication-title: JHEP doi: 10.1088/1126-6708/2003/04/021 – volume: 23 year: 2014 ident: 13575_CR21 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271814500412 – ident: 13575_CR88 doi: 10.1142/9789814538992_0007 – volume: 327 start-page: 157 year: 1989 ident: 13575_CR101 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90290-3 – volume: 96 start-page: 181602 year: 2006 ident: 13575_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 03 start-page: 152 year: 2020 ident: 13575_CR47 publication-title: JHEP – ident: 13575_CR71 – ident: 13575_CR103 – volume: 03 start-page: 033 year: 2020 ident: 13575_CR123 publication-title: JHEP doi: 10.1007/JHEP03(2020)033 – volume: 12 start-page: 047 year: 2017 ident: 13575_CR116 publication-title: JHEP doi: 10.1007/JHEP12(2017)047 – volume: 61 start-page: 781 year: 2013 ident: 13575_CR31 publication-title: Fortsch. Phys. doi: 10.1002/prop.201300020 – volume: 9 start-page: 001 year: 2020 ident: 13575_CR46 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.9.1.001 – volume: 37 start-page: 904 year: 1988 ident: 13575_CR65 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.37.904 – volume: 88 start-page: 015002 year: 2016 ident: 13575_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.015002 – volume: 428 start-page: 105 year: 1998 ident: 13575_CR59 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00377-3 – volume: 10 year: 2013 ident: 13575_CR25 publication-title: JHEP doi: 10.1007/JHEP10(2013)212 – volume: 07 start-page: 056 year: 2003 ident: 13575_CR106 publication-title: JHEP doi: 10.1088/1126-6708/2003/07/056 – ident: 13575_CR73 doi: 10.1063/1.531252 – ident: 13575_CR112 – ident: 13575_CR39 – volume: 49 start-page: 6606 year: 1994 ident: 13575_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.49.6606 – volume: 48 start-page: 3743 year: 1993 ident: 13575_CR7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.48.3743 – ident: 13575_CR62 – volume: 22 year: 2013 ident: 13575_CR132 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271813420029 – volume: 06 start-page: 064 year: 2015 ident: 13575_CR35 publication-title: JHEP doi: 10.1007/JHEP06(2015)064 – volume: 307 start-page: 867 year: 1988 ident: 13575_CR55 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90110-1 – volume: 11 start-page: 009 year: 2016 ident: 13575_CR118 publication-title: JHEP doi: 10.1007/JHEP11(2016)009 – volume: 52 start-page: 6997 year: 1995 ident: 13575_CR105 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.52.6997 – ident: 13575_CR108 – ident: 13575_CR97 – volume: 88 year: 2013 ident: 13575_CR124 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.084035 – volume: 73 start-page: 064016 year: 2006 ident: 13575_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.064016 – volume-title: Lectures on quantum mechanics year: 1964 ident: 13575_CR70 – volume: 11 start-page: 040 year: 2019 ident: 13575_CR109 publication-title: JHEP doi: 10.1007/JHEP11(2019)040 – volume: 01 start-page: 122 year: 2016 ident: 13575_CR83 publication-title: JHEP doi: 10.1007/JHEP01(2016)122 – volume: 14 start-page: 2460 year: 1976 ident: 13575_CR99 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.14.2460 – ident: 13575_CR2 doi: 10.1007/0-387-24992-3_2 – ident: 13575_CR45 – volume: 74 year: 2006 ident: 13575_CR18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.106005 – volume: 02 start-page: 062 year: 2013 ident: 13575_CR23 publication-title: JHEP doi: 10.1007/JHEP02(2013)062 – volume: 02 start-page: 053 year: 2004 ident: 13575_CR58 publication-title: JHEP doi: 10.1088/1126-6708/2004/02/053 – ident: 13575_CR115 – ident: 13575_CR111 – volume: 56 start-page: 889 year: 2001 ident: 13575_CR13 publication-title: Z. Naturforsch. A doi: 10.1515/zna-2001-1216 – volume: 31 start-page: 287 year: 2003 ident: 13575_CR93 publication-title: Annals Statist. – volume: 51 start-page: 24 year: 2019 ident: 13575_CR117 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-019-2505-6 – volume: 2 start-page: 253 year: 1998 ident: 13575_CR60 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 10 start-page: 079 year: 2009 ident: 13575_CR113 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: 323 start-page: 141 year: 1989 ident: 13575_CR102 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90592-0 – ident: 13575_CR1 doi: 10.1103/PhysRevLett.71.1291 – volume-title: PCT, spin and statistics and all that year: 2016 ident: 13575_CR80 – ident: 13575_CR82 – ident: 13575_CR131 – volume: 01 start-page: 034 year: 2014 ident: 13575_CR24 publication-title: JHEP doi: 10.1007/JHEP01(2014)034 – volume: 10 start-page: 008 year: 2017 ident: 13575_CR96 publication-title: JHEP doi: 10.1007/JHEP10(2017)008 – volume: 31 start-page: 83 year: 1973 ident: 13575_CR81 publication-title: Commun. Math. Phys. doi: 10.1007/BF01645738 – ident: 13575_CR12 – volume: 101 start-page: 860 year: 1956 ident: 13575_CR79 publication-title: Phys. Rev. doi: 10.1103/PhysRev.101.860 – volume: 100 year: 2019 ident: 13575_CR133 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.046002 – volume: 3 year: 2017 ident: 13575_CR84 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.3.2.016 – ident: 13575_CR74 – ident: 13575_CR120 – volume: 53 start-page: 793 year: 2005 ident: 13575_CR17 publication-title: Fortsch. Phys. doi: 10.1002/prop.200410203 – volume: 71 start-page: 2367 year: 1993 ident: 13575_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.2367 – volume: 88 start-page: 064023 year: 2013 ident: 13575_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.064023 – volume: 884 start-page: 566 year: 2014 ident: 13575_CR29 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.05.012 – volume: 28 start-page: 2960 year: 1983 ident: 13575_CR68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.28.2960 – ident: 13575_CR78 doi: 10.1103/PhysRevD.56.6247 – volume: 195 start-page: 337 year: 1987 ident: 13575_CR64 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(87)90028-1 – volume: 72 start-page: 084013 year: 2005 ident: 13575_CR15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.084013 |
SSID | ssj0015190 |
Score | 2.7039626 |
Snippet | A
bstract
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of... In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We... Abstract In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 44 |
SubjectTerms | AdS-CFT Correspondence Asymptotic properties Black Holes Classical and Quantum Gravitation Cosmological constant Elementary Particles Gravitation High energy physics Hilbert space Integrals Models of Quantum Gravity Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Random variables Regular Article - Theoretical Physics Relativity Relativity Theory Spacetime String Theory Wormholes |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyQxDC-6Ivgiftzheip98EHhenZm2p2ZezlUVhZBEVHwbWjT1hfdVXdF7r836XZWFPVx2pQpTZomTfoLY7sQbK210SJIUIKeXgrjdCFUACVdLzdlfFt1dt4bXKvTG32TLtzGKa2y1YlRUbsR0B35Qa4KAiYpdfbv4VFQ1SiKrqYSGvNsAVVwVXXYwlH__OJyFkdA-0S2gD6yPDgd9C9ktYcOv9yXSr07iyJk_zs780NoNJ44JytsOZmK_HDK21U254drbDGmbMJ4nU3iMQM-PkvhaMdx9Ej9vb3zf7k19j9_nuZc-PFvjmoDPJWR5y9oo1JJXGw0QxeHRfTN-OUSFCcfBW7pZo8TKU_gqsTCH-z6pH91PBCphoIANKUmAtAd0RX0Sh-dv7zMfeWcMjYYR8ltlEzoe9qEYDJfe6MpEulspsHmNZ5bxU_WGY6GfoNxp2rCrteQ66AMKFsoBQ49TJC5z2zdZX_a1WwgAYxTnYu7poVGni5_Q8vf4PJ32d5swMMUW-Nr0iNiz4yMQLFjw-jptkl7rKl8aQN5hBC8khZQPKWWmSk11Ohv4wS3WuY2aaeOmze5-rS7yHRVV1oWZZftt_Lw1v3FdDe__9MvtkSUIiLrbrHO5OnZb6NtM7E7SYBfAW3891A priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2DAN2KdY90LRZocMOLTCvsi36sdsWJAgCbNhhAXozJEo6pUnRJCj670sqdoa0y2E3W6IAQaRM0iQ_CvEZg60BDCRBoU649DIxDvJEB9TKFZkpY23Vz1_FZKan13DdgiRxLcyT-P3VdDL6raoLctHVpdL6pXgFaV5yj4ZhMdyFC8gMUR1uz_NFeyonIvPvmZNPIqBRsYzfiqPWIpTftyw8Fi_84p14HTMzcfVerKM2QR-rTySZa5IcT39j5_6btMY-yM02tcKvvkj6OqDnbvHynkxR7nxLg2bh4rIIshnfXIu4KZdBWv6BJ5lUthiqzKkPYjYe_RlOkrZVQoJkMa0TJK8DKixKH328rMx85Zw2NhjHOWycM-gLMCGY1NfeAAccnU0BbVaTeso_it5iufAnQjpdM0Q9YAZBG9Q21xodOZKoMp_aui--dqfZYIsjzu0s5k2HgLw9_oaPv6Hj74uL3YLbLYTGYdIfzJ4dGWNfxwESiaa9Sk3lSxvY8cPgtbJIUqhApaYErMmtpg0OOuY27YVcNZnOGdemhPSf03kKVV2Bysu-uOzk4e_0ge2e_gftmXjDj0lE0x2I3vpu4z-RPbO251GWHwEBgu1s priority: 102 providerName: Springer Nature |
Title | Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information |
URI | https://link.springer.com/article/10.1007/JHEP08(2020)044 https://www.proquest.com/docview/2432684751 https://www.proquest.com/docview/3158985037 https://doaj.org/article/8e7bf2619cfe40bcbec0501a75c95239 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RUKVeUAutui1d-cABpKY4jp1Hb7DaZYUEQlVX4hbZY_tEl6q7CPXfd8ZJoFRFvfQSya_EGk8y38TjbwD2MbrGGGuyKFFnfPQys94UmY6opS-VrdLZqvOLcr7QZ1fm6rdUXxwT1tEDd4I7qkPlIsN8jEFLh_RMaWRuK4MNOVHp6B7ZvMGZ6vcPCJfIgchHVkdn8-mlrA_I0ZeHUutHNihR9T_Cl39siSZLM3sJ2z1EFMfd1F7BRljuwPMUqomrXVgn84IhHUcRhN8EeaLhm7sOn4Wz7qe47WItwuqjoM8FBk4fL-4Im3IqXKq0S5-GJdbNVPI9Bae4icLxHz3BXUVPqspL9xoWs-nXyTzrcydkSBBqnSG5IabGsgrJ6VOVCrX32rpoPQe1cRBhKI2N0eahCdbwDqR3uUGnGrJXxRvYXN4sw1sQXjfMWW9QmagtaldojZ48S5Qq5K4ZwadBmi32xOKc3-K6HSiRO_G3LP6WxD-Cg_sB3ztOjae7nvDy3HdjMuxUQSrS9irS_ktFRrA3LG7bv6GrVumCiW4qk_-1uchN3dRGFtUIDgd9eGh-Yrrv_sd038MLvl-WeHf3YHP94zZ8IOSzdmN4Vs9Ox7B1Mr24_EKlidJ8LSfjpP50XajjX0UqA_8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWCvgAUith6jj2JkFCiEeX7VMcWqk3Y49tLu1u6W6F-qf4jcw4yVZFlFuPcezEGo_HM56Zbxh7Bck3xjgjkgQtKPVSuGBKoRNoGYbKVTm3andvOD7QW4fmcIn97nNhKKyyl4lZUIcp0B35utIlAZNUpvhw8lNQ1SjyrvYlNFq22I7nv9Bkm73f_ILr-1qp0cb-57HoqgoIQOViLgAVdFPDsIrZHFKVinUI2vnkAoV7UXhdHBqXkitiE50h31zwhQGvGpTkJX73BrupSzzJKTN99HXhtUBtSPbwQbJa3xpvfJP1qkKNbE1qfenkywUCLmm1fzli8_k2usfudoop_9hy0n22FCcP2K0cIAqzh2yeDzWIOQmGo9bI0f6Nx_4ovuPe-XN-1kZ4xNkbjkIKIhWt50inYyrAi41uEvKwjPWZn0IH_MmniXu6R-TUlXdQrsQwj9jBtdD2MVueTCfxCeNBN4SUb0CZpB1oX2oNAe1ZkCoWvhmwtz01LXRw5lRV48j2QMwt-S2R3yL5B2x1MeCkRfK4uusnWp5FN4Lgzg3T0x-229G2jpVPZH9Cilp6wM0gjSxcZaBB6x4nuNIvru3kwsxecPE_X5eFqZvayLIasLWeHy5eXzHdp___00t2e7y_u2N3Nve2n7E7NEpkTN8Vtjw_PYvPUaua-xeZlTn7ft175w_TuTJb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBe0PgShTH8ANImEeo4dpMgTRNjrboNqgoxaW-ZP3nZ2rF2QvvX-Ou4c5JOQ4y3PcaxE-t8Pt_57n4H8NYGUyqlVRK4lQmlXibaqSyRwUru-kLnMbfq67g_OpIHx-p4BX63uTAUVtnKxCio3czSHXlPyIyASXKV9kITFjHZG-6c_0yoghR5WttyGjWLHPqrX2i-zbf393Ct3wkxHHz_PEqaCgOJRUVjkVhU1lVh-7mPppHIhS-ck9oE7Sj0i0LtfF_pEHTqS68V-emcSZU1okSpnuF378FqTlZRB1Z3B-PJt6UPA3Uj3oIJ8bx3MBpMeLEpUD_b4lLeOAdjuYAbOu5fbtl42g3X4FGjprJPNV89hhU_fQL3Y7ionT-FRTzirI8pMQx1SIbWsD8zp_4jM9pcscs63sPP3zMUWdZTCXuGlDqjcrzYqKcuDovIn_HJNTCgbBaYoVtFRl1ZA-xK7PMMju6Eus-hM51N_QtgTpaEm6-sUEFqK00mpXVo3VoufGrKLnxoqVnZBtycamycVi0sc03-ishfIfm7sLkccF7jetzedZeWZ9mNALljw-ziR9Xs76rwuQlkjdrgJTcWtwZXPNW5siXa-jjB9XZxq0ZKzKtrnv7n6yxVRVkonuVd2Gr54fr1LdN9-f8_vYEHuG-qL_vjw1fwkAYlEeB3HTqLi0v_GlWshdloeJnByV1vnz9DZDft |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcending+the+ensemble%3A+baby+universes%2C+spacetime+wormholes%2C+and+the+order+and+disorder+of+black+hole+information&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Donald+Marolf&rft.au=Henry+Maxfield&rft.date=2020-08-10&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=8&rft.spage=1&rft.epage=72&rft_id=info:doi/10.1007%2FJHEP08%282020%29044&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e7bf2619cfe40bcbec0501a75c95239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |