SARS-CoV-2 RBD Conjugated to Polyglucin, Spermidine, and dsRNA Elicits a Strong Immune Response in Mice

Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein...

Full description

Saved in:
Bibliographic Details
Published inVaccines (Basel) Vol. 11; no. 4; p. 808
Main Authors Volosnikova, Ekaterina A., Merkuleva, Iuliia A., Esina, Tatiana I., Shcherbakov, Dmitry N., Borgoyakova, Mariya B., Isaeva, Anastasiya A., Nesmeyanova, Valentina S., Volkova, Natalia V., Belenkaya, Svetlana V., Zaykovskaya, Anna V., Pyankov, Oleg V., Starostina, Ekaterina V., Zadorozhny, Alexey M., Zaitsev, Boris N., Karpenko, Larisa I., Ilyichev, Alexander A., Danilenko, Elena D.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
AbstractList Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH) 3 , or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH) 3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH) 3 . Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)[sub.3] , or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)[sub.3] enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)[sub.3] . Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH) , or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH) enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH) . Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
Audience Academic
Author Isaeva, Anastasiya A.
Volosnikova, Ekaterina A.
Esina, Tatiana I.
Merkuleva, Iuliia A.
Zaykovskaya, Anna V.
Pyankov, Oleg V.
Zadorozhny, Alexey M.
Shcherbakov, Dmitry N.
Nesmeyanova, Valentina S.
Belenkaya, Svetlana V.
Karpenko, Larisa I.
Ilyichev, Alexander A.
Starostina, Ekaterina V.
Danilenko, Elena D.
Borgoyakova, Mariya B.
Zaitsev, Boris N.
Volkova, Natalia V.
AuthorAffiliation State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
AuthorAffiliation_xml – name: State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
Author_xml – sequence: 1
  givenname: Ekaterina A.
  surname: Volosnikova
  fullname: Volosnikova, Ekaterina A.
– sequence: 2
  givenname: Iuliia A.
  orcidid: 0000-0002-6974-0686
  surname: Merkuleva
  fullname: Merkuleva, Iuliia A.
– sequence: 3
  givenname: Tatiana I.
  surname: Esina
  fullname: Esina, Tatiana I.
– sequence: 4
  givenname: Dmitry N.
  orcidid: 0000-0001-8023-4453
  surname: Shcherbakov
  fullname: Shcherbakov, Dmitry N.
– sequence: 5
  givenname: Mariya B.
  orcidid: 0000-0002-0768-1561
  surname: Borgoyakova
  fullname: Borgoyakova, Mariya B.
– sequence: 6
  givenname: Anastasiya A.
  surname: Isaeva
  fullname: Isaeva, Anastasiya A.
– sequence: 7
  givenname: Valentina S.
  orcidid: 0000-0003-1091-3586
  surname: Nesmeyanova
  fullname: Nesmeyanova, Valentina S.
– sequence: 8
  givenname: Natalia V.
  surname: Volkova
  fullname: Volkova, Natalia V.
– sequence: 9
  givenname: Svetlana V.
  orcidid: 0000-0002-3883-6335
  surname: Belenkaya
  fullname: Belenkaya, Svetlana V.
– sequence: 10
  givenname: Anna V.
  surname: Zaykovskaya
  fullname: Zaykovskaya, Anna V.
– sequence: 11
  givenname: Oleg V.
  surname: Pyankov
  fullname: Pyankov, Oleg V.
– sequence: 12
  givenname: Ekaterina V.
  surname: Starostina
  fullname: Starostina, Ekaterina V.
– sequence: 13
  givenname: Alexey M.
  surname: Zadorozhny
  fullname: Zadorozhny, Alexey M.
– sequence: 14
  givenname: Boris N.
  surname: Zaitsev
  fullname: Zaitsev, Boris N.
– sequence: 15
  givenname: Larisa I.
  surname: Karpenko
  fullname: Karpenko, Larisa I.
– sequence: 16
  givenname: Alexander A.
  surname: Ilyichev
  fullname: Ilyichev, Alexander A.
– sequence: 17
  givenname: Elena D.
  surname: Danilenko
  fullname: Danilenko, Elena D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37112720$$D View this record in MEDLINE/PubMed
BookMark eNptks9v0zAUxyM0xMbYnROyxIXDMuzY8YtPqCsDKo0fagFxs1zHDq4Su9jJpP33uHSMbSI-xHr--PP0rO_T4sAHb4riOcFnlAr8-kpp7bxJhGCGG9w8Ko4qDLykgv44uLM_LE5S2uD8CUIbDk-KQwqEVFDho6JbzZarch6-lxVanr9F8-A3U6dG06IxoC-hv-76Kbc5RautiYNrc8dTpHyL2rT8NEMXvdNuTEih1RiD79BiGCZv0NKkbfDJIOfRR6fNs-KxVX0yJzf_4-Lbu4uv8w_l5ef3i_nsstQ1IWO5xuvGNgBrizlYARSrRnAwFeU1ZmCU4BzrVtdVYy2sWcst19TUjWZgQQl6XCz23jaojdxGN6h4LYNy8k8hxE6qODrdG2mJYaCFqrKXQWMFZxyDzuUaWK2q7Hqzd22n9WBabfwYVX9Pev_Eu5-yC1eSYMI44XU2vLoxxPBrMmmUg0va9L3yJkxJVg0GgYUgJKMvH6CbMEWf32pHcU4xEPhHdSpP4LwNubHeSeUMGNRsF4ZMnf2Hyqs1g9M5Rdbl-r0LL-5Oejvi35xkAO8BHUNK0dhbhGC5S6N8mEb6G39kzzw
Cites_doi 10.1016/j.cell.2020.06.035
10.1038/s41586-021-03681-2
10.1080/14760584.2022.2002690
10.1002/jmv.27717
10.1056/NEJMoa2101544
10.1038/s41579-021-00573-0
10.1126/science.abf6840
10.1016/S1473-3099(21)00127-4
10.3390/v14030501
10.1056/NEJMoa2107659
10.1080/08830185.2021.1939696
10.1016/j.medj.2022.08.001
10.1371/journal.pone.0176784
10.1038/s41586-020-2814-7
10.7554/eLife.70658
10.1080/14760584.2022.2056025
10.1038/srep19570
10.1038/s41586-020-2599-8
10.1074/jbc.RA120.016284
10.3390/vaccines10010096
10.1016/j.virol.2009.07.018
10.1021/acscentsci.1c00216
10.1056/NEJMoa2103055
10.1016/S1473-3099(20)30987-7
10.1126/science.abm3425
10.1080/21645515.2014.1004026
10.15789/1563-0625-SEO-2082
10.1134/S1068162016020060
10.1002/bip.21334
10.1016/S1473-3099(21)00070-0
10.1016/j.ebiom.2022.104217
10.1101/2020.04.10.036418
10.1038/s41467-021-23942-y
10.1038/s41467-020-20251-8
10.3389/fimmu.2022.844837
10.1038/s41421-020-00199-1
10.1111/j.1742-4658.2005.04782.x
10.3389/fimmu.2022.801915
10.1126/sciadv.abj6538
10.1038/s41541-021-00393-6
10.3390/v14051060
10.3390/pharmaceutics13020140
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7T7
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/vaccines11040808
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2076-393X
ExternalDocumentID oai_doaj_org_article_f1e47c9a247e478f964607cf1e5745a2
PMC10146165
A747541104
37112720
10_3390_vaccines11040808
Genre Journal Article
GeographicLocations Russia
United States--US
Germany
GeographicLocations_xml – name: Russia
– name: United States--US
– name: Germany
GrantInformation_xml – fundername: State Research Center of Virology and Biotechnology VECTOR
  grantid: State Assignment 1/22
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAHBH
AAYXX
ABUWG
ADBBV
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
3V.
NPM
PMFND
7T7
7XB
8FD
8FK
C1K
FR3
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c511t-b0b8f877bf067f9730a8967e2365047ea9660cdc528ff7b4d6f6c3e58c47f7a93
IEDL.DBID M48
ISSN 2076-393X
IngestDate Wed Aug 27 01:26:08 EDT 2025
Thu Aug 21 18:37:44 EDT 2025
Fri Jul 11 07:19:43 EDT 2025
Fri Jul 25 11:56:57 EDT 2025
Tue Jun 17 22:13:48 EDT 2025
Tue Jun 10 21:15:16 EDT 2025
Thu Jan 02 22:53:15 EST 2025
Tue Jul 01 01:11:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
SARS-CoV-2
RBD
adjuvant
receptor-binding domain
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-b0b8f877bf067f9730a8967e2365047ea9660cdc528ff7b4d6f6c3e58c47f7a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6974-0686
0000-0001-8023-4453
0000-0002-0768-1561
0000-0003-1091-3586
0000-0002-3883-6335
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/vaccines11040808
PMID 37112720
PQID 2806630717
PQPubID 2032320
ParticipantIDs doaj_primary_oai_doaj_org_article_f1e47c9a247e478f964607cf1e5745a2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146165
proquest_miscellaneous_2807909911
proquest_journals_2806630717
gale_infotracmisc_A747541104
gale_infotracacademiconefile_A747541104
pubmed_primary_37112720
crossref_primary_10_3390_vaccines11040808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Vaccines (Basel)
PublicationTitleAlternate Vaccines (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chavda (ref_2) 2022; 94
Knudsen (ref_17) 2016; 6
Barton (ref_1) 2021; 10
Switzer (ref_6) 2022; 21
Volosnikova (ref_23) 2011; 31
Heath (ref_43) 2021; 385
Beaudoin (ref_5) 2022; 13
(ref_21) 2005; 272
Thuluva (ref_31) 2022; 83
Sahin (ref_37) 2020; 586
Rodrigues (ref_34) 2021; 7
Anand (ref_4) 2021; 15
Harvey (ref_3) 2021; 19
Dai (ref_12) 2020; 182
ref_11
ref_33
Novak (ref_7) 2022; 41
Du (ref_32) 2009; 393
He (ref_10) 2015; 11
ref_30
Sadoff (ref_42) 2021; 384
Jaume (ref_29) 2012; 18
ref_19
Cohen (ref_38) 2021; 371
Ella (ref_46) 2021; 21
Yang (ref_27) 2020; 586
Cordeiro (ref_18) 2015; 33
Paquet (ref_36) 2021; 7
Kleanthous (ref_25) 2021; 6
Coria (ref_35) 2022; 13
Malladi (ref_28) 2021; 296
Gilbert (ref_40) 2022; 375
Wu (ref_45) 2021; 21
Fougeroux (ref_15) 2021; 12
ref_24
Alter (ref_41) 2021; 596
Bateneva (ref_22) 2021; 22
Yang (ref_13) 2021; 21
Shinde (ref_44) 2021; 384
ref_9
Routhu (ref_14) 2021; 12
(ref_16) 2022; 3
Karpenko (ref_39) 2016; 42
Das (ref_8) 2022; 21
Baldwin (ref_20) 2010; 94
Zang (ref_26) 2020; 6
References_xml – volume: 182
  start-page: 722
  year: 2020
  ident: ref_12
  article-title: A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.035
– volume: 596
  start-page: 268
  year: 2021
  ident: ref_41
  article-title: Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03681-2
– volume: 21
  start-page: 83
  year: 2022
  ident: ref_6
  article-title: Evaluating the relationship between myocarditis and mRNA vaccination
  publication-title: Expert Rev. Vaccines
  doi: 10.1080/14760584.2022.2002690
– volume: 94
  start-page: 2986
  year: 2022
  ident: ref_2
  article-title: SARS-CoV-2 variants and vulnerability at the global level
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.27717
– volume: 384
  start-page: 2187
  year: 2021
  ident: ref_42
  article-title: Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2101544
– volume: 19
  start-page: 409
  year: 2021
  ident: ref_3
  article-title: SARS-CoV-2 variants, spike mutations and immune escape
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-021-00573-0
– volume: 371
  start-page: 735
  year: 2021
  ident: ref_38
  article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice
  publication-title: Science
  doi: 10.1126/science.abf6840
– volume: 21
  start-page: 1107
  year: 2021
  ident: ref_13
  article-title: Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: Two randomised, double-blind, placebo-controlled, phase 1 and 2 trials
  publication-title: Lancet Infect Dis.
  doi: 10.1016/S1473-3099(21)00127-4
– ident: ref_33
  doi: 10.3390/v14030501
– volume: 385
  start-page: 1172
  year: 2021
  ident: ref_43
  article-title: Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2107659
– volume: 41
  start-page: 438
  year: 2022
  ident: ref_7
  article-title: Adverse rare events to vaccines for COVID-19: From hypersensitivity reactions to thrombosis and thrombocytopenia
  publication-title: Int. Rev. Immunol.
  doi: 10.1080/08830185.2021.1939696
– volume: 15
  start-page: 1
  year: 2021
  ident: ref_4
  article-title: The safety of COVID-19 mRNA vaccines: A review
  publication-title: Patient Saf. Surg.
– volume: 3
  start-page: 760
  year: 2022
  ident: ref_16
  article-title: Safety and immunogenicity of anti-SARS-CoV-2 conjugate vaccine SOBERANA 02 in a two-dose or three-dose heterologous scheme in adults: Phase IIb Clinical Trial
  publication-title: Med
  doi: 10.1016/j.medj.2022.08.001
– ident: ref_19
  doi: 10.1371/journal.pone.0176784
– volume: 586
  start-page: 594
  year: 2020
  ident: ref_37
  article-title: COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses
  publication-title: Nature
  doi: 10.1038/s41586-020-2814-7
– volume: 10
  start-page: e70658
  year: 2021
  ident: ref_1
  article-title: Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics
  publication-title: Elife
  doi: 10.7554/eLife.70658
– volume: 21
  start-page: 825
  year: 2022
  ident: ref_8
  article-title: Current status of COVID-19 vaccination: Safety and liability concern for children, pregnant and lactating women
  publication-title: Expert Rev. Vaccines
  doi: 10.1080/14760584.2022.2056025
– volume: 6
  start-page: 19570
  year: 2016
  ident: ref_17
  article-title: Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens
  publication-title: Sci. Rep.
  doi: 10.1038/srep19570
– volume: 31
  start-page: 141
  year: 2011
  ident: ref_23
  article-title: The Study of the Process of Forming Conjugates to Create Vaccine Constructs
  publication-title: Siberian Sci. Med. J.
– volume: 586
  start-page: 572
  year: 2020
  ident: ref_27
  article-title: A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity
  publication-title: Nature
  doi: 10.1038/s41586-020-2599-8
– volume: 296
  start-page: 100025
  year: 2021
  ident: ref_28
  article-title: Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.016284
– ident: ref_24
  doi: 10.3390/vaccines10010096
– volume: 393
  start-page: 144
  year: 2009
  ident: ref_32
  article-title: Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity
  publication-title: Virology
  doi: 10.1016/j.virol.2009.07.018
– volume: 7
  start-page: 757
  year: 2021
  ident: ref_36
  article-title: Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.1c00216
– volume: 384
  start-page: 1899
  year: 2021
  ident: ref_44
  article-title: Efficacy of nvx-cov2373 COVID-19 vaccine against the b.1.351 variant
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2103055
– volume: 21
  start-page: 803
  year: 2021
  ident: ref_45
  article-title: Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30987-7
– volume: 375
  start-page: 43
  year: 2022
  ident: ref_40
  article-title: Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial
  publication-title: Science
  doi: 10.1126/science.abm3425
– volume: 11
  start-page: 477
  year: 2015
  ident: ref_10
  article-title: Advances in aluminum hydroxide-based adjuvant research and its mechanism
  publication-title: Hum. Vaccin. Immunother.
  doi: 10.1080/21645515.2014.1004026
– volume: 33
  start-page: 1279
  year: 2015
  ident: ref_18
  article-title: Nanoengineering of vaccines using natural polysaccharides
  publication-title: Biopolymers
– volume: 22
  start-page: 1155
  year: 2021
  ident: ref_22
  article-title: Stimulating effect of double-stranded yeast RNA on the activity of interferon system genes
  publication-title: Med. Immunol.
  doi: 10.15789/1563-0625-SEO-2082
– volume: 42
  start-page: 170
  year: 2016
  ident: ref_39
  article-title: Results of phase I clinical trials of a combined vaccine against HIV-1 based on synthetic polyepitope immunogens
  publication-title: Russ. J. Bioorg. Chem.
  doi: 10.1134/S1068162016020060
– volume: 94
  start-page: 128
  year: 2010
  ident: ref_20
  article-title: Polysaccharide-modified synthetic polymeric biomaterials
  publication-title: Biopolymers
  doi: 10.1002/bip.21334
– volume: 21
  start-page: 950
  year: 2021
  ident: ref_46
  article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: Interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00070-0
– volume: 83
  start-page: 104217
  year: 2022
  ident: ref_31
  article-title: Evaluation of safety and immunogenicity of receptor-binding domain-based COVID-19 vaccine (Corbevax) to select the optimum formulation in open-label, multicentre, and randomised phase-1/2 and phase-2 clinical trials
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.104217
– ident: ref_30
  doi: 10.1101/2020.04.10.036418
– volume: 12
  start-page: 3587
  year: 2021
  ident: ref_14
  article-title: SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23942-y
– volume: 12
  start-page: 324
  year: 2021
  ident: ref_15
  article-title: Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20251-8
– volume: 13
  start-page: 844837
  year: 2022
  ident: ref_35
  article-title: A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies, Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in Mice
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.844837
– volume: 6
  start-page: 61
  year: 2020
  ident: ref_26
  article-title: Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement
  publication-title: Cell Discov.
  doi: 10.1038/s41421-020-00199-1
– volume: 272
  start-page: 3777
  year: 2005
  ident: ref_21
  article-title: Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2005.04782.x
– volume: 13
  start-page: 801915
  year: 2022
  ident: ref_5
  article-title: Are There Hidden Genes in DNA/RNA Vaccines?
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2022.801915
– volume: 18
  start-page: 31
  year: 2012
  ident: ref_29
  article-title: SARS-CoV subunit vaccine: Antibody-mediated neutralisation and enhancement
  publication-title: Hong Kong Med. J.
– volume: 7
  start-page: eabj6538
  year: 2021
  ident: ref_34
  article-title: Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj6538
– volume: 6
  start-page: 128
  year: 2021
  ident: ref_25
  article-title: Scientific rationale for developing potent RBD-based vaccines targeting COVID-19
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-021-00393-6
– ident: ref_9
  doi: 10.3390/v14051060
– ident: ref_11
  doi: 10.3390/pharmaceutics13020140
SSID ssj0000913867
Score 2.2277231
Snippet Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 808
SubjectTerms adjuvant
Adjuvants
Aluminum
Animals
Antibodies
Antibody-drug conjugates
Antigens
CD4 antigen
CD8 antigen
Cloning
Comparative analysis
Coronaviruses
COVID-19
COVID-19 vaccines
Dosage and administration
Double-stranded RNA
Immune response
Immune response (humoral)
Immune system
Immunization
Immunogenicity
Immunoglobulin G
Laboratory animals
Lymphocytes
Lymphocytes T
Nanoparticles
Neutralizing
Polyamines
Proteins
RBD
receptor-binding domain
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Spermidine
Spike protein
Testing
Vaccines
Vectors (Biology)
Viral diseases
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70gHgUCBbkSKkLaqHk4fhy321YFqdVqt0W9RX6lBFVJRbJI---ZSdLtBg5cuEWxkzieGc839vgzIR9lpFNnHA-NLHjIeMRC6b0PnfQpc4B5tcWpgYtLfn7Nvt5kN1tHfWFOWE8P3HfcURF7JqzSCRNwIQvF4YXCwu1MsEx3oy_4vK1gqhuDVZxKLvp1yRTi-qNf2uJKdQPujgFKkiM_1NH1_z0ob3mlccbklgs6e0aeDtiRTvs2PydPfPWCHM578un1hF497qVqJvSQzh9pqdcvye1yuliGs_pbmNDF8Qmd1dWPFU6iOdrWdF7frTF9vawmdHmPGTLg1PyE6spR1ywup_T0rrRl21BNlzh9fku_4NYSTxd9lq2nZUUvYNjZI9dnp1ez83A4ZiG0gLba0EQgJymEKcBzFQpMXkvFhU9SQG_Q6xoJPK2zWSKLQhjmeMFt6jNpmSiEVukrslPVlX9DKEQnAECyyBjpmLNWIcErV8bgyaKKJwH5_NDp-X3PppFDFIICyv8UUECOUSqbesiD3d0A7cgH7cj_pR0B-YQyzdFaQXBWD5sOoLnIe5VPIZrKGH4yIPujmmBldlz8oBX5YOVNjqvSPMWIOCAHm2J8EjPXKl-vujpCAQyP44C87pVo80upALQrkiggcqReo38el1Tl944DHI9Y5jHP3v6PXnpHdhPAbn1C0j7ZaX-u_HvAWq350JnVb41SJTw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZb-7KXse6n125oMDoGMXVsWZKfRpKldIOG4LSjb0aW5NSj2FntDPLf7852knqDvVoKlnN3uu9Op-8I-Sg9FZjUcDeVGXcZ95grrbWukTZgBjCv0pgauJzxi2v2_Sa86RJuVVdWud0Tm43alBpz5Gd4AsgDjD6-rH652DUKT1e7FhqPySFswRKCr8PxdDaPd1kWZL2UXLTnkwHE92e_lcYT6wrcHgO0JHv-qKHt_3dzfuCd-pWTD1zR-TPytMOQdNQK_Yg8ssVzcjpvSag3A3q1v1NVDegpne_pqTcvyHIxihfupPzh-jQef6WTsvi5xmSaoXVJ5-XdBsvY82JAFyuslAHnZgdUFYaaKp6N6PQu13ldUUUXmEZf0m94xcTSuK22tTQv6CVsPy_J9fn0anLhdu0WXA2oq3ZTD-QlhUgz8GBZBKavZMSF9QNAcUxYhUSe2ujQl1kmUmZ4xnVgQ6mZyISKglfkoCgL-4ZQiFIAiIRemkrDjNYREr3yKE2xw2jEfYd83v7pyapl1UggGkEBJX8LyCFjlMpuHvJhNw_K-2XSmVeSDS0TOlI-rJMJmUUc1E5oeBwKFip44SeUaYJWC4LTqrt8AMtF_qtkBFFVyPCVDjnpzQRr0_3hrVYknbVXyV43HfJhN4y_xAq2wpbrZo6IAI4Phw553SrR7pMCAahX-J5DZE-9et_cHyny24YLHFst8yEP3_5_XcfkiQ_orC05OiEH9f3avgM0VafvO5P5A11ZHp0
  priority: 102
  providerName: ProQuest
Title SARS-CoV-2 RBD Conjugated to Polyglucin, Spermidine, and dsRNA Elicits a Strong Immune Response in Mice
URI https://www.ncbi.nlm.nih.gov/pubmed/37112720
https://www.proquest.com/docview/2806630717
https://www.proquest.com/docview/2807909911
https://pubmed.ncbi.nlm.nih.gov/PMC10146165
https://doaj.org/article/f1e47c9a247e478f964607cf1e5745a2
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZg98IF8SawVEZCi5AaaBPHjwNCbelqQWpVtVvUW-TYTimqkqUPRP89M0nabmDFNXYSJzPj-cYef0PIG9nSoU0s9xOZcp_xFvOlc8630oXMAubVBpcGBkN-OWVfZ9HseDy6-oHrW0M7rCc1XS3f__65-wQG_xEjTgjZP_zSBjeh1-DJGAAgeZecgl8SaKaDCuwX87Jqh7IoKRtA8O6HKpyV-5a3PqTmpwo6_38n7Rteq55RecNFXTwg9ytsSTulMjwkd1z2iJyPSnLqXZNeHc9arZv0nI6OtNW7x2Q-6Ywnfi__5gd03P1Me3n2Y4uLbJZucjrKlztMb19kTTq5xgwacHquSXVmqV2Phx3aXy7MYrOmmk5weX1Ov-DRE0fHZRauo4uMDmBaekKmF_2r3qVflWHwDaCxjZ-0QI5SiCQFz5YqmBK0VFy4IAR0x4TTSPBprIkCmaYiYZan3IQukoaJVGgVPiUnWZ6554RC9AIAJWolibTMGqOQAJarJMHKo4oHHnm3_-nxdcm2EUOUggKK_xaQR7oolUM_5MkuLuSreVyZXZy2HRNG6QDGyYRMFQd1FAYuR4JFGl74FmUao36B4IyuDiXAcJEXK-5AtBUxfKVHzmo9wQpNvXmvFfFeiWPcteYhRsweeX1oxjsxsy1z-bboIxTA9HbbI89KJTp8UigADYug5RFZU6_aN9dbssX3giMcSzDzNo9e_H_YL8m9AFBbmYp0Rk42q617BShrkzTIabc_HI0bxSpFozClP0MqJcE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELam7gFeEL8JG2AkGEJqtDRxbOcBobbr1LK1qtoO7S0ktlM6TUlZWlD_Kf5G7pq0XUDiba-xqzi989135_N3hLyTTuTpWHM7lgm3GXeYLY0xtpbGYxowb6QwNdAf8O4F-3LpX-6R35u7MFhWubGJa0OtM4U58mM8AeQeRh-f5z9s7BqFp6ubFhqFWpyZ1S8I2fJPvROQ73vXPe1M2l277CpgKwAXCzt2YFlSiDgBQ50EoOGRDLgwrgdghQkTIV-l0sp3ZZKImGmecOUZXyomEhEh-RKY_H3mQShTI_utzmA42mZ1kGVTclGch3pe4Bz_jBSekOfgZhmgM1nxf-s2Af86g1vesFqpecv1nT4kD0rMSpuFkj0ieyZ9TI6GBen1qk4nuztceZ0e0eGODnv1hEzHzdHYbmdfbZeOWie0naVXS0zeabrI6DC7XmHZ_Cyt0_EcK3PAmZo6jVJNdT4aNGnneqZmi5xGdIxp-ynt4ZUWQ0dFda-hs5T2wdw9JRd3IohnpJZmqXlBKERFAHx8J46lZlqpAIlleRDH2NE04K5FPm7-9HBesHiEEP2ggMK_BWSRFkplOw_5t9cPsptpWG7nMGkYJlQQubBOJmQScFBzoeCxL5gfwQs_oExDtBIgOBWVlx1guci3FTYhivMZvtIih5WZsLtVdXijFWFpXfJwtxcs8nY7jL_EirnUZMv1HBEA_G80LPK8UKLtJ3kCULZwHYvIinpVvrk6ks6-r7nHsbUzb3D_5f_X9Ybc60765-F5b3B2QO67gAyLcqdDUlvcLM0rQHKL-HW5fSj5dtc79g-uP1s2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkK8IO6EDTASDCE1apo4tvOAUK9aGauqdkN7yxLb6YqmpCwtqH-NX8c5TdouIPG2V9tRnJz78fF3CHknncjTseZ2LBNuM-4wWxpjbC2NxzT4vJHC1MDpkB-fsy8X_sUe-b25C4NllRuduFbUOlOYI2_gCSD3MPpoJGVZxKjb_zz_YWMHKTxp3bTTKFjkxKx-QfiWfxp0gdbvXbffO-sc22WHAVuBo7GwYwe2KIWIE1DaSQDcHsmAC-N64LgwYSLErlRa-a5MEhEzzROuPONLxUQiIgRiAvW_LyAqcmpkv90bjsbbDA8ibkouirNRzwucxs9I4Wl5DiaXgacmK7Zw3TLgX8NwyzJWqzZvmcH-Q_Kg9F9pq2C4R2TPpI_J0agAwF7V6dnuPldep0d0tIPGXj0h00lrPLE72TfbpeN2l3ay9PsSE3maLjI6yq5XWEI_S-t0MscqHTCspk6jVFOdj4ct2rueqdkipxGdYAp_Sgd4vcXQcVHpa-gspaeg-p6S8zshxDNSS7PUvCAUIiRwgnwnjqVmWqkAQWZ5EMfY3TTgrkU-bn56OC8QPUKIhJBA4d8EskgbqbJdh1jc64HsZhqWoh0mTcOECiIX9smETAIOLC8UDPuC-RG88APSNESNAYRTUXnxAbaL2FthCyI6n-ErLXJYWQmSrqrTG64IS02Thzu5sMjb7TQ-idVzqcmW6zUigFCg2bTI84KJtp_kCfC4hetYRFbYq_LN1Zl0drXGIcc2z7zJ_Zf_39cbcg8kNfw6GJ4ckPsuOIlF5dMhqS1uluYVOHWL-HUpPZRc3rXA_gHmd19r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+RBD+Conjugated+to+Polyglucin%2C+Spermidine%2C+and+dsRNA+Elicits+a+Strong+Immune+Response+in+Mice&rft.jtitle=Vaccines+%28Basel%29&rft.au=Volosnikova%2C+Ekaterina+A&rft.au=Merkuleva%2C+Iuliia+A&rft.au=Esina%2C+Tatiana+I&rft.au=Shcherbakov%2C+Dmitry+N&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2076-393X&rft.eissn=2076-393X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Fvaccines11040808&rft.externalDocID=A747541104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon