Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Olfactory Sensory Neurons Regulate Axon Extension and Glomerular Formation

Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 30; no. 49; pp. 16498 - 16508
Main Authors Mobley, Arie S., Miller, Alexandra M., Araneda, Ricardo C., Maurer, Lydia R., Müller, Frank, Greer, Charles A.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 08.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.
AbstractList Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence ( Mombaerts et al., 1996 ; Wang et al., 1998 ; Feinstein and Mombaerts, 2004 ), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence ( Imai et al., 2006 ; Chesler et al., 2007 ), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed ( Lin et al., 2000 ), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.
Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.
Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.
Author Mobley, Arie S.
Araneda, Ricardo C.
Müller, Frank
Greer, Charles A.
Miller, Alexandra M.
Maurer, Lydia R.
Author_xml – sequence: 1
  givenname: Arie S.
  surname: Mobley
  fullname: Mobley, Arie S.
– sequence: 2
  givenname: Alexandra M.
  surname: Miller
  fullname: Miller, Alexandra M.
– sequence: 3
  givenname: Ricardo C.
  surname: Araneda
  fullname: Araneda, Ricardo C.
– sequence: 4
  givenname: Lydia R.
  surname: Maurer
  fullname: Maurer, Lydia R.
– sequence: 5
  givenname: Frank
  surname: Müller
  fullname: Müller, Frank
– sequence: 6
  givenname: Charles A.
  surname: Greer
  fullname: Greer, Charles A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21147989$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1PGzEQtCqqEmj_AvJbn456fd9SVSmKQqBCiQTl2fL5NuDKZ6e2DxF-Qn91HQKo7QtPa83Mzq7tOSIH1lkk5ATYKZQ8__J9Ob-5Wl3PLk4LzssswZwBe0cmiW0zXjA4IBPGa5ZVRV0ckqMQfjLGagb1B3LIAYq6bdoJ-X2-3aDfOCO9fpRRO5tNVdT3MmJPZ1tltKLLURl0UfeYLfb4nbQWTaDa0pVZSxWd39JrtGFXlzh6ZwO9wtvRJD2dPjhL5w8x8cmfStvThXED-kR7eub88DT4I3m_libgp-d6TG7O5j9m59nlanExm15mqgSImexR8qbjmO5YdEyiQgTZSsil7BLe1C0C8h4Ai7ztCy7zrinWkM4Vqoblx-Tb3nczdgP2Cm300oiN14P0W-GkFv8yVt-JW3cv8rzNASAZfH428O7XiCGKQQeFxkiLbgyiKau6gras3lZyKJqyreqkPPl7qddtXn4qCb7uBcq7EDyuhdLx6d3SjtoIYGIXDPEaDLELxg7eBSO1V_-1v0x4o_EPf2vCVg
CitedBy_id crossref_primary_10_1371_journal_pone_0268335
crossref_primary_10_1007_s12035_020_01943_0
crossref_primary_10_3389_fncir_2024_1409680
crossref_primary_10_1016_j_pbiomolbio_2021_06_009
crossref_primary_10_1126_science_aaw5030
crossref_primary_10_1085_jgp_201812126
crossref_primary_10_1152_jn_00154_2014
crossref_primary_10_1111_ejn_12240
crossref_primary_10_1523_ENEURO_0266_19_2019
crossref_primary_10_1124_pr_117_014035
crossref_primary_10_1085_jgp_201611622
crossref_primary_10_1111_j_1460_9568_2012_08231_x
crossref_primary_10_1016_j_pneurobio_2013_10_001
crossref_primary_10_1371_journal_pone_0056561
crossref_primary_10_1002_dvg_23586
crossref_primary_10_1098_rsob_220053
crossref_primary_10_1152_jn_00137_2023
crossref_primary_10_1152_jn_00910_2012
crossref_primary_10_1523_JNEUROSCI_1522_12_2012
crossref_primary_10_1101_gr_258400_119
crossref_primary_10_3389_fnana_2017_00028
crossref_primary_10_1073_pnas_1417955112
crossref_primary_10_1111_ejn_13282
crossref_primary_10_1016_j_mcn_2012_06_003
crossref_primary_10_1002_dvg_23610
crossref_primary_10_1371_journal_pone_0035358
crossref_primary_10_1113_jphysiol_2012_247361
Cites_doi 10.1523/JNEUROSCI.1776-10.2010
10.1073/pnas.0813224106
10.1038/47501
10.1046/j.1460-9568.2003.02756.x
10.1016/S0896-6273(00)81139-3
10.1007/s004240050488
10.1523/JNEUROSCI.4699-06.2007
10.1152/jn.90263.2008
10.1085/jgp.100.1.45
10.1523/JNEUROSCI.2443-09.2009
10.1515/BC.1999.121
10.1002/neu.480270107
10.1523/JNEUROSCI.18-12-04560.1998
10.1085/jgp.117.5.491
10.1111/j.1460-9568.2006.04880.x
10.1146/annurev.physiol.65.092101.142734
10.1523/JNEUROSCI.22-07-02469.2002
10.1016/j.cell.2004.05.013
10.1016/j.cell.2006.10.031
10.1016/S0896-6273(00)80414-6
10.1016/j.neuron.2005.01.049
10.1016/j.mcn.2006.01.013
10.1242/dev.006346
10.1038/35081088
10.1098/rspb.1991.0024
10.1038/nrn2666
10.1016/S0092-8674(00)81145-9
10.1046/j.1460-9568.2003.02634.x
10.1016/S0925-4773(02)00421-5
10.1016/j.neuron.2004.11.012
10.1111/j.0953-816X.2004.03331.x
10.1002/cne.11039
10.1152/jn.01352.2007
10.1002/dvdy.21595
10.1523/JNEUROSCI.2217-07.2007
10.1093/chemse/bjg063
10.1111/j.1460-9568.2004.03304.x
10.1152/jn.1999.81.1.149
10.1146/annurev.ne.19.030196.001315
10.1016/j.cell.2004.05.011
10.1523/JNEUROSCI.0699-07.2007
10.1074/jbc.M109.007583
10.1016/S0306-4522(99)00228-6
10.1016/S0092-8674(00)81387-2
10.1073/pnas.0609215104
10.1016/S0092-8674(01)00262-8
10.1016/S0896-6273(00)81140-X
10.1016/S0896-6273(04)00224-7
10.1016/j.neuron.2010.05.022
10.1002/cne.21540
10.1126/science.1131794
10.1093/cercor/bhk021
10.1016/S0896-6273(00)80200-7
10.1073/pnas.0708153105
10.1523/JNEUROSCI.19-11-04428.1999
10.1152/jn.00841.2006
10.1016/0165-3806(93)90040-H
10.1016/j.neuron.2010.07.003
10.1038/72072
10.1523/JNEUROSCI.21-24-09713.2001
10.1002/cne.10910
10.1016/j.ejphar.2007.11.058
10.1016/j.neuron.2004.08.018
10.1201/9781420071993-c5
ContentType Journal Article
Copyright Copyright © 2010 the authors 0270-6474/10/3016498-11$15.00/0 2010
Copyright_xml – notice: Copyright © 2010 the authors 0270-6474/10/3016498-11$15.00/0 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QR
7TK
7TM
8FD
FR3
P64
5PM
DOI 10.1523/JNEUROSCI.4225-10.2010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Chemoreception Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 16508
ExternalDocumentID PMC3393111
21147989
10_1523_JNEUROSCI_4225_10_2010
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC009817
– fundername: NIDCD NIH HHS
  grantid: F30 DC010324
– fundername: NIDCD NIH HHS
  grantid: F32 DC010098
– fundername: NINDS NIH HHS
  grantid: T32 NS007224
– fundername: NIDCD NIH HHS
  grantid: R01 DC000210
– fundername: NIGMS NIH HHS
  grantid: GM07205
– fundername: NINDS NIH HHS
  grantid: NS 007224-24
– fundername: NIGMS NIH HHS
  grantid: T32 GM007205
– fundername: NIDCD NIH HHS
  grantid: F32 DC010098-01A1
– fundername: NIA NIH HHS
  grantid: P01 AG028054
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QR
7TK
7TM
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c511t-adea28b2e4014b0aecee1a9a13aab8b2879e1e2d11e439d42a3b84f139d6ec803
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:11:27 EDT 2025
Fri Jul 11 08:26:54 EDT 2025
Fri Jul 11 01:43:43 EDT 2025
Thu Apr 03 07:01:22 EDT 2025
Tue Jul 01 02:59:19 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-adea28b2e4014b0aecee1a9a13aab8b2879e1e2d11e439d42a3b84f139d6ec803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
A.S.M. and A.M.M. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/30/49/16498.full.pdf
PMID 21147989
PQID 821485967
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3393111
proquest_miscellaneous_856761956
proquest_miscellaneous_821485967
pubmed_primary_21147989
crossref_citationtrail_10_1523_JNEUROSCI_4225_10_2010
crossref_primary_10_1523_JNEUROSCI_4225_10_2010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-08
2010-Dec-08
20101208
PublicationDateYYYYMMDD 2010-12-08
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2010
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Treloar (2023041303474940000_30.49.16498.48) 2002; 22
2023041303474940000_30.49.16498.28
2023041303474940000_30.49.16498.27
Potter (2023041303474940000_30.49.16498.37) 2001; 21
2023041303474940000_30.49.16498.29
2023041303474940000_30.49.16498.24
2023041303474940000_30.49.16498.23
2023041303474940000_30.49.16498.26
2023041303474940000_30.49.16498.25
2023041303474940000_30.49.16498.20
2023041303474940000_30.49.16498.64
2023041303474940000_30.49.16498.63
2023041303474940000_30.49.16498.22
2023041303474940000_30.49.16498.21
2023041303474940000_30.49.16498.60
2023041303474940000_30.49.16498.62
2023041303474940000_30.49.16498.61
de Castro (2023041303474940000_30.49.16498.12) 1999; 19
2023041303474940000_30.49.16498.17
2023041303474940000_30.49.16498.16
2023041303474940000_30.49.16498.19
2023041303474940000_30.49.16498.18
2023041303474940000_30.49.16498.13
2023041303474940000_30.49.16498.57
2023041303474940000_30.49.16498.56
2023041303474940000_30.49.16498.15
2023041303474940000_30.49.16498.59
2023041303474940000_30.49.16498.14
2023041303474940000_30.49.16498.58
2023041303474940000_30.49.16498.53
2023041303474940000_30.49.16498.52
2023041303474940000_30.49.16498.11
2023041303474940000_30.49.16498.55
2023041303474940000_30.49.16498.10
2023041303474940000_30.49.16498.54
2023041303474940000_30.49.16498.51
Bozza (2023041303474940000_30.49.16498.4) 1998; 18
2023041303474940000_30.49.16498.49
2023041303474940000_30.49.16498.46
2023041303474940000_30.49.16498.45
2023041303474940000_30.49.16498.47
2023041303474940000_30.49.16498.42
2023041303474940000_30.49.16498.41
2023041303474940000_30.49.16498.44
2023041303474940000_30.49.16498.43
2023041303474940000_30.49.16498.40
2023041303474940000_30.49.16498.6
2023041303474940000_30.49.16498.5
2023041303474940000_30.49.16498.3
2023041303474940000_30.49.16498.9
2023041303474940000_30.49.16498.8
2023041303474940000_30.49.16498.7
2023041303474940000_30.49.16498.2
2023041303474940000_30.49.16498.39
2023041303474940000_30.49.16498.1
2023041303474940000_30.49.16498.38
2023041303474940000_30.49.16498.35
2023041303474940000_30.49.16498.34
2023041303474940000_30.49.16498.36
2023041303474940000_30.49.16498.31
2023041303474940000_30.49.16498.30
2023041303474940000_30.49.16498.33
2023041303474940000_30.49.16498.32
Vargas (2023041303474940000_30.49.16498.50) 1999; 81
References_xml – ident: 2023041303474940000_30.49.16498.39
  doi: 10.1523/JNEUROSCI.1776-10.2010
– ident: 2023041303474940000_30.49.16498.30
  doi: 10.1073/pnas.0813224106
– ident: 2023041303474940000_30.49.16498.61
  doi: 10.1038/47501
– ident: 2023041303474940000_30.49.16498.21
  doi: 10.1046/j.1460-9568.2003.02756.x
– ident: 2023041303474940000_30.49.16498.26
  doi: 10.1016/S0896-6273(00)81139-3
– ident: 2023041303474940000_30.49.16498.18
  doi: 10.1007/s004240050488
– ident: 2023041303474940000_30.49.16498.2
  doi: 10.1523/JNEUROSCI.4699-06.2007
– ident: 2023041303474940000_30.49.16498.13
  doi: 10.1152/jn.90263.2008
– ident: 2023041303474940000_30.49.16498.17
  doi: 10.1085/jgp.100.1.45
– ident: 2023041303474940000_30.49.16498.14
  doi: 10.1523/JNEUROSCI.2443-09.2009
– ident: 2023041303474940000_30.49.16498.34
  doi: 10.1515/BC.1999.121
– ident: 2023041303474940000_30.49.16498.55
  doi: 10.1002/neu.480270107
– volume: 18
  start-page: 4560
  year: 1998
  ident: 2023041303474940000_30.49.16498.4
  article-title: Odorant response properties of convergent olfactory receptor neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-12-04560.1998
– ident: 2023041303474940000_30.49.16498.7
  doi: 10.1085/jgp.117.5.491
– ident: 2023041303474940000_30.49.16498.46
  doi: 10.1111/j.1460-9568.2006.04880.x
– ident: 2023041303474940000_30.49.16498.38
  doi: 10.1146/annurev.physiol.65.092101.142734
– volume: 22
  start-page: 2469
  year: 2002
  ident: 2023041303474940000_30.49.16498.48
  article-title: Specificity of glomerular targeting by olfactory sensory axons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-07-02469.2002
– ident: 2023041303474940000_30.49.16498.16
  doi: 10.1016/j.cell.2004.05.013
– ident: 2023041303474940000_30.49.16498.43
  doi: 10.1016/j.cell.2006.10.031
– ident: 2023041303474940000_30.49.16498.32
  doi: 10.1016/S0896-6273(00)80414-6
– ident: 2023041303474940000_30.49.16498.45
  doi: 10.1016/j.neuron.2005.01.049
– ident: 2023041303474940000_30.49.16498.53
  doi: 10.1016/j.mcn.2006.01.013
– ident: 2023041303474940000_30.49.16498.11
  doi: 10.1242/dev.006346
– ident: 2023041303474940000_30.49.16498.52
  doi: 10.1038/35081088
– ident: 2023041303474940000_30.49.16498.28
  doi: 10.1098/rspb.1991.0024
– ident: 2023041303474940000_30.49.16498.64
  doi: 10.1038/nrn2666
– ident: 2023041303474940000_30.49.16498.54
  doi: 10.1016/S0092-8674(00)81145-9
– ident: 2023041303474940000_30.49.16498.35
  doi: 10.1046/j.1460-9568.2003.02634.x
– ident: 2023041303474940000_30.49.16498.47
  doi: 10.1016/S0925-4773(02)00421-5
– ident: 2023041303474940000_30.49.16498.62
  doi: 10.1016/j.neuron.2004.11.012
– ident: 2023041303474940000_30.49.16498.19
  doi: 10.1111/j.0953-816X.2004.03331.x
– ident: 2023041303474940000_30.49.16498.36
  doi: 10.1002/cne.11039
– ident: 2023041303474940000_30.49.16498.8
  doi: 10.1152/jn.01352.2007
– ident: 2023041303474940000_30.49.16498.44
  doi: 10.1002/dvdy.21595
– ident: 2023041303474940000_30.49.16498.10
  doi: 10.1523/JNEUROSCI.2217-07.2007
– ident: 2023041303474940000_30.49.16498.24
  doi: 10.1093/chemse/bjg063
– ident: 2023041303474940000_30.49.16498.42
  doi: 10.1111/j.1460-9568.2004.03304.x
– volume: 81
  start-page: 149
  year: 1999
  ident: 2023041303474940000_30.49.16498.50
  article-title: Dopamine modulates inwardly rectifying hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.81.1.149
– ident: 2023041303474940000_30.49.16498.58
  doi: 10.1146/annurev.ne.19.030196.001315
– ident: 2023041303474940000_30.49.16498.15
  doi: 10.1016/j.cell.2004.05.011
– ident: 2023041303474940000_30.49.16498.63
  doi: 10.1523/JNEUROSCI.0699-07.2007
– ident: 2023041303474940000_30.49.16498.56
  doi: 10.1074/jbc.M109.007583
– ident: 2023041303474940000_30.49.16498.31
  doi: 10.1016/S0306-4522(99)00228-6
– ident: 2023041303474940000_30.49.16498.33
  doi: 10.1016/S0092-8674(00)81387-2
– ident: 2023041303474940000_30.49.16498.9
  doi: 10.1073/pnas.0609215104
– ident: 2023041303474940000_30.49.16498.59
  doi: 10.1016/S0092-8674(01)00262-8
– ident: 2023041303474940000_30.49.16498.60
  doi: 10.1016/S0896-6273(00)81140-X
– ident: 2023041303474940000_30.49.16498.57
  doi: 10.1016/S0896-6273(04)00224-7
– ident: 2023041303474940000_30.49.16498.23
  doi: 10.1016/j.neuron.2010.05.022
– ident: 2023041303474940000_30.49.16498.3
  doi: 10.1002/cne.21540
– ident: 2023041303474940000_30.49.16498.22
  doi: 10.1126/science.1131794
– ident: 2023041303474940000_30.49.16498.5
  doi: 10.1093/cercor/bhk021
– ident: 2023041303474940000_30.49.16498.6
  doi: 10.1016/S0896-6273(00)80200-7
– ident: 2023041303474940000_30.49.16498.40
  doi: 10.1073/pnas.0708153105
– volume: 19
  start-page: 4428
  year: 1999
  ident: 2023041303474940000_30.49.16498.12
  article-title: Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-11-04428.1999
– ident: 2023041303474940000_30.49.16498.51
  doi: 10.1152/jn.00841.2006
– ident: 2023041303474940000_30.49.16498.29
  doi: 10.1016/0165-3806(93)90040-H
– ident: 2023041303474940000_30.49.16498.41
  doi: 10.1016/j.neuron.2010.07.003
– ident: 2023041303474940000_30.49.16498.1
  doi: 10.1038/72072
– volume: 21
  start-page: 9713
  year: 2001
  ident: 2023041303474940000_30.49.16498.37
  article-title: Structure and emergence of specific olfactory glomeruli in the mouse
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-24-09713.2001
– ident: 2023041303474940000_30.49.16498.27
  doi: 10.1002/cne.10910
– ident: 2023041303474940000_30.49.16498.25
  doi: 10.1016/j.ejphar.2007.11.058
– ident: 2023041303474940000_30.49.16498.20
  doi: 10.1016/j.neuron.2004.08.018
– ident: 2023041303474940000_30.49.16498.49
  doi: 10.1201/9781420071993-c5
SSID ssj0007017
Score 2.1556263
Snippet Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16498
SubjectTerms Animals
Animals, Newborn
Antidiarrheals - pharmacology
Axons - drug effects
Axons - physiology
Biophysics - methods
Cardiotonic Agents - pharmacology
Cells, Cultured
Cyclic Nucleotide-Gated Cation Channels - deficiency
Cyclic Nucleotide-Gated Cation Channels - physiology
Electric Stimulation - methods
Embryo, Mammalian
GAP-43 Protein - metabolism
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Developmental - physiology
Green Fluorescent Proteins - genetics
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
Ion Channels - genetics
Ion Channels - metabolism
Loperamide - pharmacology
Membrane Potentials - drug effects
Membrane Potentials - genetics
Mice
Mice, Inbred C57BL
Mice, Knockout
Neural Cell Adhesion Molecules - metabolism
Neurogenesis - drug effects
Neurogenesis - physiology
Olfactory Bulb - cytology
Olfactory Bulb - embryology
Olfactory Bulb - growth & development
Patch-Clamp Techniques - methods
Potassium Channels - deficiency
Potassium Channels - genetics
Potassium Channels - metabolism
Potassium Channels - physiology
Pyrimidines - pharmacology
Receptors, Odorant - genetics
Receptors, Odorant - metabolism
Sensory Receptor Cells - cytology
Sensory Receptor Cells - drug effects
Title Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Olfactory Sensory Neurons Regulate Axon Extension and Glomerular Formation
URI https://www.ncbi.nlm.nih.gov/pubmed/21147989
https://www.proquest.com/docview/821485967
https://www.proquest.com/docview/856761956
https://pubmed.ncbi.nlm.nih.gov/PMC3393111
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPJIC2gPiEvl1t6HH8eogNJCe6GVerPW9hYiJXaUOqjhJ_BH-JvM7K4fSUt5XJxoba8lf59nZ2bnQcibws9y4I30YOnLPZHH0stkIb0w50wFzBeZyfA-OQ3H5-L4Ql4MBj97UUvLOtvPv9-aV_I_qMIY4IpZsv-AbDspDMB_wBeOgDAc_wrjMRiRizkapy6b0sM0hW8Ktch8lWP96hLrFVf1pNDGk1aYTN8SFkR0dFRT225ntXcF1iz-mvKWJW4lmBb1ek9dV9gGwMS5u8DlL9NqphcmfLVNfezruF22mdFzexUzuzhb7GJj4B2Bqd65X7vMRJd4s1Cdu3YEy6oulCsHAMyuOhfviVq6vtyfVsB4FwbpvBkuMsQKYO0kMDNbPkFfRLutG0tFW-LUCVyw9mwX6xtLgTQlKY5PMSLy8-HRvgDJ5WHku2_jaHv8mM8MQcAWFlFiOxptFOFuTt0j9xnYI9gq493Rx3bJj0CuufRzeOzB7Q81daftNOtK0A3LZjNAt6fxnD0iDx2EdGR595gMdPmEbI9KVVezFX1LTfCw2ZXZJj_uoCK1VKSbVKQNFemkpC0VqaMidVSkDRUpUpG2VKTADtpRkbZUfErOP7w_Oxx7rs2Hl4O2X3uq0IrFGdMAush8pUFvC1SiAq5UBuNxlOhAsyIINGjPhWCKZ7G4BNOlCHUe-_wZ2SqrUr8glBdgkKjQv4y4ECGDuyUcuNTcZzAXGxLZvPc0dzXwsRXLNEVbGKBLW-hShA6HEbohOWjvm9sqMH-8gzawpiCwcRcOvpFqeZXGLBCxTMLojktkiN5FGQ7Jc0uE9qkNg4YkWqNIewGWi18_U06-mrLxnCccNJud3865Sx50n-RLslUvlvoVqNx19trQ_RfGYd7F
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperpolarization-activated+cyclic+nucleotide-gated+channels+in+olfactory+sensory+neurons+regulate+axon+extension+and+glomerular+formation&rft.jtitle=The+Journal+of+neuroscience&rft.au=Mobley%2C+Arie+S&rft.au=Miller%2C+Alexandra+M&rft.au=Araneda%2C+Ricardo+C&rft.au=Maurer%2C+Lydia+R&rft.date=2010-12-08&rft.eissn=1529-2401&rft.volume=30&rft.issue=49&rft.spage=16498&rft_id=info:doi/10.1523%2FJNEUROSCI.4225-10.2010&rft_id=info%3Apmid%2F21147989&rft.externalDocID=21147989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon