Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Olfactory Sensory Neurons Regulate Axon Extension and Glomerular Formation
Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that...
Saved in:
Published in | The Journal of neuroscience Vol. 30; no. 49; pp. 16498 - 16508 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
08.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels. |
---|---|
AbstractList | Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (
Mombaerts et al., 1996
;
Wang et al., 1998
;
Feinstein and Mombaerts, 2004
), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (
Imai et al., 2006
;
Chesler et al., 2007
), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (
Lin et al., 2000
), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels. Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels. Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels. |
Author | Mobley, Arie S. Araneda, Ricardo C. Müller, Frank Greer, Charles A. Miller, Alexandra M. Maurer, Lydia R. |
Author_xml | – sequence: 1 givenname: Arie S. surname: Mobley fullname: Mobley, Arie S. – sequence: 2 givenname: Alexandra M. surname: Miller fullname: Miller, Alexandra M. – sequence: 3 givenname: Ricardo C. surname: Araneda fullname: Araneda, Ricardo C. – sequence: 4 givenname: Lydia R. surname: Maurer fullname: Maurer, Lydia R. – sequence: 5 givenname: Frank surname: Müller fullname: Müller, Frank – sequence: 6 givenname: Charles A. surname: Greer fullname: Greer, Charles A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21147989$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1PGzEQtCqqEmj_AvJbn456fd9SVSmKQqBCiQTl2fL5NuDKZ6e2DxF-Qn91HQKo7QtPa83Mzq7tOSIH1lkk5ATYKZQ8__J9Ob-5Wl3PLk4LzssswZwBe0cmiW0zXjA4IBPGa5ZVRV0ckqMQfjLGagb1B3LIAYq6bdoJ-X2-3aDfOCO9fpRRO5tNVdT3MmJPZ1tltKLLURl0UfeYLfb4nbQWTaDa0pVZSxWd39JrtGFXlzh6ZwO9wtvRJD2dPjhL5w8x8cmfStvThXED-kR7eub88DT4I3m_libgp-d6TG7O5j9m59nlanExm15mqgSImexR8qbjmO5YdEyiQgTZSsil7BLe1C0C8h4Ai7ztCy7zrinWkM4Vqoblx-Tb3nczdgP2Cm300oiN14P0W-GkFv8yVt-JW3cv8rzNASAZfH428O7XiCGKQQeFxkiLbgyiKau6gras3lZyKJqyreqkPPl7qddtXn4qCb7uBcq7EDyuhdLx6d3SjtoIYGIXDPEaDLELxg7eBSO1V_-1v0x4o_EPf2vCVg |
CitedBy_id | crossref_primary_10_1371_journal_pone_0268335 crossref_primary_10_1007_s12035_020_01943_0 crossref_primary_10_3389_fncir_2024_1409680 crossref_primary_10_1016_j_pbiomolbio_2021_06_009 crossref_primary_10_1126_science_aaw5030 crossref_primary_10_1085_jgp_201812126 crossref_primary_10_1152_jn_00154_2014 crossref_primary_10_1111_ejn_12240 crossref_primary_10_1523_ENEURO_0266_19_2019 crossref_primary_10_1124_pr_117_014035 crossref_primary_10_1085_jgp_201611622 crossref_primary_10_1111_j_1460_9568_2012_08231_x crossref_primary_10_1016_j_pneurobio_2013_10_001 crossref_primary_10_1371_journal_pone_0056561 crossref_primary_10_1002_dvg_23586 crossref_primary_10_1098_rsob_220053 crossref_primary_10_1152_jn_00137_2023 crossref_primary_10_1152_jn_00910_2012 crossref_primary_10_1523_JNEUROSCI_1522_12_2012 crossref_primary_10_1101_gr_258400_119 crossref_primary_10_3389_fnana_2017_00028 crossref_primary_10_1073_pnas_1417955112 crossref_primary_10_1111_ejn_13282 crossref_primary_10_1016_j_mcn_2012_06_003 crossref_primary_10_1002_dvg_23610 crossref_primary_10_1371_journal_pone_0035358 crossref_primary_10_1113_jphysiol_2012_247361 |
Cites_doi | 10.1523/JNEUROSCI.1776-10.2010 10.1073/pnas.0813224106 10.1038/47501 10.1046/j.1460-9568.2003.02756.x 10.1016/S0896-6273(00)81139-3 10.1007/s004240050488 10.1523/JNEUROSCI.4699-06.2007 10.1152/jn.90263.2008 10.1085/jgp.100.1.45 10.1523/JNEUROSCI.2443-09.2009 10.1515/BC.1999.121 10.1002/neu.480270107 10.1523/JNEUROSCI.18-12-04560.1998 10.1085/jgp.117.5.491 10.1111/j.1460-9568.2006.04880.x 10.1146/annurev.physiol.65.092101.142734 10.1523/JNEUROSCI.22-07-02469.2002 10.1016/j.cell.2004.05.013 10.1016/j.cell.2006.10.031 10.1016/S0896-6273(00)80414-6 10.1016/j.neuron.2005.01.049 10.1016/j.mcn.2006.01.013 10.1242/dev.006346 10.1038/35081088 10.1098/rspb.1991.0024 10.1038/nrn2666 10.1016/S0092-8674(00)81145-9 10.1046/j.1460-9568.2003.02634.x 10.1016/S0925-4773(02)00421-5 10.1016/j.neuron.2004.11.012 10.1111/j.0953-816X.2004.03331.x 10.1002/cne.11039 10.1152/jn.01352.2007 10.1002/dvdy.21595 10.1523/JNEUROSCI.2217-07.2007 10.1093/chemse/bjg063 10.1111/j.1460-9568.2004.03304.x 10.1152/jn.1999.81.1.149 10.1146/annurev.ne.19.030196.001315 10.1016/j.cell.2004.05.011 10.1523/JNEUROSCI.0699-07.2007 10.1074/jbc.M109.007583 10.1016/S0306-4522(99)00228-6 10.1016/S0092-8674(00)81387-2 10.1073/pnas.0609215104 10.1016/S0092-8674(01)00262-8 10.1016/S0896-6273(00)81140-X 10.1016/S0896-6273(04)00224-7 10.1016/j.neuron.2010.05.022 10.1002/cne.21540 10.1126/science.1131794 10.1093/cercor/bhk021 10.1016/S0896-6273(00)80200-7 10.1073/pnas.0708153105 10.1523/JNEUROSCI.19-11-04428.1999 10.1152/jn.00841.2006 10.1016/0165-3806(93)90040-H 10.1016/j.neuron.2010.07.003 10.1038/72072 10.1523/JNEUROSCI.21-24-09713.2001 10.1002/cne.10910 10.1016/j.ejphar.2007.11.058 10.1016/j.neuron.2004.08.018 10.1201/9781420071993-c5 |
ContentType | Journal Article |
Copyright | Copyright © 2010 the authors 0270-6474/10/3016498-11$15.00/0 2010 |
Copyright_xml | – notice: Copyright © 2010 the authors 0270-6474/10/3016498-11$15.00/0 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QR 7TK 7TM 8FD FR3 P64 5PM |
DOI | 10.1523/JNEUROSCI.4225-10.2010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Chemoreception Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 16508 |
ExternalDocumentID | PMC3393111 21147989 10_1523_JNEUROSCI_4225_10_2010 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC009817 – fundername: NIDCD NIH HHS grantid: F30 DC010324 – fundername: NIDCD NIH HHS grantid: F32 DC010098 – fundername: NINDS NIH HHS grantid: T32 NS007224 – fundername: NIDCD NIH HHS grantid: R01 DC000210 – fundername: NIGMS NIH HHS grantid: GM07205 – fundername: NINDS NIH HHS grantid: NS 007224-24 – fundername: NIGMS NIH HHS grantid: T32 GM007205 – fundername: NIDCD NIH HHS grantid: F32 DC010098-01A1 – fundername: NIA NIH HHS grantid: P01 AG028054 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7QR 7TK 7TM 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c511t-adea28b2e4014b0aecee1a9a13aab8b2879e1e2d11e439d42a3b84f139d6ec803 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:11:27 EDT 2025 Fri Jul 11 08:26:54 EDT 2025 Fri Jul 11 01:43:43 EDT 2025 Thu Apr 03 07:01:22 EDT 2025 Tue Jul 01 02:59:19 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-adea28b2e4014b0aecee1a9a13aab8b2879e1e2d11e439d42a3b84f139d6ec803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 A.S.M. and A.M.M. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/30/49/16498.full.pdf |
PMID | 21147989 |
PQID | 821485967 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3393111 proquest_miscellaneous_856761956 proquest_miscellaneous_821485967 pubmed_primary_21147989 crossref_citationtrail_10_1523_JNEUROSCI_4225_10_2010 crossref_primary_10_1523_JNEUROSCI_4225_10_2010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-08 2010-Dec-08 20101208 |
PublicationDateYYYYMMDD | 2010-12-08 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2010 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | Treloar (2023041303474940000_30.49.16498.48) 2002; 22 2023041303474940000_30.49.16498.28 2023041303474940000_30.49.16498.27 Potter (2023041303474940000_30.49.16498.37) 2001; 21 2023041303474940000_30.49.16498.29 2023041303474940000_30.49.16498.24 2023041303474940000_30.49.16498.23 2023041303474940000_30.49.16498.26 2023041303474940000_30.49.16498.25 2023041303474940000_30.49.16498.20 2023041303474940000_30.49.16498.64 2023041303474940000_30.49.16498.63 2023041303474940000_30.49.16498.22 2023041303474940000_30.49.16498.21 2023041303474940000_30.49.16498.60 2023041303474940000_30.49.16498.62 2023041303474940000_30.49.16498.61 de Castro (2023041303474940000_30.49.16498.12) 1999; 19 2023041303474940000_30.49.16498.17 2023041303474940000_30.49.16498.16 2023041303474940000_30.49.16498.19 2023041303474940000_30.49.16498.18 2023041303474940000_30.49.16498.13 2023041303474940000_30.49.16498.57 2023041303474940000_30.49.16498.56 2023041303474940000_30.49.16498.15 2023041303474940000_30.49.16498.59 2023041303474940000_30.49.16498.14 2023041303474940000_30.49.16498.58 2023041303474940000_30.49.16498.53 2023041303474940000_30.49.16498.52 2023041303474940000_30.49.16498.11 2023041303474940000_30.49.16498.55 2023041303474940000_30.49.16498.10 2023041303474940000_30.49.16498.54 2023041303474940000_30.49.16498.51 Bozza (2023041303474940000_30.49.16498.4) 1998; 18 2023041303474940000_30.49.16498.49 2023041303474940000_30.49.16498.46 2023041303474940000_30.49.16498.45 2023041303474940000_30.49.16498.47 2023041303474940000_30.49.16498.42 2023041303474940000_30.49.16498.41 2023041303474940000_30.49.16498.44 2023041303474940000_30.49.16498.43 2023041303474940000_30.49.16498.40 2023041303474940000_30.49.16498.6 2023041303474940000_30.49.16498.5 2023041303474940000_30.49.16498.3 2023041303474940000_30.49.16498.9 2023041303474940000_30.49.16498.8 2023041303474940000_30.49.16498.7 2023041303474940000_30.49.16498.2 2023041303474940000_30.49.16498.39 2023041303474940000_30.49.16498.1 2023041303474940000_30.49.16498.38 2023041303474940000_30.49.16498.35 2023041303474940000_30.49.16498.34 2023041303474940000_30.49.16498.36 2023041303474940000_30.49.16498.31 2023041303474940000_30.49.16498.30 2023041303474940000_30.49.16498.33 2023041303474940000_30.49.16498.32 Vargas (2023041303474940000_30.49.16498.50) 1999; 81 |
References_xml | – ident: 2023041303474940000_30.49.16498.39 doi: 10.1523/JNEUROSCI.1776-10.2010 – ident: 2023041303474940000_30.49.16498.30 doi: 10.1073/pnas.0813224106 – ident: 2023041303474940000_30.49.16498.61 doi: 10.1038/47501 – ident: 2023041303474940000_30.49.16498.21 doi: 10.1046/j.1460-9568.2003.02756.x – ident: 2023041303474940000_30.49.16498.26 doi: 10.1016/S0896-6273(00)81139-3 – ident: 2023041303474940000_30.49.16498.18 doi: 10.1007/s004240050488 – ident: 2023041303474940000_30.49.16498.2 doi: 10.1523/JNEUROSCI.4699-06.2007 – ident: 2023041303474940000_30.49.16498.13 doi: 10.1152/jn.90263.2008 – ident: 2023041303474940000_30.49.16498.17 doi: 10.1085/jgp.100.1.45 – ident: 2023041303474940000_30.49.16498.14 doi: 10.1523/JNEUROSCI.2443-09.2009 – ident: 2023041303474940000_30.49.16498.34 doi: 10.1515/BC.1999.121 – ident: 2023041303474940000_30.49.16498.55 doi: 10.1002/neu.480270107 – volume: 18 start-page: 4560 year: 1998 ident: 2023041303474940000_30.49.16498.4 article-title: Odorant response properties of convergent olfactory receptor neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-12-04560.1998 – ident: 2023041303474940000_30.49.16498.7 doi: 10.1085/jgp.117.5.491 – ident: 2023041303474940000_30.49.16498.46 doi: 10.1111/j.1460-9568.2006.04880.x – ident: 2023041303474940000_30.49.16498.38 doi: 10.1146/annurev.physiol.65.092101.142734 – volume: 22 start-page: 2469 year: 2002 ident: 2023041303474940000_30.49.16498.48 article-title: Specificity of glomerular targeting by olfactory sensory axons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-07-02469.2002 – ident: 2023041303474940000_30.49.16498.16 doi: 10.1016/j.cell.2004.05.013 – ident: 2023041303474940000_30.49.16498.43 doi: 10.1016/j.cell.2006.10.031 – ident: 2023041303474940000_30.49.16498.32 doi: 10.1016/S0896-6273(00)80414-6 – ident: 2023041303474940000_30.49.16498.45 doi: 10.1016/j.neuron.2005.01.049 – ident: 2023041303474940000_30.49.16498.53 doi: 10.1016/j.mcn.2006.01.013 – ident: 2023041303474940000_30.49.16498.11 doi: 10.1242/dev.006346 – ident: 2023041303474940000_30.49.16498.52 doi: 10.1038/35081088 – ident: 2023041303474940000_30.49.16498.28 doi: 10.1098/rspb.1991.0024 – ident: 2023041303474940000_30.49.16498.64 doi: 10.1038/nrn2666 – ident: 2023041303474940000_30.49.16498.54 doi: 10.1016/S0092-8674(00)81145-9 – ident: 2023041303474940000_30.49.16498.35 doi: 10.1046/j.1460-9568.2003.02634.x – ident: 2023041303474940000_30.49.16498.47 doi: 10.1016/S0925-4773(02)00421-5 – ident: 2023041303474940000_30.49.16498.62 doi: 10.1016/j.neuron.2004.11.012 – ident: 2023041303474940000_30.49.16498.19 doi: 10.1111/j.0953-816X.2004.03331.x – ident: 2023041303474940000_30.49.16498.36 doi: 10.1002/cne.11039 – ident: 2023041303474940000_30.49.16498.8 doi: 10.1152/jn.01352.2007 – ident: 2023041303474940000_30.49.16498.44 doi: 10.1002/dvdy.21595 – ident: 2023041303474940000_30.49.16498.10 doi: 10.1523/JNEUROSCI.2217-07.2007 – ident: 2023041303474940000_30.49.16498.24 doi: 10.1093/chemse/bjg063 – ident: 2023041303474940000_30.49.16498.42 doi: 10.1111/j.1460-9568.2004.03304.x – volume: 81 start-page: 149 year: 1999 ident: 2023041303474940000_30.49.16498.50 article-title: Dopamine modulates inwardly rectifying hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons publication-title: J Neurophysiol doi: 10.1152/jn.1999.81.1.149 – ident: 2023041303474940000_30.49.16498.58 doi: 10.1146/annurev.ne.19.030196.001315 – ident: 2023041303474940000_30.49.16498.15 doi: 10.1016/j.cell.2004.05.011 – ident: 2023041303474940000_30.49.16498.63 doi: 10.1523/JNEUROSCI.0699-07.2007 – ident: 2023041303474940000_30.49.16498.56 doi: 10.1074/jbc.M109.007583 – ident: 2023041303474940000_30.49.16498.31 doi: 10.1016/S0306-4522(99)00228-6 – ident: 2023041303474940000_30.49.16498.33 doi: 10.1016/S0092-8674(00)81387-2 – ident: 2023041303474940000_30.49.16498.9 doi: 10.1073/pnas.0609215104 – ident: 2023041303474940000_30.49.16498.59 doi: 10.1016/S0092-8674(01)00262-8 – ident: 2023041303474940000_30.49.16498.60 doi: 10.1016/S0896-6273(00)81140-X – ident: 2023041303474940000_30.49.16498.57 doi: 10.1016/S0896-6273(04)00224-7 – ident: 2023041303474940000_30.49.16498.23 doi: 10.1016/j.neuron.2010.05.022 – ident: 2023041303474940000_30.49.16498.3 doi: 10.1002/cne.21540 – ident: 2023041303474940000_30.49.16498.22 doi: 10.1126/science.1131794 – ident: 2023041303474940000_30.49.16498.5 doi: 10.1093/cercor/bhk021 – ident: 2023041303474940000_30.49.16498.6 doi: 10.1016/S0896-6273(00)80200-7 – ident: 2023041303474940000_30.49.16498.40 doi: 10.1073/pnas.0708153105 – volume: 19 start-page: 4428 year: 1999 ident: 2023041303474940000_30.49.16498.12 article-title: Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-11-04428.1999 – ident: 2023041303474940000_30.49.16498.51 doi: 10.1152/jn.00841.2006 – ident: 2023041303474940000_30.49.16498.29 doi: 10.1016/0165-3806(93)90040-H – ident: 2023041303474940000_30.49.16498.41 doi: 10.1016/j.neuron.2010.07.003 – ident: 2023041303474940000_30.49.16498.1 doi: 10.1038/72072 – volume: 21 start-page: 9713 year: 2001 ident: 2023041303474940000_30.49.16498.37 article-title: Structure and emergence of specific olfactory glomeruli in the mouse publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-24-09713.2001 – ident: 2023041303474940000_30.49.16498.27 doi: 10.1002/cne.10910 – ident: 2023041303474940000_30.49.16498.25 doi: 10.1016/j.ejphar.2007.11.058 – ident: 2023041303474940000_30.49.16498.20 doi: 10.1016/j.neuron.2004.08.018 – ident: 2023041303474940000_30.49.16498.49 doi: 10.1201/9781420071993-c5 |
SSID | ssj0007017 |
Score | 2.1556263 |
Snippet | Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 16498 |
SubjectTerms | Animals Animals, Newborn Antidiarrheals - pharmacology Axons - drug effects Axons - physiology Biophysics - methods Cardiotonic Agents - pharmacology Cells, Cultured Cyclic Nucleotide-Gated Cation Channels - deficiency Cyclic Nucleotide-Gated Cation Channels - physiology Electric Stimulation - methods Embryo, Mammalian GAP-43 Protein - metabolism Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Developmental - physiology Green Fluorescent Proteins - genetics Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Ion Channels - genetics Ion Channels - metabolism Loperamide - pharmacology Membrane Potentials - drug effects Membrane Potentials - genetics Mice Mice, Inbred C57BL Mice, Knockout Neural Cell Adhesion Molecules - metabolism Neurogenesis - drug effects Neurogenesis - physiology Olfactory Bulb - cytology Olfactory Bulb - embryology Olfactory Bulb - growth & development Patch-Clamp Techniques - methods Potassium Channels - deficiency Potassium Channels - genetics Potassium Channels - metabolism Potassium Channels - physiology Pyrimidines - pharmacology Receptors, Odorant - genetics Receptors, Odorant - metabolism Sensory Receptor Cells - cytology Sensory Receptor Cells - drug effects |
Title | Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Olfactory Sensory Neurons Regulate Axon Extension and Glomerular Formation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21147989 https://www.proquest.com/docview/821485967 https://www.proquest.com/docview/856761956 https://pubmed.ncbi.nlm.nih.gov/PMC3393111 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPJIC2gPiEvl1t6HH8eogNJCe6GVerPW9hYiJXaUOqjhJ_BH-JvM7K4fSUt5XJxoba8lf59nZ2bnQcibws9y4I30YOnLPZHH0stkIb0w50wFzBeZyfA-OQ3H5-L4Ql4MBj97UUvLOtvPv9-aV_I_qMIY4IpZsv-AbDspDMB_wBeOgDAc_wrjMRiRizkapy6b0sM0hW8Ktch8lWP96hLrFVf1pNDGk1aYTN8SFkR0dFRT225ntXcF1iz-mvKWJW4lmBb1ek9dV9gGwMS5u8DlL9NqphcmfLVNfezruF22mdFzexUzuzhb7GJj4B2Bqd65X7vMRJd4s1Cdu3YEy6oulCsHAMyuOhfviVq6vtyfVsB4FwbpvBkuMsQKYO0kMDNbPkFfRLutG0tFW-LUCVyw9mwX6xtLgTQlKY5PMSLy8-HRvgDJ5WHku2_jaHv8mM8MQcAWFlFiOxptFOFuTt0j9xnYI9gq493Rx3bJj0CuufRzeOzB7Q81daftNOtK0A3LZjNAt6fxnD0iDx2EdGR595gMdPmEbI9KVVezFX1LTfCw2ZXZJj_uoCK1VKSbVKQNFemkpC0VqaMidVSkDRUpUpG2VKTADtpRkbZUfErOP7w_Oxx7rs2Hl4O2X3uq0IrFGdMAush8pUFvC1SiAq5UBuNxlOhAsyIINGjPhWCKZ7G4BNOlCHUe-_wZ2SqrUr8glBdgkKjQv4y4ECGDuyUcuNTcZzAXGxLZvPc0dzXwsRXLNEVbGKBLW-hShA6HEbohOWjvm9sqMH-8gzawpiCwcRcOvpFqeZXGLBCxTMLojktkiN5FGQ7Jc0uE9qkNg4YkWqNIewGWi18_U06-mrLxnCccNJud3865Sx50n-RLslUvlvoVqNx19trQ_RfGYd7F |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperpolarization-activated+cyclic+nucleotide-gated+channels+in+olfactory+sensory+neurons+regulate+axon+extension+and+glomerular+formation&rft.jtitle=The+Journal+of+neuroscience&rft.au=Mobley%2C+Arie+S&rft.au=Miller%2C+Alexandra+M&rft.au=Araneda%2C+Ricardo+C&rft.au=Maurer%2C+Lydia+R&rft.date=2010-12-08&rft.eissn=1529-2401&rft.volume=30&rft.issue=49&rft.spage=16498&rft_id=info:doi/10.1523%2FJNEUROSCI.4225-10.2010&rft_id=info%3Apmid%2F21147989&rft.externalDocID=21147989 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |