Learning label smoothing for text classification
Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. T...
Saved in:
Published in | PeerJ. Computer science Vol. 10; p. e2005 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
23.04.2024
PeerJ Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2376-5992 2376-5992 |
DOI | 10.7717/peerj-cs.2005 |
Cover
Loading…
Abstract | Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method. Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method.Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method. |
ArticleNumber | e2005 |
Audience | Academic |
Author | Ren, Han Zhao, Yajie Sun, Wei Zhang, Yong |
Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0002-2768-3396 surname: Ren fullname: Ren, Han organization: Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou, China, Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou, China – sequence: 2 givenname: Yajie orcidid: 0009-0000-6253-2289 surname: Zhao fullname: Zhao, Yajie organization: School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, China – sequence: 3 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: School of Computer Science, Central China Normal University, Wuhan, China – sequence: 4 givenname: Wei surname: Sun fullname: Sun, Wei organization: School of Information Science and Technology, Qiong Tai Normal University, Haikou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38686010$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstv1DAQhy1UREvpkStaiQscsvgRx_YJVRWPlVZC4nG2Zp1x6lUSL3YWwX-P0y1VI2EfPB5_8_OMZp6TszGOSMhLRtdKMfXugJj2lctrTql8Qi64UE0ljeFnj-xzcpXznlLKJCvLPCPnQje6oYxeELpFSGMYu1UPO-xXeYhxup3vPqbVhL-nlesh5-CDgynE8QV56qHPeHV_XpIfHz98v_lcbb982txcbytXfpkqcCBEzYXxtK699LUWjReKq9qDNK3kO8Go3JnWMERvRIMCqHJaaiPBm1Zcks1Jt42wt4cUBkh_bIRg7xwxdRbSFFyP1ijJNZRySlzdYKM11koLyREUGCGL1vuT1uG4G7B1OE4J-oXo8mUMt7aLvywrOSrZ6KLw5l4hxZ9HzJMdQnbY9zBiPGYraG0U51yrgr4-oR2U3MLoY5F0M26vNROac8NNodb_ocpucQiudNmH4l8EvF0EFGbuTgfHnO3m29cl--pxvQ-F_mt7AaoT4FLMOaF_QBi182TZu8myLtt5ssRf2Rm-Hw |
Cites_doi | 10.1162/neco.1997.9.8.1735 10.1109/CVPR.2016.308 10.48550/arXiv.1503.02531 10.1080/00207721.2023.2169059 10.3115/v1/D14-1162 10.1109/ICMLA52953.2021.00124 10.1109/ICCV.2017.324 10.1109/ICASSP40776.2020.9053589 10.1609/aaai.v29i1.9602 10.48550/arXiv.2009.06432 10.1109/TIP.2021.3089942 10.48550/arXiv.1908.05474 10.1145/775047.775151 10.48550/arXiv.1412.6596 10.48550/arXiv.2112.00499 10.48550/arXiv.2208.00461 10.3115/1219840.1219855 10.1609/aaai.v33i01.33017370 10.48550/arXiv.1907.11692 10.1088/1742-6596/1168/2/022022 10.48550/arXiv.2002.09437 10.3115/v1/D14-1181 10.48550/arXiv.1701.06548 10.18653/v1/2021.acl-long.272 10.18653/v1/2021.acl-long.171 10.48550/arXiv.2006.11653 |
ContentType | Journal Article |
Copyright | 2024 Ren et al. COPYRIGHT 2024 PeerJ. Ltd. 2024 Ren et al. 2024 Ren et al. |
Copyright_xml | – notice: 2024 Ren et al. – notice: COPYRIGHT 2024 PeerJ. Ltd. – notice: 2024 Ren et al. 2024 Ren et al. |
DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.2005 |
DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_97528a010f9d46e688e478352ea7a935 PMC11057568 A813822929 38686010 10_7717_peerj_cs_2005 |
Genre | Journal Article |
GeographicLocations | New York |
GeographicLocations_xml | – name: New York |
GrantInformation_xml | – fundername: Guangdong Philosophy and Social Sciences Foundation grantid: Grant Nos. GD20XZY01, GD24CWY11 – fundername: Guangdong University of Foreign Studies Project Foundation grantid: Grant Nos. LAI202305, LEC2019ZBKT002, LEC2022ZBKT005 – fundername: Philosophy and Social Sciences of the Ministry of Education grantid: Grant No. 21JDA050 – fundername: Research Fund of National Language Commission grantid: Grant No.YB145-2 – fundername: Guangdong Education Department Project Foundation grantid: Grant Nos. 2017KTSCX064, 2023WTSCX017 – fundername: Guangzhou Science and Technology Project Foundation grantid: Grant No. 202201010717 – fundername: National Natural Science Foundation of China grantid: Grant No. 61977032 – fundername: Hainan Natural Science Foundation grantid: Grant Nos. 620QN282, 621MS054 |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM H13 NPM PQGLB PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c511t-aca334239f044f5f4836f37274fa59d52b3105b9d91eef936e3a07c85895af9d3 |
IEDL.DBID | DOA |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:07:46 EDT 2025 Thu Aug 21 18:34:21 EDT 2025 Fri Jul 11 02:46:15 EDT 2025 Tue Jun 17 22:01:32 EDT 2025 Tue Jun 10 21:01:00 EDT 2025 Fri Jun 27 05:26:41 EDT 2025 Mon Jul 21 05:57:47 EDT 2025 Tue Jul 01 04:11:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural network Label smoothing Excessive regularization Soft label Text classification |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2024 Ren et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-aca334239f044f5f4836f37274fa59d52b3105b9d91eef936e3a07c85895af9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0000-6253-2289 0000-0002-2768-3396 |
OpenAccessLink | https://doaj.org/article/97528a010f9d46e688e478352ea7a935 |
PMID | 38686010 |
PQID | 3049722287 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97528a010f9d46e688e478352ea7a935 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11057568 proquest_miscellaneous_3049722287 gale_infotracmisc_A813822929 gale_infotracacademiconefile_A813822929 gale_incontextgauss_ISR_A813822929 pubmed_primary_38686010 crossref_primary_10_7717_peerj_cs_2005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-23 |
PublicationDateYYYYMMDD | 2024-04-23 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2024 |
Publisher | PeerJ. Ltd PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
References | Ma (10.7717/peerj-cs.2005/ref-25) 2018 Penha (10.7717/peerj-cs.2005/ref-32) 2021 Zadrozny (10.7717/peerj-cs.2005/ref-52) 2001 Szegedy (10.7717/peerj-cs.2005/ref-40) 2016 Platt (10.7717/peerj-cs.2005/ref-35) 1999; 10 Lin (10.7717/peerj-cs.2005/ref-18) 2017 Xie (10.7717/peerj-cs.2005/ref-47) 2016 Guo (10.7717/peerj-cs.2005/ref-7) 2017 Patrini (10.7717/peerj-cs.2005/ref-31) 2017 Liu (10.7717/peerj-cs.2005/ref-21) 2019 Kim (10.7717/peerj-cs.2005/ref-13) 2014 Kingma (10.7717/peerj-cs.2005/ref-14) 2015 Xu (10.7717/peerj-cs.2005/ref-48) 2020 Zhang (10.7717/peerj-cs.2005/ref-55) 2018 Kenton (10.7717/peerj-cs.2005/ref-11) 2019 Khan (10.7717/peerj-cs.2005/ref-12) 2023; 54 Krothapalli (10.7717/peerj-cs.2005/ref-15) 2020 Srivastava (10.7717/peerj-cs.2005/ref-39) 2014; 15 Ying (10.7717/peerj-cs.2005/ref-50) 2019; 1168 Pereyra (10.7717/peerj-cs.2005/ref-34) 2017 Wang (10.7717/peerj-cs.2005/ref-43) 2021b Lukasik (10.7717/peerj-cs.2005/ref-23) 2020 Müller (10.7717/peerj-cs.2005/ref-28) 2019 Balanya (10.7717/peerj-cs.2005/ref-3) 2022 Naeini (10.7717/peerj-cs.2005/ref-29) 2015 Zadrozny (10.7717/peerj-cs.2005/ref-53) 2002 Maher (10.7717/peerj-cs.2005/ref-26) 2021 Desai (10.7717/peerj-cs.2005/ref-5) 2020 Thulasidasan (10.7717/peerj-cs.2005/ref-41) 2019; 32 Yun (10.7717/peerj-cs.2005/ref-51) 2019 Pennington (10.7717/peerj-cs.2005/ref-33) 2014 Yao (10.7717/peerj-cs.2005/ref-49) 2019; 33 Wu (10.7717/peerj-cs.2005/ref-46) 2019 Mukhoti (10.7717/peerj-cs.2005/ref-27) 2020; 33 Hochreiter (10.7717/peerj-cs.2005/ref-9) 1997; 9 Saha (10.7717/peerj-cs.2005/ref-37) 2022 Wei (10.7717/peerj-cs.2005/ref-44) 2022a Wei (10.7717/peerj-cs.2005/ref-45) 2022b Arazo (10.7717/peerj-cs.2005/ref-1) 2019 Liu (10.7717/peerj-cs.2005/ref-22) 2020 Zhang (10.7717/peerj-cs.2005/ref-54) 2021; 30 Kumar (10.7717/peerj-cs.2005/ref-16) 2018 Pang (10.7717/peerj-cs.2005/ref-30) 2005 Chen (10.7717/peerj-cs.2005/ref-4) 2021 Reed (10.7717/peerj-cs.2005/ref-36) 2014 Bahri (10.7717/peerj-cs.2005/ref-2) 2021 Liu (10.7717/peerj-cs.2005/ref-20) 2022 Hinton (10.7717/peerj-cs.2005/ref-8) 2015 Lin (10.7717/peerj-cs.2005/ref-19) 2021 Song (10.7717/peerj-cs.2005/ref-38) 2020 Wang (10.7717/peerj-cs.2005/ref-42) 2021a Joulin (10.7717/peerj-cs.2005/ref-10) 2017 Luo (10.7717/peerj-cs.2005/ref-24) 2021 Zhou (10.7717/peerj-cs.2005/ref-56) 2023 Li (10.7717/peerj-cs.2005/ref-17) 2020 Ding (10.7717/peerj-cs.2005/ref-6) 2019 |
References_xml | – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.7717/peerj-cs.2005/ref-9 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – start-page: 1453 volume-title: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research year: 2020 ident: 10.7717/peerj-cs.2005/ref-17 article-title: Regularization via structural label smoothing – start-page: 4171 year: 2019 ident: 10.7717/peerj-cs.2005/ref-11 article-title: BERT: pre-training of deep bidirectional transformers for language understanding – start-page: 4753 year: 2016 ident: 10.7717/peerj-cs.2005/ref-47 article-title: Disturblabel: regularizing CNN on the loss layer – year: 2016 ident: 10.7717/peerj-cs.2005/ref-40 article-title: Rethinking the inception architecture for computer vision doi: 10.1109/CVPR.2016.308 – year: 2015 ident: 10.7717/peerj-cs.2005/ref-8 article-title: Distilling the knowledge in a neural network doi: 10.48550/arXiv.1503.02531 – volume: 54 start-page: 1243 issue: 6 year: 2023 ident: 10.7717/peerj-cs.2005/ref-12 article-title: A study on relationship between prediction uncertainty and robustness to noisy data publication-title: International Journal of Systems Science doi: 10.1080/00207721.2023.2169059 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: 10.7717/peerj-cs.2005/ref-28 article-title: When does label smoothing help? – start-page: 1532 year: 2014 ident: 10.7717/peerj-cs.2005/ref-33 article-title: GloVe: global vectors for word representation doi: 10.3115/v1/D14-1162 – start-page: 312 year: 2019 ident: 10.7717/peerj-cs.2005/ref-1 article-title: Unsupervised label noise modeling and loss correction – start-page: 55 year: 2023 ident: 10.7717/peerj-cs.2005/ref-56 article-title: Adaptive label smoothing to regularize large-scale graph training – start-page: 746 year: 2021 ident: 10.7717/peerj-cs.2005/ref-26 article-title: Instance-based label smoothing for better calibrated classification networks doi: 10.1109/ICMLA52953.2021.00124 – start-page: 334 year: 2021 ident: 10.7717/peerj-cs.2005/ref-32 article-title: Weakly supervised label smoothing – start-page: 532 volume-title: Proceedings of the 38th International Conference on Machine Learning year: 2021 ident: 10.7717/peerj-cs.2005/ref-2 article-title: Locally adaptive label smoothing improves predictive churn – year: 2017 ident: 10.7717/peerj-cs.2005/ref-18 article-title: Focal loss for dense object detection doi: 10.1109/ICCV.2017.324 – start-page: 4992 year: 2020 ident: 10.7717/peerj-cs.2005/ref-23 article-title: Semantic label smoothing for sequence to sequence problems – start-page: 1321 year: 2017 ident: 10.7717/peerj-cs.2005/ref-7 article-title: On calibration of modern neural networks – start-page: 427 year: 2017 ident: 10.7717/peerj-cs.2005/ref-10 article-title: Bag of tricks for efficient text classification – start-page: 295 year: 2020 ident: 10.7717/peerj-cs.2005/ref-5 article-title: Calibration of pre-trained transformers – start-page: 6159 year: 2020 ident: 10.7717/peerj-cs.2005/ref-38 article-title: Learning recurrent neural network language models with context-sensitive label smoothing for automatic speech recognition doi: 10.1109/ICASSP40776.2020.9053589 – start-page: 29 year: 2015 ident: 10.7717/peerj-cs.2005/ref-29 article-title: Obtaining well calibrated probabilities using Bayesian binning doi: 10.1609/aaai.v29i1.9602 – volume: 10 start-page: 61 year: 1999 ident: 10.7717/peerj-cs.2005/ref-35 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Advances in Large Margin Classifiers – volume-title: 3rd International Conference on Learning Representations, May 7–9, 2015, Conference Track Proceedings year: 2015 ident: 10.7717/peerj-cs.2005/ref-14 article-title: Adam: a method for stochastic optimization – year: 2020 ident: 10.7717/peerj-cs.2005/ref-15 article-title: Adaptive label smoothing doi: 10.48550/arXiv.2009.06432 – start-page: 6861 year: 2019 ident: 10.7717/peerj-cs.2005/ref-46 article-title: Simplifying graph convolutional networks – volume: 30 start-page: 5984 year: 2021 ident: 10.7717/peerj-cs.2005/ref-54 article-title: Delving deep into label smoothing publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3089942 – volume: 32 year: 2019 ident: 10.7717/peerj-cs.2005/ref-41 article-title: On mixup training: improved calibration and predictive uncertainty for deep neural networks – year: 2019 ident: 10.7717/peerj-cs.2005/ref-6 article-title: Adaptive regularization of labels doi: 10.48550/arXiv.1908.05474 – start-page: 694 year: 2002 ident: 10.7717/peerj-cs.2005/ref-53 article-title: Transforming classifier scores into accurate multiclass probability estimates doi: 10.1145/775047.775151 – start-page: 8409 year: 2020 ident: 10.7717/peerj-cs.2005/ref-22 article-title: Tensor graph convolutional networks for text classification – year: 2014 ident: 10.7717/peerj-cs.2005/ref-36 article-title: Training deep neural networks on noisy labels with bootstrapping doi: 10.48550/arXiv.1412.6596 – year: 2021a ident: 10.7717/peerj-cs.2005/ref-42 article-title: Structure-aware label smoothing for graph neural networks doi: 10.48550/arXiv.2112.00499 – start-page: 2805 year: 2018 ident: 10.7717/peerj-cs.2005/ref-16 article-title: Trainable calibration measures for neural networks from kernel mean embeddings – year: 2022 ident: 10.7717/peerj-cs.2005/ref-3 article-title: Adaptive temperature scaling for robust calibration of deep neural networks doi: 10.48550/arXiv.2208.00461 – start-page: 723 year: 2018 ident: 10.7717/peerj-cs.2005/ref-55 article-title: Does higher order LSTM have better accuracy for segmenting and labeling sequence data? – start-page: 115 year: 2005 ident: 10.7717/peerj-cs.2005/ref-30 article-title: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales doi: 10.3115/1219840.1219855 – start-page: 80 year: 2022 ident: 10.7717/peerj-cs.2005/ref-20 article-title: The devil is in the margin: margin-based label smoothing for network calibration – volume: 33 start-page: 7370 issue: 1 year: 2019 ident: 10.7717/peerj-cs.2005/ref-49 article-title: Graph convolutional networks for text classification publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.33017370 – year: 2019 ident: 10.7717/peerj-cs.2005/ref-21 article-title: Roberta: a robustly optimized bert pretraining approach doi: 10.48550/arXiv.1907.11692 – start-page: 3303 year: 2021 ident: 10.7717/peerj-cs.2005/ref-24 article-title: Smoothing with fake label – start-page: 23589 year: 2022a ident: 10.7717/peerj-cs.2005/ref-44 article-title: To smooth or not? When label smoothing meets noisy labels – start-page: 1944 year: 2017 ident: 10.7717/peerj-cs.2005/ref-31 article-title: Making deep neural networks robust to label noise: a loss correction approach – volume: 1168 start-page: 022022 year: 2019 ident: 10.7717/peerj-cs.2005/ref-50 article-title: An overview of overfitting and its solutions publication-title: Journal of Physics: Conference Series. IOP Publishing doi: 10.1088/1742-6596/1168/2/022022 – volume: 33 start-page: 15288 year: 2020 ident: 10.7717/peerj-cs.2005/ref-27 article-title: Calibrating deep neural networks using focal loss publication-title: Advances in Neural Information Processing Systems doi: 10.48550/arXiv.2002.09437 – start-page: 1746 year: 2014 ident: 10.7717/peerj-cs.2005/ref-13 article-title: Convolutional neural networks for sentence classification doi: 10.3115/v1/D14-1181 – year: 2017 ident: 10.7717/peerj-cs.2005/ref-34 article-title: Regularizing neural networks by penalizing confident output distributions doi: 10.48550/arXiv.1701.06548 – start-page: 253 year: 2022 ident: 10.7717/peerj-cs.2005/ref-37 article-title: Similarity based label smoothing for dialogue generation – start-page: 3507 year: 2021b ident: 10.7717/peerj-cs.2005/ref-43 article-title: Diversifying dialog generation via adaptive label smoothing doi: 10.18653/v1/2021.acl-long.272 – start-page: 2195 year: 2021 ident: 10.7717/peerj-cs.2005/ref-4 article-title: EarlyBERT: efficient BERT training via early-bird lottery tickets doi: 10.18653/v1/2021.acl-long.171 – start-page: 1456 year: 2021 ident: 10.7717/peerj-cs.2005/ref-19 article-title: BertGCN: transductive text classification by combining GNN and BERT – start-page: 6023 year: 2019 ident: 10.7717/peerj-cs.2005/ref-51 article-title: Cutmix: regularization strategy to train strong classifiers with localizable features – start-page: 23631 year: 2022b ident: 10.7717/peerj-cs.2005/ref-45 article-title: Mitigating neural network overconfidence with logit normalization – start-page: 3355 year: 2018 ident: 10.7717/peerj-cs.2005/ref-25 article-title: Dimensionality-driven learning with noisy labels – start-page: 609 year: 2001 ident: 10.7717/peerj-cs.2005/ref-52 article-title: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers – volume: 15 start-page: 1929 year: 2014 ident: 10.7717/peerj-cs.2005/ref-39 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – year: 2020 ident: 10.7717/peerj-cs.2005/ref-48 article-title: Towards understanding label smoothing doi: 10.48550/arXiv.2006.11653 |
SSID | ssj0001511119 |
Score | 2.2540243 |
Snippet | Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e2005 |
SubjectTerms | Algorithms and Analysis of Algorithms Analysis Computational Linguistics Data Mining and Machine Learning Excessive regularization Label smoothing Language processing Natural language interfaces Neural network Neural Networks Soft label Text classification Text Mining |
Title | Learning label smoothing for text classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38686010 https://www.proquest.com/docview/3049722287 https://pubmed.ncbi.nlm.nih.gov/PMC11057568 https://doaj.org/article/97528a010f9d46e688e478352ea7a935 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BuXChfBMoq4AQnKJm44_YxxZ1KUhUqFCpN8txxi2IZqtm9_8z42SrjThw4Zh4DvF7sT1jj98AvLNto0SwWNAESQGKF6owGkOBrLUW595iOjH9eqKPz-SXc3W-VeqLc8IGeeABuH1bq8p4ihqibaVGbQxK3q2o0NfeiqReSmveVjA13A_mqcAOopo1hSz714g3v4qQFLrVZBFKWv1_z8hbS9I0XXJr_Vk8hAej45gfDB_8CO5g9xh2N0UZ8nGMPoFyVEy9yIlf_J33V0sig5_JPc05zyMP7DFzilBi5SmcLY5-fDwuxrIIRaBerQofvEi6fbGUMqoojdBRkB8io1e2VVVDLptqbGvniNEKjcKXdTDKWOUJRfEMdrplhy8gb7BpYyjLICRRQ8GCn6NsPVpT1zbomMH7DU7uelC_cBQ1MKAuAepCz4UsVQaHjOKtEYtWpxdEpRupdP-iMoO3zIFjWYqO8bjw6753n7-fugPDWokV-XIZfBiN4pLYCH68RkAdYiWrieXexJLGTZg0v9lQ7biJk806XK57x0DUvDNWZ_B8oP62Y8JowzFsBmbyU0x6Pm3pfl4m2e45l1RW2rz8H1i9gvsVuVd8rlWJPdhZ3azxNblHq2YGd83i0wzuHR6dfDudpXHxB1BoDtk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+label+smoothing+for+text+classification&rft.jtitle=PeerJ.+Computer+science&rft.au=Ren%2C+Han&rft.au=Zhao%2C+Yajie&rft.au=Zhang%2C+Yong&rft.au=Sun%2C+Wei&rft.date=2024-04-23&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=10&rft_id=info:doi/10.7717%2Fpeerj-cs.2005&rft.externalDocID=PMC11057568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |