Learning label smoothing for text classification

Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. T...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e2005
Main Authors Ren, Han, Zhao, Yajie, Zhang, Yong, Sun, Wei
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 23.04.2024
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.2005

Cover

Loading…
Abstract Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method.
AbstractList Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method.
Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method.Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method.
ArticleNumber e2005
Audience Academic
Author Ren, Han
Zhao, Yajie
Sun, Wei
Zhang, Yong
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0002-2768-3396
  surname: Ren
  fullname: Ren, Han
  organization: Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou, China, Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou, China
– sequence: 2
  givenname: Yajie
  orcidid: 0009-0000-6253-2289
  surname: Zhao
  fullname: Zhao, Yajie
  organization: School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, China
– sequence: 3
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: School of Computer Science, Central China Normal University, Wuhan, China
– sequence: 4
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  organization: School of Information Science and Technology, Qiong Tai Normal University, Haikou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38686010$$D View this record in MEDLINE/PubMed
BookMark eNptkstv1DAQhy1UREvpkStaiQscsvgRx_YJVRWPlVZC4nG2Zp1x6lUSL3YWwX-P0y1VI2EfPB5_8_OMZp6TszGOSMhLRtdKMfXugJj2lctrTql8Qi64UE0ljeFnj-xzcpXznlLKJCvLPCPnQje6oYxeELpFSGMYu1UPO-xXeYhxup3vPqbVhL-nlesh5-CDgynE8QV56qHPeHV_XpIfHz98v_lcbb982txcbytXfpkqcCBEzYXxtK699LUWjReKq9qDNK3kO8Go3JnWMERvRIMCqHJaaiPBm1Zcks1Jt42wt4cUBkh_bIRg7xwxdRbSFFyP1ijJNZRySlzdYKM11koLyREUGCGL1vuT1uG4G7B1OE4J-oXo8mUMt7aLvywrOSrZ6KLw5l4hxZ9HzJMdQnbY9zBiPGYraG0U51yrgr4-oR2U3MLoY5F0M26vNROac8NNodb_ocpucQiudNmH4l8EvF0EFGbuTgfHnO3m29cl--pxvQ-F_mt7AaoT4FLMOaF_QBi182TZu8myLtt5ssRf2Rm-Hw
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/CVPR.2016.308
10.48550/arXiv.1503.02531
10.1080/00207721.2023.2169059
10.3115/v1/D14-1162
10.1109/ICMLA52953.2021.00124
10.1109/ICCV.2017.324
10.1109/ICASSP40776.2020.9053589
10.1609/aaai.v29i1.9602
10.48550/arXiv.2009.06432
10.1109/TIP.2021.3089942
10.48550/arXiv.1908.05474
10.1145/775047.775151
10.48550/arXiv.1412.6596
10.48550/arXiv.2112.00499
10.48550/arXiv.2208.00461
10.3115/1219840.1219855
10.1609/aaai.v33i01.33017370
10.48550/arXiv.1907.11692
10.1088/1742-6596/1168/2/022022
10.48550/arXiv.2002.09437
10.3115/v1/D14-1181
10.48550/arXiv.1701.06548
10.18653/v1/2021.acl-long.272
10.18653/v1/2021.acl-long.171
10.48550/arXiv.2006.11653
ContentType Journal Article
Copyright 2024 Ren et al.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Ren et al. 2024 Ren et al.
Copyright_xml – notice: 2024 Ren et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Ren et al. 2024 Ren et al.
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2005
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_97528a010f9d46e688e478352ea7a935
PMC11057568
A813822929
38686010
10_7717_peerj_cs_2005
Genre Journal Article
GeographicLocations New York
GeographicLocations_xml – name: New York
GrantInformation_xml – fundername: Guangdong Philosophy and Social Sciences Foundation
  grantid: Grant Nos. GD20XZY01, GD24CWY11
– fundername: Guangdong University of Foreign Studies Project Foundation
  grantid: Grant Nos. LAI202305, LEC2019ZBKT002, LEC2022ZBKT005
– fundername: Philosophy and Social Sciences of the Ministry of Education
  grantid: Grant No. 21JDA050
– fundername: Research Fund of National Language Commission
  grantid: Grant No.YB145-2
– fundername: Guangdong Education Department Project Foundation
  grantid: Grant Nos. 2017KTSCX064, 2023WTSCX017
– fundername: Guangzhou Science and Technology Project Foundation
  grantid: Grant No. 202201010717
– fundername: National Natural Science Foundation of China
  grantid: Grant No. 61977032
– fundername: Hainan Natural Science Foundation
  grantid: Grant Nos. 620QN282, 621MS054
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
H13
NPM
PQGLB
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c511t-aca334239f044f5f4836f37274fa59d52b3105b9d91eef936e3a07c85895af9d3
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Wed Aug 27 01:07:46 EDT 2025
Thu Aug 21 18:34:21 EDT 2025
Fri Jul 11 02:46:15 EDT 2025
Tue Jun 17 22:01:32 EDT 2025
Tue Jun 10 21:01:00 EDT 2025
Fri Jun 27 05:26:41 EDT 2025
Mon Jul 21 05:57:47 EDT 2025
Tue Jul 01 04:11:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Label smoothing
Excessive regularization
Soft label
Text classification
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Ren et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-aca334239f044f5f4836f37274fa59d52b3105b9d91eef936e3a07c85895af9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-6253-2289
0000-0002-2768-3396
OpenAccessLink https://doaj.org/article/97528a010f9d46e688e478352ea7a935
PMID 38686010
PQID 3049722287
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_97528a010f9d46e688e478352ea7a935
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11057568
proquest_miscellaneous_3049722287
gale_infotracmisc_A813822929
gale_infotracacademiconefile_A813822929
gale_incontextgauss_ISR_A813822929
pubmed_primary_38686010
crossref_primary_10_7717_peerj_cs_2005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Ma (10.7717/peerj-cs.2005/ref-25) 2018
Penha (10.7717/peerj-cs.2005/ref-32) 2021
Zadrozny (10.7717/peerj-cs.2005/ref-52) 2001
Szegedy (10.7717/peerj-cs.2005/ref-40) 2016
Platt (10.7717/peerj-cs.2005/ref-35) 1999; 10
Lin (10.7717/peerj-cs.2005/ref-18) 2017
Xie (10.7717/peerj-cs.2005/ref-47) 2016
Guo (10.7717/peerj-cs.2005/ref-7) 2017
Patrini (10.7717/peerj-cs.2005/ref-31) 2017
Liu (10.7717/peerj-cs.2005/ref-21) 2019
Kim (10.7717/peerj-cs.2005/ref-13) 2014
Kingma (10.7717/peerj-cs.2005/ref-14) 2015
Xu (10.7717/peerj-cs.2005/ref-48) 2020
Zhang (10.7717/peerj-cs.2005/ref-55) 2018
Kenton (10.7717/peerj-cs.2005/ref-11) 2019
Khan (10.7717/peerj-cs.2005/ref-12) 2023; 54
Krothapalli (10.7717/peerj-cs.2005/ref-15) 2020
Srivastava (10.7717/peerj-cs.2005/ref-39) 2014; 15
Ying (10.7717/peerj-cs.2005/ref-50) 2019; 1168
Pereyra (10.7717/peerj-cs.2005/ref-34) 2017
Wang (10.7717/peerj-cs.2005/ref-43) 2021b
Lukasik (10.7717/peerj-cs.2005/ref-23) 2020
Müller (10.7717/peerj-cs.2005/ref-28) 2019
Balanya (10.7717/peerj-cs.2005/ref-3) 2022
Naeini (10.7717/peerj-cs.2005/ref-29) 2015
Zadrozny (10.7717/peerj-cs.2005/ref-53) 2002
Maher (10.7717/peerj-cs.2005/ref-26) 2021
Desai (10.7717/peerj-cs.2005/ref-5) 2020
Thulasidasan (10.7717/peerj-cs.2005/ref-41) 2019; 32
Yun (10.7717/peerj-cs.2005/ref-51) 2019
Pennington (10.7717/peerj-cs.2005/ref-33) 2014
Yao (10.7717/peerj-cs.2005/ref-49) 2019; 33
Wu (10.7717/peerj-cs.2005/ref-46) 2019
Mukhoti (10.7717/peerj-cs.2005/ref-27) 2020; 33
Hochreiter (10.7717/peerj-cs.2005/ref-9) 1997; 9
Saha (10.7717/peerj-cs.2005/ref-37) 2022
Wei (10.7717/peerj-cs.2005/ref-44) 2022a
Wei (10.7717/peerj-cs.2005/ref-45) 2022b
Arazo (10.7717/peerj-cs.2005/ref-1) 2019
Liu (10.7717/peerj-cs.2005/ref-22) 2020
Zhang (10.7717/peerj-cs.2005/ref-54) 2021; 30
Kumar (10.7717/peerj-cs.2005/ref-16) 2018
Pang (10.7717/peerj-cs.2005/ref-30) 2005
Chen (10.7717/peerj-cs.2005/ref-4) 2021
Reed (10.7717/peerj-cs.2005/ref-36) 2014
Bahri (10.7717/peerj-cs.2005/ref-2) 2021
Liu (10.7717/peerj-cs.2005/ref-20) 2022
Hinton (10.7717/peerj-cs.2005/ref-8) 2015
Lin (10.7717/peerj-cs.2005/ref-19) 2021
Song (10.7717/peerj-cs.2005/ref-38) 2020
Wang (10.7717/peerj-cs.2005/ref-42) 2021a
Joulin (10.7717/peerj-cs.2005/ref-10) 2017
Luo (10.7717/peerj-cs.2005/ref-24) 2021
Zhou (10.7717/peerj-cs.2005/ref-56) 2023
Li (10.7717/peerj-cs.2005/ref-17) 2020
Ding (10.7717/peerj-cs.2005/ref-6) 2019
References_xml – volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.7717/peerj-cs.2005/ref-9
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1453
  volume-title: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research
  year: 2020
  ident: 10.7717/peerj-cs.2005/ref-17
  article-title: Regularization via structural label smoothing
– start-page: 4171
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-11
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding
– start-page: 4753
  year: 2016
  ident: 10.7717/peerj-cs.2005/ref-47
  article-title: Disturblabel: regularizing CNN on the loss layer
– year: 2016
  ident: 10.7717/peerj-cs.2005/ref-40
  article-title: Rethinking the inception architecture for computer vision
  doi: 10.1109/CVPR.2016.308
– year: 2015
  ident: 10.7717/peerj-cs.2005/ref-8
  article-title: Distilling the knowledge in a neural network
  doi: 10.48550/arXiv.1503.02531
– volume: 54
  start-page: 1243
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.2005/ref-12
  article-title: A study on relationship between prediction uncertainty and robustness to noisy data
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2023.2169059
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-28
  article-title: When does label smoothing help?
– start-page: 1532
  year: 2014
  ident: 10.7717/peerj-cs.2005/ref-33
  article-title: GloVe: global vectors for word representation
  doi: 10.3115/v1/D14-1162
– start-page: 312
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-1
  article-title: Unsupervised label noise modeling and loss correction
– start-page: 55
  year: 2023
  ident: 10.7717/peerj-cs.2005/ref-56
  article-title: Adaptive label smoothing to regularize large-scale graph training
– start-page: 746
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-26
  article-title: Instance-based label smoothing for better calibrated classification networks
  doi: 10.1109/ICMLA52953.2021.00124
– start-page: 334
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-32
  article-title: Weakly supervised label smoothing
– start-page: 532
  volume-title: Proceedings of the 38th International Conference on Machine Learning
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-2
  article-title: Locally adaptive label smoothing improves predictive churn
– year: 2017
  ident: 10.7717/peerj-cs.2005/ref-18
  article-title: Focal loss for dense object detection
  doi: 10.1109/ICCV.2017.324
– start-page: 4992
  year: 2020
  ident: 10.7717/peerj-cs.2005/ref-23
  article-title: Semantic label smoothing for sequence to sequence problems
– start-page: 1321
  year: 2017
  ident: 10.7717/peerj-cs.2005/ref-7
  article-title: On calibration of modern neural networks
– start-page: 427
  year: 2017
  ident: 10.7717/peerj-cs.2005/ref-10
  article-title: Bag of tricks for efficient text classification
– start-page: 295
  year: 2020
  ident: 10.7717/peerj-cs.2005/ref-5
  article-title: Calibration of pre-trained transformers
– start-page: 6159
  year: 2020
  ident: 10.7717/peerj-cs.2005/ref-38
  article-title: Learning recurrent neural network language models with context-sensitive label smoothing for automatic speech recognition
  doi: 10.1109/ICASSP40776.2020.9053589
– start-page: 29
  year: 2015
  ident: 10.7717/peerj-cs.2005/ref-29
  article-title: Obtaining well calibrated probabilities using Bayesian binning
  doi: 10.1609/aaai.v29i1.9602
– volume: 10
  start-page: 61
  year: 1999
  ident: 10.7717/peerj-cs.2005/ref-35
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Advances in Large Margin Classifiers
– volume-title: 3rd International Conference on Learning Representations, May 7–9, 2015, Conference Track Proceedings
  year: 2015
  ident: 10.7717/peerj-cs.2005/ref-14
  article-title: Adam: a method for stochastic optimization
– year: 2020
  ident: 10.7717/peerj-cs.2005/ref-15
  article-title: Adaptive label smoothing
  doi: 10.48550/arXiv.2009.06432
– start-page: 6861
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-46
  article-title: Simplifying graph convolutional networks
– volume: 30
  start-page: 5984
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-54
  article-title: Delving deep into label smoothing
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3089942
– volume: 32
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-41
  article-title: On mixup training: improved calibration and predictive uncertainty for deep neural networks
– year: 2019
  ident: 10.7717/peerj-cs.2005/ref-6
  article-title: Adaptive regularization of labels
  doi: 10.48550/arXiv.1908.05474
– start-page: 694
  year: 2002
  ident: 10.7717/peerj-cs.2005/ref-53
  article-title: Transforming classifier scores into accurate multiclass probability estimates
  doi: 10.1145/775047.775151
– start-page: 8409
  year: 2020
  ident: 10.7717/peerj-cs.2005/ref-22
  article-title: Tensor graph convolutional networks for text classification
– year: 2014
  ident: 10.7717/peerj-cs.2005/ref-36
  article-title: Training deep neural networks on noisy labels with bootstrapping
  doi: 10.48550/arXiv.1412.6596
– year: 2021a
  ident: 10.7717/peerj-cs.2005/ref-42
  article-title: Structure-aware label smoothing for graph neural networks
  doi: 10.48550/arXiv.2112.00499
– start-page: 2805
  year: 2018
  ident: 10.7717/peerj-cs.2005/ref-16
  article-title: Trainable calibration measures for neural networks from kernel mean embeddings
– year: 2022
  ident: 10.7717/peerj-cs.2005/ref-3
  article-title: Adaptive temperature scaling for robust calibration of deep neural networks
  doi: 10.48550/arXiv.2208.00461
– start-page: 723
  year: 2018
  ident: 10.7717/peerj-cs.2005/ref-55
  article-title: Does higher order LSTM have better accuracy for segmenting and labeling sequence data?
– start-page: 115
  year: 2005
  ident: 10.7717/peerj-cs.2005/ref-30
  article-title: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales
  doi: 10.3115/1219840.1219855
– start-page: 80
  year: 2022
  ident: 10.7717/peerj-cs.2005/ref-20
  article-title: The devil is in the margin: margin-based label smoothing for network calibration
– volume: 33
  start-page: 7370
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-49
  article-title: Graph convolutional networks for text classification
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v33i01.33017370
– year: 2019
  ident: 10.7717/peerj-cs.2005/ref-21
  article-title: Roberta: a robustly optimized bert pretraining approach
  doi: 10.48550/arXiv.1907.11692
– start-page: 3303
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-24
  article-title: Smoothing with fake label
– start-page: 23589
  year: 2022a
  ident: 10.7717/peerj-cs.2005/ref-44
  article-title: To smooth or not? When label smoothing meets noisy labels
– start-page: 1944
  year: 2017
  ident: 10.7717/peerj-cs.2005/ref-31
  article-title: Making deep neural networks robust to label noise: a loss correction approach
– volume: 1168
  start-page: 022022
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-50
  article-title: An overview of overfitting and its solutions
  publication-title: Journal of Physics: Conference Series. IOP Publishing
  doi: 10.1088/1742-6596/1168/2/022022
– volume: 33
  start-page: 15288
  year: 2020
  ident: 10.7717/peerj-cs.2005/ref-27
  article-title: Calibrating deep neural networks using focal loss
  publication-title: Advances in Neural Information Processing Systems
  doi: 10.48550/arXiv.2002.09437
– start-page: 1746
  year: 2014
  ident: 10.7717/peerj-cs.2005/ref-13
  article-title: Convolutional neural networks for sentence classification
  doi: 10.3115/v1/D14-1181
– year: 2017
  ident: 10.7717/peerj-cs.2005/ref-34
  article-title: Regularizing neural networks by penalizing confident output distributions
  doi: 10.48550/arXiv.1701.06548
– start-page: 253
  year: 2022
  ident: 10.7717/peerj-cs.2005/ref-37
  article-title: Similarity based label smoothing for dialogue generation
– start-page: 3507
  year: 2021b
  ident: 10.7717/peerj-cs.2005/ref-43
  article-title: Diversifying dialog generation via adaptive label smoothing
  doi: 10.18653/v1/2021.acl-long.272
– start-page: 2195
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-4
  article-title: EarlyBERT: efficient BERT training via early-bird lottery tickets
  doi: 10.18653/v1/2021.acl-long.171
– start-page: 1456
  year: 2021
  ident: 10.7717/peerj-cs.2005/ref-19
  article-title: BertGCN: transductive text classification by combining GNN and BERT
– start-page: 6023
  year: 2019
  ident: 10.7717/peerj-cs.2005/ref-51
  article-title: Cutmix: regularization strategy to train strong classifiers with localizable features
– start-page: 23631
  year: 2022b
  ident: 10.7717/peerj-cs.2005/ref-45
  article-title: Mitigating neural network overconfidence with logit normalization
– start-page: 3355
  year: 2018
  ident: 10.7717/peerj-cs.2005/ref-25
  article-title: Dimensionality-driven learning with noisy labels
– start-page: 609
  year: 2001
  ident: 10.7717/peerj-cs.2005/ref-52
  article-title: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.7717/peerj-cs.2005/ref-39
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– year: 2020
  ident: 10.7717/peerj-cs.2005/ref-48
  article-title: Towards understanding label smoothing
  doi: 10.48550/arXiv.2006.11653
SSID ssj0001511119
Score 2.2540243
Snippet Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e2005
SubjectTerms Algorithms and Analysis of Algorithms
Analysis
Computational Linguistics
Data Mining and Machine Learning
Excessive regularization
Label smoothing
Language processing
Natural language interfaces
Neural network
Neural Networks
Soft label
Text classification
Text Mining
Title Learning label smoothing for text classification
URI https://www.ncbi.nlm.nih.gov/pubmed/38686010
https://www.proquest.com/docview/3049722287
https://pubmed.ncbi.nlm.nih.gov/PMC11057568
https://doaj.org/article/97528a010f9d46e688e478352ea7a935
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BuXChfBMoq4AQnKJm44_YxxZ1KUhUqFCpN8txxi2IZqtm9_8z42SrjThw4Zh4DvF7sT1jj98AvLNto0SwWNAESQGKF6owGkOBrLUW595iOjH9eqKPz-SXc3W-VeqLc8IGeeABuH1bq8p4ihqibaVGbQxK3q2o0NfeiqReSmveVjA13A_mqcAOopo1hSz714g3v4qQFLrVZBFKWv1_z8hbS9I0XXJr_Vk8hAej45gfDB_8CO5g9xh2N0UZ8nGMPoFyVEy9yIlf_J33V0sig5_JPc05zyMP7DFzilBi5SmcLY5-fDwuxrIIRaBerQofvEi6fbGUMqoojdBRkB8io1e2VVVDLptqbGvniNEKjcKXdTDKWOUJRfEMdrplhy8gb7BpYyjLICRRQ8GCn6NsPVpT1zbomMH7DU7uelC_cBQ1MKAuAepCz4UsVQaHjOKtEYtWpxdEpRupdP-iMoO3zIFjWYqO8bjw6753n7-fugPDWokV-XIZfBiN4pLYCH68RkAdYiWrieXexJLGTZg0v9lQ7biJk806XK57x0DUvDNWZ_B8oP62Y8JowzFsBmbyU0x6Pm3pfl4m2e45l1RW2rz8H1i9gvsVuVd8rlWJPdhZ3azxNblHq2YGd83i0wzuHR6dfDudpXHxB1BoDtk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+label+smoothing+for+text+classification&rft.jtitle=PeerJ.+Computer+science&rft.au=Ren%2C+Han&rft.au=Zhao%2C+Yajie&rft.au=Zhang%2C+Yong&rft.au=Sun%2C+Wei&rft.date=2024-04-23&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=10&rft_id=info:doi/10.7717%2Fpeerj-cs.2005&rft.externalDocID=PMC11057568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon