The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States
Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromati...
Saved in:
Published in | The Plant cell Vol. 26; no. 6; pp. 2351 - 2366 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains. |
---|---|
AbstractList | Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains. Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains. A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin states. The linear topography across the genome revealed the existence of chromatin motifs. This work provides a basis for studies on gene expression, e.g., bivalent H3K27me3/H3K4me3-containing regions, DNA replication, and epigenetics. A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin states. The linear topography across the genome revealed the existence of chromatin motifs. This work provides a basis for studies on gene expression, e.g., bivalent H3K27me3/H3K4me3-containing regions, DNA replication, and epigenetics. Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites ( TSS ) to termination sites and two contain regulatory regions upstream of TSS . Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains. |
Author | Gutierrez, Crisanto Mendez-Giraldez, Raul Peiró, Ramón Sequeira-Mendes, Joana Aragüez, Irene Jacobsen, Steven E. Zhang, Xiaoyu Bastolla, Ugo |
Author_xml | – sequence: 1 givenname: Joana surname: Sequeira-Mendes fullname: Sequeira-Mendes, Joana – sequence: 2 givenname: Irene surname: Aragüez fullname: Aragüez, Irene – sequence: 3 givenname: Ramón surname: Peiró fullname: Peiró, Ramón – sequence: 4 givenname: Raul surname: Mendez-Giraldez fullname: Mendez-Giraldez, Raul – sequence: 5 givenname: Xiaoyu surname: Zhang fullname: Zhang, Xiaoyu – sequence: 6 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. – sequence: 7 givenname: Ugo surname: Bastolla fullname: Bastolla, Ugo – sequence: 8 givenname: Crisanto surname: Gutierrez fullname: Gutierrez, Crisanto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24934173$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1r3DAUFCWl-eq1txYde_FWX7alSyEs-YJtAu0GehOyLO8q2JIryYXtr6_MJktbKDlppDczeu_NKThy3hkA3mG0wBiVn9KoM2ALTFhZ81fgBJeUFETw70cZI4YKVpX4GJzG-IgQwjUWb8AxYYIyXNMTsFtvDbyanE7WO9XDtR_9Jqhxu4O-gykXL4JqbOvHaCO8Ns4PBt5GeB82ytlfpoXWQQW_mnbS-XI3DY0Js3RlnVEBfvHJdnF-WG6DH1TK9G9JJRPPwetO9dG8fTrPwMPV5Xp5U6zur2-XF6tClxinQjWaNsy0VV0JJYjCtSJcNGWFMOXY8Io2VKG20wohwmndsVbwDlXUNKQuGaFn4PPed5yawbTauBRUL8dgBxV20isr_644u5Ub_1OyvFdBeTb4-GQQ_I_JxCQHG7Xpe-WMn6Ik814ZxYK8SMWcVKVgSKBM_fBnW4d-nqPJhMWeoIOPMZjuQMFIztnLnH0GTO6zzwL2j0DbvOmcax7L9v-Xvd_LHmPy4fDJPBCqeEl_A6DxvP8 |
CitedBy_id | crossref_primary_10_1016_j_pbi_2022_102266 crossref_primary_10_1093_nar_gkaa766 crossref_primary_10_3389_fpls_2014_00369 crossref_primary_10_1093_jxb_erad029 crossref_primary_10_1093_jxb_erz457 crossref_primary_10_1016_j_bbagrm_2016_07_005 crossref_primary_10_1080_15592294_2015_1106674 crossref_primary_10_3389_fgene_2021_799805 crossref_primary_10_1038_s41477_019_0589_3 crossref_primary_10_1111_tpj_12963 crossref_primary_10_3389_fpls_2017_01179 crossref_primary_10_1016_j_pbi_2017_03_004 crossref_primary_10_1371_journal_pgen_1006988 crossref_primary_10_1186_s13059_019_1722_3 crossref_primary_10_1038_s41467_019_10773_1 crossref_primary_10_1186_s12870_023_04596_y crossref_primary_10_1186_s13059_017_1226_y crossref_primary_10_3390_genes6030520 crossref_primary_10_1111_nph_13549 crossref_primary_10_1146_annurev_genet_022620_100039 crossref_primary_10_1186_s13059_023_02970_5 crossref_primary_10_1093_jxb_erac167 crossref_primary_10_1111_nph_18666 crossref_primary_10_3389_fpls_2018_01373 crossref_primary_10_1111_tpj_12847 crossref_primary_10_1371_journal_pgen_1008476 crossref_primary_10_1073_pnas_2115570119 crossref_primary_10_3389_fpls_2020_00277 crossref_primary_10_3390_horticulturae8010017 crossref_primary_10_1016_j_cub_2019_12_015 crossref_primary_10_1186_s13059_017_1236_9 crossref_primary_10_1016_j_celrep_2023_112132 crossref_primary_10_1111_tpj_17180 crossref_primary_10_1111_jipb_13883 crossref_primary_10_1002_pei3_10137 crossref_primary_10_3389_fpls_2016_02044 crossref_primary_10_1101_gr_279379_124 crossref_primary_10_1016_j_jtbi_2015_09_017 crossref_primary_10_1007_s00412_015_0538_5 crossref_primary_10_1093_jxb_erx254 crossref_primary_10_1093_nar_gkae306 crossref_primary_10_1093_plphys_kiac285 crossref_primary_10_1093_jxb_erz435 crossref_primary_10_1093_plphys_kiae583 crossref_primary_10_3390_ijms252111698 crossref_primary_10_1093_jxb_erw168 crossref_primary_10_1016_j_pbi_2023_102408 crossref_primary_10_1111_tpj_16624 crossref_primary_10_1016_j_tplants_2015_03_003 crossref_primary_10_1111_tpj_12822 crossref_primary_10_1016_j_xplc_2024_100890 crossref_primary_10_1093_hr_uhae158 crossref_primary_10_3389_fpls_2022_1070397 crossref_primary_10_1186_s13059_019_1767_3 crossref_primary_10_1002_dvdy_24268 crossref_primary_10_1093_nar_gkac012 crossref_primary_10_3390_ijms22084031 crossref_primary_10_1371_journal_pone_0158936 crossref_primary_10_1093_g3journal_jkae301 crossref_primary_10_1093_jxb_erad036 crossref_primary_10_7554_eLife_06516 crossref_primary_10_1111_tpj_12828 crossref_primary_10_1186_s13059_023_02939_4 crossref_primary_10_1016_j_ceb_2021_12_002 crossref_primary_10_1093_bfgp_ely004 crossref_primary_10_1007_s00425_020_03520_0 crossref_primary_10_1111_nph_16902 crossref_primary_10_1016_j_pbi_2020_101991 crossref_primary_10_1038_s41467_023_44491_6 crossref_primary_10_1242_jcs_202416 crossref_primary_10_1093_jxb_eraa230 crossref_primary_10_1038_s41477_024_01883_w crossref_primary_10_3389_fpls_2019_01030 crossref_primary_10_1038_s41477_023_01400_5 crossref_primary_10_3390_plants12010075 crossref_primary_10_1038_s41598_019_44836_6 crossref_primary_10_1016_j_crbiot_2021_07_005 crossref_primary_10_1016_j_molp_2021_03_004 crossref_primary_10_1093_plcell_koab319 crossref_primary_10_1016_j_pbi_2024_102598 crossref_primary_10_1111_nph_19311 crossref_primary_10_3390_ijms25074068 crossref_primary_10_1016_j_pbi_2016_02_009 crossref_primary_10_1093_nar_gkx524 crossref_primary_10_1080_19491034_2016_1236167 crossref_primary_10_1007_s10577_021_09673_2 crossref_primary_10_1038_s41477_024_01746_4 crossref_primary_10_1080_19491034_2019_1591106 crossref_primary_10_1111_tpj_17114 crossref_primary_10_7554_eLife_17061 crossref_primary_10_1186_s13059_020_02068_2 crossref_primary_10_1016_j_molp_2025_01_019 crossref_primary_10_1080_15592294_2016_1185580 crossref_primary_10_3389_fpls_2021_703667 crossref_primary_10_1093_nar_gkv1184 crossref_primary_10_1101_gr_204032_116 crossref_primary_10_3389_fpls_2018_01194 crossref_primary_10_1002_pld3_392 crossref_primary_10_1016_j_ejcb_2023_151344 crossref_primary_10_1146_annurev_arplant_043014_115627 crossref_primary_10_1111_tpj_14098 crossref_primary_10_3389_fpls_2022_888102 crossref_primary_10_1073_pnas_1618618114 crossref_primary_10_1186_s12864_017_3542_8 crossref_primary_10_26508_lsa_201900393 crossref_primary_10_1093_jxb_erac216 crossref_primary_10_1093_nar_gkaa1275 crossref_primary_10_3390_epigenomes1020008 crossref_primary_10_1093_plphys_kiad671 crossref_primary_10_1038_s41467_017_02219_3 crossref_primary_10_15252_embj_2023113595 crossref_primary_10_1016_j_xplc_2019_100015 crossref_primary_10_1093_nar_gkw100 crossref_primary_10_1038_s41467_024_55195_w crossref_primary_10_1186_s13072_017_0132_6 crossref_primary_10_1002_reg2_91 crossref_primary_10_1038_s41467_019_11385_5 crossref_primary_10_1093_g3journal_jkac185 crossref_primary_10_1080_15476286_2020_1792089 crossref_primary_10_3390_ijms22031302 crossref_primary_10_1038_s41598_024_53472_8 crossref_primary_10_1073_pnas_2001290119 crossref_primary_10_1016_j_pbi_2016_07_010 crossref_primary_10_1016_j_xplc_2023_100660 crossref_primary_10_1093_plcell_koac219 crossref_primary_10_1038_nrg_2016_45 crossref_primary_10_1016_j_celrep_2023_112894 crossref_primary_10_3389_fpls_2015_01049 crossref_primary_10_1016_j_pbi_2021_102001 crossref_primary_10_1111_tpj_15130 crossref_primary_10_3390_ijms23158154 crossref_primary_10_3389_fpls_2021_659634 crossref_primary_10_3389_fgene_2019_00306 crossref_primary_10_3390_biom13071069 crossref_primary_10_1101_gr_240986_118 crossref_primary_10_1016_j_molp_2020_12_020 crossref_primary_10_7554_eLife_72676 crossref_primary_10_1017_qpb_2021_17 crossref_primary_10_1101_gr_279532_124 crossref_primary_10_3389_fpls_2017_02084 crossref_primary_10_1093_molbev_msaa031 crossref_primary_10_1093_nar_gkae958 crossref_primary_10_1093_plphys_kiae057 crossref_primary_10_1038_ncomms15120 crossref_primary_10_1038_s41580_024_00769_1 crossref_primary_10_1111_tpj_15145 crossref_primary_10_1093_plcell_koaa027 crossref_primary_10_1111_tpj_16119 crossref_primary_10_1093_jxb_eraa282 crossref_primary_10_1038_s41467_018_03922_5 crossref_primary_10_3389_fpls_2021_677849 crossref_primary_10_1186_s12870_024_04860_9 crossref_primary_10_3390_plants10040706 crossref_primary_10_3390_epigenomes6010003 crossref_primary_10_1016_j_mcpro_2024_100795 crossref_primary_10_1093_plphys_kiab224 crossref_primary_10_1186_s12284_021_00467_y crossref_primary_10_1146_annurev_arplant_042916_041115 crossref_primary_10_1186_s13059_023_03059_9 crossref_primary_10_1111_nph_15418 crossref_primary_10_1093_nar_gkx919 crossref_primary_10_1016_j_celrep_2016_07_016 crossref_primary_10_1111_nph_18876 crossref_primary_10_1186_s12870_019_1738_6 crossref_primary_10_1111_tpj_16446 crossref_primary_10_3389_fpls_2017_01247 crossref_primary_10_1186_s13059_019_1705_4 crossref_primary_10_1093_hr_uhae259 crossref_primary_10_1038_s41467_023_44347_z crossref_primary_10_1016_j_phytochem_2022_113427 crossref_primary_10_1016_j_pbi_2022_102199 crossref_primary_10_1038_s41586_022_05386_6 crossref_primary_10_1093_jxb_erac486 crossref_primary_10_3389_fpls_2022_984702 crossref_primary_10_7554_eLife_87714 crossref_primary_10_1093_pcp_pcac095 crossref_primary_10_1093_nar_gkab828 crossref_primary_10_1186_s13059_015_0598_0 crossref_primary_10_1007_s11103_015_0409_8 crossref_primary_10_1186_s13059_019_1731_2 crossref_primary_10_7554_eLife_87714_3 crossref_primary_10_1038_s41598_018_26349_w crossref_primary_10_1038_s41467_024_45771_5 crossref_primary_10_1093_jxb_eraa098 crossref_primary_10_1073_pnas_1713333115 crossref_primary_10_1038_s41598_017_03665_1 crossref_primary_10_3389_fgene_2023_1229782 crossref_primary_10_1104_pp_114_252999 crossref_primary_10_1016_j_pbi_2016_08_002 crossref_primary_10_1016_j_semcdb_2022_04_006 crossref_primary_10_1073_pnas_1907290116 crossref_primary_10_1016_j_copbio_2017_07_010 crossref_primary_10_1073_pnas_1603823113 crossref_primary_10_1016_j_pbi_2016_10_005 crossref_primary_10_1016_j_tplants_2018_03_014 crossref_primary_10_1038_s41467_018_02976_9 crossref_primary_10_3389_fpls_2025_1544744 crossref_primary_10_1038_s41467_022_32709_y crossref_primary_10_1038_s41467_020_16457_5 crossref_primary_10_1186_s13059_023_02952_7 crossref_primary_10_1093_gbe_evy095 crossref_primary_10_1074_jbc_RA117_001390 crossref_primary_10_1016_j_bbagrm_2016_07_015 crossref_primary_10_1007_s12374_018_0176_6 crossref_primary_10_3389_fpls_2020_00052 crossref_primary_10_1093_pcp_pcz051 crossref_primary_10_1093_hr_uhae101 |
Cites_doi | 10.1186/gb-2013-14-11-r129 10.1371/journal.pbio.0050129 10.1093/bioinformatics/btp472 10.1038/nature05915 10.1101/gr.144840.112 10.1038/nrg2719 10.1038/nsmb.1988 10.1038/nature09725 10.1016/j.cell.2007.02.005 10.1016/j.tig.2013.06.002 10.1186/gb-2009-10-6-r62 10.1038/ncomms2259 10.1242/dev.091439 10.1016/j.pbi.2010.11.005 10.1016/j.pbi.2010.12.002 10.1073/pnas.1203145109 10.1186/gb-2012-13-12-r117 10.1534/g3.111.001362 10.1038/nature07324 10.1016/j.cell.2006.02.041 10.1038/emboj.2011.103 10.1371/journal.pone.0003156 10.1073/pnas.0607617103 10.1016/j.tig.2011.06.006 10.4161/epi.6.5.15082 10.1016/j.cell.2010.09.009 10.1038/nature06745 10.1016/j.devcel.2010.05.013 10.1016/j.cell.2010.08.011 10.1038/nature09290 |
ContentType | Journal Article |
Copyright | 2014 American Society of Plant Biologists 2014 American Society of Plant Biologists. All rights reserved. 2014 American Society of Plant Biologists. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 American Society of Plant Biologists – notice: 2014 American Society of Plant Biologists. All rights reserved. – notice: 2014 American Society of Plant Biologists. All rights reserved. 2014 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1105/tpc.114.124578 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 2366 |
ExternalDocumentID | PMC4114938 24934173 10_1105_tpc_114_124578 43190685 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: NIGMS NIH HHS grantid: R01 GM060398 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM AAYXX CITATION 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ ABIME ABPIB ABUWG ABZEO ACFRR ACUTJ ACVCV ACZBC ADYWZ AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AJDVS ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU D1J DWQXO FRP FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU LK8 M0K M1P M2P M2Q M7P MVM NEJ NPM PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c511t-abc3b4ed6769a92a17a289b5601381e863b3a0dfca002837f4d98f063eb275423 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 13:31:28 EDT 2025 Thu Jul 10 21:17:31 EDT 2025 Thu Jul 10 22:26:38 EDT 2025 Thu Apr 03 07:05:11 EDT 2025 Tue Jul 01 03:49:42 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri May 30 12:00:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2014 American Society of Plant Biologists. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-abc3b4ed6769a92a17a289b5601381e863b3a0dfca002837f4d98f063eb275423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 www.plantcell.org/cgi/doi/10.1105/tpc.114.124578 Current address: Department of Plant Biology, University of Georgia, Athens, GA 30602-7271. Current address: Department of Biophysics and Biochemistry Genetic Medicine, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Crisanto Gutierrez (cgutierrez@cbm.csic.es). |
OpenAccessLink | http://www.plantcell.org/content/plantcell/26/6/2351.full.pdf |
PMID | 24934173 |
PQID | 1826594090 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4114938 proquest_miscellaneous_2000143192 proquest_miscellaneous_1826594090 pubmed_primary_24934173 crossref_primary_10_1105_tpc_114_124578 crossref_citationtrail_10_1105_tpc_114_124578 jstor_primary_43190685 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2014 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Kharchenko (2021040810083169600_b17) 2011; 471 Deal (2021040810083169600_b7) 2011; 14 Kouzarides (2021040810083169600_b18) 2007; 128 Dorn (2021040810083169600_b9) 2011; 6 Shu (2021040810083169600_b25) 2012; 3 Ernst (2021040810083169600_b10) 2013; 23 Deal (2021040810083169600_b6) 2010; 18 Zhang (2021040810083169600_b28) 2009; 10 Skene (2021040810083169600_b26) 2013; 140 Jacob (2021040810083169600_b16) 2010; 466 Lee (2021040810083169600_b21) 2010; 142 Kurihara (2021040810083169600_b19) 2012; 2 Grob (2021040810083169600_b14) 2013; 14 Law (2021040810083169600_b20) 2010; 11 Bernatavichute (2021040810083169600_b2) 2008; 3 Dong (2021040810083169600_b8) 2012; 13 Henikoff (2021040810083169600_b15) 2011; 27 Berger (2021040810083169600_b1) 2007; 447 Filipescu (2021040810083169600_b13) 2013; 29 Roudier (2021040810083169600_b24) 2011; 30 Cokus (2021040810083169600_b4) 2008; 452 Roh (2021040810083169600_b23) 2006; 103 Bernstein (2021040810083169600_b3) 2006; 125 Nicol (2021040810083169600_b22) 2009; 25 Stroud (2021040810083169600_b27) 2012; 109 Zhang (2021040810083169600_b29) 2007; 5 Zilberman (2021040810083169600_b30) 2008; 456 Filion (2021040810083169600_b12) 2010; 143 Feng (2021040810083169600_b11) 2011; 14 Costas (2021040810083169600_b5) 2011; 18 21297636 - Nat Struct Mol Biol. 2011 Mar;18(3):395-400 21179089 - Nature. 2011 Mar 24;471(7339):480-5 19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1 20888037 - Cell. 2010 Oct 15;143(2):212-24 23715545 - Development. 2013 Jun;140(12):2513-24 20813257 - Cell. 2010 Sep 3;142(5):682-5 17320507 - Cell. 2007 Feb 23;128(4):693-705 21364325 - Epigenetics. 2011 May;6(5):552-9 23595227 - Genome Res. 2013 Jul;23(7):1142-54 21159547 - Curr Opin Plant Biol. 2011 Apr;14(2):116-22 20631708 - Nature. 2010 Aug 19;466(7309):987-91 17522673 - Nature. 2007 May 24;447(7143):407-12 18278030 - Nature. 2008 Mar 13;452(7184):215-9 17043231 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7 19508735 - Genome Biol. 2009;10(6):R62 24267747 - Genome Biol. 2013 Nov 24;14(11):R129 23253144 - Genome Biol. 2012 Dec 19;13(12):R117 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 18776934 - PLoS One. 2008 Sep 08;3(9):e3156 22540040 - G3 (Bethesda). 2012 Apr;2(4):487-98 21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86 21764166 - Trends Genet. 2011 Oct;27(10):389-96 16630819 - Cell. 2006 Apr 21;125(2):315-26 21487388 - EMBO J. 2011 May 18;30(10):1928-38 18815594 - Nature. 2008 Nov 6;456(7218):125-9 22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5 23232411 - Nat Commun. 2012;3:1281 17439305 - PLoS Biol. 2007 May;5(5):e129 20627084 - Dev Cell. 2010 Jun 15;18(6):1030-40 23830582 - Trends Genet. 2013 Nov;29(11):630-40 |
References_xml | – volume: 14 start-page: R129 year: 2013 ident: 2021040810083169600_b14 article-title: Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture publication-title: Genome Biol. doi: 10.1186/gb-2013-14-11-r129 – volume: 5 start-page: e129 year: 2007 ident: 2021040810083169600_b29 article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050129 – volume: 25 start-page: 2730 year: 2009 ident: 2021040810083169600_b22 article-title: The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp472 – volume: 447 start-page: 407 year: 2007 ident: 2021040810083169600_b1 article-title: The complex language of chromatin regulation during transcription publication-title: Nature doi: 10.1038/nature05915 – volume: 23 start-page: 1142 year: 2013 ident: 2021040810083169600_b10 article-title: Interplay between chromatin state, regulator binding, and regulatory motifs in six human cell types publication-title: Genome Res. doi: 10.1101/gr.144840.112 – volume: 11 start-page: 204 year: 2010 ident: 2021040810083169600_b20 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 18 start-page: 395 year: 2011 ident: 2021040810083169600_b5 article-title: Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1988 – volume: 471 start-page: 480 year: 2011 ident: 2021040810083169600_b17 article-title: Comprehensive analysis of the chromatin landscape in Drosophila melanogaster publication-title: Nature doi: 10.1038/nature09725 – volume: 128 start-page: 693 year: 2007 ident: 2021040810083169600_b18 article-title: Chromatin modifications and their function publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 29 start-page: 630 year: 2013 ident: 2021040810083169600_b13 article-title: Developmental roles of histone H3 variants and their chaperones publication-title: Trends Genet. doi: 10.1016/j.tig.2013.06.002 – volume: 10 start-page: R62 year: 2009 ident: 2021040810083169600_b28 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana publication-title: Genome Biol. doi: 10.1186/gb-2009-10-6-r62 – volume: 3 start-page: 1281 year: 2012 ident: 2021040810083169600_b25 article-title: Distinct modes of DNA accessibility in plant chromatin publication-title: Nat. Commun. doi: 10.1038/ncomms2259 – volume: 140 start-page: 2513 year: 2013 ident: 2021040810083169600_b26 article-title: Histone variants in pluripotency and disease publication-title: Development doi: 10.1242/dev.091439 – volume: 14 start-page: 116 year: 2011 ident: 2021040810083169600_b7 article-title: Histone variants and modifications in plant gene regulation publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2010.11.005 – volume: 14 start-page: 179 year: 2011 ident: 2021040810083169600_b11 article-title: Epigenetic modifications in plants: an evolutionary perspective publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2010.12.002 – volume: 109 start-page: 5370 year: 2012 ident: 2021040810083169600_b27 article-title: Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1203145109 – volume: 13 start-page: R117 year: 2012 ident: 2021040810083169600_b8 article-title: Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements publication-title: Genome Biol. doi: 10.1186/gb-2012-13-12-r117 – volume: 2 start-page: 487 year: 2012 ident: 2021040810083169600_b19 article-title: Surveillance of 3′ noncoding transcripts requires FIERY and XRN3 publication-title: G3 (Bethesda) doi: 10.1534/g3.111.001362 – volume: 456 start-page: 125 year: 2008 ident: 2021040810083169600_b30 article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks publication-title: Nature doi: 10.1038/nature07324 – volume: 125 start-page: 315 year: 2006 ident: 2021040810083169600_b3 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2006.02.041 – volume: 30 start-page: 1928 year: 2011 ident: 2021040810083169600_b24 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J. doi: 10.1038/emboj.2011.103 – volume: 3 start-page: e3156 year: 2008 ident: 2021040810083169600_b2 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0003156 – volume: 103 start-page: 15782 year: 2006 ident: 2021040810083169600_b23 article-title: The genomic landscape of histone modifications in human T cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0607617103 – volume: 27 start-page: 389 year: 2011 ident: 2021040810083169600_b15 article-title: Histone modification: cause or cog? publication-title: Trends Genet. doi: 10.1016/j.tig.2011.06.006 – volume: 6 start-page: 552 year: 2011 ident: 2021040810083169600_b9 article-title: Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control publication-title: Epigenetics doi: 10.4161/epi.6.5.15082 – volume: 143 start-page: 212 year: 2010 ident: 2021040810083169600_b12 article-title: Systematic protein location mapping reveals five principal chromatin types in Drosophila cells publication-title: Cell doi: 10.1016/j.cell.2010.09.009 – volume: 452 start-page: 215 year: 2008 ident: 2021040810083169600_b4 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 18 start-page: 1030 year: 2010 ident: 2021040810083169600_b6 article-title: A simple method for gene expression and chromatin profiling of individual cell types within a tissue publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.05.013 – volume: 142 start-page: 682 year: 2010 ident: 2021040810083169600_b21 article-title: The language of histone crosstalk publication-title: Cell doi: 10.1016/j.cell.2010.08.011 – volume: 466 start-page: 987 year: 2010 ident: 2021040810083169600_b16 article-title: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases publication-title: Nature doi: 10.1038/nature09290 – reference: 21364325 - Epigenetics. 2011 May;6(5):552-9 – reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705 – reference: 21764166 - Trends Genet. 2011 Oct;27(10):389-96 – reference: 23253144 - Genome Biol. 2012 Dec 19;13(12):R117 – reference: 17522673 - Nature. 2007 May 24;447(7143):407-12 – reference: 22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5 – reference: 23232411 - Nat Commun. 2012;3:1281 – reference: 20627084 - Dev Cell. 2010 Jun 15;18(6):1030-40 – reference: 16630819 - Cell. 2006 Apr 21;125(2):315-26 – reference: 23830582 - Trends Genet. 2013 Nov;29(11):630-40 – reference: 24267747 - Genome Biol. 2013 Nov 24;14(11):R129 – reference: 20813257 - Cell. 2010 Sep 3;142(5):682-5 – reference: 20888037 - Cell. 2010 Oct 15;143(2):212-24 – reference: 17043231 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7 – reference: 19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1 – reference: 21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86 – reference: 21487388 - EMBO J. 2011 May 18;30(10):1928-38 – reference: 23715545 - Development. 2013 Jun;140(12):2513-24 – reference: 21297636 - Nat Struct Mol Biol. 2011 Mar;18(3):395-400 – reference: 18815594 - Nature. 2008 Nov 6;456(7218):125-9 – reference: 21159547 - Curr Opin Plant Biol. 2011 Apr;14(2):116-22 – reference: 21179089 - Nature. 2011 Mar 24;471(7339):480-5 – reference: 22540040 - G3 (Bethesda). 2012 Apr;2(4):487-98 – reference: 18278030 - Nature. 2008 Mar 13;452(7184):215-9 – reference: 19508735 - Genome Biol. 2009;10(6):R62 – reference: 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 – reference: 20631708 - Nature. 2010 Aug 19;466(7309):987-91 – reference: 18776934 - PLoS One. 2008 Sep 08;3(9):e3156 – reference: 17439305 - PLoS Biol. 2007 May;5(5):e129 – reference: 23595227 - Genome Res. 2013 Jul;23(7):1142-54 |
SSID | ssj0001719 |
Score | 2.5556836 |
Snippet | Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin... A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin... A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2351 |
SubjectTerms | Antibodies Arabidopsis Chromatin DNA DNA replication epigenetics gene expression Genes genome Genomes Genomics Heterochromatin Histones Intergenic DNA landscapes Large-Scale Biology LARGE-SCALE BIOLOGY ARTICLE Nucleosomes Promoter regions topography |
Title | The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States |
URI | https://www.jstor.org/stable/43190685 https://www.ncbi.nlm.nih.gov/pubmed/24934173 https://www.proquest.com/docview/1826594090 https://www.proquest.com/docview/2000143192 https://pubmed.ncbi.nlm.nih.gov/PMC4114938 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIIXBION8iUjIfFQpaRxPprHtVq3wlYEaqW-RY7tQCRIqjZ9YH8FfzJ3tpO0sEmDl6hxHMfN_WLfnc-_I-QtzEJCBnHgSF9Ix2cyc2IeMkdKT6YBD1Tg40bhy1l4vvA_LINlp_NrJ2ppW6V9cXXtvpL_kSqUgVxxl-w_SLZpFArgN8gXjiBhON5axhOYmKw_b16uLAF1vfJ_suZpLssVso6cqaL8oXrTTb3_UiHtUo_DG5ZbjAKY6eQgetEAVE_k9ymrPNuYgI11iaptYZXTXZUWO4Gpj6oeLgI0HhsM0c7X3LlEH7tdbOAFbwHGv-Ii_WhsXNhTpNZsx-lcr-CPmEYAYFafNDjWbV45Zzn608z9X-oIR-vBGPhtpJUddDGqEXOy747KZh-9RV_YW_U9Fgwcj4V7wy2zNyl7aq7-PS24yKBRrQRSI_dBpQlM3qB9_u3Zp2SyuLhI5qfL-R1y1wPDA0fOj59b_vlBpFPFND22NKDQ_vv91vfUHBPpep0N82co7o5uM39EHlqjhJ4YhD0mHVUcknujEgyHn4fk_rhOCviEYJ5D2kKOtpCjZUYBcnQHctRAjk43tIEczQvKqYUcNZDDWw3kqIEcFjSQowZyT8licjofnzs2e4cjQImvHJ4KlvpKYgw1jz0-iDgY9yl6AEBLVMOQpYy7MhNc58uKMl_Gwww0ZpV6mJaZHZGDoizUM0J9P8vCNPJUJtF-FnHGROzy4UCkUgnOusSpX3YiLLU9Zlj5nmgT1w0SEA7uv0-McLrkXVN_ZUhdbqx5pGXXVAN9O3bDYdAlb2phJiAC_MB4ocrtJkGDPYh9N3ZvruNp1wQ05XXJsQFA8wTPj0GzjOBPRXvQaCogIfz-lSL_ponhfeh4zIbPb_HcF-RB-ym-JAfVeqtegXpdpa814n8Dhr3P9g |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Functional+Topography+of+the+Arabidopsis+Genome+Is+Organized+in+a+Reduced+Number+of+Linear+Motifs+of+Chromatin+States&rft.jtitle=The+Plant+cell&rft.au=Sequeira-Mendes%2C+Joana&rft.au=Arag%C3%BCez%2C+Irene&rft.au=Peir%C3%B3%2C+Ram%C3%B3n&rft.au=Mendez-Giraldez%2C+Raul&rft.date=2014-06-01&rft.issn=1040-4651&rft.volume=26&rft.issue=6+p.2351-2366&rft.spage=2351&rft.epage=2366&rft_id=info:doi/10.1105%2Ftpc.114.124578&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |