The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States

Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromati...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 26; no. 6; pp. 2351 - 2366
Main Authors Sequeira-Mendes, Joana, Aragüez, Irene, Peiró, Ramón, Mendez-Giraldez, Raul, Zhang, Xiaoyu, Jacobsen, Steven E., Bastolla, Ugo, Gutierrez, Crisanto
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.
AbstractList Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.
Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.
A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin states. The linear topography across the genome revealed the existence of chromatin motifs. This work provides a basis for studies on gene expression, e.g., bivalent H3K27me3/H3K4me3-containing regions, DNA replication, and epigenetics.
A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin states. The linear topography across the genome revealed the existence of chromatin motifs. This work provides a basis for studies on gene expression, e.g., bivalent H3K27me3/H3K4me3-containing regions, DNA replication, and epigenetics. Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites ( TSS ) to termination sites and two contain regulatory regions upstream of TSS . Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.
Author Gutierrez, Crisanto
Mendez-Giraldez, Raul
Peiró, Ramón
Sequeira-Mendes, Joana
Aragüez, Irene
Jacobsen, Steven E.
Zhang, Xiaoyu
Bastolla, Ugo
Author_xml – sequence: 1
  givenname: Joana
  surname: Sequeira-Mendes
  fullname: Sequeira-Mendes, Joana
– sequence: 2
  givenname: Irene
  surname: Aragüez
  fullname: Aragüez, Irene
– sequence: 3
  givenname: Ramón
  surname: Peiró
  fullname: Peiró, Ramón
– sequence: 4
  givenname: Raul
  surname: Mendez-Giraldez
  fullname: Mendez-Giraldez, Raul
– sequence: 5
  givenname: Xiaoyu
  surname: Zhang
  fullname: Zhang, Xiaoyu
– sequence: 6
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
– sequence: 7
  givenname: Ugo
  surname: Bastolla
  fullname: Bastolla, Ugo
– sequence: 8
  givenname: Crisanto
  surname: Gutierrez
  fullname: Gutierrez, Crisanto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24934173$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1r3DAUFCWl-eq1txYde_FWX7alSyEs-YJtAu0GehOyLO8q2JIryYXtr6_MJktbKDlppDczeu_NKThy3hkA3mG0wBiVn9KoM2ALTFhZ81fgBJeUFETw70cZI4YKVpX4GJzG-IgQwjUWb8AxYYIyXNMTsFtvDbyanE7WO9XDtR_9Jqhxu4O-gykXL4JqbOvHaCO8Ns4PBt5GeB82ytlfpoXWQQW_mnbS-XI3DY0Js3RlnVEBfvHJdnF-WG6DH1TK9G9JJRPPwetO9dG8fTrPwMPV5Xp5U6zur2-XF6tClxinQjWaNsy0VV0JJYjCtSJcNGWFMOXY8Io2VKG20wohwmndsVbwDlXUNKQuGaFn4PPed5yawbTauBRUL8dgBxV20isr_644u5Ub_1OyvFdBeTb4-GQQ_I_JxCQHG7Xpe-WMn6Ik814ZxYK8SMWcVKVgSKBM_fBnW4d-nqPJhMWeoIOPMZjuQMFIztnLnH0GTO6zzwL2j0DbvOmcax7L9v-Xvd_LHmPy4fDJPBCqeEl_A6DxvP8
CitedBy_id crossref_primary_10_1016_j_pbi_2022_102266
crossref_primary_10_1093_nar_gkaa766
crossref_primary_10_3389_fpls_2014_00369
crossref_primary_10_1093_jxb_erad029
crossref_primary_10_1093_jxb_erz457
crossref_primary_10_1016_j_bbagrm_2016_07_005
crossref_primary_10_1080_15592294_2015_1106674
crossref_primary_10_3389_fgene_2021_799805
crossref_primary_10_1038_s41477_019_0589_3
crossref_primary_10_1111_tpj_12963
crossref_primary_10_3389_fpls_2017_01179
crossref_primary_10_1016_j_pbi_2017_03_004
crossref_primary_10_1371_journal_pgen_1006988
crossref_primary_10_1186_s13059_019_1722_3
crossref_primary_10_1038_s41467_019_10773_1
crossref_primary_10_1186_s12870_023_04596_y
crossref_primary_10_1186_s13059_017_1226_y
crossref_primary_10_3390_genes6030520
crossref_primary_10_1111_nph_13549
crossref_primary_10_1146_annurev_genet_022620_100039
crossref_primary_10_1186_s13059_023_02970_5
crossref_primary_10_1093_jxb_erac167
crossref_primary_10_1111_nph_18666
crossref_primary_10_3389_fpls_2018_01373
crossref_primary_10_1111_tpj_12847
crossref_primary_10_1371_journal_pgen_1008476
crossref_primary_10_1073_pnas_2115570119
crossref_primary_10_3389_fpls_2020_00277
crossref_primary_10_3390_horticulturae8010017
crossref_primary_10_1016_j_cub_2019_12_015
crossref_primary_10_1186_s13059_017_1236_9
crossref_primary_10_1016_j_celrep_2023_112132
crossref_primary_10_1111_tpj_17180
crossref_primary_10_1111_jipb_13883
crossref_primary_10_1002_pei3_10137
crossref_primary_10_3389_fpls_2016_02044
crossref_primary_10_1101_gr_279379_124
crossref_primary_10_1016_j_jtbi_2015_09_017
crossref_primary_10_1007_s00412_015_0538_5
crossref_primary_10_1093_jxb_erx254
crossref_primary_10_1093_nar_gkae306
crossref_primary_10_1093_plphys_kiac285
crossref_primary_10_1093_jxb_erz435
crossref_primary_10_1093_plphys_kiae583
crossref_primary_10_3390_ijms252111698
crossref_primary_10_1093_jxb_erw168
crossref_primary_10_1016_j_pbi_2023_102408
crossref_primary_10_1111_tpj_16624
crossref_primary_10_1016_j_tplants_2015_03_003
crossref_primary_10_1111_tpj_12822
crossref_primary_10_1016_j_xplc_2024_100890
crossref_primary_10_1093_hr_uhae158
crossref_primary_10_3389_fpls_2022_1070397
crossref_primary_10_1186_s13059_019_1767_3
crossref_primary_10_1002_dvdy_24268
crossref_primary_10_1093_nar_gkac012
crossref_primary_10_3390_ijms22084031
crossref_primary_10_1371_journal_pone_0158936
crossref_primary_10_1093_g3journal_jkae301
crossref_primary_10_1093_jxb_erad036
crossref_primary_10_7554_eLife_06516
crossref_primary_10_1111_tpj_12828
crossref_primary_10_1186_s13059_023_02939_4
crossref_primary_10_1016_j_ceb_2021_12_002
crossref_primary_10_1093_bfgp_ely004
crossref_primary_10_1007_s00425_020_03520_0
crossref_primary_10_1111_nph_16902
crossref_primary_10_1016_j_pbi_2020_101991
crossref_primary_10_1038_s41467_023_44491_6
crossref_primary_10_1242_jcs_202416
crossref_primary_10_1093_jxb_eraa230
crossref_primary_10_1038_s41477_024_01883_w
crossref_primary_10_3389_fpls_2019_01030
crossref_primary_10_1038_s41477_023_01400_5
crossref_primary_10_3390_plants12010075
crossref_primary_10_1038_s41598_019_44836_6
crossref_primary_10_1016_j_crbiot_2021_07_005
crossref_primary_10_1016_j_molp_2021_03_004
crossref_primary_10_1093_plcell_koab319
crossref_primary_10_1016_j_pbi_2024_102598
crossref_primary_10_1111_nph_19311
crossref_primary_10_3390_ijms25074068
crossref_primary_10_1016_j_pbi_2016_02_009
crossref_primary_10_1093_nar_gkx524
crossref_primary_10_1080_19491034_2016_1236167
crossref_primary_10_1007_s10577_021_09673_2
crossref_primary_10_1038_s41477_024_01746_4
crossref_primary_10_1080_19491034_2019_1591106
crossref_primary_10_1111_tpj_17114
crossref_primary_10_7554_eLife_17061
crossref_primary_10_1186_s13059_020_02068_2
crossref_primary_10_1016_j_molp_2025_01_019
crossref_primary_10_1080_15592294_2016_1185580
crossref_primary_10_3389_fpls_2021_703667
crossref_primary_10_1093_nar_gkv1184
crossref_primary_10_1101_gr_204032_116
crossref_primary_10_3389_fpls_2018_01194
crossref_primary_10_1002_pld3_392
crossref_primary_10_1016_j_ejcb_2023_151344
crossref_primary_10_1146_annurev_arplant_043014_115627
crossref_primary_10_1111_tpj_14098
crossref_primary_10_3389_fpls_2022_888102
crossref_primary_10_1073_pnas_1618618114
crossref_primary_10_1186_s12864_017_3542_8
crossref_primary_10_26508_lsa_201900393
crossref_primary_10_1093_jxb_erac216
crossref_primary_10_1093_nar_gkaa1275
crossref_primary_10_3390_epigenomes1020008
crossref_primary_10_1093_plphys_kiad671
crossref_primary_10_1038_s41467_017_02219_3
crossref_primary_10_15252_embj_2023113595
crossref_primary_10_1016_j_xplc_2019_100015
crossref_primary_10_1093_nar_gkw100
crossref_primary_10_1038_s41467_024_55195_w
crossref_primary_10_1186_s13072_017_0132_6
crossref_primary_10_1002_reg2_91
crossref_primary_10_1038_s41467_019_11385_5
crossref_primary_10_1093_g3journal_jkac185
crossref_primary_10_1080_15476286_2020_1792089
crossref_primary_10_3390_ijms22031302
crossref_primary_10_1038_s41598_024_53472_8
crossref_primary_10_1073_pnas_2001290119
crossref_primary_10_1016_j_pbi_2016_07_010
crossref_primary_10_1016_j_xplc_2023_100660
crossref_primary_10_1093_plcell_koac219
crossref_primary_10_1038_nrg_2016_45
crossref_primary_10_1016_j_celrep_2023_112894
crossref_primary_10_3389_fpls_2015_01049
crossref_primary_10_1016_j_pbi_2021_102001
crossref_primary_10_1111_tpj_15130
crossref_primary_10_3390_ijms23158154
crossref_primary_10_3389_fpls_2021_659634
crossref_primary_10_3389_fgene_2019_00306
crossref_primary_10_3390_biom13071069
crossref_primary_10_1101_gr_240986_118
crossref_primary_10_1016_j_molp_2020_12_020
crossref_primary_10_7554_eLife_72676
crossref_primary_10_1017_qpb_2021_17
crossref_primary_10_1101_gr_279532_124
crossref_primary_10_3389_fpls_2017_02084
crossref_primary_10_1093_molbev_msaa031
crossref_primary_10_1093_nar_gkae958
crossref_primary_10_1093_plphys_kiae057
crossref_primary_10_1038_ncomms15120
crossref_primary_10_1038_s41580_024_00769_1
crossref_primary_10_1111_tpj_15145
crossref_primary_10_1093_plcell_koaa027
crossref_primary_10_1111_tpj_16119
crossref_primary_10_1093_jxb_eraa282
crossref_primary_10_1038_s41467_018_03922_5
crossref_primary_10_3389_fpls_2021_677849
crossref_primary_10_1186_s12870_024_04860_9
crossref_primary_10_3390_plants10040706
crossref_primary_10_3390_epigenomes6010003
crossref_primary_10_1016_j_mcpro_2024_100795
crossref_primary_10_1093_plphys_kiab224
crossref_primary_10_1186_s12284_021_00467_y
crossref_primary_10_1146_annurev_arplant_042916_041115
crossref_primary_10_1186_s13059_023_03059_9
crossref_primary_10_1111_nph_15418
crossref_primary_10_1093_nar_gkx919
crossref_primary_10_1016_j_celrep_2016_07_016
crossref_primary_10_1111_nph_18876
crossref_primary_10_1186_s12870_019_1738_6
crossref_primary_10_1111_tpj_16446
crossref_primary_10_3389_fpls_2017_01247
crossref_primary_10_1186_s13059_019_1705_4
crossref_primary_10_1093_hr_uhae259
crossref_primary_10_1038_s41467_023_44347_z
crossref_primary_10_1016_j_phytochem_2022_113427
crossref_primary_10_1016_j_pbi_2022_102199
crossref_primary_10_1038_s41586_022_05386_6
crossref_primary_10_1093_jxb_erac486
crossref_primary_10_3389_fpls_2022_984702
crossref_primary_10_7554_eLife_87714
crossref_primary_10_1093_pcp_pcac095
crossref_primary_10_1093_nar_gkab828
crossref_primary_10_1186_s13059_015_0598_0
crossref_primary_10_1007_s11103_015_0409_8
crossref_primary_10_1186_s13059_019_1731_2
crossref_primary_10_7554_eLife_87714_3
crossref_primary_10_1038_s41598_018_26349_w
crossref_primary_10_1038_s41467_024_45771_5
crossref_primary_10_1093_jxb_eraa098
crossref_primary_10_1073_pnas_1713333115
crossref_primary_10_1038_s41598_017_03665_1
crossref_primary_10_3389_fgene_2023_1229782
crossref_primary_10_1104_pp_114_252999
crossref_primary_10_1016_j_pbi_2016_08_002
crossref_primary_10_1016_j_semcdb_2022_04_006
crossref_primary_10_1073_pnas_1907290116
crossref_primary_10_1016_j_copbio_2017_07_010
crossref_primary_10_1073_pnas_1603823113
crossref_primary_10_1016_j_pbi_2016_10_005
crossref_primary_10_1016_j_tplants_2018_03_014
crossref_primary_10_1038_s41467_018_02976_9
crossref_primary_10_3389_fpls_2025_1544744
crossref_primary_10_1038_s41467_022_32709_y
crossref_primary_10_1038_s41467_020_16457_5
crossref_primary_10_1186_s13059_023_02952_7
crossref_primary_10_1093_gbe_evy095
crossref_primary_10_1074_jbc_RA117_001390
crossref_primary_10_1016_j_bbagrm_2016_07_015
crossref_primary_10_1007_s12374_018_0176_6
crossref_primary_10_3389_fpls_2020_00052
crossref_primary_10_1093_pcp_pcz051
crossref_primary_10_1093_hr_uhae101
Cites_doi 10.1186/gb-2013-14-11-r129
10.1371/journal.pbio.0050129
10.1093/bioinformatics/btp472
10.1038/nature05915
10.1101/gr.144840.112
10.1038/nrg2719
10.1038/nsmb.1988
10.1038/nature09725
10.1016/j.cell.2007.02.005
10.1016/j.tig.2013.06.002
10.1186/gb-2009-10-6-r62
10.1038/ncomms2259
10.1242/dev.091439
10.1016/j.pbi.2010.11.005
10.1016/j.pbi.2010.12.002
10.1073/pnas.1203145109
10.1186/gb-2012-13-12-r117
10.1534/g3.111.001362
10.1038/nature07324
10.1016/j.cell.2006.02.041
10.1038/emboj.2011.103
10.1371/journal.pone.0003156
10.1073/pnas.0607617103
10.1016/j.tig.2011.06.006
10.4161/epi.6.5.15082
10.1016/j.cell.2010.09.009
10.1038/nature06745
10.1016/j.devcel.2010.05.013
10.1016/j.cell.2010.08.011
10.1038/nature09290
ContentType Journal Article
Copyright 2014 American Society of Plant Biologists
2014 American Society of Plant Biologists. All rights reserved.
2014 American Society of Plant Biologists. All rights reserved. 2014
Copyright_xml – notice: 2014 American Society of Plant Biologists
– notice: 2014 American Society of Plant Biologists. All rights reserved.
– notice: 2014 American Society of Plant Biologists. All rights reserved. 2014
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1105/tpc.114.124578
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2366
ExternalDocumentID PMC4114938
24934173
10_1105_tpc_114_124578
43190685
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
AAYXX
CITATION
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACUTJ
ACVCV
ACZBC
ADYWZ
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
D1J
DWQXO
FRP
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
NPM
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c511t-abc3b4ed6769a92a17a289b5601381e863b3a0dfca002837f4d98f063eb275423
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 13:31:28 EDT 2025
Thu Jul 10 21:17:31 EDT 2025
Thu Jul 10 22:26:38 EDT 2025
Thu Apr 03 07:05:11 EDT 2025
Tue Jul 01 03:49:42 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri May 30 12:00:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2014 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-abc3b4ed6769a92a17a289b5601381e863b3a0dfca002837f4d98f063eb275423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
www.plantcell.org/cgi/doi/10.1105/tpc.114.124578
Current address: Department of Plant Biology, University of Georgia, Athens, GA 30602-7271.
Current address: Department of Biophysics and Biochemistry Genetic Medicine, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Crisanto Gutierrez (cgutierrez@cbm.csic.es).
OpenAccessLink http://www.plantcell.org/content/plantcell/26/6/2351.full.pdf
PMID 24934173
PQID 1826594090
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4114938
proquest_miscellaneous_2000143192
proquest_miscellaneous_1826594090
pubmed_primary_24934173
crossref_primary_10_1105_tpc_114_124578
crossref_citationtrail_10_1105_tpc_114_124578
jstor_primary_43190685
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2014
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Kharchenko (2021040810083169600_b17) 2011; 471
Deal (2021040810083169600_b7) 2011; 14
Kouzarides (2021040810083169600_b18) 2007; 128
Dorn (2021040810083169600_b9) 2011; 6
Shu (2021040810083169600_b25) 2012; 3
Ernst (2021040810083169600_b10) 2013; 23
Deal (2021040810083169600_b6) 2010; 18
Zhang (2021040810083169600_b28) 2009; 10
Skene (2021040810083169600_b26) 2013; 140
Jacob (2021040810083169600_b16) 2010; 466
Lee (2021040810083169600_b21) 2010; 142
Kurihara (2021040810083169600_b19) 2012; 2
Grob (2021040810083169600_b14) 2013; 14
Law (2021040810083169600_b20) 2010; 11
Bernatavichute (2021040810083169600_b2) 2008; 3
Dong (2021040810083169600_b8) 2012; 13
Henikoff (2021040810083169600_b15) 2011; 27
Berger (2021040810083169600_b1) 2007; 447
Filipescu (2021040810083169600_b13) 2013; 29
Roudier (2021040810083169600_b24) 2011; 30
Cokus (2021040810083169600_b4) 2008; 452
Roh (2021040810083169600_b23) 2006; 103
Bernstein (2021040810083169600_b3) 2006; 125
Nicol (2021040810083169600_b22) 2009; 25
Stroud (2021040810083169600_b27) 2012; 109
Zhang (2021040810083169600_b29) 2007; 5
Zilberman (2021040810083169600_b30) 2008; 456
Filion (2021040810083169600_b12) 2010; 143
Feng (2021040810083169600_b11) 2011; 14
Costas (2021040810083169600_b5) 2011; 18
21297636 - Nat Struct Mol Biol. 2011 Mar;18(3):395-400
21179089 - Nature. 2011 Mar 24;471(7339):480-5
19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1
20888037 - Cell. 2010 Oct 15;143(2):212-24
23715545 - Development. 2013 Jun;140(12):2513-24
20813257 - Cell. 2010 Sep 3;142(5):682-5
17320507 - Cell. 2007 Feb 23;128(4):693-705
21364325 - Epigenetics. 2011 May;6(5):552-9
23595227 - Genome Res. 2013 Jul;23(7):1142-54
21159547 - Curr Opin Plant Biol. 2011 Apr;14(2):116-22
20631708 - Nature. 2010 Aug 19;466(7309):987-91
17522673 - Nature. 2007 May 24;447(7143):407-12
18278030 - Nature. 2008 Mar 13;452(7184):215-9
17043231 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7
19508735 - Genome Biol. 2009;10(6):R62
24267747 - Genome Biol. 2013 Nov 24;14(11):R129
23253144 - Genome Biol. 2012 Dec 19;13(12):R117
20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20
18776934 - PLoS One. 2008 Sep 08;3(9):e3156
22540040 - G3 (Bethesda). 2012 Apr;2(4):487-98
21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86
21764166 - Trends Genet. 2011 Oct;27(10):389-96
16630819 - Cell. 2006 Apr 21;125(2):315-26
21487388 - EMBO J. 2011 May 18;30(10):1928-38
18815594 - Nature. 2008 Nov 6;456(7218):125-9
22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5
23232411 - Nat Commun. 2012;3:1281
17439305 - PLoS Biol. 2007 May;5(5):e129
20627084 - Dev Cell. 2010 Jun 15;18(6):1030-40
23830582 - Trends Genet. 2013 Nov;29(11):630-40
References_xml – volume: 14
  start-page: R129
  year: 2013
  ident: 2021040810083169600_b14
  article-title: Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-11-r129
– volume: 5
  start-page: e129
  year: 2007
  ident: 2021040810083169600_b29
  article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050129
– volume: 25
  start-page: 2730
  year: 2009
  ident: 2021040810083169600_b22
  article-title: The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp472
– volume: 447
  start-page: 407
  year: 2007
  ident: 2021040810083169600_b1
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
  doi: 10.1038/nature05915
– volume: 23
  start-page: 1142
  year: 2013
  ident: 2021040810083169600_b10
  article-title: Interplay between chromatin state, regulator binding, and regulatory motifs in six human cell types
  publication-title: Genome Res.
  doi: 10.1101/gr.144840.112
– volume: 11
  start-page: 204
  year: 2010
  ident: 2021040810083169600_b20
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 18
  start-page: 395
  year: 2011
  ident: 2021040810083169600_b5
  article-title: Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1988
– volume: 471
  start-page: 480
  year: 2011
  ident: 2021040810083169600_b17
  article-title: Comprehensive analysis of the chromatin landscape in Drosophila melanogaster
  publication-title: Nature
  doi: 10.1038/nature09725
– volume: 128
  start-page: 693
  year: 2007
  ident: 2021040810083169600_b18
  article-title: Chromatin modifications and their function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 29
  start-page: 630
  year: 2013
  ident: 2021040810083169600_b13
  article-title: Developmental roles of histone H3 variants and their chaperones
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2013.06.002
– volume: 10
  start-page: R62
  year: 2009
  ident: 2021040810083169600_b28
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-6-r62
– volume: 3
  start-page: 1281
  year: 2012
  ident: 2021040810083169600_b25
  article-title: Distinct modes of DNA accessibility in plant chromatin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2259
– volume: 140
  start-page: 2513
  year: 2013
  ident: 2021040810083169600_b26
  article-title: Histone variants in pluripotency and disease
  publication-title: Development
  doi: 10.1242/dev.091439
– volume: 14
  start-page: 116
  year: 2011
  ident: 2021040810083169600_b7
  article-title: Histone variants and modifications in plant gene regulation
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2010.11.005
– volume: 14
  start-page: 179
  year: 2011
  ident: 2021040810083169600_b11
  article-title: Epigenetic modifications in plants: an evolutionary perspective
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2010.12.002
– volume: 109
  start-page: 5370
  year: 2012
  ident: 2021040810083169600_b27
  article-title: Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1203145109
– volume: 13
  start-page: R117
  year: 2012
  ident: 2021040810083169600_b8
  article-title: Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-12-r117
– volume: 2
  start-page: 487
  year: 2012
  ident: 2021040810083169600_b19
  article-title: Surveillance of 3′ noncoding transcripts requires FIERY and XRN3
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.111.001362
– volume: 456
  start-page: 125
  year: 2008
  ident: 2021040810083169600_b30
  article-title: Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks
  publication-title: Nature
  doi: 10.1038/nature07324
– volume: 125
  start-page: 315
  year: 2006
  ident: 2021040810083169600_b3
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.041
– volume: 30
  start-page: 1928
  year: 2011
  ident: 2021040810083169600_b24
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.103
– volume: 3
  start-page: e3156
  year: 2008
  ident: 2021040810083169600_b2
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003156
– volume: 103
  start-page: 15782
  year: 2006
  ident: 2021040810083169600_b23
  article-title: The genomic landscape of histone modifications in human T cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0607617103
– volume: 27
  start-page: 389
  year: 2011
  ident: 2021040810083169600_b15
  article-title: Histone modification: cause or cog?
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2011.06.006
– volume: 6
  start-page: 552
  year: 2011
  ident: 2021040810083169600_b9
  article-title: Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control
  publication-title: Epigenetics
  doi: 10.4161/epi.6.5.15082
– volume: 143
  start-page: 212
  year: 2010
  ident: 2021040810083169600_b12
  article-title: Systematic protein location mapping reveals five principal chromatin types in Drosophila cells
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.009
– volume: 452
  start-page: 215
  year: 2008
  ident: 2021040810083169600_b4
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 18
  start-page: 1030
  year: 2010
  ident: 2021040810083169600_b6
  article-title: A simple method for gene expression and chromatin profiling of individual cell types within a tissue
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.05.013
– volume: 142
  start-page: 682
  year: 2010
  ident: 2021040810083169600_b21
  article-title: The language of histone crosstalk
  publication-title: Cell
  doi: 10.1016/j.cell.2010.08.011
– volume: 466
  start-page: 987
  year: 2010
  ident: 2021040810083169600_b16
  article-title: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases
  publication-title: Nature
  doi: 10.1038/nature09290
– reference: 21364325 - Epigenetics. 2011 May;6(5):552-9
– reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705
– reference: 21764166 - Trends Genet. 2011 Oct;27(10):389-96
– reference: 23253144 - Genome Biol. 2012 Dec 19;13(12):R117
– reference: 17522673 - Nature. 2007 May 24;447(7143):407-12
– reference: 22431625 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5370-5
– reference: 23232411 - Nat Commun. 2012;3:1281
– reference: 20627084 - Dev Cell. 2010 Jun 15;18(6):1030-40
– reference: 16630819 - Cell. 2006 Apr 21;125(2):315-26
– reference: 23830582 - Trends Genet. 2013 Nov;29(11):630-40
– reference: 24267747 - Genome Biol. 2013 Nov 24;14(11):R129
– reference: 20813257 - Cell. 2010 Sep 3;142(5):682-5
– reference: 20888037 - Cell. 2010 Oct 15;143(2):212-24
– reference: 17043231 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7
– reference: 19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1
– reference: 21233005 - Curr Opin Plant Biol. 2011 Apr;14(2):179-86
– reference: 21487388 - EMBO J. 2011 May 18;30(10):1928-38
– reference: 23715545 - Development. 2013 Jun;140(12):2513-24
– reference: 21297636 - Nat Struct Mol Biol. 2011 Mar;18(3):395-400
– reference: 18815594 - Nature. 2008 Nov 6;456(7218):125-9
– reference: 21159547 - Curr Opin Plant Biol. 2011 Apr;14(2):116-22
– reference: 21179089 - Nature. 2011 Mar 24;471(7339):480-5
– reference: 22540040 - G3 (Bethesda). 2012 Apr;2(4):487-98
– reference: 18278030 - Nature. 2008 Mar 13;452(7184):215-9
– reference: 19508735 - Genome Biol. 2009;10(6):R62
– reference: 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20
– reference: 20631708 - Nature. 2010 Aug 19;466(7309):987-91
– reference: 18776934 - PLoS One. 2008 Sep 08;3(9):e3156
– reference: 17439305 - PLoS Biol. 2007 May;5(5):e129
– reference: 23595227 - Genome Res. 2013 Jul;23(7):1142-54
SSID ssj0001719
Score 2.5556836
Snippet Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin...
A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin...
A computational study of combinations of histone modifications and DNA features was developed to determine a high-resolution landscape of Arabidopsis chromatin...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2351
SubjectTerms Antibodies
Arabidopsis
Chromatin
DNA
DNA replication
epigenetics
gene expression
Genes
genome
Genomes
Genomics
Heterochromatin
Histones
Intergenic DNA
landscapes
Large-Scale Biology
LARGE-SCALE BIOLOGY ARTICLE
Nucleosomes
Promoter regions
topography
Title The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States
URI https://www.jstor.org/stable/43190685
https://www.ncbi.nlm.nih.gov/pubmed/24934173
https://www.proquest.com/docview/1826594090
https://www.proquest.com/docview/2000143192
https://pubmed.ncbi.nlm.nih.gov/PMC4114938
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIIXBION8iUjIfFQpaRxPprHtVq3wlYEaqW-RY7tQCRIqjZ9YH8FfzJ3tpO0sEmDl6hxHMfN_WLfnc-_I-QtzEJCBnHgSF9Ix2cyc2IeMkdKT6YBD1Tg40bhy1l4vvA_LINlp_NrJ2ppW6V9cXXtvpL_kSqUgVxxl-w_SLZpFArgN8gXjiBhON5axhOYmKw_b16uLAF1vfJ_suZpLssVso6cqaL8oXrTTb3_UiHtUo_DG5ZbjAKY6eQgetEAVE_k9ymrPNuYgI11iaptYZXTXZUWO4Gpj6oeLgI0HhsM0c7X3LlEH7tdbOAFbwHGv-Ii_WhsXNhTpNZsx-lcr-CPmEYAYFafNDjWbV45Zzn608z9X-oIR-vBGPhtpJUddDGqEXOy747KZh-9RV_YW_U9Fgwcj4V7wy2zNyl7aq7-PS24yKBRrQRSI_dBpQlM3qB9_u3Zp2SyuLhI5qfL-R1y1wPDA0fOj59b_vlBpFPFND22NKDQ_vv91vfUHBPpep0N82co7o5uM39EHlqjhJ4YhD0mHVUcknujEgyHn4fk_rhOCviEYJ5D2kKOtpCjZUYBcnQHctRAjk43tIEczQvKqYUcNZDDWw3kqIEcFjSQowZyT8licjofnzs2e4cjQImvHJ4KlvpKYgw1jz0-iDgY9yl6AEBLVMOQpYy7MhNc58uKMl_Gwww0ZpV6mJaZHZGDoizUM0J9P8vCNPJUJtF-FnHGROzy4UCkUgnOusSpX3YiLLU9Zlj5nmgT1w0SEA7uv0-McLrkXVN_ZUhdbqx5pGXXVAN9O3bDYdAlb2phJiAC_MB4ocrtJkGDPYh9N3ZvruNp1wQ05XXJsQFA8wTPj0GzjOBPRXvQaCogIfz-lSL_ponhfeh4zIbPb_HcF-RB-ym-JAfVeqtegXpdpa814n8Dhr3P9g
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Functional+Topography+of+the+Arabidopsis+Genome+Is+Organized+in+a+Reduced+Number+of+Linear+Motifs+of+Chromatin+States&rft.jtitle=The+Plant+cell&rft.au=Sequeira-Mendes%2C+Joana&rft.au=Arag%C3%BCez%2C+Irene&rft.au=Peir%C3%B3%2C+Ram%C3%B3n&rft.au=Mendez-Giraldez%2C+Raul&rft.date=2014-06-01&rft.issn=1040-4651&rft.volume=26&rft.issue=6+p.2351-2366&rft.spage=2351&rft.epage=2366&rft_id=info:doi/10.1105%2Ftpc.114.124578&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon