Enhanced Control of Cucumber Wilt Disease by Bacillus amyloliquefaciens SQR9 by Altering the Regulation of Its DegU Phosphorylation
Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus , the response regul...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 80; no. 9; pp. 2941 - 2950 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacillus amyloliquefaciens
strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of
Fusarium oxysporum
in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium
Bacillus
, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in
B. amyloliquefaciens
SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from
in vitro
and
in situ
experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the
degQ
mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of
Fusarium
wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by
degQ
and
degSU
overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of
Fusarium
wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of
Bacillus amyloliquefaciens
SQR9. |
---|---|
AbstractList | Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU~P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU~P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. [PUBLICATION ABSTRACT] Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus , the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU similar to P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU similar to P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9.Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. |
Author | Shen, Qirong Zhang, Nan Qiu, Meihua Feng, Haichao Wang, Dandan Xu, Zhihui Zhang, Ruifu |
Author_xml | – sequence: 1 givenname: Zhihui surname: Xu fullname: Xu, Zhihui organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China – sequence: 2 givenname: Ruifu surname: Zhang fullname: Zhang, Ruifu organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China – sequence: 3 givenname: Dandan surname: Wang fullname: Wang, Dandan organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China – sequence: 4 givenname: Meihua surname: Qiu fullname: Qiu, Meihua organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China – sequence: 5 givenname: Haichao surname: Feng fullname: Feng, Haichao organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China – sequence: 6 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China – sequence: 7 givenname: Qirong surname: Shen fullname: Shen, Qirong organization: Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24584252$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLcLN87IEhcOpHgcO7EvSMt2gUpFQCniaDmOs3HltZc4Qdozfxxvt0VQceBky_PN87yZOUFHIQaL0FMgpwBUvFqsPpySUrKygPIBmgGRouBlWR2hGSFSFpQycoxOUromhDBSiUfomDIuGOV0hn6uQq-DsS1exjAO0ePY4eVkpk1jB_zN-RGfuWR1srjZ4TfaOO-nhPVm56N33yfb5ScbEv7y-VLukYUf7eDCGo-9xZd2PXk9uhj2sudjwmd2_RV_6mPa9nHYHWKP0cNO-2Sf3J5zdPV2dbV8X1x8fHe-XFwUhgOMhZTCdlCBMZozIRqgLa20YB0F3uUrg4bzqu0oY7RuK1FzA1xTS2RnOl6Xc_T6ILudmo1tjc1-tVfbwW30sFNRO_V3JLhereMPVUpZlgBZ4MWtwBCz8zSqjUvGeq-DjVNSwPPXRFBR_wcKVU055LHN0fN76HWchpAbsackg5pwmalnfxb_u-q7SWaAHgAzxJQG2ynjxpv2Zi_OKyBqvy4qr4u6WRcFZU56eS_pTvef-C-Eu8Bu |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1016_j_biocontrol_2018_05_016 crossref_primary_10_1016_j_heliyon_2023_e16134 crossref_primary_10_1016_j_soilbio_2019_05_025 crossref_primary_10_1021_pr500565m crossref_primary_10_1111_1462_2920_14683 crossref_primary_10_3389_fmicb_2020_562934 crossref_primary_10_1139_cjm_2019_0621 crossref_primary_10_3389_fmicb_2016_02039 crossref_primary_10_1016_j_procbio_2024_06_026 crossref_primary_10_1007_s11356_023_27967_2 crossref_primary_10_1186_s12864_015_1825_5 crossref_primary_10_1016_j_micres_2022_127196 crossref_primary_10_1371_journal_pone_0127418 crossref_primary_10_1111_nph_19086 crossref_primary_10_1128_aem_00164_22 crossref_primary_10_1016_j_micres_2015_01_014 crossref_primary_10_1007_s12602_024_10266_8 crossref_primary_10_1094_PHYTO_02_18_0048_R crossref_primary_10_1016_j_isci_2022_105294 crossref_primary_10_1016_j_micres_2021_126826 crossref_primary_10_1094_MPMI_09_21_0234_R crossref_primary_10_1093_femsre_fuad066 crossref_primary_10_1002_jobm_202100098 crossref_primary_10_1007_s42485_022_00083_4 crossref_primary_10_1002_jcp_30974 crossref_primary_10_3389_fmicb_2014_00636 crossref_primary_10_1186_s13568_017_0485_z crossref_primary_10_1186_s40168_020_00824_x crossref_primary_10_3390_pathogens11050595 crossref_primary_10_1111_mpp_13389 crossref_primary_10_1016_j_resmic_2018_01_004 crossref_primary_10_1038_s41598_020_80231_2 crossref_primary_10_1007_s11104_018_3709_3 crossref_primary_10_1016_j_micres_2023_127569 crossref_primary_10_1038_s41467_022_28668_z crossref_primary_10_1016_j_micres_2015_06_006 crossref_primary_10_1007_s00203_020_02141_1 crossref_primary_10_1080_13102818_2024_2312115 crossref_primary_10_3389_fpls_2015_00631 crossref_primary_10_3390_cells10092267 crossref_primary_10_1186_s12934_015_0323_4 crossref_primary_10_3390_agriculture6010002 crossref_primary_10_1128_AEM_03128_18 crossref_primary_10_3389_fpls_2016_01859 crossref_primary_10_1007_s00284_024_03804_8 crossref_primary_10_1128_AEM_01601_21 crossref_primary_10_3389_fmicb_2015_01395 crossref_primary_10_3390_ijms242216118 crossref_primary_10_3390_ijms19123795 crossref_primary_10_3109_07388551_2015_1130683 crossref_primary_10_1007_s00253_019_09784_1 crossref_primary_10_1128_msystems_00778_22 crossref_primary_10_1016_j_scitotenv_2020_143596 crossref_primary_10_1007_s13313_019_00677_5 crossref_primary_10_3389_fmicb_2021_729022 crossref_primary_10_3390_biology11071028 crossref_primary_10_1094_MPMI_35_1 crossref_primary_10_3390_agronomy14061135 crossref_primary_10_1128_AEM_02116_18 crossref_primary_10_1080_07060661_2017_1381994 crossref_primary_10_1128_AEM_02921_14 crossref_primary_10_1111_nph_18886 crossref_primary_10_1016_j_geosus_2023_09_006 crossref_primary_10_1002_jcp_30991 crossref_primary_10_1128_AEM_00327_19 crossref_primary_10_1016_j_bbrc_2018_06_076 crossref_primary_10_3389_fpls_2024_1481465 crossref_primary_10_1111_1751_7915_12693 crossref_primary_10_3389_fmicb_2023_1149363 crossref_primary_10_3390_ijms25168872 crossref_primary_10_1016_j_vetmic_2019_06_003 crossref_primary_10_1139_cjm_2018_0350 crossref_primary_10_1128_AEM_02744_17 crossref_primary_10_1016_j_jhazmat_2023_131586 crossref_primary_10_1128_aem_00240_22 crossref_primary_10_1016_j_celrep_2019_09_061 crossref_primary_10_11625_KJOA_2018_26_2_217 crossref_primary_10_1016_j_jbiotec_2018_04_014 crossref_primary_10_1111_1462_2920_12613 crossref_primary_10_1038_srep21363 |
Cites_doi | 10.1111/j.1365-2958.2007.05810.x 10.1007/s00253-012-4572-4 10.3181/00379727-67-16367 10.1111/j.1399-3054.1962.tb08052.x 10.1023/A:1020596903142 10.1046/j.1462-2920.1999.00054.x 10.1111/j.1365-2958.2004.04440.x 10.1111/j.1365-2958.2007.05923.x 10.1104/pp.103.028712 10.1016/S1369-5266(00)00183-7 10.1016/S0021-9258(19)49742-1 10.1128/AEM.00565-07 10.1128/JB.00052-06 10.1007/s00253-011-3575-x 10.1002/ps.3491 10.1146/annurev.phyto.42.121603.131041 10.1128/AEM.71.7.4101-4103.2005 10.1046/j.1365-2958.2001.02709.x 10.1128/JB.186.4.1084-1096.2004 10.1093/nar/29.18.3804 10.1021/jf204868z 10.1007/s00374-011-0556-2 10.1007/s11104-011-0729-7 10.1128/AEM.02645-12 10.1128/AEM.71.9.4951-4959.2005 10.1128/AAC.43.9.2183 10.1007/BF02275859 10.1007/s00438-002-0774-2 10.1038/nbt1325 10.1128/AAC.49.11.4641-4648.2005 10.1016/S0140-6736(97)80051-7 10.1038/nrmicro2960 10.1126/science.1109070 10.1094/PDIS-92-11-1510 10.1111/j.1365-313X.2008.03550.x 10.1006/meth.2001.1262 10.1099/mic.0.023903-0 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology May 2014 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology May 2014 – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/AEM.03943-13 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts Engineering Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-5336 1098-6596 |
EndPage | 2950 |
ExternalDocumentID | PMC3993311 3287426801 24584252 10_1128_AEM_03943_13 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH ADXHL AENEX AFFNX AFRAH AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XJT YV5 ZCG ZGI ZXP ZY4 ~02 ~KM CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 FRP HH5 LSO OK1 W2D 5PM |
ID | FETCH-LOGICAL-c511t-998ef161cca5488b12d26a84f215fd2641b556df24427d6875c15a2e09fcf573 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 18:18:53 EDT 2025 Fri Jul 11 10:42:06 EDT 2025 Fri Jul 11 06:00:32 EDT 2025 Mon Jun 30 08:32:45 EDT 2025 Mon Jul 21 05:49:09 EDT 2025 Tue Jul 01 02:19:54 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-998ef161cca5488b12d26a84f215fd2641b556df24427d6875c15a2e09fcf573 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Z.X. and R.Z. contributed equally to this article. |
OpenAccessLink | https://aem.asm.org/content/aem/80/9/2941.full.pdf |
PMID | 24584252 |
PQID | 1519417059 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3993311 proquest_miscellaneous_1524408287 proquest_miscellaneous_1516725194 proquest_journals_1519417059 pubmed_primary_24584252 crossref_citationtrail_10_1128_AEM_03943_13 crossref_primary_10_1128_AEM_03943_13 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Chet I (e_1_3_3_3_2) 2003 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1111/j.1365-2958.2007.05810.x – ident: e_1_3_3_15_2 doi: 10.1007/s00253-012-4572-4 – ident: e_1_3_3_17_2 doi: 10.3181/00379727-67-16367 – ident: e_1_3_3_22_2 doi: 10.1111/j.1399-3054.1962.tb08052.x – ident: e_1_3_3_2_2 doi: 10.1023/A:1020596903142 – volume-title: Encyclopedia of environmental microbiology year: 2003 ident: e_1_3_3_3_2 – ident: e_1_3_3_31_2 doi: 10.1046/j.1462-2920.1999.00054.x – ident: e_1_3_3_19_2 doi: 10.1111/j.1365-2958.2004.04440.x – ident: e_1_3_3_11_2 doi: 10.1111/j.1365-2958.2007.05923.x – ident: e_1_3_3_28_2 doi: 10.1104/pp.103.028712 – ident: e_1_3_3_32_2 doi: 10.1016/S1369-5266(00)00183-7 – ident: e_1_3_3_34_2 doi: 10.1016/S0021-9258(19)49742-1 – ident: e_1_3_3_38_2 doi: 10.1128/AEM.00565-07 – ident: e_1_3_3_25_2 doi: 10.1128/JB.00052-06 – ident: e_1_3_3_36_2 doi: 10.1007/s00253-011-3575-x – ident: e_1_3_3_16_2 doi: 10.1002/ps.3491 – ident: e_1_3_3_30_2 doi: 10.1146/annurev.phyto.42.121603.131041 – ident: e_1_3_3_39_2 doi: 10.1128/AEM.71.7.4101-4103.2005 – ident: e_1_3_3_18_2 doi: 10.1046/j.1365-2958.2001.02709.x – ident: e_1_3_3_24_2 doi: 10.1128/JB.186.4.1084-1096.2004 – ident: e_1_3_3_9_2 doi: 10.1093/nar/29.18.3804 – ident: e_1_3_3_26_2 doi: 10.1021/jf204868z – ident: e_1_3_3_13_2 doi: 10.1007/s00374-011-0556-2 – ident: e_1_3_3_21_2 doi: 10.1007/s11104-011-0729-7 – ident: e_1_3_3_14_2 doi: 10.1128/AEM.02645-12 – ident: e_1_3_3_29_2 doi: 10.1128/AEM.71.9.4951-4959.2005 – ident: e_1_3_3_12_2 doi: 10.1128/AAC.43.9.2183 – ident: e_1_3_3_27_2 doi: 10.1007/BF02275859 – ident: e_1_3_3_33_2 doi: 10.1007/s00438-002-0774-2 – ident: e_1_3_3_7_2 doi: 10.1038/nbt1325 – ident: e_1_3_3_37_2 doi: 10.1128/AAC.49.11.4641-4648.2005 – ident: e_1_3_3_6_2 doi: 10.1016/S0140-6736(97)80051-7 – ident: e_1_3_3_5_2 doi: 10.1038/nrmicro2960 – ident: e_1_3_3_4_2 doi: 10.1126/science.1109070 – ident: e_1_3_3_23_2 doi: 10.1094/PDIS-92-11-1510 – ident: e_1_3_3_35_2 doi: 10.1111/j.1365-313X.2008.03550.x – ident: e_1_3_3_20_2 doi: 10.1006/meth.2001.1262 – ident: e_1_3_3_8_2 doi: 10.1099/mic.0.023903-0 |
SSID | ssj0004068 ssj0006590 |
Score | 2.4319897 |
Snippet | Bacillus amyloliquefaciens
strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of
Fusarium oxysporum
in the cucumber rhizosphere and... Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2941 |
SubjectTerms | Anti-Bacterial Agents - biosynthesis Antibiotics Bacillus Bacillus - enzymology Bacillus - genetics Bacillus - physiology Bacillus amyloliquefaciens Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biofilms Biological control Colonization Cucumbers Cucumis sativus Cucumis sativus - microbiology Experiments Fusarium - growth & development Fusarium oxysporum Gene Expression Regulation, Bacterial Microbiology Phosphorylation Plant diseases Plant Diseases - microbiology Plant Diseases - prevention & control Plant Microbiology Rhizosphere |
Title | Enhanced Control of Cucumber Wilt Disease by Bacillus amyloliquefaciens SQR9 by Altering the Regulation of Its DegU Phosphorylation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24584252 https://www.proquest.com/docview/1519417059 https://www.proquest.com/docview/1516725194 https://www.proquest.com/docview/1524408287 https://pubmed.ncbi.nlm.nih.gov/PMC3993311 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIl4HBOEVKGiRoJfUxd74tcdQUrXQlDQ4Um7WemMTSyGp6vgQrvwC_jEzXm_sNIAKF8uyRxtH8-3szO7MN4S8kcLyLOm7hiWkNGwr8g3B7InB_ZhbsRBmnGDtcP_MPR7ZH8fOuNH4WctaypfRgfz-27qS_9EqPAO9YpXsP2h2PSg8gHvQL1xBw3C9lo5786k6wD8sE84xtyKXRZMPnO9LJNfE8xd0Mt8Lmc5medYW3yBInyFvayJwZmftL-dDjiJdPDrX9VND1aW-dChPlhnYpq-j9mC6yC6mi8vVrNKpZrEtPVrci-9VBXRY_ZtWfE9axeO8OBiZptM83dq-HuZpkleb_erhB9z1WIP5PC0G6McwgKhvXlh2lSqoDTLnBnoVajlSNhgpTl1HNbrVRlq1eyrByOsWlyvirHL1Zlzx2G6vDAyrHbq9_oHZ4UjL2qlWQH3qf_Y5PBqdnoZBbxzcIDcZRB5FlH7yqSq1Nd2KjR4-0tQsp_gndGEF89_Vf2jT5dmKY66m49b8m-ABuV8GJrSrUPaQNOJ5k9xSrUpXTXJHV7BnTXKvRmLZJLf7ZXpGk-wNFBH6ap8GVV1ftk_36KCiSF89Ij80cmmJXLpIqEYuReTSErk0WlGNXLqFXIrIRRGNXArIpRVycVhALkXk0ivIfUyCo15weGyU7UAMCVHB0uBgPxIIUMDmQJjtRxabMFf4dgJeawK3YGgcx50k4LAyb-JCIC4tR7DY5IlMHK_zhOzMF_P4GaETX8JCx_3ENIUtJReJHzkTCK59LEqVbou0tcJCWVLlY8eWWViEzMwPQb1hod7Q6rTI27X0haKI-YPcrtZ9WBqRLASHGwDsQZDTIq_Xr8HE47mdmMeLvJBxPawwt_8mw4re8b7XIk8VnNYfwzAXgjmsRbwNoK0FkGJ-8808nRZU8xi-dCzr-TV-9wW5W83wXbKzvMzjl-CwL6NXxRT6BS9q7tw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Control+of+Cucumber+Wilt+Disease+by+Bacillus+amyloliquefaciens+SQR9+by+Altering+the+Regulation+of+Its+DegU+Phosphorylation&rft.jtitle=Applied+and+Environmental+Microbiology&rft.au=Xu%2C+Zhihui&rft.au=Zhang%2C+Ruifu&rft.au=Wang%2C+Dandan&rft.au=Qiu%2C+Meihua&rft.date=2014-05-01&rft.issn=0099-2240&rft.eissn=1098-6596&rft.volume=80&rft.issue=9&rft.spage=2941&rft.epage=2950&rft_id=info:doi/10.1128%2FAEM.03943-13&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |