The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake
Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clock...
Saved in:
Published in | The Journal of neuroscience Vol. 28; no. 48; pp. 12946 - 12955 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
26.11.2008
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.3615-08.2008 |
Cover
Loading…
Abstract | Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (
Mc3r
−/−) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased
x
- and
z
-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in
Mc3r
−/− mice. Food entrainment requires expression of
Neuronal PAS domain 2
(
Npas2
) and
Period2
(
Per2
) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (
Bmal1, Npas2, Per2
) under
ad libitum
and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function. |
---|---|
AbstractList | Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function. Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient ( Mc3r −/−) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x - and z -movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r −/− mice. Food entrainment requires expression of Neuronal PAS domain 2 ( Npas2 ) and Period2 ( Per2 ) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes ( Bmal1, Npas2, Per2 ) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function. Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function. |
Author | Fang, Jidong Kim, Jason K Butler, Andrew A Sutton, Gregory M Perez-Tilve, Diego Nogueiras, Ruben Cone, Roger D Gimble, Jeffrey M Tschop, Matthias H |
Author_xml | – sequence: 1 fullname: Sutton, Gregory M – sequence: 2 fullname: Perez-Tilve, Diego – sequence: 3 fullname: Nogueiras, Ruben – sequence: 4 fullname: Fang, Jidong – sequence: 5 fullname: Kim, Jason K – sequence: 6 fullname: Cone, Roger D – sequence: 7 fullname: Gimble, Jeffrey M – sequence: 8 fullname: Tschop, Matthias H – sequence: 9 fullname: Butler, Andrew A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19036988$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1vEzEQtVARTQt_odoT4rLp2F5_rISQUJRCqpZKpT1bjne2Meyu07VDxL_HISUCLj15rHkfo_dOyNEQBiTkjMKUCsbPL7_M729vvs4WUy6pKEFPGYB-QSZ5W5esAnpEJsAUlLJS1TE5ifEbACig6hU5pjVwWWs9IRd3KyyusbNDcGFMfih5cYsO1ymMxSLm-XHjR2yKNv_nQxqtH3ocUpFCptmuWAzJfsfX5GVru4hvnt5Tcn8xv5t9Lq9uPi1mH69KJyhNpW4FCARbO92qJW8lNrYRmmJDmXXLWipeUb1UtWZ5EiChEgq0QlTMKS34Kfmw111vlj02DncXdWY9-t6OP02w3vy7GfzKPIQfhknKpeBZ4O2TwBgeNxiT6X102OUAMGyiyalU2VZm4NnfTgeLP9FlwPs9wI0hxhFb43yyyYffIXWGgtk1ZQ5NmV1TBrTZNZXp8j_6weE54rs9ceUfVtvcjYm97bp8JjXb7ZZpU2lDWV1J_gsbp6Xr |
CitedBy_id | crossref_primary_10_1073_pnas_1218699110 crossref_primary_10_1371_journal_pone_0015429 crossref_primary_10_1016_j_physbeh_2011_04_015 crossref_primary_10_3389_fnins_2015_00213 crossref_primary_10_1016_j_bbrc_2012_07_017 crossref_primary_10_1371_journal_pgen_1007672 crossref_primary_10_1210_en_2018_00747 crossref_primary_10_26508_lsa_202402754 crossref_primary_10_1016_j_neuroscience_2015_12_014 crossref_primary_10_1111_j_1467_789X_2009_00672_x crossref_primary_10_1177_0748730410388600 crossref_primary_10_3389_fnins_2017_00128 crossref_primary_10_1111_j_1749_6632_2011_06246_x crossref_primary_10_1177_0748730418789043 crossref_primary_10_1016_j_physbeh_2011_04_007 crossref_primary_10_1371_journal_pone_0095990 crossref_primary_10_1210_en_2014_1937 crossref_primary_10_1002_cne_25379 crossref_primary_10_1371_journal_pone_0112451 crossref_primary_10_1007_s00360_010_0451_4 crossref_primary_10_1210_en_2014_1497 crossref_primary_10_1038_oby_2011_279 crossref_primary_10_1096_fj_09_142000 crossref_primary_10_1016_j_neuroscience_2009_08_009 crossref_primary_10_1038_nrendo_2015_103 crossref_primary_10_1210_en_2009_1133 crossref_primary_10_1007_s11055_017_0426_y crossref_primary_10_1371_journal_pone_0018377 crossref_primary_10_1038_ijosup_2014_10 crossref_primary_10_1126_sciadv_aat0866 crossref_primary_10_5582_ddt_2016_01014 crossref_primary_10_3390_nu12113502 crossref_primary_10_1111_j_1601_183X_2012_00766_x crossref_primary_10_1038_nrendo_2010_214 crossref_primary_10_1007_s12020_010_9386_5 crossref_primary_10_1007_BF03325274 crossref_primary_10_1016_j_molmet_2016_05_002 crossref_primary_10_1126_science_1195027 crossref_primary_10_1172_JCI46043 crossref_primary_10_1042_bse0490119 crossref_primary_10_1016_j_physbeh_2017_10_006 crossref_primary_10_1016_j_bbadis_2012_07_017 crossref_primary_10_1152_physrev_00016_2012 crossref_primary_10_3390_biom15020209 crossref_primary_10_1530_JME_14_0184 crossref_primary_10_7717_peerj_1091 crossref_primary_10_1152_japplphysiol_00090_2009 crossref_primary_10_1111_j_1467_789X_2009_00662_x crossref_primary_10_1016_j_crvi_2016_11_007 crossref_primary_10_3390_ijms18040859 crossref_primary_10_1517_17460441_2011_565743 crossref_primary_10_1007_s11357_012_9389_7 crossref_primary_10_1016_j_nut_2009_07_005 crossref_primary_10_1007_s12020_018_1596_2 crossref_primary_10_1016_j_tins_2012_12_007 crossref_primary_10_1080_09291016_2018_1478635 crossref_primary_10_1016_j_neuron_2012_04_006 crossref_primary_10_1038_ijosup_2014_7 crossref_primary_10_1111_j_1365_2826_2009_01895_x crossref_primary_10_1007_s00018_011_0707_5 crossref_primary_10_1016_j_yhbeh_2015_06_006 crossref_primary_10_1016_j_isci_2023_106002 crossref_primary_10_1042_BJ20091957 crossref_primary_10_1371_journal_pone_0023364 crossref_primary_10_1016_j_gene_2015_02_043 crossref_primary_10_1007_s00198_010_1325_z crossref_primary_10_1111_j_1460_9568_2009_06962_x crossref_primary_10_1038_srep44444 crossref_primary_10_1172_JCI92008 crossref_primary_10_1016_j_tem_2009_02_002 crossref_primary_10_1210_er_2009_0037 crossref_primary_10_1254_jphs_13R06CR crossref_primary_10_1101_gad_328633_119 crossref_primary_10_1074_jbc_M111_287607 crossref_primary_10_1016_j_neuroscience_2013_08_049 crossref_primary_10_1074_jbc_M111_278374 crossref_primary_10_1111_jne_12233 crossref_primary_10_1371_journal_pone_0011802 crossref_primary_10_1016_j_appet_2014_02_020 crossref_primary_10_1038_s41574_023_00855_y crossref_primary_10_1371_journal_pone_0019934 crossref_primary_10_3389_fendo_2022_923475 crossref_primary_10_1016_j_neubiorev_2011_06_003 crossref_primary_10_1371_journal_pone_0036117 crossref_primary_10_1016_j_ejphar_2010_12_025 crossref_primary_10_3390_nu6030985 crossref_primary_10_1038_nature11704 crossref_primary_10_1017_S0007114516002117 crossref_primary_10_3389_fnut_2022_998331 crossref_primary_10_1016_j_bbr_2009_12_024 crossref_primary_10_1111_ejn_12593 crossref_primary_10_1016_j_bbadis_2013_05_004 crossref_primary_10_1111_j_1467_789X_2009_00668_x crossref_primary_10_1002_ece3_5956 crossref_primary_10_1161_CIRCRESAHA_109_208355 crossref_primary_10_3390_nu9101151 crossref_primary_10_1016_j_tem_2012_10_005 |
Cites_doi | 10.1073/pnas.0604189103 10.1038/nn1651 10.1016/j.physbeh.2005.10.007 10.1126/science.1082795 10.1210/en.2004-0476 10.1177/0748730407307804 10.1523/JNEUROSCI.18-10-03843.1998 10.1016/j.febslet.2007.08.032 10.1523/JNEUROSCI.19-18-j0004.1999 10.1177/074873040201700402 10.1093/ajcn/47.4.591 10.1523/JNEUROSCI.23-33-10691.2003 10.1038/nature05767 10.1210/er.2007-0041 10.1016/0149-7634(94)90023-X 10.1093/sleep/28.4.395 10.1523/JNEUROSCI.23-14-05998.2003 10.1016/j.tins.2004.12.009 10.1016/j.cmet.2006.08.003 10.1152/ajpregu.00874.2005 10.1210/en.140.3.1408 10.1038/5070 10.1126/science.1060699 10.2337/db07-0733 10.1016/j.peptides.2005.02.029 10.1096/fj.05-3851com 10.1126/science.1153277 10.1038/nm0106-54 10.1146/annurev.biochem.71.090501.142857 10.1210/en.2006-1233 10.1210/en.2007-0699 10.1016/j.cub.2006.08.053 10.1038/nn1226 10.1210/en.2005-0492 10.1073/pnas.90.19.8856 10.1210/en.2005-1209 10.1038/79254 10.1210/en.141.9.3518 10.1038/88423 10.1210/en.139.10.4428 10.1016/j.tem.2006.11.005 10.1038/nn1455 10.1371/journal.pbio.0050034 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Society for Neuroscience 0270-6474/08/2812946-10$15.00/0 2008 |
Copyright_xml | – notice: Copyright © 2008 Society for Neuroscience 0270-6474/08/2812946-10$15.00/0 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.3615-08.2008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 12955 |
ExternalDocumentID | PMC2613653 19036988 10_1523_JNEUROSCI_3615_08_2008 www28_48_12946 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK072476 – fundername: NIDDK NIH HHS grantid: 1P30 DK072476 – fundername: NIDDK NIH HHS grantid: R01 DK078850 – fundername: NIDDK NIH HHS grantid: R01 DK073189 – fundername: NIDDK NIH HHS grantid: DK073189 – fundername: NIDDK NIH HHS grantid: R01 DK080756 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c511t-8f505e0a9c8f7b3f6edad581ed12acb9673418b79827345060457087ee72c7853 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:34:14 EDT 2025 Fri Jul 11 07:15:59 EDT 2025 Fri May 30 10:59:55 EDT 2025 Tue Jul 01 02:58:59 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Tue Nov 10 19:20:00 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-8f505e0a9c8f7b3f6edad581ed12acb9673418b79827345060457087ee72c7853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/28/48/12946.full.pdf |
PMID | 19036988 |
PQID | 69840606 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2613653 proquest_miscellaneous_69840606 pubmed_primary_19036988 crossref_citationtrail_10_1523_JNEUROSCI_3615_08_2008 crossref_primary_10_1523_JNEUROSCI_3615_08_2008 highwire_smallpub1_www28_48_12946 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20081126 2008-11-26 2008-Nov-26 |
PublicationDateYYYYMMDD | 2008-11-26 |
PublicationDate_xml | – month: 11 year: 2008 text: 20081126 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2008 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Laposky (2023041303351594000_28.48.12946.26) 2005; 28 2023041303351594000_28.48.12946.34 2023041303351594000_28.48.12946.11 2023041303351594000_28.48.12946.33 2023041303351594000_28.48.12946.10 2023041303351594000_28.48.12946.32 2023041303351594000_28.48.12946.30 Elia (2023041303351594000_28.48.12946.12) 1988; 47 2023041303351594000_28.48.12946.19 2023041303351594000_28.48.12946.18 2023041303351594000_28.48.12946.17 Landry (2023041303351594000_28.48.12946.24) 2006; 290 2023041303351594000_28.48.12946.39 2023041303351594000_28.48.12946.16 2023041303351594000_28.48.12946.38 2023041303351594000_28.48.12946.15 2023041303351594000_28.48.12946.37 2023041303351594000_28.48.12946.14 2023041303351594000_28.48.12946.36 2023041303351594000_28.48.12946.13 2023041303351594000_28.48.12946.35 2023041303351594000_28.48.12946.23 2023041303351594000_28.48.12946.22 2023041303351594000_28.48.12946.44 2023041303351594000_28.48.12946.21 2023041303351594000_28.48.12946.43 2023041303351594000_28.48.12946.20 Rahmouni (2023041303351594000_28.48.12946.31) 2003; 23 2023041303351594000_28.48.12946.42 2023041303351594000_28.48.12946.41 2023041303351594000_28.48.12946.40 Chou (2023041303351594000_28.48.12946.7) 2003; 23 2023041303351594000_28.48.12946.8 Choi (2023041303351594000_28.48.12946.6) 1998; 18 2023041303351594000_28.48.12946.9 2023041303351594000_28.48.12946.4 2023041303351594000_28.48.12946.5 2023041303351594000_28.48.12946.2 2023041303351594000_28.48.12946.29 2023041303351594000_28.48.12946.3 2023041303351594000_28.48.12946.28 2023041303351594000_28.48.12946.27 Bagnol (2023041303351594000_28.48.12946.1) 1999; 19 2023041303351594000_28.48.12946.25 |
References_xml | – ident: 2023041303351594000_28.48.12946.29 doi: 10.1073/pnas.0604189103 – ident: 2023041303351594000_28.48.12946.17 doi: 10.1038/nn1651 – ident: 2023041303351594000_28.48.12946.21 doi: 10.1016/j.physbeh.2005.10.007 – ident: 2023041303351594000_28.48.12946.10 doi: 10.1126/science.1082795 – ident: 2023041303351594000_28.48.12946.15 doi: 10.1210/en.2004-0476 – ident: 2023041303351594000_28.48.12946.25 doi: 10.1177/0748730407307804 – volume: 18 start-page: 3843 year: 1998 ident: 2023041303351594000_28.48.12946.6 article-title: Hypothalamic ventromedial nuclei amplify circadian rhythms: do they contain a food-entrained endogenous oscillator? publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-10-03843.1998 – ident: 2023041303351594000_28.48.12946.11 doi: 10.1016/j.febslet.2007.08.032 – volume: 19 start-page: RC26 year: 1999 ident: 2023041303351594000_28.48.12946.1 article-title: Anatomy of an endogenous antagonist: relationship between Agouti- related protein and proopiomelanocortin in brain publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-18-j0004.1999 – ident: 2023041303351594000_28.48.12946.39 doi: 10.1177/074873040201700402 – volume: 47 start-page: 591 year: 1988 ident: 2023041303351594000_28.48.12946.12 article-title: Theory and validity of indirect calorimetry during net lipid synthesis publication-title: Am J Clin Nutr doi: 10.1093/ajcn/47.4.591 – volume: 23 start-page: 10691 year: 2003 ident: 2023041303351594000_28.48.12946.7 article-title: Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-33-10691.2003 – ident: 2023041303351594000_28.48.12946.27 doi: 10.1038/nature05767 – ident: 2023041303351594000_28.48.12946.9 doi: 10.1210/er.2007-0041 – ident: 2023041303351594000_28.48.12946.30 doi: 10.1016/0149-7634(94)90023-X – volume: 28 start-page: 395 year: 2005 ident: 2023041303351594000_28.48.12946.26 article-title: Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation publication-title: Sleep doi: 10.1093/sleep/28.4.395 – volume: 23 start-page: 5998 year: 2003 ident: 2023041303351594000_28.48.12946.31 article-title: Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-14-05998.2003 – ident: 2023041303351594000_28.48.12946.36 doi: 10.1016/j.tins.2004.12.009 – ident: 2023041303351594000_28.48.12946.20 doi: 10.1016/j.cmet.2006.08.003 – volume: 290 start-page: R1527 year: 2006 ident: 2023041303351594000_28.48.12946.24 article-title: Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00874.2005 – ident: 2023041303351594000_28.48.12946.18 doi: 10.1210/en.140.3.1408 – ident: 2023041303351594000_28.48.12946.28 doi: 10.1038/5070 – ident: 2023041303351594000_28.48.12946.32 doi: 10.1126/science.1060699 – ident: 2023041303351594000_28.48.12946.41 doi: 10.2337/db07-0733 – ident: 2023041303351594000_28.48.12946.2 doi: 10.1016/j.peptides.2005.02.029 – ident: 2023041303351594000_28.48.12946.44 doi: 10.1096/fj.05-3851com – ident: 2023041303351594000_28.48.12946.16 doi: 10.1126/science.1153277 – ident: 2023041303351594000_28.48.12946.38 doi: 10.1038/nm0106-54 – ident: 2023041303351594000_28.48.12946.35 doi: 10.1146/annurev.biochem.71.090501.142857 – ident: 2023041303351594000_28.48.12946.37 doi: 10.1210/en.2006-1233 – ident: 2023041303351594000_28.48.12946.13 doi: 10.1210/en.2007-0699 – ident: 2023041303351594000_28.48.12946.14 doi: 10.1016/j.cub.2006.08.053 – ident: 2023041303351594000_28.48.12946.43 doi: 10.1038/nn1226 – ident: 2023041303351594000_28.48.12946.42 doi: 10.1210/en.2005-0492 – ident: 2023041303351594000_28.48.12946.33 doi: 10.1073/pnas.90.19.8856 – ident: 2023041303351594000_28.48.12946.40 doi: 10.1210/en.2005-1209 – ident: 2023041303351594000_28.48.12946.5 doi: 10.1038/79254 – ident: 2023041303351594000_28.48.12946.3 doi: 10.1210/en.141.9.3518 – ident: 2023041303351594000_28.48.12946.4 doi: 10.1038/88423 – ident: 2023041303351594000_28.48.12946.34 doi: 10.1210/en.139.10.4428 – ident: 2023041303351594000_28.48.12946.22 doi: 10.1016/j.tem.2006.11.005 – ident: 2023041303351594000_28.48.12946.8 doi: 10.1038/nn1455 – ident: 2023041303351594000_28.48.12946.23 doi: 10.1371/journal.pbio.0050034 – ident: 2023041303351594000_28.48.12946.19 doi: 10.1210/er.2007-0041 |
SSID | ssj0007017 |
Score | 2.3029833 |
Snippet | Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF)... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12946 |
SubjectTerms | Animals Appetite - genetics Appetite Regulation - genetics ARNTL Transcription Factors Basic Helix-Loop-Helix Transcription Factors - genetics Brain - anatomy & histology Brain - metabolism Cell Cycle Proteins - genetics Cerebral Cortex - anatomy & histology Cerebral Cortex - metabolism Circadian Rhythm - genetics Feeding Behavior - physiology Gene Expression Regulation - genetics Hypothalamus - anatomy & histology Hypothalamus - metabolism Mice Mice, Inbred C57BL Mice, Knockout Motor Activity - genetics Nerve Tissue Proteins - genetics Nuclear Proteins - genetics Period Circadian Proteins Pro-Opiomelanocortin - metabolism Receptor, Melanocortin, Type 3 - genetics Receptor, Melanocortin, Type 3 - metabolism Transcription Factors - genetics Wakefulness - genetics |
Title | The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake |
URI | http://www.jneurosci.org/cgi/content/abstract/28/48/12946 https://www.ncbi.nlm.nih.gov/pubmed/19036988 https://www.proquest.com/docview/69840606 https://pubmed.ncbi.nlm.nih.gov/PMC2613653 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSrkZCvEzpEjeJncdprFqLOgnWSXuz7MTRIrpkatNV29_gD3PsOJeOChgvUesmp0nP1-PP9jmfEfrkDiWE3lQ6nooTxw-E70CDcFgMfQuRvpCmUHh6Eh6f-ZPz4LzX-9nJWlqVchDfbq0r-R-vQhv4VVfJ3sOzjVFogNfgXziCh-H4zz6eqrnICxhDllnuDDUNVFcwjt4b6wIQneYLjFKnEh7lZjcIs_YPfHOqjMhGKX5s5AK1lWKGo3bULhsAnK5Km3Jv61v2poM2wC7UrTPL5tdmnvRLBic00816kihbVAVk31eyrUEb2TnrSZYUtiOt5yGYLsirit1tuCIUBqJ-tefOQNlwSsz6jdeNt4R1cFXJbNroCdzDzkeq-n2l4ftbnA-M3sTkRKc7nh6OB0MgZo7LTG5s27PVq_l3OrwmDVEPgMASb-xwbYe7zGzO-QA9JDD20NH-67dWgp66Zhvn5nFt2TnY2d9-P5uMp1ah3jaiuZuY22E6syfosXU_Pqjw9hT1VP4M7R7koiwub_BnbJKGzWrMLhoBYPAmBHENQTxe4hqCGCCIOxDEZYE1BHEFwefobHQ0Ozx27NYcTgwMvXRYCsxZuSKKWUrlMA1VIpKAeSrxiIhlFFJgR0zSiGn5JCNiGVCXUaUoiSlQxBdoJy9y9QphaI8JoXGYJqmfuq5MPZokaRBTIFIq9fooqH8-Hlvden23c_5n9_XRfnPdVaXc8tcrPtbe4ctLMZ-DMzy-Xq8J4z7jBp199KF2G4dArFfXRK6K1ZKHEQNy7MIZLysntt8aAU2MGNinG-5tTtAS75uf5NmFkXonoU5DHb6-97O8QY_aP-lbtFMuVuod0OdSvjdw_gVn1MCb |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Melanocortin-3+Receptor+Is+Required+for+Entrainment+to+Meal+Intake&rft.jtitle=The+Journal+of+neuroscience&rft.au=Sutton%2C+Gregory+M.&rft.au=Perez-Tilve%2C+Diego&rft.au=Nogueiras%2C+Ruben&rft.au=Fang%2C+Jidong&rft.date=2008-11-26&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=28&rft.issue=48&rft.spage=12946&rft.epage=12955&rft_id=info:doi/10.1523%2FJNEUROSCI.3615-08.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_3615_08_2008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |