The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake

Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clock...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 28; no. 48; pp. 12946 - 12955
Main Authors Sutton, Gregory M, Perez-Tilve, Diego, Nogueiras, Ruben, Fang, Jidong, Kim, Jason K, Cone, Roger D, Gimble, Jeffrey M, Tschop, Matthias H, Butler, Andrew A
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 26.11.2008
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.3615-08.2008

Cover

Loading…
Abstract Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient ( Mc3r −/−) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x - and z -movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r −/− mice. Food entrainment requires expression of Neuronal PAS domain 2 ( Npas2 ) and Period2 ( Per2 ) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes ( Bmal1, Npas2, Per2 ) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.
AbstractList Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.
Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient ( Mc3r −/−) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x - and z -movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r −/− mice. Food entrainment requires expression of Neuronal PAS domain 2 ( Npas2 ) and Period2 ( Per2 ) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes ( Bmal1, Npas2, Per2 ) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.
Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.
Author Fang, Jidong
Kim, Jason K
Butler, Andrew A
Sutton, Gregory M
Perez-Tilve, Diego
Nogueiras, Ruben
Cone, Roger D
Gimble, Jeffrey M
Tschop, Matthias H
Author_xml – sequence: 1
  fullname: Sutton, Gregory M
– sequence: 2
  fullname: Perez-Tilve, Diego
– sequence: 3
  fullname: Nogueiras, Ruben
– sequence: 4
  fullname: Fang, Jidong
– sequence: 5
  fullname: Kim, Jason K
– sequence: 6
  fullname: Cone, Roger D
– sequence: 7
  fullname: Gimble, Jeffrey M
– sequence: 8
  fullname: Tschop, Matthias H
– sequence: 9
  fullname: Butler, Andrew A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19036988$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vEzEQtVARTQt_odoT4rLp2F5_rISQUJRCqpZKpT1bjne2Meyu07VDxL_HISUCLj15rHkfo_dOyNEQBiTkjMKUCsbPL7_M729vvs4WUy6pKEFPGYB-QSZ5W5esAnpEJsAUlLJS1TE5ifEbACig6hU5pjVwWWs9IRd3KyyusbNDcGFMfih5cYsO1ymMxSLm-XHjR2yKNv_nQxqtH3ocUpFCptmuWAzJfsfX5GVru4hvnt5Tcn8xv5t9Lq9uPi1mH69KJyhNpW4FCARbO92qJW8lNrYRmmJDmXXLWipeUb1UtWZ5EiChEgq0QlTMKS34Kfmw111vlj02DncXdWY9-t6OP02w3vy7GfzKPIQfhknKpeBZ4O2TwBgeNxiT6X102OUAMGyiyalU2VZm4NnfTgeLP9FlwPs9wI0hxhFb43yyyYffIXWGgtk1ZQ5NmV1TBrTZNZXp8j_6weE54rs9ceUfVtvcjYm97bp8JjXb7ZZpU2lDWV1J_gsbp6Xr
CitedBy_id crossref_primary_10_1073_pnas_1218699110
crossref_primary_10_1371_journal_pone_0015429
crossref_primary_10_1016_j_physbeh_2011_04_015
crossref_primary_10_3389_fnins_2015_00213
crossref_primary_10_1016_j_bbrc_2012_07_017
crossref_primary_10_1371_journal_pgen_1007672
crossref_primary_10_1210_en_2018_00747
crossref_primary_10_26508_lsa_202402754
crossref_primary_10_1016_j_neuroscience_2015_12_014
crossref_primary_10_1111_j_1467_789X_2009_00672_x
crossref_primary_10_1177_0748730410388600
crossref_primary_10_3389_fnins_2017_00128
crossref_primary_10_1111_j_1749_6632_2011_06246_x
crossref_primary_10_1177_0748730418789043
crossref_primary_10_1016_j_physbeh_2011_04_007
crossref_primary_10_1371_journal_pone_0095990
crossref_primary_10_1210_en_2014_1937
crossref_primary_10_1002_cne_25379
crossref_primary_10_1371_journal_pone_0112451
crossref_primary_10_1007_s00360_010_0451_4
crossref_primary_10_1210_en_2014_1497
crossref_primary_10_1038_oby_2011_279
crossref_primary_10_1096_fj_09_142000
crossref_primary_10_1016_j_neuroscience_2009_08_009
crossref_primary_10_1038_nrendo_2015_103
crossref_primary_10_1210_en_2009_1133
crossref_primary_10_1007_s11055_017_0426_y
crossref_primary_10_1371_journal_pone_0018377
crossref_primary_10_1038_ijosup_2014_10
crossref_primary_10_1126_sciadv_aat0866
crossref_primary_10_5582_ddt_2016_01014
crossref_primary_10_3390_nu12113502
crossref_primary_10_1111_j_1601_183X_2012_00766_x
crossref_primary_10_1038_nrendo_2010_214
crossref_primary_10_1007_s12020_010_9386_5
crossref_primary_10_1007_BF03325274
crossref_primary_10_1016_j_molmet_2016_05_002
crossref_primary_10_1126_science_1195027
crossref_primary_10_1172_JCI46043
crossref_primary_10_1042_bse0490119
crossref_primary_10_1016_j_physbeh_2017_10_006
crossref_primary_10_1016_j_bbadis_2012_07_017
crossref_primary_10_1152_physrev_00016_2012
crossref_primary_10_3390_biom15020209
crossref_primary_10_1530_JME_14_0184
crossref_primary_10_7717_peerj_1091
crossref_primary_10_1152_japplphysiol_00090_2009
crossref_primary_10_1111_j_1467_789X_2009_00662_x
crossref_primary_10_1016_j_crvi_2016_11_007
crossref_primary_10_3390_ijms18040859
crossref_primary_10_1517_17460441_2011_565743
crossref_primary_10_1007_s11357_012_9389_7
crossref_primary_10_1016_j_nut_2009_07_005
crossref_primary_10_1007_s12020_018_1596_2
crossref_primary_10_1016_j_tins_2012_12_007
crossref_primary_10_1080_09291016_2018_1478635
crossref_primary_10_1016_j_neuron_2012_04_006
crossref_primary_10_1038_ijosup_2014_7
crossref_primary_10_1111_j_1365_2826_2009_01895_x
crossref_primary_10_1007_s00018_011_0707_5
crossref_primary_10_1016_j_yhbeh_2015_06_006
crossref_primary_10_1016_j_isci_2023_106002
crossref_primary_10_1042_BJ20091957
crossref_primary_10_1371_journal_pone_0023364
crossref_primary_10_1016_j_gene_2015_02_043
crossref_primary_10_1007_s00198_010_1325_z
crossref_primary_10_1111_j_1460_9568_2009_06962_x
crossref_primary_10_1038_srep44444
crossref_primary_10_1172_JCI92008
crossref_primary_10_1016_j_tem_2009_02_002
crossref_primary_10_1210_er_2009_0037
crossref_primary_10_1254_jphs_13R06CR
crossref_primary_10_1101_gad_328633_119
crossref_primary_10_1074_jbc_M111_287607
crossref_primary_10_1016_j_neuroscience_2013_08_049
crossref_primary_10_1074_jbc_M111_278374
crossref_primary_10_1111_jne_12233
crossref_primary_10_1371_journal_pone_0011802
crossref_primary_10_1016_j_appet_2014_02_020
crossref_primary_10_1038_s41574_023_00855_y
crossref_primary_10_1371_journal_pone_0019934
crossref_primary_10_3389_fendo_2022_923475
crossref_primary_10_1016_j_neubiorev_2011_06_003
crossref_primary_10_1371_journal_pone_0036117
crossref_primary_10_1016_j_ejphar_2010_12_025
crossref_primary_10_3390_nu6030985
crossref_primary_10_1038_nature11704
crossref_primary_10_1017_S0007114516002117
crossref_primary_10_3389_fnut_2022_998331
crossref_primary_10_1016_j_bbr_2009_12_024
crossref_primary_10_1111_ejn_12593
crossref_primary_10_1016_j_bbadis_2013_05_004
crossref_primary_10_1111_j_1467_789X_2009_00668_x
crossref_primary_10_1002_ece3_5956
crossref_primary_10_1161_CIRCRESAHA_109_208355
crossref_primary_10_3390_nu9101151
crossref_primary_10_1016_j_tem_2012_10_005
Cites_doi 10.1073/pnas.0604189103
10.1038/nn1651
10.1016/j.physbeh.2005.10.007
10.1126/science.1082795
10.1210/en.2004-0476
10.1177/0748730407307804
10.1523/JNEUROSCI.18-10-03843.1998
10.1016/j.febslet.2007.08.032
10.1523/JNEUROSCI.19-18-j0004.1999
10.1177/074873040201700402
10.1093/ajcn/47.4.591
10.1523/JNEUROSCI.23-33-10691.2003
10.1038/nature05767
10.1210/er.2007-0041
10.1016/0149-7634(94)90023-X
10.1093/sleep/28.4.395
10.1523/JNEUROSCI.23-14-05998.2003
10.1016/j.tins.2004.12.009
10.1016/j.cmet.2006.08.003
10.1152/ajpregu.00874.2005
10.1210/en.140.3.1408
10.1038/5070
10.1126/science.1060699
10.2337/db07-0733
10.1016/j.peptides.2005.02.029
10.1096/fj.05-3851com
10.1126/science.1153277
10.1038/nm0106-54
10.1146/annurev.biochem.71.090501.142857
10.1210/en.2006-1233
10.1210/en.2007-0699
10.1016/j.cub.2006.08.053
10.1038/nn1226
10.1210/en.2005-0492
10.1073/pnas.90.19.8856
10.1210/en.2005-1209
10.1038/79254
10.1210/en.141.9.3518
10.1038/88423
10.1210/en.139.10.4428
10.1016/j.tem.2006.11.005
10.1038/nn1455
10.1371/journal.pbio.0050034
ContentType Journal Article
Copyright Copyright © 2008 Society for Neuroscience 0270-6474/08/2812946-10$15.00/0 2008
Copyright_xml – notice: Copyright © 2008 Society for Neuroscience 0270-6474/08/2812946-10$15.00/0 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.3615-08.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 12955
ExternalDocumentID PMC2613653
19036988
10_1523_JNEUROSCI_3615_08_2008
www28_48_12946
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK072476
– fundername: NIDDK NIH HHS
  grantid: 1P30 DK072476
– fundername: NIDDK NIH HHS
  grantid: R01 DK078850
– fundername: NIDDK NIH HHS
  grantid: R01 DK073189
– fundername: NIDDK NIH HHS
  grantid: DK073189
– fundername: NIDDK NIH HHS
  grantid: R01 DK080756
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c511t-8f505e0a9c8f7b3f6edad581ed12acb9673418b79827345060457087ee72c7853
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:34:14 EDT 2025
Fri Jul 11 07:15:59 EDT 2025
Fri May 30 10:59:55 EDT 2025
Tue Jul 01 02:58:59 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Nov 10 19:20:00 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-8f505e0a9c8f7b3f6edad581ed12acb9673418b79827345060457087ee72c7853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/28/48/12946.full.pdf
PMID 19036988
PQID 69840606
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2613653
proquest_miscellaneous_69840606
pubmed_primary_19036988
crossref_citationtrail_10_1523_JNEUROSCI_3615_08_2008
crossref_primary_10_1523_JNEUROSCI_3615_08_2008
highwire_smallpub1_www28_48_12946
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20081126
2008-11-26
2008-Nov-26
PublicationDateYYYYMMDD 2008-11-26
PublicationDate_xml – month: 11
  year: 2008
  text: 20081126
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2008
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Laposky (2023041303351594000_28.48.12946.26) 2005; 28
2023041303351594000_28.48.12946.34
2023041303351594000_28.48.12946.11
2023041303351594000_28.48.12946.33
2023041303351594000_28.48.12946.10
2023041303351594000_28.48.12946.32
2023041303351594000_28.48.12946.30
Elia (2023041303351594000_28.48.12946.12) 1988; 47
2023041303351594000_28.48.12946.19
2023041303351594000_28.48.12946.18
2023041303351594000_28.48.12946.17
Landry (2023041303351594000_28.48.12946.24) 2006; 290
2023041303351594000_28.48.12946.39
2023041303351594000_28.48.12946.16
2023041303351594000_28.48.12946.38
2023041303351594000_28.48.12946.15
2023041303351594000_28.48.12946.37
2023041303351594000_28.48.12946.14
2023041303351594000_28.48.12946.36
2023041303351594000_28.48.12946.13
2023041303351594000_28.48.12946.35
2023041303351594000_28.48.12946.23
2023041303351594000_28.48.12946.22
2023041303351594000_28.48.12946.44
2023041303351594000_28.48.12946.21
2023041303351594000_28.48.12946.43
2023041303351594000_28.48.12946.20
Rahmouni (2023041303351594000_28.48.12946.31) 2003; 23
2023041303351594000_28.48.12946.42
2023041303351594000_28.48.12946.41
2023041303351594000_28.48.12946.40
Chou (2023041303351594000_28.48.12946.7) 2003; 23
2023041303351594000_28.48.12946.8
Choi (2023041303351594000_28.48.12946.6) 1998; 18
2023041303351594000_28.48.12946.9
2023041303351594000_28.48.12946.4
2023041303351594000_28.48.12946.5
2023041303351594000_28.48.12946.2
2023041303351594000_28.48.12946.29
2023041303351594000_28.48.12946.3
2023041303351594000_28.48.12946.28
2023041303351594000_28.48.12946.27
Bagnol (2023041303351594000_28.48.12946.1) 1999; 19
2023041303351594000_28.48.12946.25
References_xml – ident: 2023041303351594000_28.48.12946.29
  doi: 10.1073/pnas.0604189103
– ident: 2023041303351594000_28.48.12946.17
  doi: 10.1038/nn1651
– ident: 2023041303351594000_28.48.12946.21
  doi: 10.1016/j.physbeh.2005.10.007
– ident: 2023041303351594000_28.48.12946.10
  doi: 10.1126/science.1082795
– ident: 2023041303351594000_28.48.12946.15
  doi: 10.1210/en.2004-0476
– ident: 2023041303351594000_28.48.12946.25
  doi: 10.1177/0748730407307804
– volume: 18
  start-page: 3843
  year: 1998
  ident: 2023041303351594000_28.48.12946.6
  article-title: Hypothalamic ventromedial nuclei amplify circadian rhythms: do they contain a food-entrained endogenous oscillator?
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-10-03843.1998
– ident: 2023041303351594000_28.48.12946.11
  doi: 10.1016/j.febslet.2007.08.032
– volume: 19
  start-page: RC26
  year: 1999
  ident: 2023041303351594000_28.48.12946.1
  article-title: Anatomy of an endogenous antagonist: relationship between Agouti- related protein and proopiomelanocortin in brain
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-18-j0004.1999
– ident: 2023041303351594000_28.48.12946.39
  doi: 10.1177/074873040201700402
– volume: 47
  start-page: 591
  year: 1988
  ident: 2023041303351594000_28.48.12946.12
  article-title: Theory and validity of indirect calorimetry during net lipid synthesis
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/47.4.591
– volume: 23
  start-page: 10691
  year: 2003
  ident: 2023041303351594000_28.48.12946.7
  article-title: Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-33-10691.2003
– ident: 2023041303351594000_28.48.12946.27
  doi: 10.1038/nature05767
– ident: 2023041303351594000_28.48.12946.9
  doi: 10.1210/er.2007-0041
– ident: 2023041303351594000_28.48.12946.30
  doi: 10.1016/0149-7634(94)90023-X
– volume: 28
  start-page: 395
  year: 2005
  ident: 2023041303351594000_28.48.12946.26
  article-title: Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation
  publication-title: Sleep
  doi: 10.1093/sleep/28.4.395
– volume: 23
  start-page: 5998
  year: 2003
  ident: 2023041303351594000_28.48.12946.31
  article-title: Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-14-05998.2003
– ident: 2023041303351594000_28.48.12946.36
  doi: 10.1016/j.tins.2004.12.009
– ident: 2023041303351594000_28.48.12946.20
  doi: 10.1016/j.cmet.2006.08.003
– volume: 290
  start-page: R1527
  year: 2006
  ident: 2023041303351594000_28.48.12946.24
  article-title: Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00874.2005
– ident: 2023041303351594000_28.48.12946.18
  doi: 10.1210/en.140.3.1408
– ident: 2023041303351594000_28.48.12946.28
  doi: 10.1038/5070
– ident: 2023041303351594000_28.48.12946.32
  doi: 10.1126/science.1060699
– ident: 2023041303351594000_28.48.12946.41
  doi: 10.2337/db07-0733
– ident: 2023041303351594000_28.48.12946.2
  doi: 10.1016/j.peptides.2005.02.029
– ident: 2023041303351594000_28.48.12946.44
  doi: 10.1096/fj.05-3851com
– ident: 2023041303351594000_28.48.12946.16
  doi: 10.1126/science.1153277
– ident: 2023041303351594000_28.48.12946.38
  doi: 10.1038/nm0106-54
– ident: 2023041303351594000_28.48.12946.35
  doi: 10.1146/annurev.biochem.71.090501.142857
– ident: 2023041303351594000_28.48.12946.37
  doi: 10.1210/en.2006-1233
– ident: 2023041303351594000_28.48.12946.13
  doi: 10.1210/en.2007-0699
– ident: 2023041303351594000_28.48.12946.14
  doi: 10.1016/j.cub.2006.08.053
– ident: 2023041303351594000_28.48.12946.43
  doi: 10.1038/nn1226
– ident: 2023041303351594000_28.48.12946.42
  doi: 10.1210/en.2005-0492
– ident: 2023041303351594000_28.48.12946.33
  doi: 10.1073/pnas.90.19.8856
– ident: 2023041303351594000_28.48.12946.40
  doi: 10.1210/en.2005-1209
– ident: 2023041303351594000_28.48.12946.5
  doi: 10.1038/79254
– ident: 2023041303351594000_28.48.12946.3
  doi: 10.1210/en.141.9.3518
– ident: 2023041303351594000_28.48.12946.4
  doi: 10.1038/88423
– ident: 2023041303351594000_28.48.12946.34
  doi: 10.1210/en.139.10.4428
– ident: 2023041303351594000_28.48.12946.22
  doi: 10.1016/j.tem.2006.11.005
– ident: 2023041303351594000_28.48.12946.8
  doi: 10.1038/nn1455
– ident: 2023041303351594000_28.48.12946.23
  doi: 10.1371/journal.pbio.0050034
– ident: 2023041303351594000_28.48.12946.19
  doi: 10.1210/er.2007-0041
SSID ssj0007017
Score 2.3029833
Snippet Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF)...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12946
SubjectTerms Animals
Appetite - genetics
Appetite Regulation - genetics
ARNTL Transcription Factors
Basic Helix-Loop-Helix Transcription Factors - genetics
Brain - anatomy & histology
Brain - metabolism
Cell Cycle Proteins - genetics
Cerebral Cortex - anatomy & histology
Cerebral Cortex - metabolism
Circadian Rhythm - genetics
Feeding Behavior - physiology
Gene Expression Regulation - genetics
Hypothalamus - anatomy & histology
Hypothalamus - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Motor Activity - genetics
Nerve Tissue Proteins - genetics
Nuclear Proteins - genetics
Period Circadian Proteins
Pro-Opiomelanocortin - metabolism
Receptor, Melanocortin, Type 3 - genetics
Receptor, Melanocortin, Type 3 - metabolism
Transcription Factors - genetics
Wakefulness - genetics
Title The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake
URI http://www.jneurosci.org/cgi/content/abstract/28/48/12946
https://www.ncbi.nlm.nih.gov/pubmed/19036988
https://www.proquest.com/docview/69840606
https://pubmed.ncbi.nlm.nih.gov/PMC2613653
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSrkZCvEzpEjeJncdprFqLOgnWSXuz7MTRIrpkatNV29_gD3PsOJeOChgvUesmp0nP1-PP9jmfEfrkDiWE3lQ6nooTxw-E70CDcFgMfQuRvpCmUHh6Eh6f-ZPz4LzX-9nJWlqVchDfbq0r-R-vQhv4VVfJ3sOzjVFogNfgXziCh-H4zz6eqrnICxhDllnuDDUNVFcwjt4b6wIQneYLjFKnEh7lZjcIs_YPfHOqjMhGKX5s5AK1lWKGo3bULhsAnK5Km3Jv61v2poM2wC7UrTPL5tdmnvRLBic00816kihbVAVk31eyrUEb2TnrSZYUtiOt5yGYLsirit1tuCIUBqJ-tefOQNlwSsz6jdeNt4R1cFXJbNroCdzDzkeq-n2l4ftbnA-M3sTkRKc7nh6OB0MgZo7LTG5s27PVq_l3OrwmDVEPgMASb-xwbYe7zGzO-QA9JDD20NH-67dWgp66Zhvn5nFt2TnY2d9-P5uMp1ah3jaiuZuY22E6syfosXU_Pqjw9hT1VP4M7R7koiwub_BnbJKGzWrMLhoBYPAmBHENQTxe4hqCGCCIOxDEZYE1BHEFwefobHQ0Ozx27NYcTgwMvXRYCsxZuSKKWUrlMA1VIpKAeSrxiIhlFFJgR0zSiGn5JCNiGVCXUaUoiSlQxBdoJy9y9QphaI8JoXGYJqmfuq5MPZokaRBTIFIq9fooqH8-Hlvden23c_5n9_XRfnPdVaXc8tcrPtbe4ctLMZ-DMzy-Xq8J4z7jBp199KF2G4dArFfXRK6K1ZKHEQNy7MIZLysntt8aAU2MGNinG-5tTtAS75uf5NmFkXonoU5DHb6-97O8QY_aP-lbtFMuVuod0OdSvjdw_gVn1MCb
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Melanocortin-3+Receptor+Is+Required+for+Entrainment+to+Meal+Intake&rft.jtitle=The+Journal+of+neuroscience&rft.au=Sutton%2C+Gregory+M.&rft.au=Perez-Tilve%2C+Diego&rft.au=Nogueiras%2C+Ruben&rft.au=Fang%2C+Jidong&rft.date=2008-11-26&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=28&rft.issue=48&rft.spage=12946&rft.epage=12955&rft_id=info:doi/10.1523%2FJNEUROSCI.3615-08.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_3615_08_2008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon