Beyond Sentiment Analysis: A Review of Recent Trends in Text Based Sentiment Analysis and Emotion Detection

Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced computational intelligence and intelligent informatics Vol. 27; no. 1; pp. 84 - 95
Main Authors Hung, Lai Po, Alias, Suraya
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Co. Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1343-0130
1883-8014
DOI10.20965/jaciii.2023.p0084

Cover

Loading…
Abstract Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions are the finer grained information which could be extracted from opinions. So besides writer sentiments, writer emotion is also a valuable data. Emotion detection can be done using text, facial expressions, verbal communications and brain waves; however, the focus of this review is on text-based sentiment analysis and emotion detection. The internet has provided an avenue for the public to express their opinions easily. These expressions not only contain positive or negative sentiments, it contains emotions as well. These emotions can help in social behaviour analysis, decision and policy makings for companies and the country. Emotion detection can further support other tasks such as opinion mining and early depression detection. This review provides a comprehensive analysis of the shift in recent trends from text sentiment analysis to emotion detection and the challenges in these tasks. We summarize some of the recent works in the last five years and look at the methods they used. We also look at the models of emotion classes that are generally referenced. The trend of text-based emotion detection has shifted from the early keyword-based comparisons to machine learning and deep learning algorithms that provide more flexibility to the task and better performance.
AbstractList Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions are the finer grained information which could be extracted from opinions. So besides writer sentiments, writer emotion is also a valuable data. Emotion detection can be done using text, facial expressions, verbal communications and brain waves; however, the focus of this review is on text-based sentiment analysis and emotion detection. The internet has provided an avenue for the public to express their opinions easily. These expressions not only contain positive or negative sentiments, it contains emotions as well. These emotions can help in social behaviour analysis, decision and policy makings for companies and the country. Emotion detection can further support other tasks such as opinion mining and early depression detection. This review provides a comprehensive analysis of the shift in recent trends from text sentiment analysis to emotion detection and the challenges in these tasks. We summarize some of the recent works in the last five years and look at the methods they used. We also look at the models of emotion classes that are generally referenced. The trend of text-based emotion detection has shifted from the early keyword-based comparisons to machine learning and deep learning algorithms that provide more flexibility to the task and better performance.
Author Alias, Suraya
Hung, Lai Po
Author_xml – sequence: 1
  givenname: Lai Po
  orcidid: 0000-0002-3599-2930
  surname: Hung
  fullname: Hung, Lai Po
  organization: Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
– sequence: 2
  givenname: Suraya
  orcidid: 0000-0003-2002-9508
  surname: Alias
  fullname: Alias, Suraya
  organization: Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
BookMark eNp9UE1PAjEQbQwmIvIHPDXxvNiP3W7xBogfCYmJ4rnpdmeTIrTYLir_3i54MsbLzJvMey8z7xz1nHeA0CUlI0bGorheaWOtTQPjoy0hMj9BfSolzySheS9hnvOMUE7O0DDGFSEJM0Fy2kdvU9h7V-MXcK3dpIInTq_30cYbPMHP8GHhE_smIdMtlwFcHbF1eAlfLZ7qCH9psU6W841vrXf4FlowHbpAp41eRxj-9AF6vZsvZw_Z4un-cTZZZKagtM1kbQQdl2Ak55WUVTWmtRRNWUhuqoIKqHlpypwTzvM68XQ11oYSxoSWFRSGD9DV0Xcb_PsOYqtWfhfSaVGxUoiSiJKRxGJHlgk-xgCN2ga70WGvKFGHXNUxV9Xlqg65JpH8JTK21d1zbdB2_Z_0GzCWgYg
CitedBy_id crossref_primary_10_1007_s00521_024_10371_3
crossref_primary_10_1007_s11227_024_06413_1
crossref_primary_10_1111_deve_12424
crossref_primary_10_1038_s41598_025_90117_w
crossref_primary_10_1109_ACCESS_2024_3463793
crossref_primary_10_2478_jazcas_2024_0027
crossref_primary_10_24193_subbi_2022_2_05
crossref_primary_10_3389_fnins_2024_1479570
crossref_primary_10_32628_CSEIT241029
crossref_primary_10_1016_j_techfore_2023_123098
crossref_primary_10_1080_21639159_2023_2276395
crossref_primary_10_1016_j_knosys_2023_111148
crossref_primary_10_3390_app14177782
crossref_primary_10_1016_j_neucom_2024_129073
Cites_doi 10.1145/1240624.1240764
10.1145/1363686.1364052
10.1007/s10044-005-0256-3
10.18653/v1/W18-3508
10.1016/j.engappai.2016.01.012
10.1109/WI.2007.51
10.1016/j.neucom.2017.11.023
10.1186/s40537-019-0252-x
10.1109/ICDM.2016.0055
10.1109/CCAA.2015.7148343
10.1109/WI-IAT.2012.170
10.22452/mjcs.vol34no4.4
10.1016/j.ijinfomgt.2019.102048
10.1088/1742-6596/772/1/012063
10.1145/3121050.3121093
10.1016/j.jocs.2019.05.009
10.1016/j.indmarman.2019.08.003
10.3115/v1/W14-6905
10.5455/jjcit.71-1555697775
10.1007/978-3-319-31413-6_7
10.1016/j.knosys.2016.05.040
10.3115/1220575.1220648
10.1016/j.dss.2018.09.002
10.1109/ACCESS.2019.2934529
10.1007/978-3-319-56660-3_33
10.1016/j.eswa.2016.06.005
10.1109/ACCESS.2020.3027350
10.18653/v1/2020.nuse-1.4
10.3390/app10155351
10.1145/3057270
10.1166/asl.2015.6494
10.3115/1073083.1073153
10.1109/TKDE.2015.2489653
10.1109/ICIME.2009.113
10.1007/978-3-319-27194-1_19
10.1109/ICECA.2018.8474738
10.3115/1220575.1220618
10.1186/s40537-017-0111-6
10.1016/j.procs.2018.10.414
10.1016/j.eswa.2015.07.052
10.1007/11573548_80
10.1037/0022-3514.52.6.1061
10.1016/j.procs.2018.05.109
10.1037/h0077714
10.1109/DEST.2010.5610650
10.1016/j.ins.2010.11.023
10.3115/1118693.1118704
10.1017/CBO9780511571299
10.1007/978-3-540-37275-2_87
10.1016/j.datak.2018.04.001
10.18653/v1/2020.coling-main.575
10.1016/j.eswa.2016.03.028
10.1145/1165255.1165259
10.18653/v1/W18-6236
10.1016/j.procs.2016.04.128
10.33965/ict_csc_wbc_2020_202008L022
10.1109/ACCESS.2018.2851311
10.1511/2001.4.344
10.1109/ICCMC.2017.8282664
10.1109/SCOReD53546.2021.9652768
10.1109/JSYST.2018.2794462
10.18653/v1/S17-1007
10.1016/j.procs.2021.01.099
10.1016/j.ins.2016.07.028
10.5120/19563-1321
10.1109/ROBIO.2007.4522515
10.1002/0470013494.ch3
10.1007/s10660-017-9257-8
10.1016/j.ijinfomgt.2018.05.004
ContentType Journal Article
Copyright Copyright © 2023 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2023 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2023.p0084
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 95
ExternalDocumentID 10_20965_jaciii_2023_p0084
GroupedDBID AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c511t-8dc6197ec833b88bb91d86f7583cb516ed37c7430334d97eab9ac10226a8be5c3
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Sun Jul 13 04:39:11 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Tue Jul 01 04:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-8dc6197ec833b88bb91d86f7583cb516ed37c7430334d97eab9ac10226a8be5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3599-2930
0000-0003-2002-9508
OpenAccessLink https://doi.org/10.20965/jaciii.2023.p0084
PQID 2766706720
PQPubID 4911628
PageCount 12
ParticipantIDs proquest_journals_2766706720
crossref_primary_10_20965_jaciii_2023_p0084
crossref_citationtrail_10_20965_jaciii_2023_p0084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2023
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2023.p0084-60
key-10.20965/jaciii.2023.p0084-9
key-10.20965/jaciii.2023.p0084-7
key-10.20965/jaciii.2023.p0084-8
key-10.20965/jaciii.2023.p0084-5
key-10.20965/jaciii.2023.p0084-6
key-10.20965/jaciii.2023.p0084-29
key-10.20965/jaciii.2023.p0084-28
key-10.20965/jaciii.2023.p0084-27
key-10.20965/jaciii.2023.p0084-26
key-10.20965/jaciii.2023.p0084-25
key-10.20965/jaciii.2023.p0084-69
key-10.20965/jaciii.2023.p0084-24
key-10.20965/jaciii.2023.p0084-68
key-10.20965/jaciii.2023.p0084-23
key-10.20965/jaciii.2023.p0084-67
key-10.20965/jaciii.2023.p0084-22
key-10.20965/jaciii.2023.p0084-66
key-10.20965/jaciii.2023.p0084-21
key-10.20965/jaciii.2023.p0084-65
key-10.20965/jaciii.2023.p0084-20
key-10.20965/jaciii.2023.p0084-64
key-10.20965/jaciii.2023.p0084-63
key-10.20965/jaciii.2023.p0084-62
key-10.20965/jaciii.2023.p0084-61
key-10.20965/jaciii.2023.p0084-71
key-10.20965/jaciii.2023.p0084-70
key-10.20965/jaciii.2023.p0084-39
key-10.20965/jaciii.2023.p0084-38
key-10.20965/jaciii.2023.p0084-37
key-10.20965/jaciii.2023.p0084-36
key-10.20965/jaciii.2023.p0084-35
key-10.20965/jaciii.2023.p0084-79
key-10.20965/jaciii.2023.p0084-34
key-10.20965/jaciii.2023.p0084-78
key-10.20965/jaciii.2023.p0084-33
key-10.20965/jaciii.2023.p0084-77
key-10.20965/jaciii.2023.p0084-32
key-10.20965/jaciii.2023.p0084-76
key-10.20965/jaciii.2023.p0084-31
key-10.20965/jaciii.2023.p0084-75
key-10.20965/jaciii.2023.p0084-30
key-10.20965/jaciii.2023.p0084-74
key-10.20965/jaciii.2023.p0084-73
key-10.20965/jaciii.2023.p0084-72
key-10.20965/jaciii.2023.p0084-49
key-10.20965/jaciii.2023.p0084-48
key-10.20965/jaciii.2023.p0084-47
key-10.20965/jaciii.2023.p0084-46
key-10.20965/jaciii.2023.p0084-45
key-10.20965/jaciii.2023.p0084-44
key-10.20965/jaciii.2023.p0084-43
key-10.20965/jaciii.2023.p0084-42
key-10.20965/jaciii.2023.p0084-41
key-10.20965/jaciii.2023.p0084-40
key-10.20965/jaciii.2023.p0084-19
key-10.20965/jaciii.2023.p0084-18
key-10.20965/jaciii.2023.p0084-17
key-10.20965/jaciii.2023.p0084-16
key-10.20965/jaciii.2023.p0084-15
key-10.20965/jaciii.2023.p0084-59
key-10.20965/jaciii.2023.p0084-14
key-10.20965/jaciii.2023.p0084-58
key-10.20965/jaciii.2023.p0084-3
key-10.20965/jaciii.2023.p0084-13
key-10.20965/jaciii.2023.p0084-57
key-10.20965/jaciii.2023.p0084-4
key-10.20965/jaciii.2023.p0084-12
key-10.20965/jaciii.2023.p0084-56
key-10.20965/jaciii.2023.p0084-1
key-10.20965/jaciii.2023.p0084-11
key-10.20965/jaciii.2023.p0084-55
key-10.20965/jaciii.2023.p0084-2
key-10.20965/jaciii.2023.p0084-10
key-10.20965/jaciii.2023.p0084-54
key-10.20965/jaciii.2023.p0084-53
key-10.20965/jaciii.2023.p0084-52
key-10.20965/jaciii.2023.p0084-51
key-10.20965/jaciii.2023.p0084-50
References_xml – ident: key-10.20965/jaciii.2023.p0084-4
– ident: key-10.20965/jaciii.2023.p0084-53
  doi: 10.1145/1240624.1240764
– ident: key-10.20965/jaciii.2023.p0084-55
  doi: 10.1145/1363686.1364052
– ident: key-10.20965/jaciii.2023.p0084-3
  doi: 10.1007/s10044-005-0256-3
– ident: key-10.20965/jaciii.2023.p0084-66
  doi: 10.18653/v1/W18-3508
– ident: key-10.20965/jaciii.2023.p0084-44
  doi: 10.1016/j.engappai.2016.01.012
– ident: key-10.20965/jaciii.2023.p0084-59
  doi: 10.1109/WI.2007.51
– ident: key-10.20965/jaciii.2023.p0084-31
  doi: 10.1016/j.neucom.2017.11.023
– ident: key-10.20965/jaciii.2023.p0084-71
  doi: 10.1186/s40537-019-0252-x
– ident: key-10.20965/jaciii.2023.p0084-50
– ident: key-10.20965/jaciii.2023.p0084-28
  doi: 10.1109/ICDM.2016.0055
– ident: key-10.20965/jaciii.2023.p0084-61
  doi: 10.1109/CCAA.2015.7148343
– ident: key-10.20965/jaciii.2023.p0084-56
  doi: 10.1109/WI-IAT.2012.170
– ident: key-10.20965/jaciii.2023.p0084-75
  doi: 10.22452/mjcs.vol34no4.4
– ident: key-10.20965/jaciii.2023.p0084-19
  doi: 10.1016/j.ijinfomgt.2019.102048
– ident: key-10.20965/jaciii.2023.p0084-6
  doi: 10.1088/1742-6596/772/1/012063
– ident: key-10.20965/jaciii.2023.p0084-63
  doi: 10.1145/3121050.3121093
– ident: key-10.20965/jaciii.2023.p0084-2
  doi: 10.1016/j.jocs.2019.05.009
– ident: key-10.20965/jaciii.2023.p0084-60
– ident: key-10.20965/jaciii.2023.p0084-14
  doi: 10.1016/j.indmarman.2019.08.003
– ident: key-10.20965/jaciii.2023.p0084-39
– ident: key-10.20965/jaciii.2023.p0084-46
  doi: 10.3115/v1/W14-6905
– ident: key-10.20965/jaciii.2023.p0084-69
  doi: 10.5455/jjcit.71-1555697775
– ident: key-10.20965/jaciii.2023.p0084-7
– ident: key-10.20965/jaciii.2023.p0084-12
  doi: 10.1007/978-3-319-31413-6_7
– ident: key-10.20965/jaciii.2023.p0084-24
  doi: 10.1016/j.knosys.2016.05.040
– ident: key-10.20965/jaciii.2023.p0084-43
– ident: key-10.20965/jaciii.2023.p0084-57
  doi: 10.3115/1220575.1220648
– ident: key-10.20965/jaciii.2023.p0084-68
  doi: 10.1016/j.dss.2018.09.002
– ident: key-10.20965/jaciii.2023.p0084-70
  doi: 10.1109/ACCESS.2019.2934529
– ident: key-10.20965/jaciii.2023.p0084-78
  doi: 10.1007/978-3-319-56660-3_33
– ident: key-10.20965/jaciii.2023.p0084-29
  doi: 10.1016/j.eswa.2016.06.005
– ident: key-10.20965/jaciii.2023.p0084-34
  doi: 10.1109/ACCESS.2020.3027350
– ident: key-10.20965/jaciii.2023.p0084-74
  doi: 10.18653/v1/2020.nuse-1.4
– ident: key-10.20965/jaciii.2023.p0084-73
  doi: 10.3390/app10155351
– ident: key-10.20965/jaciii.2023.p0084-42
  doi: 10.1145/3057270
– ident: key-10.20965/jaciii.2023.p0084-5
  doi: 10.1166/asl.2015.6494
– ident: key-10.20965/jaciii.2023.p0084-21
  doi: 10.3115/1073083.1073153
– ident: key-10.20965/jaciii.2023.p0084-15
– ident: key-10.20965/jaciii.2023.p0084-26
  doi: 10.1109/TKDE.2015.2489653
– ident: key-10.20965/jaciii.2023.p0084-36
– ident: key-10.20965/jaciii.2023.p0084-49
  doi: 10.1109/ICIME.2009.113
– ident: key-10.20965/jaciii.2023.p0084-8
  doi: 10.1007/978-3-319-27194-1_19
– ident: key-10.20965/jaciii.2023.p0084-10
  doi: 10.1109/ICECA.2018.8474738
– ident: key-10.20965/jaciii.2023.p0084-22
  doi: 10.3115/1220575.1220618
– ident: key-10.20965/jaciii.2023.p0084-18
  doi: 10.1186/s40537-017-0111-6
– ident: key-10.20965/jaciii.2023.p0084-33
  doi: 10.1016/j.procs.2018.10.414
– ident: key-10.20965/jaciii.2023.p0084-16
  doi: 10.1016/j.eswa.2015.07.052
– ident: key-10.20965/jaciii.2023.p0084-52
  doi: 10.1007/11573548_80
– ident: key-10.20965/jaciii.2023.p0084-40
  doi: 10.1037/0022-3514.52.6.1061
– ident: key-10.20965/jaciii.2023.p0084-32
  doi: 10.1016/j.procs.2018.05.109
– ident: key-10.20965/jaciii.2023.p0084-48
  doi: 10.1037/h0077714
– ident: key-10.20965/jaciii.2023.p0084-47
  doi: 10.1109/DEST.2010.5610650
– ident: key-10.20965/jaciii.2023.p0084-77
  doi: 10.1016/j.ins.2010.11.023
– ident: key-10.20965/jaciii.2023.p0084-45
– ident: key-10.20965/jaciii.2023.p0084-23
  doi: 10.3115/1118693.1118704
– ident: key-10.20965/jaciii.2023.p0084-41
  doi: 10.1017/CBO9780511571299
– ident: key-10.20965/jaciii.2023.p0084-58
  doi: 10.1007/978-3-540-37275-2_87
– ident: key-10.20965/jaciii.2023.p0084-30
  doi: 10.1016/j.datak.2018.04.001
– ident: key-10.20965/jaciii.2023.p0084-35
  doi: 10.18653/v1/2020.coling-main.575
– ident: key-10.20965/jaciii.2023.p0084-27
  doi: 10.1016/j.eswa.2016.03.028
– ident: key-10.20965/jaciii.2023.p0084-51
  doi: 10.1145/1165255.1165259
– ident: key-10.20965/jaciii.2023.p0084-67
  doi: 10.18653/v1/W18-6236
– ident: key-10.20965/jaciii.2023.p0084-62
  doi: 10.1016/j.procs.2016.04.128
– ident: key-10.20965/jaciii.2023.p0084-72
  doi: 10.33965/ict_csc_wbc_2020_202008L022
– ident: key-10.20965/jaciii.2023.p0084-1
  doi: 10.1109/ACCESS.2018.2851311
– ident: key-10.20965/jaciii.2023.p0084-38
  doi: 10.1511/2001.4.344
– ident: key-10.20965/jaciii.2023.p0084-65
  doi: 10.1109/ICCMC.2017.8282664
– ident: key-10.20965/jaciii.2023.p0084-9
– ident: key-10.20965/jaciii.2023.p0084-79
  doi: 10.1109/SCOReD53546.2021.9652768
– ident: key-10.20965/jaciii.2023.p0084-17
  doi: 10.1109/JSYST.2018.2794462
– ident: key-10.20965/jaciii.2023.p0084-64
  doi: 10.18653/v1/S17-1007
– ident: key-10.20965/jaciii.2023.p0084-76
  doi: 10.1016/j.procs.2021.01.099
– ident: key-10.20965/jaciii.2023.p0084-25
  doi: 10.1016/j.ins.2016.07.028
– ident: key-10.20965/jaciii.2023.p0084-13
  doi: 10.5120/19563-1321
– ident: key-10.20965/jaciii.2023.p0084-54
  doi: 10.1109/ROBIO.2007.4522515
– ident: key-10.20965/jaciii.2023.p0084-37
  doi: 10.1002/0470013494.ch3
– ident: key-10.20965/jaciii.2023.p0084-11
  doi: 10.1007/s10660-017-9257-8
– ident: key-10.20965/jaciii.2023.p0084-20
  doi: 10.1016/j.ijinfomgt.2018.05.004
SSID ssj0001326041
ssib051641541
Score 2.3593917
SecondaryResourceType review_article
Snippet Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 84
SubjectTerms Algorithms
Big Data
Data mining
Decision analysis
Deep learning
Emotion recognition
Emotions
Machine learning
Sentiment analysis
Trends
Title Beyond Sentiment Analysis: A Review of Recent Trends in Text Based Sentiment Analysis and Emotion Detection
URI https://www.proquest.com/docview/2766706720
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRiMKQduqCxt-ki5oA02JiQmBJu0W9WkqcRD3WDl_2M3KQMJ7VapSQ6O4_hzbH-EnMfK9VNfMCfjijl-wANH5CJ3QgnuRuyDWnlYnPwwDkdT_34WzGzAbWnTKmubWBnqbK4wRt71ojCM8N2QXS8-HGSNwtdVS6GxSZpgggWAr2Z_MH58qjUqADAAPoK7irqAt8J8g8J8TCTizFTSeNgFpfuaKmzpgJTilwtWtTz9fVv9NdbVDTTcJdvWdaQ9s9d7ZEMX-2SnpmWg9pQekDdTlUKfMREIg3-07jxyRXvUPAbQeQ5fmJlJTVYsfSnoBAw17cO19t9cmsKSA0P6Q291WaVwFYdkOhxMbkaO5VRwFLhWpSMyBZAp0kpwLoWQMnYzEeaAGriSIC6d8UiBV8E49zMYl8o4VYgKw1RIHSh-RBrFvNDHhGaxG-hceGC6AaUhabkWccqZ1Bn2tOIt4tayS5RtOI68F-8JAI9K3omRd4LyTip5t8jFz5yFabexdnS73pLEHr1lslKUk_W_T8kWLmXiKW3SKD-_9Bl4GKXskE0xvOtYZepUOP0beTHPSg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHODCGzGeOcAJFdom7VIkhHiN8bwwJG6lSVOJh7rBhhB_it-I3bQ8JLTbbpWa5OA4-WzH9gewEWlPJEK6Tsq164iAB47MZOaECs2NSKBa-VScfHUdtm7F-V1wNwKfVS0MpVVWd2JxUacdTTHyHb8Rhg16N3T3uy8OsUbR62pFoWHV4sJ8vKPL1ts7O8b93fT95kn7qOWUrAKORuOi78hUo9PQMFpyrqRUKvJSGWZoN3OtAi80KW9oxFWXc5HiuERFiSa_KEykMoHmuO4ojAnOIzpRsnla6S9ORjgszYsixoO2kSuszycobYm7tm7Hp54rO4-JpgYSRGC-3XWLBqu_sfEvNBR415yGydJQZQdWs2ZgxOSzMFWRQLDyTpiDJ1sDw24o7YhCjazqc7LLDph9emCdDL8oD5TZHFz2kLM2wgI7RBD9by5LcMkTSzHEjk2_SBjL5-F2KLJegFreyc0isDTyApNJH4ECfUKiSDcySrirTEodtHgdvEp2sS7bmxPLxnOMbk4h79jKOyZ5x4W867D1Padrm3sMHL1SbUlcHvRe_KOWS4N_r8N4q311GV-eXV8swwQtayM5K1Drv76ZVbRt-mqtUCgG98PW4C_TeQjc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Sentiment+Analysis%3A+A+Review+of+Recent+Trends+in+Text+Based+Sentiment+Analysis+and+Emotion+Detection&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Hung+Lai+Po&rft.au=Alias+Suraya&rft.date=2023-01-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=27&rft.issue=1&rft.spage=84&rft.epage=95&rft_id=info:doi/10.20965%2Fjaciii.2023.p0084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon