Beyond Sentiment Analysis: A Review of Recent Trends in Text Based Sentiment Analysis and Emotion Detection
Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions...
Saved in:
Published in | Journal of advanced computational intelligence and intelligent informatics Vol. 27; no. 1; pp. 84 - 95 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Co. Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1343-0130 1883-8014 |
DOI | 10.20965/jaciii.2023.p0084 |
Cover
Loading…
Abstract | Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions are the finer grained information which could be extracted from opinions. So besides writer sentiments, writer emotion is also a valuable data. Emotion detection can be done using text, facial expressions, verbal communications and brain waves; however, the focus of this review is on text-based sentiment analysis and emotion detection. The internet has provided an avenue for the public to express their opinions easily. These expressions not only contain positive or negative sentiments, it contains emotions as well. These emotions can help in social behaviour analysis, decision and policy makings for companies and the country. Emotion detection can further support other tasks such as opinion mining and early depression detection. This review provides a comprehensive analysis of the shift in recent trends from text sentiment analysis to emotion detection and the challenges in these tasks. We summarize some of the recent works in the last five years and look at the methods they used. We also look at the models of emotion classes that are generally referenced. The trend of text-based emotion detection has shifted from the early keyword-based comparisons to machine learning and deep learning algorithms that provide more flexibility to the task and better performance. |
---|---|
AbstractList | Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text classification are being explored. Perhaps the next task to catch on is emotion detection, the task of identifying emotions. This is because emotions are the finer grained information which could be extracted from opinions. So besides writer sentiments, writer emotion is also a valuable data. Emotion detection can be done using text, facial expressions, verbal communications and brain waves; however, the focus of this review is on text-based sentiment analysis and emotion detection. The internet has provided an avenue for the public to express their opinions easily. These expressions not only contain positive or negative sentiments, it contains emotions as well. These emotions can help in social behaviour analysis, decision and policy makings for companies and the country. Emotion detection can further support other tasks such as opinion mining and early depression detection. This review provides a comprehensive analysis of the shift in recent trends from text sentiment analysis to emotion detection and the challenges in these tasks. We summarize some of the recent works in the last five years and look at the methods they used. We also look at the models of emotion classes that are generally referenced. The trend of text-based emotion detection has shifted from the early keyword-based comparisons to machine learning and deep learning algorithms that provide more flexibility to the task and better performance. |
Author | Alias, Suraya Hung, Lai Po |
Author_xml | – sequence: 1 givenname: Lai Po orcidid: 0000-0002-3599-2930 surname: Hung fullname: Hung, Lai Po organization: Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia – sequence: 2 givenname: Suraya orcidid: 0000-0003-2002-9508 surname: Alias fullname: Alias, Suraya organization: Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia |
BookMark | eNp9UE1PAjEQbQwmIvIHPDXxvNiP3W7xBogfCYmJ4rnpdmeTIrTYLir_3i54MsbLzJvMey8z7xz1nHeA0CUlI0bGorheaWOtTQPjoy0hMj9BfSolzySheS9hnvOMUE7O0DDGFSEJM0Fy2kdvU9h7V-MXcK3dpIInTq_30cYbPMHP8GHhE_smIdMtlwFcHbF1eAlfLZ7qCH9psU6W841vrXf4FlowHbpAp41eRxj-9AF6vZsvZw_Z4un-cTZZZKagtM1kbQQdl2Ak55WUVTWmtRRNWUhuqoIKqHlpypwTzvM68XQ11oYSxoSWFRSGD9DV0Xcb_PsOYqtWfhfSaVGxUoiSiJKRxGJHlgk-xgCN2ga70WGvKFGHXNUxV9Xlqg65JpH8JTK21d1zbdB2_Z_0GzCWgYg |
CitedBy_id | crossref_primary_10_1007_s00521_024_10371_3 crossref_primary_10_1007_s11227_024_06413_1 crossref_primary_10_1111_deve_12424 crossref_primary_10_1038_s41598_025_90117_w crossref_primary_10_1109_ACCESS_2024_3463793 crossref_primary_10_2478_jazcas_2024_0027 crossref_primary_10_24193_subbi_2022_2_05 crossref_primary_10_3389_fnins_2024_1479570 crossref_primary_10_32628_CSEIT241029 crossref_primary_10_1016_j_techfore_2023_123098 crossref_primary_10_1080_21639159_2023_2276395 crossref_primary_10_1016_j_knosys_2023_111148 crossref_primary_10_3390_app14177782 crossref_primary_10_1016_j_neucom_2024_129073 |
Cites_doi | 10.1145/1240624.1240764 10.1145/1363686.1364052 10.1007/s10044-005-0256-3 10.18653/v1/W18-3508 10.1016/j.engappai.2016.01.012 10.1109/WI.2007.51 10.1016/j.neucom.2017.11.023 10.1186/s40537-019-0252-x 10.1109/ICDM.2016.0055 10.1109/CCAA.2015.7148343 10.1109/WI-IAT.2012.170 10.22452/mjcs.vol34no4.4 10.1016/j.ijinfomgt.2019.102048 10.1088/1742-6596/772/1/012063 10.1145/3121050.3121093 10.1016/j.jocs.2019.05.009 10.1016/j.indmarman.2019.08.003 10.3115/v1/W14-6905 10.5455/jjcit.71-1555697775 10.1007/978-3-319-31413-6_7 10.1016/j.knosys.2016.05.040 10.3115/1220575.1220648 10.1016/j.dss.2018.09.002 10.1109/ACCESS.2019.2934529 10.1007/978-3-319-56660-3_33 10.1016/j.eswa.2016.06.005 10.1109/ACCESS.2020.3027350 10.18653/v1/2020.nuse-1.4 10.3390/app10155351 10.1145/3057270 10.1166/asl.2015.6494 10.3115/1073083.1073153 10.1109/TKDE.2015.2489653 10.1109/ICIME.2009.113 10.1007/978-3-319-27194-1_19 10.1109/ICECA.2018.8474738 10.3115/1220575.1220618 10.1186/s40537-017-0111-6 10.1016/j.procs.2018.10.414 10.1016/j.eswa.2015.07.052 10.1007/11573548_80 10.1037/0022-3514.52.6.1061 10.1016/j.procs.2018.05.109 10.1037/h0077714 10.1109/DEST.2010.5610650 10.1016/j.ins.2010.11.023 10.3115/1118693.1118704 10.1017/CBO9780511571299 10.1007/978-3-540-37275-2_87 10.1016/j.datak.2018.04.001 10.18653/v1/2020.coling-main.575 10.1016/j.eswa.2016.03.028 10.1145/1165255.1165259 10.18653/v1/W18-6236 10.1016/j.procs.2016.04.128 10.33965/ict_csc_wbc_2020_202008L022 10.1109/ACCESS.2018.2851311 10.1511/2001.4.344 10.1109/ICCMC.2017.8282664 10.1109/SCOReD53546.2021.9652768 10.1109/JSYST.2018.2794462 10.18653/v1/S17-1007 10.1016/j.procs.2021.01.099 10.1016/j.ins.2016.07.028 10.5120/19563-1321 10.1109/ROBIO.2007.4522515 10.1002/0470013494.ch3 10.1007/s10660-017-9257-8 10.1016/j.ijinfomgt.2018.05.004 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2023 Fuji Technology Press Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.20965/jaciii.2023.p0084 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1883-8014 |
EndPage | 95 |
ExternalDocumentID | 10_20965_jaciii_2023_p0084 |
GroupedDBID | AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ JSI JSP K7- P2P PHGZM PHGZT RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c511t-8dc6197ec833b88bb91d86f7583cb516ed37c7430334d97eab9ac10226a8be5c3 |
IEDL.DBID | BENPR |
ISSN | 1343-0130 |
IngestDate | Sun Jul 13 04:39:11 EDT 2025 Thu Apr 24 23:12:39 EDT 2025 Tue Jul 01 04:30:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-8dc6197ec833b88bb91d86f7583cb516ed37c7430334d97eab9ac10226a8be5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3599-2930 0000-0003-2002-9508 |
OpenAccessLink | https://doi.org/10.20965/jaciii.2023.p0084 |
PQID | 2766706720 |
PQPubID | 4911628 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2766706720 crossref_primary_10_20965_jaciii_2023_p0084 crossref_citationtrail_10_20965_jaciii_2023_p0084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
PublicationYear | 2023 |
Publisher | Fuji Technology Press Co. Ltd |
Publisher_xml | – name: Fuji Technology Press Co. Ltd |
References | key-10.20965/jaciii.2023.p0084-60 key-10.20965/jaciii.2023.p0084-9 key-10.20965/jaciii.2023.p0084-7 key-10.20965/jaciii.2023.p0084-8 key-10.20965/jaciii.2023.p0084-5 key-10.20965/jaciii.2023.p0084-6 key-10.20965/jaciii.2023.p0084-29 key-10.20965/jaciii.2023.p0084-28 key-10.20965/jaciii.2023.p0084-27 key-10.20965/jaciii.2023.p0084-26 key-10.20965/jaciii.2023.p0084-25 key-10.20965/jaciii.2023.p0084-69 key-10.20965/jaciii.2023.p0084-24 key-10.20965/jaciii.2023.p0084-68 key-10.20965/jaciii.2023.p0084-23 key-10.20965/jaciii.2023.p0084-67 key-10.20965/jaciii.2023.p0084-22 key-10.20965/jaciii.2023.p0084-66 key-10.20965/jaciii.2023.p0084-21 key-10.20965/jaciii.2023.p0084-65 key-10.20965/jaciii.2023.p0084-20 key-10.20965/jaciii.2023.p0084-64 key-10.20965/jaciii.2023.p0084-63 key-10.20965/jaciii.2023.p0084-62 key-10.20965/jaciii.2023.p0084-61 key-10.20965/jaciii.2023.p0084-71 key-10.20965/jaciii.2023.p0084-70 key-10.20965/jaciii.2023.p0084-39 key-10.20965/jaciii.2023.p0084-38 key-10.20965/jaciii.2023.p0084-37 key-10.20965/jaciii.2023.p0084-36 key-10.20965/jaciii.2023.p0084-35 key-10.20965/jaciii.2023.p0084-79 key-10.20965/jaciii.2023.p0084-34 key-10.20965/jaciii.2023.p0084-78 key-10.20965/jaciii.2023.p0084-33 key-10.20965/jaciii.2023.p0084-77 key-10.20965/jaciii.2023.p0084-32 key-10.20965/jaciii.2023.p0084-76 key-10.20965/jaciii.2023.p0084-31 key-10.20965/jaciii.2023.p0084-75 key-10.20965/jaciii.2023.p0084-30 key-10.20965/jaciii.2023.p0084-74 key-10.20965/jaciii.2023.p0084-73 key-10.20965/jaciii.2023.p0084-72 key-10.20965/jaciii.2023.p0084-49 key-10.20965/jaciii.2023.p0084-48 key-10.20965/jaciii.2023.p0084-47 key-10.20965/jaciii.2023.p0084-46 key-10.20965/jaciii.2023.p0084-45 key-10.20965/jaciii.2023.p0084-44 key-10.20965/jaciii.2023.p0084-43 key-10.20965/jaciii.2023.p0084-42 key-10.20965/jaciii.2023.p0084-41 key-10.20965/jaciii.2023.p0084-40 key-10.20965/jaciii.2023.p0084-19 key-10.20965/jaciii.2023.p0084-18 key-10.20965/jaciii.2023.p0084-17 key-10.20965/jaciii.2023.p0084-16 key-10.20965/jaciii.2023.p0084-15 key-10.20965/jaciii.2023.p0084-59 key-10.20965/jaciii.2023.p0084-14 key-10.20965/jaciii.2023.p0084-58 key-10.20965/jaciii.2023.p0084-3 key-10.20965/jaciii.2023.p0084-13 key-10.20965/jaciii.2023.p0084-57 key-10.20965/jaciii.2023.p0084-4 key-10.20965/jaciii.2023.p0084-12 key-10.20965/jaciii.2023.p0084-56 key-10.20965/jaciii.2023.p0084-1 key-10.20965/jaciii.2023.p0084-11 key-10.20965/jaciii.2023.p0084-55 key-10.20965/jaciii.2023.p0084-2 key-10.20965/jaciii.2023.p0084-10 key-10.20965/jaciii.2023.p0084-54 key-10.20965/jaciii.2023.p0084-53 key-10.20965/jaciii.2023.p0084-52 key-10.20965/jaciii.2023.p0084-51 key-10.20965/jaciii.2023.p0084-50 |
References_xml | – ident: key-10.20965/jaciii.2023.p0084-4 – ident: key-10.20965/jaciii.2023.p0084-53 doi: 10.1145/1240624.1240764 – ident: key-10.20965/jaciii.2023.p0084-55 doi: 10.1145/1363686.1364052 – ident: key-10.20965/jaciii.2023.p0084-3 doi: 10.1007/s10044-005-0256-3 – ident: key-10.20965/jaciii.2023.p0084-66 doi: 10.18653/v1/W18-3508 – ident: key-10.20965/jaciii.2023.p0084-44 doi: 10.1016/j.engappai.2016.01.012 – ident: key-10.20965/jaciii.2023.p0084-59 doi: 10.1109/WI.2007.51 – ident: key-10.20965/jaciii.2023.p0084-31 doi: 10.1016/j.neucom.2017.11.023 – ident: key-10.20965/jaciii.2023.p0084-71 doi: 10.1186/s40537-019-0252-x – ident: key-10.20965/jaciii.2023.p0084-50 – ident: key-10.20965/jaciii.2023.p0084-28 doi: 10.1109/ICDM.2016.0055 – ident: key-10.20965/jaciii.2023.p0084-61 doi: 10.1109/CCAA.2015.7148343 – ident: key-10.20965/jaciii.2023.p0084-56 doi: 10.1109/WI-IAT.2012.170 – ident: key-10.20965/jaciii.2023.p0084-75 doi: 10.22452/mjcs.vol34no4.4 – ident: key-10.20965/jaciii.2023.p0084-19 doi: 10.1016/j.ijinfomgt.2019.102048 – ident: key-10.20965/jaciii.2023.p0084-6 doi: 10.1088/1742-6596/772/1/012063 – ident: key-10.20965/jaciii.2023.p0084-63 doi: 10.1145/3121050.3121093 – ident: key-10.20965/jaciii.2023.p0084-2 doi: 10.1016/j.jocs.2019.05.009 – ident: key-10.20965/jaciii.2023.p0084-60 – ident: key-10.20965/jaciii.2023.p0084-14 doi: 10.1016/j.indmarman.2019.08.003 – ident: key-10.20965/jaciii.2023.p0084-39 – ident: key-10.20965/jaciii.2023.p0084-46 doi: 10.3115/v1/W14-6905 – ident: key-10.20965/jaciii.2023.p0084-69 doi: 10.5455/jjcit.71-1555697775 – ident: key-10.20965/jaciii.2023.p0084-7 – ident: key-10.20965/jaciii.2023.p0084-12 doi: 10.1007/978-3-319-31413-6_7 – ident: key-10.20965/jaciii.2023.p0084-24 doi: 10.1016/j.knosys.2016.05.040 – ident: key-10.20965/jaciii.2023.p0084-43 – ident: key-10.20965/jaciii.2023.p0084-57 doi: 10.3115/1220575.1220648 – ident: key-10.20965/jaciii.2023.p0084-68 doi: 10.1016/j.dss.2018.09.002 – ident: key-10.20965/jaciii.2023.p0084-70 doi: 10.1109/ACCESS.2019.2934529 – ident: key-10.20965/jaciii.2023.p0084-78 doi: 10.1007/978-3-319-56660-3_33 – ident: key-10.20965/jaciii.2023.p0084-29 doi: 10.1016/j.eswa.2016.06.005 – ident: key-10.20965/jaciii.2023.p0084-34 doi: 10.1109/ACCESS.2020.3027350 – ident: key-10.20965/jaciii.2023.p0084-74 doi: 10.18653/v1/2020.nuse-1.4 – ident: key-10.20965/jaciii.2023.p0084-73 doi: 10.3390/app10155351 – ident: key-10.20965/jaciii.2023.p0084-42 doi: 10.1145/3057270 – ident: key-10.20965/jaciii.2023.p0084-5 doi: 10.1166/asl.2015.6494 – ident: key-10.20965/jaciii.2023.p0084-21 doi: 10.3115/1073083.1073153 – ident: key-10.20965/jaciii.2023.p0084-15 – ident: key-10.20965/jaciii.2023.p0084-26 doi: 10.1109/TKDE.2015.2489653 – ident: key-10.20965/jaciii.2023.p0084-36 – ident: key-10.20965/jaciii.2023.p0084-49 doi: 10.1109/ICIME.2009.113 – ident: key-10.20965/jaciii.2023.p0084-8 doi: 10.1007/978-3-319-27194-1_19 – ident: key-10.20965/jaciii.2023.p0084-10 doi: 10.1109/ICECA.2018.8474738 – ident: key-10.20965/jaciii.2023.p0084-22 doi: 10.3115/1220575.1220618 – ident: key-10.20965/jaciii.2023.p0084-18 doi: 10.1186/s40537-017-0111-6 – ident: key-10.20965/jaciii.2023.p0084-33 doi: 10.1016/j.procs.2018.10.414 – ident: key-10.20965/jaciii.2023.p0084-16 doi: 10.1016/j.eswa.2015.07.052 – ident: key-10.20965/jaciii.2023.p0084-52 doi: 10.1007/11573548_80 – ident: key-10.20965/jaciii.2023.p0084-40 doi: 10.1037/0022-3514.52.6.1061 – ident: key-10.20965/jaciii.2023.p0084-32 doi: 10.1016/j.procs.2018.05.109 – ident: key-10.20965/jaciii.2023.p0084-48 doi: 10.1037/h0077714 – ident: key-10.20965/jaciii.2023.p0084-47 doi: 10.1109/DEST.2010.5610650 – ident: key-10.20965/jaciii.2023.p0084-77 doi: 10.1016/j.ins.2010.11.023 – ident: key-10.20965/jaciii.2023.p0084-45 – ident: key-10.20965/jaciii.2023.p0084-23 doi: 10.3115/1118693.1118704 – ident: key-10.20965/jaciii.2023.p0084-41 doi: 10.1017/CBO9780511571299 – ident: key-10.20965/jaciii.2023.p0084-58 doi: 10.1007/978-3-540-37275-2_87 – ident: key-10.20965/jaciii.2023.p0084-30 doi: 10.1016/j.datak.2018.04.001 – ident: key-10.20965/jaciii.2023.p0084-35 doi: 10.18653/v1/2020.coling-main.575 – ident: key-10.20965/jaciii.2023.p0084-27 doi: 10.1016/j.eswa.2016.03.028 – ident: key-10.20965/jaciii.2023.p0084-51 doi: 10.1145/1165255.1165259 – ident: key-10.20965/jaciii.2023.p0084-67 doi: 10.18653/v1/W18-6236 – ident: key-10.20965/jaciii.2023.p0084-62 doi: 10.1016/j.procs.2016.04.128 – ident: key-10.20965/jaciii.2023.p0084-72 doi: 10.33965/ict_csc_wbc_2020_202008L022 – ident: key-10.20965/jaciii.2023.p0084-1 doi: 10.1109/ACCESS.2018.2851311 – ident: key-10.20965/jaciii.2023.p0084-38 doi: 10.1511/2001.4.344 – ident: key-10.20965/jaciii.2023.p0084-65 doi: 10.1109/ICCMC.2017.8282664 – ident: key-10.20965/jaciii.2023.p0084-9 – ident: key-10.20965/jaciii.2023.p0084-79 doi: 10.1109/SCOReD53546.2021.9652768 – ident: key-10.20965/jaciii.2023.p0084-17 doi: 10.1109/JSYST.2018.2794462 – ident: key-10.20965/jaciii.2023.p0084-64 doi: 10.18653/v1/S17-1007 – ident: key-10.20965/jaciii.2023.p0084-76 doi: 10.1016/j.procs.2021.01.099 – ident: key-10.20965/jaciii.2023.p0084-25 doi: 10.1016/j.ins.2016.07.028 – ident: key-10.20965/jaciii.2023.p0084-13 doi: 10.5120/19563-1321 – ident: key-10.20965/jaciii.2023.p0084-54 doi: 10.1109/ROBIO.2007.4522515 – ident: key-10.20965/jaciii.2023.p0084-37 doi: 10.1002/0470013494.ch3 – ident: key-10.20965/jaciii.2023.p0084-11 doi: 10.1007/s10660-017-9257-8 – ident: key-10.20965/jaciii.2023.p0084-20 doi: 10.1016/j.ijinfomgt.2018.05.004 |
SSID | ssj0001326041 ssib051641541 |
Score | 2.3593917 |
SecondaryResourceType | review_article |
Snippet | Sentiment Analysis is probably one of the best-known area in text mining. However, in recent years, as big data rose in popularity more areas of text... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 84 |
SubjectTerms | Algorithms Big Data Data mining Decision analysis Deep learning Emotion recognition Emotions Machine learning Sentiment analysis Trends |
Title | Beyond Sentiment Analysis: A Review of Recent Trends in Text Based Sentiment Analysis and Emotion Detection |
URI | https://www.proquest.com/docview/2766706720 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRiMKQduqCxt-ki5oA02JiQmBJu0W9WkqcRD3WDl_2M3KQMJ7VapSQ6O4_hzbH-EnMfK9VNfMCfjijl-wANH5CJ3QgnuRuyDWnlYnPwwDkdT_34WzGzAbWnTKmubWBnqbK4wRt71ojCM8N2QXS8-HGSNwtdVS6GxSZpgggWAr2Z_MH58qjUqADAAPoK7irqAt8J8g8J8TCTizFTSeNgFpfuaKmzpgJTilwtWtTz9fVv9NdbVDTTcJdvWdaQ9s9d7ZEMX-2SnpmWg9pQekDdTlUKfMREIg3-07jxyRXvUPAbQeQ5fmJlJTVYsfSnoBAw17cO19t9cmsKSA0P6Q291WaVwFYdkOhxMbkaO5VRwFLhWpSMyBZAp0kpwLoWQMnYzEeaAGriSIC6d8UiBV8E49zMYl8o4VYgKw1RIHSh-RBrFvNDHhGaxG-hceGC6AaUhabkWccqZ1Bn2tOIt4tayS5RtOI68F-8JAI9K3omRd4LyTip5t8jFz5yFabexdnS73pLEHr1lslKUk_W_T8kWLmXiKW3SKD-_9Bl4GKXskE0xvOtYZepUOP0beTHPSg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHODCGzGeOcAJFdom7VIkhHiN8bwwJG6lSVOJh7rBhhB_it-I3bQ8JLTbbpWa5OA4-WzH9gewEWlPJEK6Tsq164iAB47MZOaECs2NSKBa-VScfHUdtm7F-V1wNwKfVS0MpVVWd2JxUacdTTHyHb8Rhg16N3T3uy8OsUbR62pFoWHV4sJ8vKPL1ts7O8b93fT95kn7qOWUrAKORuOi78hUo9PQMFpyrqRUKvJSGWZoN3OtAi80KW9oxFWXc5HiuERFiSa_KEykMoHmuO4ojAnOIzpRsnla6S9ORjgszYsixoO2kSuszycobYm7tm7Hp54rO4-JpgYSRGC-3XWLBqu_sfEvNBR415yGydJQZQdWs2ZgxOSzMFWRQLDyTpiDJ1sDw24o7YhCjazqc7LLDph9emCdDL8oD5TZHFz2kLM2wgI7RBD9by5LcMkTSzHEjk2_SBjL5-F2KLJegFreyc0isDTyApNJH4ECfUKiSDcySrirTEodtHgdvEp2sS7bmxPLxnOMbk4h79jKOyZ5x4W867D1Padrm3sMHL1SbUlcHvRe_KOWS4N_r8N4q311GV-eXV8swwQtayM5K1Drv76ZVbRt-mqtUCgG98PW4C_TeQjc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Sentiment+Analysis%3A+A+Review+of+Recent+Trends+in+Text+Based+Sentiment+Analysis+and+Emotion+Detection&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Hung+Lai+Po&rft.au=Alias+Suraya&rft.date=2023-01-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=27&rft.issue=1&rft.spage=84&rft.epage=95&rft_id=info:doi/10.20965%2Fjaciii.2023.p0084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |