Viral protein targeting to the cortical endoplasmic reticulum is required for cell–cell spreading in plants
Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membr...
Saved in:
Published in | The Journal of cell biology Vol. 193; no. 3; pp. 521 - 535 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
02.05.2011
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants. |
---|---|
AbstractList | Sorting signal-mediated oligomerization and localization of the viral protein TGBp3 to curved ER tubules is essential for viral movement between cells in plants.
Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of
Potexvirus
, are ER membrane proteins. We previously showed that TGBp3 of the
Bamboo mosaic potexvirus
partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that
Potexvirus
use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants. Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants. Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants. [PUBLICATION ABSTRACT] Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants.Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants. |
Author | Wu, Chih-Hang Wang, Chao-Wen Lee, Shu-Chuan |
AuthorAffiliation | Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan |
AuthorAffiliation_xml | – name: Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan |
Author_xml | – sequence: 1 givenname: Chih-Hang surname: Wu fullname: Wu, Chih-Hang – sequence: 2 givenname: Shu-Chuan surname: Lee fullname: Lee, Shu-Chuan – sequence: 3 givenname: Chao-Wen surname: Wang fullname: Wang, Chao-Wen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21518793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rFjEQgINU7Nvq0asEL562Tj42m1wEKX5BwYt6Ddls9m1edpNtki148z_4D_0lZukHWgRPQ8gzT2Ymc4KOQgwOoecEzghI9vpg-zMKBEAAZY_QjrQcGkk4HKEdACWNaml7jE5yPgAA7zh7go4paYnsFNuh-ZtPZsJLisX5gItJe1d82OMScbl02MZUvK2EC0NcJpNnb3GqiF2ndcY-18PV6pMb8BgTtm6afv34uQWcl-TMsLmquKaGkp-ix6OZsnt2G0_R1_fvvpx_bC4-f_h0_vaisS0hpZGDYp0Ebh0ZmFB0dKIfoO-J423r-ChYqwzrxQicd5RRYRyhjI-UdmqQ0LJT9ObGu6z97AbrQqld6iX52aTvOhqv_74J_lLv47VmIDsgm-DVrSDFq9Xlomeft65McHHNWtWXhRJU_ZeUgndSUL45Xz4gD3FNoc5hgyTpiJQVevFn5fcl3_1YBdgNYFPMOblRW19M8XFrxE-agN72Qte90Pd7UbOaB1l34n_zvwFU27tC |
CODEN | JCLBA3 |
CitedBy_id | crossref_primary_10_1128_JVI_05595_11 crossref_primary_10_3390_v10110585 crossref_primary_10_1016_j_bbamcr_2013_01_013 crossref_primary_10_1016_j_shpsc_2016_02_007 crossref_primary_10_1016_j_virusres_2017_03_019 crossref_primary_10_1074_jbc_M113_486431 crossref_primary_10_1094_MPMI_12_14_0405_R crossref_primary_10_1111_tpj_12640 crossref_primary_10_1111_mpp_12080 crossref_primary_10_3390_v11040329 crossref_primary_10_1128_JVI_00503_15 crossref_primary_10_1371_journal_pone_0163320 crossref_primary_10_1093_plphys_kiac547 crossref_primary_10_1016_j_jprot_2014_03_004 crossref_primary_10_1016_j_pbi_2011_07_006 crossref_primary_10_1111_mpp_12532 crossref_primary_10_3389_fpls_2018_01299 crossref_primary_10_1083_jcb_201304003 crossref_primary_10_1371_journal_ppat_1003405 crossref_primary_10_1002_1873_3468_13098 crossref_primary_10_1016_j_coviro_2012_10_003 crossref_primary_10_1016_j_virol_2016_11_005 crossref_primary_10_3390_v14122742 crossref_primary_10_3389_fmicb_2018_00613 crossref_primary_10_1083_jcb_1933iti3 crossref_primary_10_1016_j_pbi_2014_09_001 crossref_primary_10_3389_fpls_2021_721548 crossref_primary_10_1111_mpp_13392 crossref_primary_10_7554_eLife_07253 crossref_primary_10_3389_fpls_2014_00060 crossref_primary_10_1094_MPMI_04_14_0112_R crossref_primary_10_1128_JVI_01906_20 crossref_primary_10_3390_ijms21051722 crossref_primary_10_1016_j_virol_2013_09_021 crossref_primary_10_1111_jmi_12909 crossref_primary_10_3389_fmicb_2017_00759 crossref_primary_10_1016_j_coviro_2015_04_005 crossref_primary_10_3390_ijms19020638 crossref_primary_10_1099_jgv_0_000914 crossref_primary_10_1007_s00709_016_1072_x crossref_primary_10_1093_jxb_erx307 crossref_primary_10_1111_nph_16905 crossref_primary_10_1111_jipb_13580 crossref_primary_10_1042_BST20150275 crossref_primary_10_1007_s00705_019_04397_5 crossref_primary_10_1371_journal_ppat_1005443 crossref_primary_10_1093_mp_ssr070 crossref_primary_10_1146_annurev_virology_031413_085532 crossref_primary_10_1007_s00705_022_05576_7 crossref_primary_10_1038_nrmicro2586 crossref_primary_10_1094_MPMI_07_14_0195_R crossref_primary_10_3389_fmicb_2022_860695 crossref_primary_10_1111_jipb_12297 |
Cites_doi | 10.1094/MPMI-04-10-0086 10.1016/0042-6822(92)90183-P 10.1042/BST0350142 10.1038/nprot.2009.2 10.1016/j.pbi.2008.08.002 10.1016/j.virol.2007.05.022 10.1016/S0042-6822(03)00180-6 10.1006/viro.1999.9788 10.1080/07352680490452807 10.1105/tpc.107.056903 10.1099/vir.0.18922-0 10.1111/j.1600-0854.2007.00670.x 10.1111/j.1365-313X.2005.02539.x 10.1105/tpc.10.4.495 10.1126/science.1153634 10.1038/35074539 10.1016/j.cell.2005.11.047 10.1099/vir.0.008243-0 10.1007/BF02680127 10.1016/S0042-6822(02)00102-2 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 10.1099/0022-1317-39-1-53 10.1016/S0022-2836(03)00835-0 10.1006/viro.2000.0200 10.1105/tpc.4.8.915 10.1023/A:1008008400653 10.1074/jbc.M800986200 10.1111/j.1600-0854.2008.00824.x 10.1111/j.1600-0854.2009.00889.x 10.1007/s00709-010-0246-1 10.1105/tpc.6.11.1593 10.1016/j.virol.2005.09.026 10.1099/vir.0.82667-0 10.1016/0042-6822(92)90215-B 10.1016/j.virol.2004.06.039 10.1083/jcb.147.5.945 10.1042/BJ20091113 10.1083/jcb.112.4.739 10.1016/j.cell.2006.02.018 10.1002/j.1460-2075.1993.tb06184.x 10.1105/tpc.002303 10.1126/science.246.4928.377 10.1111/j.1600-0854.2010.01064.x 10.1016/j.tplants.2003.11.001 10.1016/0042-6822(91)90475-Q 10.1083/jcb.150.3.461 10.1104/pp.105.066019 10.1002/yea.1504 10.1099/vir.0.80865-0 10.1038/35041072 10.1128/JVI.01164-07 10.1099/0022-1317-83-7-1535 10.1094/MPMI.2000.13.9.962 10.1083/jcb.114.5.929 10.1016/S1360-1385(96)88177-0 10.1016/j.cell.2006.07.019 10.1126/science.1094823 10.1093/embo-reports/kvf202 10.1186/1746-4811-4-24 10.1016/0962-8924(96)10031-3 10.1111/j.1600-0854.2006.00510.x 10.1046/j.1365-313X.1997.11061151.x 10.1007/BF01343367 10.1093/bioinformatics/16.4.404 |
ContentType | Journal Article |
Copyright | Copyright Rockefeller University Press May 2, 2011 2011 Wu et al. 2011 |
Copyright_xml | – notice: Copyright Rockefeller University Press May 2, 2011 – notice: 2011 Wu et al. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1083/jcb.201006023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Cell-to-cell movement of Potexvirus requires a sorting signal in TGBp3 |
EISSN | 1540-8140 |
EndPage | 535 |
ExternalDocumentID | PMC3087015 2337961791 21518793 10_1083_jcb_201006023 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0VX 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV ADXHL AEILP AENEX AFOSN AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB EMOBN F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN SV3 TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ZY4 ~KM ABTAH CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c511t-8d937804ce1d3692fe6bd0bb1e455e4f6359a3b6f04472326ae1234f2279d8053 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 17:52:32 EDT 2025 Fri Jul 11 05:19:55 EDT 2025 Fri Jul 11 07:26:24 EDT 2025 Mon Jun 30 10:28:43 EDT 2025 Thu Apr 03 06:50:25 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 02:00:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-8d937804ce1d3692fe6bd0bb1e455e4f6359a3b6f04472326ae1234f2279d8053 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3087015 |
PMID | 21518793 |
PQID | 864817188 |
PQPubID | 48855 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087015 proquest_miscellaneous_904469629 proquest_miscellaneous_864786245 proquest_journals_864817188 pubmed_primary_21518793 crossref_citationtrail_10_1083_jcb_201006023 crossref_primary_10_1083_jcb_201006023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-02 |
PublicationDateYYYYMMDD | 2011-05-02 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2011 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Prinz (2023072301120771300_bib39) 2000; 150 Senshu (2023072301120771300_bib45) 2009; 90 Morozov (2023072301120771300_bib32) 2003; 84 Holt (2023072301120771300_bib16) 1991; 181 Hu (2023072301120771300_bib18) 2008; 319 Terasaki (2023072301120771300_bib54) 1991; 114 Wolf (2023072301120771300_bib62) 1989; 246 Faulkner (2023072301120771300_bib10) 2008; 20 Schepetilnikov (2023072301120771300_bib43) 2005; 86 Krishnamurthy (2023072301120771300_bib22) 2003; 309 Lee (2023072301120771300_bib24) 2010; 11 Niehl (2023072301120771300_bib34) 2011; 248 Sanderfoot (2023072301120771300_bib42) 1996; 6 Sieczkarski (2023072301120771300_bib48) 2002; 83 Morozov (2023072301120771300_bib33) 1999; 260 Lee (2023072301120771300_bib23) 2008; 4 Yeh (2023072301120771300_bib64) 1999; 18 Ding (2023072301120771300_bib6) 1992; 4 Kiselyova (2023072301120771300_bib21) 2003; 332 Boyko (2023072301120771300_bib2) 2000; 2 Voeltz (2023072301120771300_bib59) 2002; 3 Verchot-Lubicz (2023072301120771300_bib58) 2010; 23 Greber (2023072301120771300_bib14) 2006; 124 Tilney (2023072301120771300_bib55) 1991; 112 Gillespie (2023072301120771300_bib12) 2002; 14 Shibata (2023072301120771300_bib46) 2006; 126 Smith (2023072301120771300_bib49) 2004; 304 Cruz (2023072301120771300_bib5) 1998; 10 Wright (2023072301120771300_bib63) 2007; 8 Staehelin (2023072301120771300_bib52) 1997; 11 Samuels (2023072301120771300_bib41) 2007; 367 Sambade (2023072301120771300_bib40) 2008; 9 Overall (2023072301120771300_bib37) 1996; 1 Oparka (2023072301120771300_bib36) 2004; 9 Chapman (2023072301120771300_bib3) 1992; 191 Verchot-Lubicz (2023072301120771300_bib57) 2007; 88 Solovyev (2023072301120771300_bib50) 2000; 269 Longtine (2023072301120771300_bib25) 1998; 14 Lough (2023072301120771300_bib26) 2000; 13 Mitra (2023072301120771300_bib31) 2003; 312 Donald (2023072301120771300_bib8) 1994; 6 McGuffin (2023072301120771300_bib30) 2000; 16 Schepetilnikov (2023072301120771300_bib44) 2008; 82 Sparkes (2023072301120771300_bib51) 2009; 423 Ding (2023072301120771300_bib7) 1992; 169 Howard (2023072301120771300_bib17) 2004; 328 Hofmann (2023072301120771300_bib15) 2007; 35 Maule (2023072301120771300_bib29) 2008; 11 Voeltz (2023072301120771300_bib60) 2006; 124 Waigmann (2023072301120771300_bib61) 2004; 23 Nishiguchi (2023072301120771300_bib35) 1978; 39 Bayne (2023072301120771300_bib1) 2005; 44 Sung (2023072301120771300_bib53) 2007; 24 Más (2023072301120771300_bib28) 1999; 147 Tolley (2023072301120771300_bib56) 2008; 9 Ju (2023072301120771300_bib19) 2005; 138 Lucas (2023072301120771300_bib27) 2006; 344 Shibata (2023072301120771300_bib47) 2008; 283 Golden (2023072301120771300_bib13) 1993; 12 Pelkmans (2023072301120771300_bib38) 2001; 3 Kelley (2023072301120771300_bib20) 2009; 4 Forster (2023072301120771300_bib11) 1992; 191 Christensen (2023072301120771300_bib4) 2009; 10 Ehlers (2023072301120771300_bib9) 2001; 216 17534848 - Yeast. 2007 Sep;24(9):767-75 12726734 - Virology. 2003 Apr 25;309(1):135-51 17980018 - Traffic. 2008 Jan;9(1):94-102 1392601 - Plant Cell. 1992 Aug;4(8):915-28 10405356 - Virology. 1999 Jul 20;260(1):55-63 17485523 - J Gen Virol. 2007 Jun;88(Pt 6):1643-55 18667640 - Plant Cell. 2008 Jun;20(6):1504-18 16901774 - Cell. 2006 Aug 11;126(3):435-9 17132144 - Traffic. 2007 Jan;8(1):21-31 11331875 - Nat Cell Biol. 2001 May;3(5):473-83 20374554 - Traffic. 2010 Jul 1;11(7):912-30 21572455 - Nat Rev Microbiol. 2011 Jun;9(6):400 9717241 - Yeast. 1998 Jul;14(10):953-61 16469703 - Cell. 2006 Feb 10;124(3):573-86 16552920 - Science. 1989 Oct 20;246(4928):377-9 17233621 - Biochem Soc Trans. 2007 Feb;35(Pt 1):142-5 10931860 - J Cell Biol. 2000 Aug 7;150(3):461-74 12890619 - Virology. 2003 Jul 20;312(1):35-48 1413503 - Virology. 1992 Nov;191(1):223-30 16364748 - Virology. 2006 Jan 5;344(1):169-84 1413520 - Virology. 1992 Nov;191(1):480-4 14729217 - Trends Plant Sci. 2004 Jan;9(1):33-41 19264652 - J Gen Virol. 2009 Apr;90(Pt 4):1014-24 19281527 - Traffic. 2008 Dec;9(12):2073-88 12084822 - Plant Cell. 2002 Jun;14(6):1207-22 1874789 - J Cell Biol. 1991 Sep;114(5):929-40 8262035 - EMBO J. 1993 Dec 15;12(13):4901-8 18922163 - Plant Methods. 2008 Oct 15;4:24 18032484 - J Virol. 2008 Feb;82(3):1284-93 18824402 - Curr Opin Plant Biol. 2008 Dec;11(6):680-6 16033986 - J Gen Virol. 2005 Aug;86(Pt 8):2379-91 21125301 - Protoplasma. 2011 Jan;248(1):75-99 10725204 - Virology. 2000 Mar 30;269(1):113-27 20831404 - Mol Plant Microbe Interact. 2010 Oct;23(10):1231-47 19220815 - Traffic. 2009 May;10(5):536-51 11056538 - Nat Cell Biol. 2000 Nov;2(11):826-32 19247286 - Nat Protoc. 2009;4(3):363-71 7827493 - Plant Cell. 1994 Nov;6(11):1593-606 9548978 - Plant Cell. 1998 Apr;10(4):495-510 12771402 - J Gen Virol. 2003 Jun;84(Pt 6):1351-66 16497585 - Cell. 2006 Feb 24;124(4):741-54 9225461 - Plant J. 1997 Jun;11(6):1151-65 10403698 - Virus Genes. 1999;18(2):121-8 18309084 - Science. 2008 Feb 29;319(5867):1247-50 15464839 - Virology. 2004 Oct 25;328(2):185-97 12370207 - EMBO Rep. 2002 Oct;3(10):944-50 12948484 - J Mol Biol. 2003 Sep 12;332(2):321-5 10869041 - Bioinformatics. 2000 Apr;16(4):404-5 17610926 - Virology. 2007 Oct 25;367(2):375-89 12075072 - J Gen Virol. 2002 Jul;83(Pt 7):1535-45 15157433 - Trends Cell Biol. 1996 Sep;6(9):353-8 11732191 - Protoplasma. 2001;216(1-2):1-30 10975653 - Mol Plant Microbe Interact. 2000 Sep;13(9):962-74 1994570 - Virology. 1991 Mar;181(1):109-17 18442980 - J Biol Chem. 2008 Jul 4;283(27):18892-904 10579716 - J Cell Biol. 1999 Nov 29;147(5):945-58 19772494 - Biochem J. 2009 Oct 15;423(2):145-55 16055678 - Plant Physiol. 2005 Aug;138(4):1877-95 15073366 - Science. 2004 Apr 9;304(5668):237-42 1993740 - J Cell Biol. 1991 Feb;112(4):739-47 16236156 - Plant J. 2005 Nov;44(3):471-82 |
References_xml | – volume: 23 start-page: 1231 year: 2010 ident: 2023072301120771300_bib58 article-title: Varied movement strategies employed by triple gene block-encoding viruses publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-04-10-0086 – volume: 191 start-page: 223 year: 1992 ident: 2023072301120771300_bib3 article-title: Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity publication-title: Virology. doi: 10.1016/0042-6822(92)90183-P – volume: 35 start-page: 142 year: 2007 ident: 2023072301120771300_bib15 article-title: Plasmodesmata and intercellular transport of viral RNA publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0350142 – volume: 4 start-page: 363 year: 2009 ident: 2023072301120771300_bib20 article-title: Protein structure prediction on the Web: a case study using the Phyre server publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.2 – volume: 11 start-page: 680 year: 2008 ident: 2023072301120771300_bib29 article-title: Plasmodesmata: structure, function and biogenesis publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2008.08.002 – volume: 367 start-page: 375 year: 2007 ident: 2023072301120771300_bib41 article-title: Subcellular targeting and interactions among the Potato virus X TGB proteins publication-title: Virology. doi: 10.1016/j.virol.2007.05.022 – volume: 312 start-page: 35 year: 2003 ident: 2023072301120771300_bib31 article-title: The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement publication-title: Virology. doi: 10.1016/S0042-6822(03)00180-6 – volume: 260 start-page: 55 year: 1999 ident: 2023072301120771300_bib33 article-title: Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein publication-title: Virology. doi: 10.1006/viro.1999.9788 – volume: 23 start-page: 195 year: 2004 ident: 2023072301120771300_bib61 article-title: The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680490452807 – volume: 20 start-page: 1504 year: 2008 ident: 2023072301120771300_bib10 article-title: Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco publication-title: Plant Cell. doi: 10.1105/tpc.107.056903 – volume: 84 start-page: 1351 year: 2003 ident: 2023072301120771300_bib32 article-title: Triple gene block: modular design of a multifunctional machine for plant virus movement publication-title: J. Gen. Virol. doi: 10.1099/vir.0.18922-0 – volume: 9 start-page: 94 year: 2008 ident: 2023072301120771300_bib56 article-title: Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport publication-title: Traffic. doi: 10.1111/j.1600-0854.2007.00670.x – volume: 44 start-page: 471 year: 2005 ident: 2023072301120771300_bib1 article-title: Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02539.x – volume: 10 start-page: 495 year: 1998 ident: 2023072301120771300_bib5 article-title: Cell-to-cell and phloem-mediated transport of potato virus X. The role of virions publication-title: Plant Cell. doi: 10.1105/tpc.10.4.495 – volume: 319 start-page: 1247 year: 2008 ident: 2023072301120771300_bib18 article-title: Membrane proteins of the endoplasmic reticulum induce high-curvature tubules publication-title: Science. doi: 10.1126/science.1153634 – volume: 3 start-page: 473 year: 2001 ident: 2023072301120771300_bib38 article-title: Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER publication-title: Nat. Cell Biol. doi: 10.1038/35074539 – volume: 124 start-page: 573 year: 2006 ident: 2023072301120771300_bib60 article-title: A class of membrane proteins shaping the tubular endoplasmic reticulum publication-title: Cell. doi: 10.1016/j.cell.2005.11.047 – volume: 90 start-page: 1014 year: 2009 ident: 2023072301120771300_bib45 article-title: Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection publication-title: J. Gen. Virol. doi: 10.1099/vir.0.008243-0 – volume: 216 start-page: 1 year: 2001 ident: 2023072301120771300_bib9 article-title: Primary and secondary plasmodesmata: structure, origin, and functioning publication-title: Protoplasma. doi: 10.1007/BF02680127 – volume: 309 start-page: 135 year: 2003 ident: 2023072301120771300_bib22 article-title: The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement publication-title: Virology. doi: 10.1016/S0042-6822(02)00102-2 – volume: 14 start-page: 953 year: 1998 ident: 2023072301120771300_bib25 article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. publication-title: Yeast. doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – volume: 39 start-page: 53 year: 1978 ident: 2023072301120771300_bib35 article-title: Behaviour of a temperature sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-39-1-53 – volume: 332 start-page: 321 year: 2003 ident: 2023072301120771300_bib21 article-title: AFM study of potato virus X disassembly induced by movement protein publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00835-0 – volume: 269 start-page: 113 year: 2000 ident: 2023072301120771300_bib50 article-title: Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2 publication-title: Virology. doi: 10.1006/viro.2000.0200 – volume: 4 start-page: 915 year: 1992 ident: 2023072301120771300_bib6 article-title: Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants publication-title: Plant Cell. doi: 10.1105/tpc.4.8.915 – volume: 18 start-page: 121 year: 1999 ident: 2023072301120771300_bib64 article-title: A defective RNA associated with bamboo mosaic virus and the possible common mechanisms for RNA recombination in potexviruses publication-title: Virus Genes. doi: 10.1023/A:1008008400653 – volume: 283 start-page: 18892 year: 2008 ident: 2023072301120771300_bib47 article-title: The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800986200 – volume: 9 start-page: 2073 year: 2008 ident: 2023072301120771300_bib40 article-title: Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata publication-title: Traffic. doi: 10.1111/j.1600-0854.2008.00824.x – volume: 10 start-page: 536 year: 2009 ident: 2023072301120771300_bib4 article-title: The 5′ cap of tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection publication-title: Traffic. doi: 10.1111/j.1600-0854.2009.00889.x – volume: 248 start-page: 75 year: 2011 ident: 2023072301120771300_bib34 article-title: Cellular pathways for viral transport through plasmodesmata publication-title: Protoplasma. doi: 10.1007/s00709-010-0246-1 – volume: 6 start-page: 1593 year: 1994 ident: 2023072301120771300_bib8 article-title: The barley stripe mosaic virus gamma b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis publication-title: Plant Cell. doi: 10.1105/tpc.6.11.1593 – volume: 344 start-page: 169 year: 2006 ident: 2023072301120771300_bib27 article-title: Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes publication-title: Virology. doi: 10.1016/j.virol.2005.09.026 – volume: 88 start-page: 1643 year: 2007 ident: 2023072301120771300_bib57 article-title: Molecular biology of potexviruses: recent advances publication-title: J. Gen. Virol. doi: 10.1099/vir.0.82667-0 – volume: 191 start-page: 480 year: 1992 ident: 2023072301120771300_bib11 article-title: The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants publication-title: Virology. doi: 10.1016/0042-6822(92)90215-B – volume: 328 start-page: 185 year: 2004 ident: 2023072301120771300_bib17 article-title: Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves publication-title: Virology. doi: 10.1016/j.virol.2004.06.039 – volume: 147 start-page: 945 year: 1999 ident: 2023072301120771300_bib28 article-title: Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA publication-title: J. Cell Biol. doi: 10.1083/jcb.147.5.945 – volume: 423 start-page: 145 year: 2009 ident: 2023072301120771300_bib51 article-title: The plant endoplasmic reticulum: a cell-wide web publication-title: Biochem. J. doi: 10.1042/BJ20091113 – volume: 112 start-page: 739 year: 1991 ident: 2023072301120771300_bib55 article-title: The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion publication-title: J. Cell Biol. doi: 10.1083/jcb.112.4.739 – volume: 124 start-page: 741 year: 2006 ident: 2023072301120771300_bib14 article-title: A superhighway to virus infection publication-title: Cell. doi: 10.1016/j.cell.2006.02.018 – volume: 12 start-page: 4901 year: 1993 ident: 2023072301120771300_bib13 article-title: Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb06184.x – volume: 14 start-page: 1207 year: 2002 ident: 2023072301120771300_bib12 article-title: Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus publication-title: Plant Cell. doi: 10.1105/tpc.002303 – volume: 246 start-page: 377 year: 1989 ident: 2023072301120771300_bib62 article-title: Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit publication-title: Science. doi: 10.1126/science.246.4928.377 – volume: 11 start-page: 912 year: 2010 ident: 2023072301120771300_bib24 article-title: Traffic of a viral movement protein complex to the highly curved tubules of the cortical endoplasmic reticulum publication-title: Traffic. doi: 10.1111/j.1600-0854.2010.01064.x – volume: 9 start-page: 33 year: 2004 ident: 2023072301120771300_bib36 article-title: Getting the message across: how do plant cells exchange macromolecular complexes? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2003.11.001 – volume: 181 start-page: 109 year: 1991 ident: 2023072301120771300_bib16 article-title: In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants publication-title: Virology. doi: 10.1016/0042-6822(91)90475-Q – volume: 150 start-page: 461 year: 2000 ident: 2023072301120771300_bib39 article-title: Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. publication-title: J. Cell Biol. doi: 10.1083/jcb.150.3.461 – volume: 138 start-page: 1877 year: 2005 ident: 2023072301120771300_bib19 article-title: The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection publication-title: Plant Physiol. doi: 10.1104/pp.105.066019 – volume: 24 start-page: 767 year: 2007 ident: 2023072301120771300_bib53 article-title: Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. publication-title: Yeast. doi: 10.1002/yea.1504 – volume: 86 start-page: 2379 year: 2005 ident: 2023072301120771300_bib43 article-title: The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking publication-title: J. Gen. Virol. doi: 10.1099/vir.0.80865-0 – volume: 2 start-page: 826 year: 2000 ident: 2023072301120771300_bib2 article-title: Function of microtubules in intercellular transport of plant virus RNA publication-title: Nat. Cell Biol. doi: 10.1038/35041072 – volume: 82 start-page: 1284 year: 2008 ident: 2023072301120771300_bib44 article-title: Intracellular targeting of a hordeiviral membrane-spanning movement protein: sequence requirements and involvement of an unconventional mechanism publication-title: J. Virol. doi: 10.1128/JVI.01164-07 – volume: 83 start-page: 1535 year: 2002 ident: 2023072301120771300_bib48 article-title: Dissecting virus entry via endocytosis publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-83-7-1535 – volume: 13 start-page: 962 year: 2000 ident: 2023072301120771300_bib26 article-title: Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.2000.13.9.962 – volume: 114 start-page: 929 year: 1991 ident: 2023072301120771300_bib54 article-title: Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization publication-title: J. Cell Biol. doi: 10.1083/jcb.114.5.929 – volume: 1 start-page: 307 year: 1996 ident: 2023072301120771300_bib37 article-title: A model of the macromolecular structure of plasmodesmata publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(96)88177-0 – volume: 126 start-page: 435 year: 2006 ident: 2023072301120771300_bib46 article-title: Rough sheets and smooth tubules publication-title: Cell. doi: 10.1016/j.cell.2006.07.019 – volume: 304 start-page: 237 year: 2004 ident: 2023072301120771300_bib49 article-title: How viruses enter animal cells publication-title: Science. doi: 10.1126/science.1094823 – volume: 3 start-page: 944 year: 2002 ident: 2023072301120771300_bib59 article-title: Structural organization of the endoplasmic reticulum publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf202 – volume: 4 start-page: 24 year: 2008 ident: 2023072301120771300_bib23 article-title: Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells publication-title: Plant Methods. doi: 10.1186/1746-4811-4-24 – volume: 6 start-page: 353 year: 1996 ident: 2023072301120771300_bib42 article-title: Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins publication-title: Trends Cell Biol. doi: 10.1016/0962-8924(96)10031-3 – volume: 8 start-page: 21 year: 2007 ident: 2023072301120771300_bib63 article-title: Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: evidence from FRAP publication-title: Traffic. doi: 10.1111/j.1600-0854.2006.00510.x – volume: 11 start-page: 1151 year: 1997 ident: 2023072301120771300_bib52 article-title: The plant ER: a dynamic organelle composed of a large number of discrete functional domains publication-title: Plant J. doi: 10.1046/j.1365-313X.1997.11061151.x – volume: 169 start-page: 28 year: 1992 ident: 2023072301120771300_bib7 article-title: Substructure of freeze-substituted plasmodesmata publication-title: Protoplasma. doi: 10.1007/BF01343367 – volume: 16 start-page: 404 year: 2000 ident: 2023072301120771300_bib30 article-title: The PSIPRED protein structure prediction server publication-title: Bioinformatics. doi: 10.1093/bioinformatics/16.4.404 – reference: 12084822 - Plant Cell. 2002 Jun;14(6):1207-22 – reference: 10869041 - Bioinformatics. 2000 Apr;16(4):404-5 – reference: 19220815 - Traffic. 2009 May;10(5):536-51 – reference: 12726734 - Virology. 2003 Apr 25;309(1):135-51 – reference: 18442980 - J Biol Chem. 2008 Jul 4;283(27):18892-904 – reference: 12771402 - J Gen Virol. 2003 Jun;84(Pt 6):1351-66 – reference: 16033986 - J Gen Virol. 2005 Aug;86(Pt 8):2379-91 – reference: 19264652 - J Gen Virol. 2009 Apr;90(Pt 4):1014-24 – reference: 20831404 - Mol Plant Microbe Interact. 2010 Oct;23(10):1231-47 – reference: 18667640 - Plant Cell. 2008 Jun;20(6):1504-18 – reference: 21125301 - Protoplasma. 2011 Jan;248(1):75-99 – reference: 10405356 - Virology. 1999 Jul 20;260(1):55-63 – reference: 17485523 - J Gen Virol. 2007 Jun;88(Pt 6):1643-55 – reference: 19247286 - Nat Protoc. 2009;4(3):363-71 – reference: 15157433 - Trends Cell Biol. 1996 Sep;6(9):353-8 – reference: 16497585 - Cell. 2006 Feb 24;124(4):741-54 – reference: 14729217 - Trends Plant Sci. 2004 Jan;9(1):33-41 – reference: 11056538 - Nat Cell Biol. 2000 Nov;2(11):826-32 – reference: 1392601 - Plant Cell. 1992 Aug;4(8):915-28 – reference: 1874789 - J Cell Biol. 1991 Sep;114(5):929-40 – reference: 17534848 - Yeast. 2007 Sep;24(9):767-75 – reference: 15464839 - Virology. 2004 Oct 25;328(2):185-97 – reference: 16469703 - Cell. 2006 Feb 10;124(3):573-86 – reference: 11331875 - Nat Cell Biol. 2001 May;3(5):473-83 – reference: 12890619 - Virology. 2003 Jul 20;312(1):35-48 – reference: 10975653 - Mol Plant Microbe Interact. 2000 Sep;13(9):962-74 – reference: 19281527 - Traffic. 2008 Dec;9(12):2073-88 – reference: 10579716 - J Cell Biol. 1999 Nov 29;147(5):945-58 – reference: 12948484 - J Mol Biol. 2003 Sep 12;332(2):321-5 – reference: 19772494 - Biochem J. 2009 Oct 15;423(2):145-55 – reference: 16055678 - Plant Physiol. 2005 Aug;138(4):1877-95 – reference: 18824402 - Curr Opin Plant Biol. 2008 Dec;11(6):680-6 – reference: 17233621 - Biochem Soc Trans. 2007 Feb;35(Pt 1):142-5 – reference: 11732191 - Protoplasma. 2001;216(1-2):1-30 – reference: 1413503 - Virology. 1992 Nov;191(1):223-30 – reference: 1413520 - Virology. 1992 Nov;191(1):480-4 – reference: 7827493 - Plant Cell. 1994 Nov;6(11):1593-606 – reference: 1994570 - Virology. 1991 Mar;181(1):109-17 – reference: 9548978 - Plant Cell. 1998 Apr;10(4):495-510 – reference: 12075072 - J Gen Virol. 2002 Jul;83(Pt 7):1535-45 – reference: 18922163 - Plant Methods. 2008 Oct 15;4:24 – reference: 15073366 - Science. 2004 Apr 9;304(5668):237-42 – reference: 16364748 - Virology. 2006 Jan 5;344(1):169-84 – reference: 21572455 - Nat Rev Microbiol. 2011 Jun;9(6):400 – reference: 1993740 - J Cell Biol. 1991 Feb;112(4):739-47 – reference: 12370207 - EMBO Rep. 2002 Oct;3(10):944-50 – reference: 16236156 - Plant J. 2005 Nov;44(3):471-82 – reference: 10931860 - J Cell Biol. 2000 Aug 7;150(3):461-74 – reference: 18032484 - J Virol. 2008 Feb;82(3):1284-93 – reference: 20374554 - Traffic. 2010 Jul 1;11(7):912-30 – reference: 16901774 - Cell. 2006 Aug 11;126(3):435-9 – reference: 16552920 - Science. 1989 Oct 20;246(4928):377-9 – reference: 8262035 - EMBO J. 1993 Dec 15;12(13):4901-8 – reference: 9225461 - Plant J. 1997 Jun;11(6):1151-65 – reference: 17132144 - Traffic. 2007 Jan;8(1):21-31 – reference: 18309084 - Science. 2008 Feb 29;319(5867):1247-50 – reference: 10725204 - Virology. 2000 Mar 30;269(1):113-27 – reference: 9717241 - Yeast. 1998 Jul;14(10):953-61 – reference: 10403698 - Virus Genes. 1999;18(2):121-8 – reference: 17610926 - Virology. 2007 Oct 25;367(2):375-89 – reference: 17980018 - Traffic. 2008 Jan;9(1):94-102 |
SSID | ssj0004743 |
Score | 2.299157 |
Snippet | Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant... Sorting signal-mediated oligomerization and localization of the viral protein TGBp3 to curved ER tubules is essential for viral movement between cells in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 521 |
SubjectTerms | Amino Acid Sequence Cell Membrane - metabolism Cells Cellular biology Chromatography, Gel Cytoplasm - metabolism Endoplasmic Reticulum - metabolism Flowers & plants Gene expression Membranes Microscopy, Fluorescence - methods Models, Biological Molecular Sequence Data Mutation Plants - metabolism Plants - virology Potexvirus Potexvirus - genetics Protein Transport Proteins Sequence Homology, Amino Acid Signal Transduction Viral Proteins - metabolism Yeasts |
Title | Viral protein targeting to the cortical endoplasmic reticulum is required for cell–cell spreading in plants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21518793 https://www.proquest.com/docview/864817188 https://www.proquest.com/docview/864786245 https://www.proquest.com/docview/904469629 https://pubmed.ncbi.nlm.nih.gov/PMC3087015 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWqQUhsEG_CAPICsYEMaeIkzhJVoAoE4jHDzC5KHEepNE2qNlnAin_gP_govoR7bcdJKCPBbPpI3LrNPb0-ds89JuQJy0JfyDJwyzApXcaL3AVSz1yviOMcpyBzodw-30fLE_bmLDybzX6OVEtdmx-Jb3-tK7lMVOEYxBWrZP8jsvZN4QA8hvjCLUQYbv8pxl9WWF6vrBZQrqhE3ar8SfNJmFjqlWpZF80GaPJa-TW3eskPtzLfShQCA-dEsSGu4ffahwCfPNtttlpjr7Tm55mxferJ7FBWpgiteokxdbK5vtP_6a8qd5mZQXKQ_3yuOndRdQNAT83q9aLKGvfUVKkVwyIrlnlbFGH3nyCdyxL_fNjuFT2OEzIqREJd-3wkTQ5mHq5MepMkrfdRNGgMRik31BXWZvQOtfnJ3sAATBMHBpErNZ8XebrKeQSSzVqhBCkQj01vUyfuD-8W6J_ooafBFR-mJZhX334cudPHRqVpvpTxdIW-X0x6Vg7UupspHdqb4_wp1R1xn-Mb5LqJMX2pEXiTzGR9i1zV25h-vU3WCofU4JBaHNK2oYBD2uOQjnBILQ7pakd7HFLAIUUc_fr-A--oRSCFN9YIvENOXr86Xixds42HK4DNty4vgAJzjwk5L4Io8UsZ5YWX53PJwlCyEihvkgV5VHqMwTX1o0wCnWIlelsWHAaJu-Sgbmp5n1BexpnPC84ETyDLANeGCcg85FmZ-4UQ0iHP-6uZCuNxj1utnKdKa8GDFOKQ2jg45KltvtHmLhc1POxDk5rf_y7lEeNzoHbcIdSeheSMlyerZdOpJjFWYIUXN0lQUZFEfuKQezrU9qP0GHFIPAGBbYDW8NMz9apSFvEGpw8u_cpDcm34YT8kB-22k4-Afrf5Y4X53xDj3xs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+protein+targeting+to+the+cortical+endoplasmic+reticulum+is+required+for+cell%E2%80%93cell+spreading+in+plants&rft.jtitle=The+Journal+of+cell+biology&rft.au=Wu%2C+Chih-Hang&rft.au=Lee%2C+Shu-Chuan&rft.au=Wang%2C+Chao-Wen&rft.date=2011-05-02&rft.pub=The+Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=193&rft.issue=3&rft.spage=521&rft.epage=535&rft_id=info:doi/10.1083%2Fjcb.201006023&rft_id=info%3Apmid%2F21518793&rft.externalDocID=PMC3087015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |