Drivers and uncertainties of future global marine primary production in marine ecosystem models

Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's...

Full description

Saved in:
Bibliographic Details
Published inBiogeosciences Vol. 12; no. 23; pp. 6955 - 6984
Main Authors Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., Völker, C.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 07.12.2015
European Geosciences Union
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
AbstractList Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon-climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between -25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30∘ S and 30∘ N), with individual models simulating relative changes between-25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon-climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30 • S and 30 • N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbal-ance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an inten-sification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the Published by Copernicus Publications on behalf of the European Geosciences Union. 6956 C. Laufkötter et al.: Drivers of future marine primary production regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
Audience Academic
Author Gruber, N.
Lima, I. D.
Hashioka, T.
Aumont, O.
Buitenhuis, E.
John, J.
Le Quéré, C.
Totterdell, I.
Vogt, M.
Nakano, H.
Laufkötter, C.
Aita-Noguchi, M.
Hauck, J.
Doney, S. C.
Dunne, J.
Hirata, T.
Vichi, M.
Seferian, R.
Völker, C.
Bopp, L.
Author_xml – sequence: 1
  givenname: C.
  surname: Laufkötter
  fullname: Laufkötter, C.
– sequence: 2
  givenname: M.
  surname: Vogt
  fullname: Vogt, M.
– sequence: 3
  givenname: N.
  orcidid: 0000-0002-2085-2310
  surname: Gruber
  fullname: Gruber, N.
– sequence: 4
  givenname: M.
  surname: Aita-Noguchi
  fullname: Aita-Noguchi, M.
– sequence: 5
  givenname: O.
  surname: Aumont
  fullname: Aumont, O.
– sequence: 6
  givenname: L.
  surname: Bopp
  fullname: Bopp, L.
– sequence: 7
  givenname: E.
  orcidid: 0000-0001-6274-5583
  surname: Buitenhuis
  fullname: Buitenhuis, E.
– sequence: 8
  givenname: S. C.
  surname: Doney
  fullname: Doney, S. C.
– sequence: 9
  givenname: J.
  surname: Dunne
  fullname: Dunne, J.
– sequence: 10
  givenname: T.
  surname: Hashioka
  fullname: Hashioka, T.
– sequence: 11
  givenname: J.
  orcidid: 0000-0003-4723-9652
  surname: Hauck
  fullname: Hauck, J.
– sequence: 12
  givenname: T.
  surname: Hirata
  fullname: Hirata, T.
– sequence: 13
  givenname: J.
  orcidid: 0000-0003-2696-277X
  surname: John
  fullname: John, J.
– sequence: 14
  givenname: C.
  orcidid: 0000-0003-2319-0452
  surname: Le Quéré
  fullname: Le Quéré, C.
– sequence: 15
  givenname: I. D.
  surname: Lima
  fullname: Lima, I. D.
– sequence: 16
  givenname: H.
  surname: Nakano
  fullname: Nakano, H.
– sequence: 17
  givenname: R.
  orcidid: 0000-0002-2571-2114
  surname: Seferian
  fullname: Seferian, R.
– sequence: 18
  givenname: I.
  surname: Totterdell
  fullname: Totterdell, I.
– sequence: 19
  givenname: M.
  orcidid: 0000-0002-0686-9634
  surname: Vichi
  fullname: Vichi, M.
– sequence: 20
  givenname: C.
  orcidid: 0000-0003-3032-114X
  surname: Völker
  fullname: Völker, C.
BackLink https://hal.science/hal-01805260$$DView record in HAL
BookMark eNp1kt9rFDEQxxepYFt99nXBpz5sm9-XfTzqjx4cCNr3kE0ma469RJNssf99s71WPVECyWTy-Q4zmTlrTkIM0DRvMbrkuGdXw9hh0ome844gzF80p3hFRMew7E_-sF81ZznvEKISSX7aqPfJ30HKrQ62nYOBVLQPxUNuo2vdXOYE7TjFQU_tXicfoP2efLXu6xntbIqPofXh-RFMzPe5wL7dRwtTft28dHrK8ObpPG9uP364vb7ptp8_ba7X285wjEsnDWUWiO65GUBzZAjuEQgYCLZ1HxwAthQPaGUGLAQWaOV6agCAOE4lPW82h7A26p16ylBF7dWjI6ZR6VS8mUA5KZi0FiHOLLN6uSJmkQMqHCWa1lgXh1jf9HQU6ma9VYsPYYk4EegOV_bdga2f8WOGXNQuzinUShVhmAlJuKS_qVHXBHxwsSRt9j4btWayFtOvUF-py39QdVnYe1Ob7Xz1HwkujgSVKfCzjHrOWW2-fjlmrw6sSTHnBO5XZRipZX7UMCpM1DI_apmfquB_KYwveml3TctP_9U9AECgyfs
CitedBy_id crossref_primary_10_5194_gmd_9_1827_2016
crossref_primary_10_5194_bg_14_403_2017
crossref_primary_10_1002_aqc_3182
crossref_primary_10_1002_lol2_10304
crossref_primary_10_1371_journal_pone_0287570
crossref_primary_10_1093_icesjms_fsab100
crossref_primary_10_3389_fmars_2017_00040
crossref_primary_10_1038_s43017_020_0071_9
crossref_primary_10_3389_fmars_2017_00283
crossref_primary_10_5194_bg_18_1269_2021
crossref_primary_10_1038_s41598_020_62357_5
crossref_primary_10_1088_1748_9326_ac3d57
crossref_primary_10_1038_s41586_023_06439_0
crossref_primary_10_1126_science_aam8328
crossref_primary_10_5194_bg_22_841_2025
crossref_primary_10_1002_2017GL076077
crossref_primary_10_1088_1748_9326_ac3d5a
crossref_primary_10_1016_j_marenvres_2024_106856
crossref_primary_10_1016_j_horiz_2022_100015
crossref_primary_10_1002_2016GB005551
crossref_primary_10_1088_1748_9326_abcc29
crossref_primary_10_1038_s41467_022_29013_0
crossref_primary_10_5194_esd_11_603_2020
crossref_primary_10_1007_s11802_023_5355_5
crossref_primary_10_1016_j_ecolmodel_2019_03_006
crossref_primary_10_1093_icesjms_fsz147
crossref_primary_10_1016_j_oneear_2023_12_002
crossref_primary_10_1029_2021RG000736
crossref_primary_10_1029_2018GL081788
crossref_primary_10_1038_s41467_019_09591_2
crossref_primary_10_1073_pnas_2008256117
crossref_primary_10_1002_eap_2065
crossref_primary_10_5194_bg_21_5591_2024
crossref_primary_10_1002_lol2_10322
crossref_primary_10_3389_fmars_2022_865846
crossref_primary_10_1002_2016GB005426
crossref_primary_10_1098_rsta_2022_0068
crossref_primary_10_3389_fmars_2017_00055
crossref_primary_10_1016_j_ecolind_2018_12_017
crossref_primary_10_1016_j_pocean_2019_102124
crossref_primary_10_1029_2021GL094797
crossref_primary_10_1002_lno_12175
crossref_primary_10_1098_rsta_2016_0323
crossref_primary_10_1038_s41467_021_25385_x
crossref_primary_10_1007_s00343_021_1126_6
crossref_primary_10_1088_1748_9326_ac9ecf
crossref_primary_10_1093_icesjms_fsac213
crossref_primary_10_1016_j_mib_2024_102558
crossref_primary_10_1038_s41598_020_72073_9
crossref_primary_10_3389_fmars_2016_00094
crossref_primary_10_1111_ddi_13032
crossref_primary_10_1029_2019GB006385
crossref_primary_10_1029_2019GB006265
crossref_primary_10_1038_s41467_021_26552_w
crossref_primary_10_1038_s41559_017_0094
crossref_primary_10_5194_bg_18_2119_2021
crossref_primary_10_1002_2017GB005633
crossref_primary_10_1175_JCLI_D_20_0889_1
crossref_primary_10_3389_fmars_2017_00068
crossref_primary_10_1002_2017GB005751
crossref_primary_10_3389_fmars_2024_1361157
crossref_primary_10_1002_2016GB005535
crossref_primary_10_1016_j_algal_2023_103279
crossref_primary_10_1029_2020GB006790
crossref_primary_10_1111_jpy_13390
crossref_primary_10_3389_fmars_2019_00681
crossref_primary_10_3389_fmars_2021_785685
crossref_primary_10_5194_bg_19_4267_2022
crossref_primary_10_1002_lno_12751
crossref_primary_10_1126_sciadv_abg6501
crossref_primary_10_1088_1748_9326_abc4b0
crossref_primary_10_5194_esd_14_383_2023
crossref_primary_10_1016_j_envres_2024_119126
crossref_primary_10_1007_s40641_020_00156_w
crossref_primary_10_5194_bg_17_2061_2020
crossref_primary_10_3389_fmars_2020_588482
crossref_primary_10_1038_s41396_021_01166_8
crossref_primary_10_1146_annurev_marine_022123_102516
crossref_primary_10_5194_esd_15_565_2024
crossref_primary_10_1016_j_scitotenv_2023_165882
crossref_primary_10_5194_bg_22_975_2025
crossref_primary_10_5194_acp_19_887_2019
crossref_primary_10_1111_gcb_15493
crossref_primary_10_3389_fclim_2021_738224
crossref_primary_10_3389_fmars_2022_816772
crossref_primary_10_1029_2020GL089928
crossref_primary_10_1002_2016JC011993
crossref_primary_10_1038_s43247_024_01764_2
crossref_primary_10_5194_acp_17_11313_2017
crossref_primary_10_1007_s00382_017_4036_8
crossref_primary_10_3389_fmicb_2019_01395
crossref_primary_10_1007_s10750_022_04984_9
crossref_primary_10_1029_2020GB006531
crossref_primary_10_1111_gcb_14033
crossref_primary_10_1111_ddi_13181
crossref_primary_10_3389_fmars_2022_963395
crossref_primary_10_1016_j_mib_2022_102151
crossref_primary_10_5194_esd_15_875_2024
crossref_primary_10_5194_bg_15_6049_2018
crossref_primary_10_3389_fmars_2020_00451
crossref_primary_10_1093_mnras_stab611
crossref_primary_10_1029_2020GB006880
crossref_primary_10_5194_bg_13_5151_2016
crossref_primary_10_1029_2018GB005977
crossref_primary_10_5194_bg_18_4321_2021
crossref_primary_10_5194_gmd_13_2197_2020
crossref_primary_10_1038_s41558_022_01489_0
crossref_primary_10_3389_fmars_2020_00464
crossref_primary_10_5194_bg_21_4637_2024
crossref_primary_10_1038_s41467_022_32830_y
crossref_primary_10_3389_fmars_2020_00581
crossref_primary_10_1002_lno_11575
crossref_primary_10_5194_bg_13_4023_2016
crossref_primary_10_1073_pnas_2107238118
crossref_primary_10_1016_j_scitotenv_2018_09_132
crossref_primary_10_1029_2022GB007367
crossref_primary_10_5194_bg_18_229_2021
crossref_primary_10_3354_meps14727
crossref_primary_10_5194_esd_7_295_2016
crossref_primary_10_1016_j_plipres_2022_101161
crossref_primary_10_1175_JCLI_D_16_0543_1
crossref_primary_10_1029_2019GL084162
crossref_primary_10_1038_s43247_024_01257_2
crossref_primary_10_1002_lno_12559
crossref_primary_10_1126_science_aat0795
crossref_primary_10_1002_2016GB005600
crossref_primary_10_3389_fmars_2021_622206
crossref_primary_10_1016_j_csbj_2020_11_022
crossref_primary_10_1093_icesjms_fsab067
crossref_primary_10_3390_cli9050083
crossref_primary_10_1007_s10712_024_09859_3
crossref_primary_10_1016_j_scitotenv_2024_171971
crossref_primary_10_1038_s41561_024_01541_y
crossref_primary_10_1088_1748_9326_ab4c52
crossref_primary_10_1002_lol2_10158
crossref_primary_10_3389_fmars_2021_675428
crossref_primary_10_1029_2019MS002043
crossref_primary_10_5194_gmd_14_6025_2021
crossref_primary_10_1016_j_pocean_2017_10_007
crossref_primary_10_1029_2018MS001452
crossref_primary_10_1029_2023EF003709
crossref_primary_10_3389_fmars_2022_759501
crossref_primary_10_1016_j_pocean_2016_12_011
crossref_primary_10_1016_j_pocean_2021_102593
crossref_primary_10_3389_fmars_2020_577964
crossref_primary_10_1002_lno_10814
crossref_primary_10_1016_j_marpolbul_2024_117278
crossref_primary_10_1029_2020GB006851
crossref_primary_10_1038_s41467_018_03906_5
crossref_primary_10_3389_fevo_2018_00230
crossref_primary_10_1038_s41561_024_01454_w
crossref_primary_10_1016_j_ecolmodel_2024_110834
crossref_primary_10_1364_AO_386252
crossref_primary_10_3389_fmars_2020_00635
crossref_primary_10_1029_2021MS002789
crossref_primary_10_1002_lno_12335
crossref_primary_10_5194_gmd_15_1595_2022
crossref_primary_10_5194_bg_19_5807_2022
crossref_primary_10_1016_j_ocemod_2023_102203
crossref_primary_10_1016_j_scitotenv_2021_147905
crossref_primary_10_1029_2020MS002110
crossref_primary_10_1038_s41467_023_40774_0
crossref_primary_10_3389_fmars_2018_00190
crossref_primary_10_1038_s41598_020_63650_z
crossref_primary_10_3390_microorganisms10081581
crossref_primary_10_1111_ele_13469
crossref_primary_10_1016_j_pocean_2022_102878
crossref_primary_10_1038_s41559_018_0669_1
crossref_primary_10_5194_gmd_13_4663_2020
crossref_primary_10_1146_annurev_marine_010816_060724
crossref_primary_10_1016_j_quascirev_2018_12_016
crossref_primary_10_1038_s41467_019_12775_5
crossref_primary_10_3390_rs11242941
crossref_primary_10_1029_2022JC018932
crossref_primary_10_5194_esd_11_579_2020
crossref_primary_10_1111_gcb_15341
crossref_primary_10_1016_j_marenvres_2024_106528
crossref_primary_10_1016_j_marenvres_2023_106008
crossref_primary_10_1007_s00382_023_06939_9
crossref_primary_10_1029_2020JC016958
crossref_primary_10_1073_pnas_1906691116
crossref_primary_10_1002_lol2_10227
crossref_primary_10_3389_fmars_2022_916140
crossref_primary_10_1038_s41598_018_36091_y
crossref_primary_10_5194_bg_20_4477_2023
crossref_primary_10_1038_s41558_019_0675_6
crossref_primary_10_1038_s41558_021_01173_9
crossref_primary_10_5194_bg_17_3439_2020
crossref_primary_10_1029_2022EF003427
crossref_primary_10_1073_pnas_1610238114
crossref_primary_10_1029_2023GL106172
crossref_primary_10_1029_2021AV000610
crossref_primary_10_5194_gmd_16_4883_2023
crossref_primary_10_5194_gmd_9_1423_2016
crossref_primary_10_1126_sciadv_add2475
crossref_primary_10_1016_j_ocemod_2022_102075
crossref_primary_10_1525_elementa_2024_00046
crossref_primary_10_1042_ETLS20220013
crossref_primary_10_1002_lno_11951
crossref_primary_10_1016_j_pocean_2023_103084
crossref_primary_10_1016_j_scitotenv_2024_178163
crossref_primary_10_1093_plankt_fbz013
crossref_primary_10_1111_gcb_15081
crossref_primary_10_1038_s41558_022_01353_1
crossref_primary_10_1029_2019MS002008
crossref_primary_10_1007_s10872_019_00513_w
crossref_primary_10_1007_s00343_020_0020_y
crossref_primary_10_5194_bg_18_5595_2021
crossref_primary_10_1038_s41893_018_0077_1
crossref_primary_10_5194_bg_14_3633_2017
crossref_primary_10_1111_gcb_14468
crossref_primary_10_1088_1748_9326_ac444e
crossref_primary_10_1038_s41586_022_04687_0
crossref_primary_10_1038_s41598_023_48254_7
crossref_primary_10_5194_bg_21_2473_2024
crossref_primary_10_1088_1748_9326_ab4667
crossref_primary_10_5194_bg_14_4767_2017
crossref_primary_10_26428_1606_9919_2022_202_880_893
crossref_primary_10_3389_fsci_2023_1170744
crossref_primary_10_1007_s00382_018_4450_6
crossref_primary_10_3389_fmars_2020_567877
crossref_primary_10_3389_fclim_2024_1430957
crossref_primary_10_1002_lno_11170
crossref_primary_10_1111_gcb_15789
crossref_primary_10_3389_fmars_2019_00808
crossref_primary_10_1002_2017GB005799
crossref_primary_10_1111_gcb_15546
crossref_primary_10_3389_fmars_2017_00387
crossref_primary_10_1038_nclimate3265
crossref_primary_10_1016_j_jmarsys_2022_103774
crossref_primary_10_1038_s41561_017_0028_x
crossref_primary_10_1038_nclimate3147
crossref_primary_10_1038_s41467_024_50570_z
crossref_primary_10_1038_s41467_021_26651_8
crossref_primary_10_3390_su15086533
crossref_primary_10_1002_2015JC011449
crossref_primary_10_5194_bg_21_2189_2024
crossref_primary_10_1007_s11160_023_09778_3
crossref_primary_10_1029_2021MS002647
crossref_primary_10_1038_s43247_023_00871_w
crossref_primary_10_1029_2019GL085267
Cites_doi 10.4319/lo.2003.48.5.1988
10.1146/annurev-marine-121211-172331
10.1029/2011GL046735
10.1002/gbc.20050
10.1016/j.ecolmodel.2011.11.018
10.1038/nature09952
10.1029/2010GL045934
10.3354/meps08022
10.1029/2011JC007689
10.1007/s002270100608
10.1029/2004GB002390
10.1002/2013GB004600
10.4319/lo.2007.52.2.0886
10.1111/j.1365-2427.2007.01852.x
10.1007/s10584-011-0148-z
10.4319/lo.1998.43.4.0679
10.1038/nature07531
10.1007/BF00345747
10.1038/nature09268
10.1007/s00382-011-1079-0
10.1029/2005GL023653
10.1371/journal.pone.0099312
10.1016/j.jmarsys.2006.03.006
10.1029/2010GB003867
10.1007/s00382-014-2374-3
10.4319/lo.2010.55.3.0973
10.1002/gbc.20042
10.5194/bg-10-6833-2013
10.1016/j.rse.2013.03.025
10.1016/j.dsr2.2006.01.028
10.1016/j.pocean.2011.11.016
10.1029/2004JC002620
10.1111/j.1365-2486.2005.1004.x
10.1029/2010GB003935
10.5194/bg-7-3941-2010
10.1146/annurev-marine-121211-172337
10.1111/j.1365-2486.2009.01960.x
10.1111/j.1365-2427.2005.01490.x
10.5194/bg-11-7291-2014
10.5194/bg-10-6225-2013
10.3354/ame037265
10.1126/science.1224836
10.4319/lo.2008.53.2.0487
10.1029/1999GB001256
10.1029/2001GL014130
10.1007/s00382-013-1745-5
10.1175/BAMS-D-11-00094.1
10.1016/j.rse.2013.01.014
10.5194/gmd-4-1051-2011
10.1073/pnas.0601137103
10.1038/nature01092
10.1038/ngeo1765
10.5194/bg-7-979-2010
10.1175/BAMS-D-12-00121.1
10.1046/j.1365-2486.2002.00454.x
10.1029/2007GB002953
10.1146/annurev-marine-121211-172335
10.4319/lo.1997.42.1.0001
10.1007/s00382-012-1636-1
10.5194/gmdd-4-1063-2011
10.1007/s00382-012-1362-8
10.5194/gmd-4-723-2011
10.1002/2013GB004599
10.1016/S0967-0645(01)00108-4
10.1007/s00382-011-1259-y
10.1175/JCLI-D-12-00150.1
10.1029/2003GL016889
10.5194/bgd-10-17193-2013
10.1029/2005GB002591
10.1371/journal.pone.0063766
10.1175/JCLI-D-12-00566.1
10.1016/j.ecolmodel.2013.04.006
10.1038/nature05317
10.1002/jgrd.50443
10.1002/gbc.20074
10.5194/essd-5-227-2013
10.1016/j.jmarsys.2013.04.001
10.5194/bg-11-4529-2014
10.1029/2003GB002134
10.1007/978-3-642-55844-3_5
10.5962/bhl.title.24326
10.1029/2010GL043360
10.1016/0198-0149(82)90087-5
10.1016/j.pocean.2009.10.003
10.1890/09-1207.1
10.1175/JCLI-D-12-00565.1
10.1029/2007GB003078
10.5194/bg-10-7373-2013
ContentType Journal Article
Copyright COPYRIGHT 2015 Copernicus GmbH
2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2015 Copernicus GmbH
– notice: 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
7QO
7SN
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H95
H96
HCIFZ
KL.
L.G
L6V
LK8
M7N
M7P
M7S
P64
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
1XC
VOOES
DOA
DOI 10.5194/bg-12-6955-2015
DatabaseName CrossRef
Gale In Context: Science
Biotechnology Research Abstracts
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
Biological Science Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Biotechnology Research Abstracts
Oceanic Abstracts
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
DatabaseTitleList CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1726-4189
EndPage 6984
ExternalDocumentID oai_doaj_org_article_f8648dd0054d4daf86404d0fe36f32a3
oai_HAL_hal_01805260v1
A481609709
10_5194_bg_12_6955_2015
GroupedDBID 23N
2WC
2XV
4P2
5GY
5VS
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBD
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
KQ8
L6V
L8X
LK5
LK8
M7P
M7R
M7S
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QO
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H95
H96
KL.
L.G
M7N
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
1XC
C1A
VOOES
PUEGO
ID FETCH-LOGICAL-c511t-8c34de2a95cbea50c2190e6eb21d6ebbfee1d31b07cb1661607f93ceee2f5383
IEDL.DBID BENPR
ISSN 1726-4189
1726-4170
IngestDate Wed Aug 27 01:29:58 EDT 2025
Fri Jun 20 06:31:03 EDT 2025
Fri Jul 25 10:23:26 EDT 2025
Tue Jun 17 21:07:25 EDT 2025
Tue Jun 10 20:15:51 EDT 2025
Fri Jun 27 03:41:25 EDT 2025
Tue Jul 01 02:49:54 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/3.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-8c34de2a95cbea50c2190e6eb21d6ebbfee1d31b07cb1661607f93ceee2f5383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2571-2114
0000-0003-2319-0452
0000-0002-2085-2310
0000-0003-2696-277X
0000-0001-6274-5583
0000-0003-3032-114X
0000-0002-0686-9634
0000-0003-4723-9652
0000-0001-5345-0652
0000-0002-3683-2437
0000-0003-3954-506X
0000-0003-4732-4953
0000-0002-8794-0489
OpenAccessLink https://www.proquest.com/docview/2414682583?pq-origsite=%requestingapplication%
PQID 2414682583
PQPubID 105740
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_f8648dd0054d4daf86404d0fe36f32a3
hal_primary_oai_HAL_hal_01805260v1
proquest_journals_2414682583
gale_infotracmisc_A481609709
gale_infotracacademiconefile_A481609709
gale_incontextgauss_ISR_A481609709
crossref_primary_10_5194_bg_12_6955_2015
crossref_citationtrail_10_5194_bg_12_6955_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-07
PublicationDateYYYYMMDD 2015-12-07
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-07
  day: 07
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Biogeosciences
PublicationYear 2015
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref93
ref92
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref39
  doi: 10.4319/lo.2003.48.5.1988
– ident: ref22
  doi: 10.1146/annurev-marine-121211-172331
– ident: ref38
  doi: 10.1029/2011GL046735
– ident: ref8
  doi: 10.1002/gbc.20050
– ident: ref61
  doi: 10.1016/j.ecolmodel.2011.11.018
– ident: ref64
  doi: 10.1038/nature09952
– ident: ref79
  doi: 10.1029/2010GL045934
– ident: ref75
  doi: 10.3354/meps08022
– ident: ref72
  doi: 10.1029/2011JC007689
– ident: ref41
  doi: 10.1007/s002270100608
– ident: ref24
  doi: 10.1029/2004GB002390
– ident: ref37
  doi: 10.1002/2013GB004600
– ident: ref62
  doi: 10.4319/lo.2007.52.2.0886
– ident: ref66
  doi: 10.1111/j.1365-2427.2007.01852.x
– ident: ref83
  doi: 10.1007/s10584-011-0148-z
– ident: ref30
– ident: ref32
  doi: 10.4319/lo.1998.43.4.0679
– ident: ref69
  doi: 10.1038/nature07531
– ident: ref90
  doi: 10.1007/BF00345747
– ident: ref13
  doi: 10.1038/nature09268
– ident: ref86
  doi: 10.1007/s00382-011-1079-0
– ident: ref11
  doi: 10.1029/2005GL023653
– ident: ref51
  doi: 10.1371/journal.pone.0099312
– ident: ref82
– ident: ref84
  doi: 10.1016/j.jmarsys.2006.03.006
– ident: ref85
  doi: 10.1029/2010GB003867
– ident: ref17
  doi: 10.1007/s00382-014-2374-3
– ident: ref78
  doi: 10.4319/lo.2010.55.3.0973
– ident: ref27
  doi: 10.1002/gbc.20042
– ident: ref36
  doi: 10.5194/bg-10-6833-2013
– ident: ref73
  doi: 10.1016/j.rse.2013.03.025
– ident: ref19
  doi: 10.1016/j.dsr2.2006.01.028
– ident: ref60
  doi: 10.1016/j.pocean.2011.11.016
– ident: ref3
  doi: 10.1029/2004JC002620
– ident: ref44
  doi: 10.1111/j.1365-2486.2005.1004.x
– ident: ref25
  doi: 10.1029/2010GB003935
– ident: ref52
  doi: 10.5194/bg-7-3941-2010
– ident: ref21
  doi: 10.1146/annurev-marine-121211-172337
– ident: ref58
  doi: 10.1111/j.1365-2486.2009.01960.x
– ident: ref54
– ident: ref76
  doi: 10.1111/j.1365-2427.2005.01490.x
– ident: ref42
  doi: 10.5194/bg-11-7291-2014
– ident: ref12
  doi: 10.5194/bg-10-6225-2013
– ident: ref35
  doi: 10.3354/ame037265
– ident: ref81
  doi: 10.1126/science.1224836
– ident: ref9
  doi: 10.4319/lo.2008.53.2.0487
– ident: ref10
  doi: 10.1029/1999GB001256
– ident: ref14
  doi: 10.1029/2001GL014130
– ident: ref18
  doi: 10.1007/s00382-013-1745-5
– ident: ref80
  doi: 10.1175/BAMS-D-11-00094.1
– ident: ref2
  doi: 10.1016/j.rse.2013.01.014
– ident: ref20
  doi: 10.5194/gmd-4-1051-2011
– ident: ref48
  doi: 10.1073/pnas.0601137103
– ident: ref1
  doi: 10.1038/nature01092
– ident: ref55
  doi: 10.1038/ngeo1765
– ident: ref77
  doi: 10.5194/bg-7-979-2010
– ident: ref40
  doi: 10.1175/BAMS-D-12-00121.1
– ident: ref47
  doi: 10.1046/j.1365-2486.2002.00454.x
– ident: ref70
  doi: 10.1029/2007GB002953
– ident: ref93
  doi: 10.1146/annurev-marine-121211-172335
– ident: ref6
  doi: 10.4319/lo.1997.42.1.0001
– ident: ref23
  doi: 10.1007/s00382-012-1636-1
– ident: ref89
  doi: 10.5194/gmdd-4-1063-2011
– ident: ref71
  doi: 10.1007/s00382-012-1362-8
– ident: ref34
  doi: 10.5194/gmd-4-723-2011
– ident: ref53
  doi: 10.1002/2013GB004599
– ident: ref56
  doi: 10.1016/S0967-0645(01)00108-4
– ident: ref88
  doi: 10.1007/s00382-011-1259-y
– ident: ref26
  doi: 10.1175/JCLI-D-12-00150.1
– ident: ref33
  doi: 10.1029/2003GL016889
– ident: ref87
  doi: 10.5194/bgd-10-17193-2013
– ident: ref4
  doi: 10.1029/2005GB002591
– ident: ref91
  doi: 10.1371/journal.pone.0063766
– ident: ref57
  doi: 10.1175/JCLI-D-12-00566.1
– ident: ref65
  doi: 10.1016/j.ecolmodel.2013.04.006
– ident: ref7
  doi: 10.1038/nature05317
– ident: ref49
  doi: 10.1002/jgrd.50443
– ident: ref67
– ident: ref15
  doi: 10.1002/gbc.20074
– ident: ref16
  doi: 10.5194/essd-5-227-2013
– ident: ref28
– ident: ref63
  doi: 10.1016/j.jmarsys.2013.04.001
– ident: ref31
  doi: 10.5194/bg-11-4529-2014
– ident: ref68
  doi: 10.1029/2003GB002134
– ident: ref29
  doi: 10.1007/978-3-642-55844-3_5
– ident: ref45
  doi: 10.5962/bhl.title.24326
– ident: ref50
  doi: 10.1029/2010GL043360
– ident: ref59
  doi: 10.1016/0198-0149(82)90087-5
– ident: ref74
  doi: 10.1016/j.pocean.2009.10.003
– ident: ref5
  doi: 10.1890/09-1207.1
– ident: ref46
  doi: 10.1175/JCLI-D-12-00565.1
– ident: ref92
  doi: 10.1029/2007GB003078
– ident: ref43
  doi: 10.5194/bg-10-7373-2013
SSID ssj0038085
Score 2.5792992
Snippet Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6955
SubjectTerms Analysis
Climate change
Climate models
Computer simulation
Continental interfaces, environment
Ecosystem models
Embedded systems
Environment models
Environmental aspects
Grazing
Growth rate
Intergovernmental Panel on Climate Change
Marine ecosystems
Microorganisms
Mineral nutrients
Motor vehicle drivers
Net Primary Productivity
Nutrient loss
Ocean circulation
Ocean models
Ocean, Atmosphere
Phytoplankton
Plankton
Primary production
Sciences of the Universe
Stratification
Temperature
Trends
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA61UPBF1CqenhJKQV_WJpdsNnk8reWU0get0LeQn6ege6V3LfS_dybZO3pC8cWXhd3MLslkdr4ZdvYbQg5D8AZxrQk8Q4ICMXCjdUxNF4zMLATsKYLVFmdq9l1-uWgv7rT6wpqwSg9cFXeUtZI6RgwtoowOT5mMLCehspi4wvMJmLdOpqoPFpqVZpyAzqqRvGOV1AeiFXnk51iNoEzbgoVgN9w7eFRo-zfO-cEPrI38y0UX3Dl5TB4NASOd1ok-ITupf0r2agvJ231ij69KZQV1faSAUfULP7Kk0kWmlTGEVtYP-tvhr370shJM0MtK9gobQ3_260HIRiu5My09cpbPyPnJp_OPs2ZomtAEiJ1WjQ5CxjRxpg0-uZYFcEksKUigeYSjzynxKLhnXfAcwFmxLhsBUJkmGZyfeE52-0WfXhDqnHHZ5NRp72WbuZPJq6BFcvBYp_mIvF9rzoaBUBz7WvyykFigqq2fWz6xqGqLqh6Rd5sbhqXeL_oBt2IjhiTY5QKYhh1Mw_7LNEbkADfSIs1Fj3U0c3e9XNrP377aqdSwctMxMyJvB6G8gNkHN_yWADpAZqwtyfGWJLyHYWv4AOxla8az6anFa0iS1kLieAM6G6_NyQ7OYmkhiJIKMnUtXv6PZb8iD1GFpeamG5Pd1dV1eg2R08q_KS_JH1ewE3c
  priority: 102
  providerName: Directory of Open Access Journals
Title Drivers and uncertainties of future global marine primary production in marine ecosystem models
URI https://www.proquest.com/docview/2414682583
https://hal.science/hal-01805260
https://doaj.org/article/f8648dd0054d4daf86404d0fe36f32a3
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoJiRepvElupXKmpDgJcypncR5mjpYKQgmGEPszfJnQYKkazok_nvuEqdQJHhJlPgSJWf7d3fO5XeEPLHWlGjXEpsGCFDAB06kdD4pbCkCsxZrimC2xXk-_yTeXGVXccGtiWmVPSa2QO1qi2vkx2BpRA7hjOQny-sEq0bh19VYQmNAdgGCJQRfu6dn5-8veizmkrVFOcFK54lIC9aR-4DXIo7NArMS8jLLYKRgVdw_7FJL378B6cEXzJH8C6pb-zPbJ3vRcaTTrqfvklu-ukdud6Ukf94n6uWqzbCgunIUbFX3pR_ZUmkdaMccQjv2D_pd4y9_dNkRTdBlR_oKHUS_Vn0jRKUdyTNta-U0D8jl7OzyxTyJxRMSCz7UOpGWC-cnusys8TpjFqCJ-RwC6dTB1gTvU8dTwwprUjDSOStCycFk-kkAEOQPyU5VV_4RoVqXOpTBF9IYkYVUC29yK7nXcFst0yF53mtO2UgsjvUtvikIMFDVyixUOlGoaoWqHpJnmwviq_5b9BS7YiOGZNjtiXq1UHFuqSBzIZ1D79MJp_GQCceC53ngE82H5Ag7UiHdRYX5NAt90zTq9ccLNRUS3rwsWDkkT6NQqOHprY6_J4AOkCFrS3K0JQnz0W41H8F42Xri-fStwnNIlpZBAPkDdDbqh5OKoNGo30P84P_Nh-QOKqfNqilGZGe9uvGPwTdamzEZyNmrcZwGuJ-9-_B53K40_ALG6g_D
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RQguiKcaCLCqQHAxXXvX9vqAUKCEhIYeIEi9rfYZkMAOcQrqj-I_MuNHIEhw6yWSvRPLnp3ZmbFnv4-QR9aaAuNaZOMABQrkwJGUzke5LURg1iKnCHZbnGSTj-LtaXq6Q372e2GwrbJfE5uF2lUW35EfQqQRGZQzkr9YfouQNQq_rvYUGq1ZHPvzH1Cy1c-nRzC_j5Nk_Hr-ahJ1rAKRheRiHUnLhfOJLlJrvE6ZBZ9lPoMKM3bwa4L3seOxYbk1MUSvjOWh4BBLfBJgdeBw2V1ySXBeoEPJ8Zt-4eeSNQygkBJkkYhz1iIJQYokDs0CWyCyIk3BLJGC948g2HAFbCLC7idsyPwrLjTBbnydXOuyVDpqzeoG2fHlTXK55a08v0XU0app56C6dBQCY9tWgNCstAq0hSmhLdQI_apxfyFdtqgWdNkizII10M9lPwglcIsoTRtinvo2mV-ETu-QvbIq_T6hWhc6FMHn0hiRhlgLbzIruddwWS3jAXnWa07ZDsUcyTS-KKhmUNXKLFScKFS1QlUPyNPNH7pH_bfoS5yKjRgibzcnqtVCdY6sgsyEdA5TXSecxkMmHAueZ4Enmg_IAU6kQmyNEpt3FvqsrtX0w3s1EhKevMhZMSBPOqFQwd1b3e2FAB0gHNeW5HBLEpzfbg0fgL1s3fFkNFN4DpHZUqhWv4POhr05qW6FqtVvf7r7_-GH5Mpk_m6mZtOT43vkKiqqaefJh2RvvTrz9yEpW5sHjStQoi7Y9X4BV4hI2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61qUBceCMCAVYVCC5O_Fjb6wNCKSFKaKl4FNHbap8BAU7IA1T-GX-FX8OM1w6kEtx64BIp3onlnXzzSma_IeS-1qrAuBboyEGBAjlwwLmxQa4L5kKtcaYIdlscZqO37PlxerxFfjRnYbCtsvGJlaM2U42_kfcg0rAMyhme9FzdFvFyMHwy-xLgBCn8p7UZp-Ehsm9PvkH5tng8HsB3_SCOh8-Ono6CesJAoCHRWAZcJ8zYWBapVlamoQb7DW0G1WZk4FU5ayOTRCrMtYogkmVh7ooE4oqNHXiKBG67TXZ4xtO4RXb2hi9evWvCQMLDah4oJAhZwKI89LxCkDCxnppgQ0RWpCmAFAfy_hESq8kB6_iw_R7bM09FiSr0DS-Rn43SfMfLx-5qqbr6-yk-yf9Sq5fJxTohp31vQVfIli2vknN-ROfJNSIG86pzhcrSUMgBfAcFstDSqaOekYV6VhX6WeJRSjrzBB505sl0Afj0Q9ksQrXvybNpNYNocZ0cncXmbpBWOS3tTUKlLKQrnM25Uix1kWRWZZonVsJtJY_apNvAQuiasB3nhnwSULghjoSaiCgWiCOBOGqTR-sP1Fv9u-ge4mwthiTj1YXpfCJqnyUczxg3BrN6w4zEtyEzobNJ5pJYJm2yiygVSCNSInQmcrVYiPGb16LPOOy8yMOiTR7WQm4KT69lfewDdIDMYxuSnQ1J8HN6Y3kXjGHjiUf9A4HXkIQuhcL8K-is0-Bc1M54IX6D_Na_l--R84B-cTA-3L9NLqCeqsalvENay_nK3oH0c6nu1oZOiThjI_gFo32WjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+and+uncertainties+of+future+global+marine+primary+production+in+marine+ecosystem+models&rft.jtitle=Biogeosciences&rft.au=Laufk%C3%B6tter%2C+C&rft.au=Vogt%2C+M&rft.au=Gruber%2C+N&rft.au=Aita-Noguchi%2C+M&rft.date=2015-12-07&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=12&rft.issue=23&rft.spage=6955&rft_id=info:doi/10.5194%2Fbg-12-6955-2015&rft.externalDBID=ISR&rft.externalDocID=A481609709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon