Drivers and uncertainties of future global marine primary production in marine ecosystem models
Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's...
Saved in:
Published in | Biogeosciences Vol. 12; no. 23; pp. 6955 - 6984 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
07.12.2015
European Geosciences Union Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development. |
---|---|
AbstractList | Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development. Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon-climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between -25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development. Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30∘ S and 30∘ N), with individual models simulating relative changes between-25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development. Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon-climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30 • S and 30 • N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbal-ance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an inten-sification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the Published by Copernicus Publications on behalf of the European Geosciences Union. 6956 C. Laufkötter et al.: Drivers of future marine primary production regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development. |
Audience | Academic |
Author | Gruber, N. Lima, I. D. Hashioka, T. Aumont, O. Buitenhuis, E. John, J. Le Quéré, C. Totterdell, I. Vogt, M. Nakano, H. Laufkötter, C. Aita-Noguchi, M. Hauck, J. Doney, S. C. Dunne, J. Hirata, T. Vichi, M. Seferian, R. Völker, C. Bopp, L. |
Author_xml | – sequence: 1 givenname: C. surname: Laufkötter fullname: Laufkötter, C. – sequence: 2 givenname: M. surname: Vogt fullname: Vogt, M. – sequence: 3 givenname: N. orcidid: 0000-0002-2085-2310 surname: Gruber fullname: Gruber, N. – sequence: 4 givenname: M. surname: Aita-Noguchi fullname: Aita-Noguchi, M. – sequence: 5 givenname: O. surname: Aumont fullname: Aumont, O. – sequence: 6 givenname: L. surname: Bopp fullname: Bopp, L. – sequence: 7 givenname: E. orcidid: 0000-0001-6274-5583 surname: Buitenhuis fullname: Buitenhuis, E. – sequence: 8 givenname: S. C. surname: Doney fullname: Doney, S. C. – sequence: 9 givenname: J. surname: Dunne fullname: Dunne, J. – sequence: 10 givenname: T. surname: Hashioka fullname: Hashioka, T. – sequence: 11 givenname: J. orcidid: 0000-0003-4723-9652 surname: Hauck fullname: Hauck, J. – sequence: 12 givenname: T. surname: Hirata fullname: Hirata, T. – sequence: 13 givenname: J. orcidid: 0000-0003-2696-277X surname: John fullname: John, J. – sequence: 14 givenname: C. orcidid: 0000-0003-2319-0452 surname: Le Quéré fullname: Le Quéré, C. – sequence: 15 givenname: I. D. surname: Lima fullname: Lima, I. D. – sequence: 16 givenname: H. surname: Nakano fullname: Nakano, H. – sequence: 17 givenname: R. orcidid: 0000-0002-2571-2114 surname: Seferian fullname: Seferian, R. – sequence: 18 givenname: I. surname: Totterdell fullname: Totterdell, I. – sequence: 19 givenname: M. orcidid: 0000-0002-0686-9634 surname: Vichi fullname: Vichi, M. – sequence: 20 givenname: C. orcidid: 0000-0003-3032-114X surname: Völker fullname: Völker, C. |
BackLink | https://hal.science/hal-01805260$$DView record in HAL |
BookMark | eNp1kt9rFDEQxxepYFt99nXBpz5sm9-XfTzqjx4cCNr3kE0ma469RJNssf99s71WPVECyWTy-Q4zmTlrTkIM0DRvMbrkuGdXw9hh0ome844gzF80p3hFRMew7E_-sF81ZznvEKISSX7aqPfJ30HKrQ62nYOBVLQPxUNuo2vdXOYE7TjFQU_tXicfoP2efLXu6xntbIqPofXh-RFMzPe5wL7dRwtTft28dHrK8ObpPG9uP364vb7ptp8_ba7X285wjEsnDWUWiO65GUBzZAjuEQgYCLZ1HxwAthQPaGUGLAQWaOV6agCAOE4lPW82h7A26p16ylBF7dWjI6ZR6VS8mUA5KZi0FiHOLLN6uSJmkQMqHCWa1lgXh1jf9HQU6ma9VYsPYYk4EegOV_bdga2f8WOGXNQuzinUShVhmAlJuKS_qVHXBHxwsSRt9j4btWayFtOvUF-py39QdVnYe1Ob7Xz1HwkujgSVKfCzjHrOWW2-fjlmrw6sSTHnBO5XZRipZX7UMCpM1DI_apmfquB_KYwveml3TctP_9U9AECgyfs |
CitedBy_id | crossref_primary_10_5194_gmd_9_1827_2016 crossref_primary_10_5194_bg_14_403_2017 crossref_primary_10_1002_aqc_3182 crossref_primary_10_1002_lol2_10304 crossref_primary_10_1371_journal_pone_0287570 crossref_primary_10_1093_icesjms_fsab100 crossref_primary_10_3389_fmars_2017_00040 crossref_primary_10_1038_s43017_020_0071_9 crossref_primary_10_3389_fmars_2017_00283 crossref_primary_10_5194_bg_18_1269_2021 crossref_primary_10_1038_s41598_020_62357_5 crossref_primary_10_1088_1748_9326_ac3d57 crossref_primary_10_1038_s41586_023_06439_0 crossref_primary_10_1126_science_aam8328 crossref_primary_10_5194_bg_22_841_2025 crossref_primary_10_1002_2017GL076077 crossref_primary_10_1088_1748_9326_ac3d5a crossref_primary_10_1016_j_marenvres_2024_106856 crossref_primary_10_1016_j_horiz_2022_100015 crossref_primary_10_1002_2016GB005551 crossref_primary_10_1088_1748_9326_abcc29 crossref_primary_10_1038_s41467_022_29013_0 crossref_primary_10_5194_esd_11_603_2020 crossref_primary_10_1007_s11802_023_5355_5 crossref_primary_10_1016_j_ecolmodel_2019_03_006 crossref_primary_10_1093_icesjms_fsz147 crossref_primary_10_1016_j_oneear_2023_12_002 crossref_primary_10_1029_2021RG000736 crossref_primary_10_1029_2018GL081788 crossref_primary_10_1038_s41467_019_09591_2 crossref_primary_10_1073_pnas_2008256117 crossref_primary_10_1002_eap_2065 crossref_primary_10_5194_bg_21_5591_2024 crossref_primary_10_1002_lol2_10322 crossref_primary_10_3389_fmars_2022_865846 crossref_primary_10_1002_2016GB005426 crossref_primary_10_1098_rsta_2022_0068 crossref_primary_10_3389_fmars_2017_00055 crossref_primary_10_1016_j_ecolind_2018_12_017 crossref_primary_10_1016_j_pocean_2019_102124 crossref_primary_10_1029_2021GL094797 crossref_primary_10_1002_lno_12175 crossref_primary_10_1098_rsta_2016_0323 crossref_primary_10_1038_s41467_021_25385_x crossref_primary_10_1007_s00343_021_1126_6 crossref_primary_10_1088_1748_9326_ac9ecf crossref_primary_10_1093_icesjms_fsac213 crossref_primary_10_1016_j_mib_2024_102558 crossref_primary_10_1038_s41598_020_72073_9 crossref_primary_10_3389_fmars_2016_00094 crossref_primary_10_1111_ddi_13032 crossref_primary_10_1029_2019GB006385 crossref_primary_10_1029_2019GB006265 crossref_primary_10_1038_s41467_021_26552_w crossref_primary_10_1038_s41559_017_0094 crossref_primary_10_5194_bg_18_2119_2021 crossref_primary_10_1002_2017GB005633 crossref_primary_10_1175_JCLI_D_20_0889_1 crossref_primary_10_3389_fmars_2017_00068 crossref_primary_10_1002_2017GB005751 crossref_primary_10_3389_fmars_2024_1361157 crossref_primary_10_1002_2016GB005535 crossref_primary_10_1016_j_algal_2023_103279 crossref_primary_10_1029_2020GB006790 crossref_primary_10_1111_jpy_13390 crossref_primary_10_3389_fmars_2019_00681 crossref_primary_10_3389_fmars_2021_785685 crossref_primary_10_5194_bg_19_4267_2022 crossref_primary_10_1002_lno_12751 crossref_primary_10_1126_sciadv_abg6501 crossref_primary_10_1088_1748_9326_abc4b0 crossref_primary_10_5194_esd_14_383_2023 crossref_primary_10_1016_j_envres_2024_119126 crossref_primary_10_1007_s40641_020_00156_w crossref_primary_10_5194_bg_17_2061_2020 crossref_primary_10_3389_fmars_2020_588482 crossref_primary_10_1038_s41396_021_01166_8 crossref_primary_10_1146_annurev_marine_022123_102516 crossref_primary_10_5194_esd_15_565_2024 crossref_primary_10_1016_j_scitotenv_2023_165882 crossref_primary_10_5194_bg_22_975_2025 crossref_primary_10_5194_acp_19_887_2019 crossref_primary_10_1111_gcb_15493 crossref_primary_10_3389_fclim_2021_738224 crossref_primary_10_3389_fmars_2022_816772 crossref_primary_10_1029_2020GL089928 crossref_primary_10_1002_2016JC011993 crossref_primary_10_1038_s43247_024_01764_2 crossref_primary_10_5194_acp_17_11313_2017 crossref_primary_10_1007_s00382_017_4036_8 crossref_primary_10_3389_fmicb_2019_01395 crossref_primary_10_1007_s10750_022_04984_9 crossref_primary_10_1029_2020GB006531 crossref_primary_10_1111_gcb_14033 crossref_primary_10_1111_ddi_13181 crossref_primary_10_3389_fmars_2022_963395 crossref_primary_10_1016_j_mib_2022_102151 crossref_primary_10_5194_esd_15_875_2024 crossref_primary_10_5194_bg_15_6049_2018 crossref_primary_10_3389_fmars_2020_00451 crossref_primary_10_1093_mnras_stab611 crossref_primary_10_1029_2020GB006880 crossref_primary_10_5194_bg_13_5151_2016 crossref_primary_10_1029_2018GB005977 crossref_primary_10_5194_bg_18_4321_2021 crossref_primary_10_5194_gmd_13_2197_2020 crossref_primary_10_1038_s41558_022_01489_0 crossref_primary_10_3389_fmars_2020_00464 crossref_primary_10_5194_bg_21_4637_2024 crossref_primary_10_1038_s41467_022_32830_y crossref_primary_10_3389_fmars_2020_00581 crossref_primary_10_1002_lno_11575 crossref_primary_10_5194_bg_13_4023_2016 crossref_primary_10_1073_pnas_2107238118 crossref_primary_10_1016_j_scitotenv_2018_09_132 crossref_primary_10_1029_2022GB007367 crossref_primary_10_5194_bg_18_229_2021 crossref_primary_10_3354_meps14727 crossref_primary_10_5194_esd_7_295_2016 crossref_primary_10_1016_j_plipres_2022_101161 crossref_primary_10_1175_JCLI_D_16_0543_1 crossref_primary_10_1029_2019GL084162 crossref_primary_10_1038_s43247_024_01257_2 crossref_primary_10_1002_lno_12559 crossref_primary_10_1126_science_aat0795 crossref_primary_10_1002_2016GB005600 crossref_primary_10_3389_fmars_2021_622206 crossref_primary_10_1016_j_csbj_2020_11_022 crossref_primary_10_1093_icesjms_fsab067 crossref_primary_10_3390_cli9050083 crossref_primary_10_1007_s10712_024_09859_3 crossref_primary_10_1016_j_scitotenv_2024_171971 crossref_primary_10_1038_s41561_024_01541_y crossref_primary_10_1088_1748_9326_ab4c52 crossref_primary_10_1002_lol2_10158 crossref_primary_10_3389_fmars_2021_675428 crossref_primary_10_1029_2019MS002043 crossref_primary_10_5194_gmd_14_6025_2021 crossref_primary_10_1016_j_pocean_2017_10_007 crossref_primary_10_1029_2018MS001452 crossref_primary_10_1029_2023EF003709 crossref_primary_10_3389_fmars_2022_759501 crossref_primary_10_1016_j_pocean_2016_12_011 crossref_primary_10_1016_j_pocean_2021_102593 crossref_primary_10_3389_fmars_2020_577964 crossref_primary_10_1002_lno_10814 crossref_primary_10_1016_j_marpolbul_2024_117278 crossref_primary_10_1029_2020GB006851 crossref_primary_10_1038_s41467_018_03906_5 crossref_primary_10_3389_fevo_2018_00230 crossref_primary_10_1038_s41561_024_01454_w crossref_primary_10_1016_j_ecolmodel_2024_110834 crossref_primary_10_1364_AO_386252 crossref_primary_10_3389_fmars_2020_00635 crossref_primary_10_1029_2021MS002789 crossref_primary_10_1002_lno_12335 crossref_primary_10_5194_gmd_15_1595_2022 crossref_primary_10_5194_bg_19_5807_2022 crossref_primary_10_1016_j_ocemod_2023_102203 crossref_primary_10_1016_j_scitotenv_2021_147905 crossref_primary_10_1029_2020MS002110 crossref_primary_10_1038_s41467_023_40774_0 crossref_primary_10_3389_fmars_2018_00190 crossref_primary_10_1038_s41598_020_63650_z crossref_primary_10_3390_microorganisms10081581 crossref_primary_10_1111_ele_13469 crossref_primary_10_1016_j_pocean_2022_102878 crossref_primary_10_1038_s41559_018_0669_1 crossref_primary_10_5194_gmd_13_4663_2020 crossref_primary_10_1146_annurev_marine_010816_060724 crossref_primary_10_1016_j_quascirev_2018_12_016 crossref_primary_10_1038_s41467_019_12775_5 crossref_primary_10_3390_rs11242941 crossref_primary_10_1029_2022JC018932 crossref_primary_10_5194_esd_11_579_2020 crossref_primary_10_1111_gcb_15341 crossref_primary_10_1016_j_marenvres_2024_106528 crossref_primary_10_1016_j_marenvres_2023_106008 crossref_primary_10_1007_s00382_023_06939_9 crossref_primary_10_1029_2020JC016958 crossref_primary_10_1073_pnas_1906691116 crossref_primary_10_1002_lol2_10227 crossref_primary_10_3389_fmars_2022_916140 crossref_primary_10_1038_s41598_018_36091_y crossref_primary_10_5194_bg_20_4477_2023 crossref_primary_10_1038_s41558_019_0675_6 crossref_primary_10_1038_s41558_021_01173_9 crossref_primary_10_5194_bg_17_3439_2020 crossref_primary_10_1029_2022EF003427 crossref_primary_10_1073_pnas_1610238114 crossref_primary_10_1029_2023GL106172 crossref_primary_10_1029_2021AV000610 crossref_primary_10_5194_gmd_16_4883_2023 crossref_primary_10_5194_gmd_9_1423_2016 crossref_primary_10_1126_sciadv_add2475 crossref_primary_10_1016_j_ocemod_2022_102075 crossref_primary_10_1525_elementa_2024_00046 crossref_primary_10_1042_ETLS20220013 crossref_primary_10_1002_lno_11951 crossref_primary_10_1016_j_pocean_2023_103084 crossref_primary_10_1016_j_scitotenv_2024_178163 crossref_primary_10_1093_plankt_fbz013 crossref_primary_10_1111_gcb_15081 crossref_primary_10_1038_s41558_022_01353_1 crossref_primary_10_1029_2019MS002008 crossref_primary_10_1007_s10872_019_00513_w crossref_primary_10_1007_s00343_020_0020_y crossref_primary_10_5194_bg_18_5595_2021 crossref_primary_10_1038_s41893_018_0077_1 crossref_primary_10_5194_bg_14_3633_2017 crossref_primary_10_1111_gcb_14468 crossref_primary_10_1088_1748_9326_ac444e crossref_primary_10_1038_s41586_022_04687_0 crossref_primary_10_1038_s41598_023_48254_7 crossref_primary_10_5194_bg_21_2473_2024 crossref_primary_10_1088_1748_9326_ab4667 crossref_primary_10_5194_bg_14_4767_2017 crossref_primary_10_26428_1606_9919_2022_202_880_893 crossref_primary_10_3389_fsci_2023_1170744 crossref_primary_10_1007_s00382_018_4450_6 crossref_primary_10_3389_fmars_2020_567877 crossref_primary_10_3389_fclim_2024_1430957 crossref_primary_10_1002_lno_11170 crossref_primary_10_1111_gcb_15789 crossref_primary_10_3389_fmars_2019_00808 crossref_primary_10_1002_2017GB005799 crossref_primary_10_1111_gcb_15546 crossref_primary_10_3389_fmars_2017_00387 crossref_primary_10_1038_nclimate3265 crossref_primary_10_1016_j_jmarsys_2022_103774 crossref_primary_10_1038_s41561_017_0028_x crossref_primary_10_1038_nclimate3147 crossref_primary_10_1038_s41467_024_50570_z crossref_primary_10_1038_s41467_021_26651_8 crossref_primary_10_3390_su15086533 crossref_primary_10_1002_2015JC011449 crossref_primary_10_5194_bg_21_2189_2024 crossref_primary_10_1007_s11160_023_09778_3 crossref_primary_10_1029_2021MS002647 crossref_primary_10_1038_s43247_023_00871_w crossref_primary_10_1029_2019GL085267 |
Cites_doi | 10.4319/lo.2003.48.5.1988 10.1146/annurev-marine-121211-172331 10.1029/2011GL046735 10.1002/gbc.20050 10.1016/j.ecolmodel.2011.11.018 10.1038/nature09952 10.1029/2010GL045934 10.3354/meps08022 10.1029/2011JC007689 10.1007/s002270100608 10.1029/2004GB002390 10.1002/2013GB004600 10.4319/lo.2007.52.2.0886 10.1111/j.1365-2427.2007.01852.x 10.1007/s10584-011-0148-z 10.4319/lo.1998.43.4.0679 10.1038/nature07531 10.1007/BF00345747 10.1038/nature09268 10.1007/s00382-011-1079-0 10.1029/2005GL023653 10.1371/journal.pone.0099312 10.1016/j.jmarsys.2006.03.006 10.1029/2010GB003867 10.1007/s00382-014-2374-3 10.4319/lo.2010.55.3.0973 10.1002/gbc.20042 10.5194/bg-10-6833-2013 10.1016/j.rse.2013.03.025 10.1016/j.dsr2.2006.01.028 10.1016/j.pocean.2011.11.016 10.1029/2004JC002620 10.1111/j.1365-2486.2005.1004.x 10.1029/2010GB003935 10.5194/bg-7-3941-2010 10.1146/annurev-marine-121211-172337 10.1111/j.1365-2486.2009.01960.x 10.1111/j.1365-2427.2005.01490.x 10.5194/bg-11-7291-2014 10.5194/bg-10-6225-2013 10.3354/ame037265 10.1126/science.1224836 10.4319/lo.2008.53.2.0487 10.1029/1999GB001256 10.1029/2001GL014130 10.1007/s00382-013-1745-5 10.1175/BAMS-D-11-00094.1 10.1016/j.rse.2013.01.014 10.5194/gmd-4-1051-2011 10.1073/pnas.0601137103 10.1038/nature01092 10.1038/ngeo1765 10.5194/bg-7-979-2010 10.1175/BAMS-D-12-00121.1 10.1046/j.1365-2486.2002.00454.x 10.1029/2007GB002953 10.1146/annurev-marine-121211-172335 10.4319/lo.1997.42.1.0001 10.1007/s00382-012-1636-1 10.5194/gmdd-4-1063-2011 10.1007/s00382-012-1362-8 10.5194/gmd-4-723-2011 10.1002/2013GB004599 10.1016/S0967-0645(01)00108-4 10.1007/s00382-011-1259-y 10.1175/JCLI-D-12-00150.1 10.1029/2003GL016889 10.5194/bgd-10-17193-2013 10.1029/2005GB002591 10.1371/journal.pone.0063766 10.1175/JCLI-D-12-00566.1 10.1016/j.ecolmodel.2013.04.006 10.1038/nature05317 10.1002/jgrd.50443 10.1002/gbc.20074 10.5194/essd-5-227-2013 10.1016/j.jmarsys.2013.04.001 10.5194/bg-11-4529-2014 10.1029/2003GB002134 10.1007/978-3-642-55844-3_5 10.5962/bhl.title.24326 10.1029/2010GL043360 10.1016/0198-0149(82)90087-5 10.1016/j.pocean.2009.10.003 10.1890/09-1207.1 10.1175/JCLI-D-12-00565.1 10.1029/2007GB003078 10.5194/bg-10-7373-2013 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Copernicus GmbH 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2015 Copernicus GmbH – notice: 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION ISR 7QO 7SN 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H95 H96 HCIFZ KL. L.G L6V LK8 M7N M7P M7S P64 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 1XC VOOES DOA |
DOI | 10.5194/bg-12-6955-2015 |
DatabaseName | CrossRef Gale In Context: Science Biotechnology Research Abstracts Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database Biological Science Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Oceanic Abstracts ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1726-4189 |
EndPage | 6984 |
ExternalDocumentID | oai_doaj_org_article_f8648dd0054d4daf86404d0fe36f32a3 oai_HAL_hal_01805260v1 A481609709 10_5194_bg_12_6955_2015 |
GroupedDBID | 23N 2WC 2XV 4P2 5GY 5VS 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBD EBS EDH EJD GROUPED_DOAJ H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC KQ8 L6V L8X LK5 LK8 M7P M7R M7S MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 BBORY PMFND 7QO 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H95 H96 KL. L.G M7N P64 PKEHL PQEST PQGLB PQUKI PRINS 1XC C1A VOOES PUEGO |
ID | FETCH-LOGICAL-c511t-8c34de2a95cbea50c2190e6eb21d6ebbfee1d31b07cb1661607f93ceee2f5383 |
IEDL.DBID | BENPR |
ISSN | 1726-4189 1726-4170 |
IngestDate | Wed Aug 27 01:29:58 EDT 2025 Fri Jun 20 06:31:03 EDT 2025 Fri Jul 25 10:23:26 EDT 2025 Tue Jun 17 21:07:25 EDT 2025 Tue Jun 10 20:15:51 EDT 2025 Fri Jun 27 03:41:25 EDT 2025 Tue Jul 01 02:49:54 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-8c34de2a95cbea50c2190e6eb21d6ebbfee1d31b07cb1661607f93ceee2f5383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2571-2114 0000-0003-2319-0452 0000-0002-2085-2310 0000-0003-2696-277X 0000-0001-6274-5583 0000-0003-3032-114X 0000-0002-0686-9634 0000-0003-4723-9652 0000-0001-5345-0652 0000-0002-3683-2437 0000-0003-3954-506X 0000-0003-4732-4953 0000-0002-8794-0489 |
OpenAccessLink | https://www.proquest.com/docview/2414682583?pq-origsite=%requestingapplication% |
PQID | 2414682583 |
PQPubID | 105740 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8648dd0054d4daf86404d0fe36f32a3 hal_primary_oai_HAL_hal_01805260v1 proquest_journals_2414682583 gale_infotracmisc_A481609709 gale_infotracacademiconefile_A481609709 gale_incontextgauss_ISR_A481609709 crossref_primary_10_5194_bg_12_6955_2015 crossref_citationtrail_10_5194_bg_12_6955_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-07 |
PublicationDateYYYYMMDD | 2015-12-07 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Biogeosciences |
PublicationYear | 2015 |
Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref93 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref39 doi: 10.4319/lo.2003.48.5.1988 – ident: ref22 doi: 10.1146/annurev-marine-121211-172331 – ident: ref38 doi: 10.1029/2011GL046735 – ident: ref8 doi: 10.1002/gbc.20050 – ident: ref61 doi: 10.1016/j.ecolmodel.2011.11.018 – ident: ref64 doi: 10.1038/nature09952 – ident: ref79 doi: 10.1029/2010GL045934 – ident: ref75 doi: 10.3354/meps08022 – ident: ref72 doi: 10.1029/2011JC007689 – ident: ref41 doi: 10.1007/s002270100608 – ident: ref24 doi: 10.1029/2004GB002390 – ident: ref37 doi: 10.1002/2013GB004600 – ident: ref62 doi: 10.4319/lo.2007.52.2.0886 – ident: ref66 doi: 10.1111/j.1365-2427.2007.01852.x – ident: ref83 doi: 10.1007/s10584-011-0148-z – ident: ref30 – ident: ref32 doi: 10.4319/lo.1998.43.4.0679 – ident: ref69 doi: 10.1038/nature07531 – ident: ref90 doi: 10.1007/BF00345747 – ident: ref13 doi: 10.1038/nature09268 – ident: ref86 doi: 10.1007/s00382-011-1079-0 – ident: ref11 doi: 10.1029/2005GL023653 – ident: ref51 doi: 10.1371/journal.pone.0099312 – ident: ref82 – ident: ref84 doi: 10.1016/j.jmarsys.2006.03.006 – ident: ref85 doi: 10.1029/2010GB003867 – ident: ref17 doi: 10.1007/s00382-014-2374-3 – ident: ref78 doi: 10.4319/lo.2010.55.3.0973 – ident: ref27 doi: 10.1002/gbc.20042 – ident: ref36 doi: 10.5194/bg-10-6833-2013 – ident: ref73 doi: 10.1016/j.rse.2013.03.025 – ident: ref19 doi: 10.1016/j.dsr2.2006.01.028 – ident: ref60 doi: 10.1016/j.pocean.2011.11.016 – ident: ref3 doi: 10.1029/2004JC002620 – ident: ref44 doi: 10.1111/j.1365-2486.2005.1004.x – ident: ref25 doi: 10.1029/2010GB003935 – ident: ref52 doi: 10.5194/bg-7-3941-2010 – ident: ref21 doi: 10.1146/annurev-marine-121211-172337 – ident: ref58 doi: 10.1111/j.1365-2486.2009.01960.x – ident: ref54 – ident: ref76 doi: 10.1111/j.1365-2427.2005.01490.x – ident: ref42 doi: 10.5194/bg-11-7291-2014 – ident: ref12 doi: 10.5194/bg-10-6225-2013 – ident: ref35 doi: 10.3354/ame037265 – ident: ref81 doi: 10.1126/science.1224836 – ident: ref9 doi: 10.4319/lo.2008.53.2.0487 – ident: ref10 doi: 10.1029/1999GB001256 – ident: ref14 doi: 10.1029/2001GL014130 – ident: ref18 doi: 10.1007/s00382-013-1745-5 – ident: ref80 doi: 10.1175/BAMS-D-11-00094.1 – ident: ref2 doi: 10.1016/j.rse.2013.01.014 – ident: ref20 doi: 10.5194/gmd-4-1051-2011 – ident: ref48 doi: 10.1073/pnas.0601137103 – ident: ref1 doi: 10.1038/nature01092 – ident: ref55 doi: 10.1038/ngeo1765 – ident: ref77 doi: 10.5194/bg-7-979-2010 – ident: ref40 doi: 10.1175/BAMS-D-12-00121.1 – ident: ref47 doi: 10.1046/j.1365-2486.2002.00454.x – ident: ref70 doi: 10.1029/2007GB002953 – ident: ref93 doi: 10.1146/annurev-marine-121211-172335 – ident: ref6 doi: 10.4319/lo.1997.42.1.0001 – ident: ref23 doi: 10.1007/s00382-012-1636-1 – ident: ref89 doi: 10.5194/gmdd-4-1063-2011 – ident: ref71 doi: 10.1007/s00382-012-1362-8 – ident: ref34 doi: 10.5194/gmd-4-723-2011 – ident: ref53 doi: 10.1002/2013GB004599 – ident: ref56 doi: 10.1016/S0967-0645(01)00108-4 – ident: ref88 doi: 10.1007/s00382-011-1259-y – ident: ref26 doi: 10.1175/JCLI-D-12-00150.1 – ident: ref33 doi: 10.1029/2003GL016889 – ident: ref87 doi: 10.5194/bgd-10-17193-2013 – ident: ref4 doi: 10.1029/2005GB002591 – ident: ref91 doi: 10.1371/journal.pone.0063766 – ident: ref57 doi: 10.1175/JCLI-D-12-00566.1 – ident: ref65 doi: 10.1016/j.ecolmodel.2013.04.006 – ident: ref7 doi: 10.1038/nature05317 – ident: ref49 doi: 10.1002/jgrd.50443 – ident: ref67 – ident: ref15 doi: 10.1002/gbc.20074 – ident: ref16 doi: 10.5194/essd-5-227-2013 – ident: ref28 – ident: ref63 doi: 10.1016/j.jmarsys.2013.04.001 – ident: ref31 doi: 10.5194/bg-11-4529-2014 – ident: ref68 doi: 10.1029/2003GB002134 – ident: ref29 doi: 10.1007/978-3-642-55844-3_5 – ident: ref45 doi: 10.5962/bhl.title.24326 – ident: ref50 doi: 10.1029/2010GL043360 – ident: ref59 doi: 10.1016/0198-0149(82)90087-5 – ident: ref74 doi: 10.1016/j.pocean.2009.10.003 – ident: ref5 doi: 10.1890/09-1207.1 – ident: ref46 doi: 10.1175/JCLI-D-12-00565.1 – ident: ref92 doi: 10.1029/2007GB003078 – ident: ref43 doi: 10.5194/bg-10-7373-2013 |
SSID | ssj0038085 |
Score | 2.5792992 |
Snippet | Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 6955 |
SubjectTerms | Analysis Climate change Climate models Computer simulation Continental interfaces, environment Ecosystem models Embedded systems Environment models Environmental aspects Grazing Growth rate Intergovernmental Panel on Climate Change Marine ecosystems Microorganisms Mineral nutrients Motor vehicle drivers Net Primary Productivity Nutrient loss Ocean circulation Ocean models Ocean, Atmosphere Phytoplankton Plankton Primary production Sciences of the Universe Stratification Temperature Trends Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA61UPBF1CqenhJKQV_WJpdsNnk8reWU0get0LeQn6ege6V3LfS_dybZO3pC8cWXhd3MLslkdr4ZdvYbQg5D8AZxrQk8Q4ICMXCjdUxNF4zMLATsKYLVFmdq9l1-uWgv7rT6wpqwSg9cFXeUtZI6RgwtoowOT5mMLCehspi4wvMJmLdOpqoPFpqVZpyAzqqRvGOV1AeiFXnk51iNoEzbgoVgN9w7eFRo-zfO-cEPrI38y0UX3Dl5TB4NASOd1ok-ITupf0r2agvJ231ij69KZQV1faSAUfULP7Kk0kWmlTGEVtYP-tvhr370shJM0MtK9gobQ3_260HIRiu5My09cpbPyPnJp_OPs2ZomtAEiJ1WjQ5CxjRxpg0-uZYFcEksKUigeYSjzynxKLhnXfAcwFmxLhsBUJkmGZyfeE52-0WfXhDqnHHZ5NRp72WbuZPJq6BFcvBYp_mIvF9rzoaBUBz7WvyykFigqq2fWz6xqGqLqh6Rd5sbhqXeL_oBt2IjhiTY5QKYhh1Mw_7LNEbkADfSIs1Fj3U0c3e9XNrP377aqdSwctMxMyJvB6G8gNkHN_yWADpAZqwtyfGWJLyHYWv4AOxla8az6anFa0iS1kLieAM6G6_NyQ7OYmkhiJIKMnUtXv6PZb8iD1GFpeamG5Pd1dV1eg2R08q_KS_JH1ewE3c priority: 102 providerName: Directory of Open Access Journals |
Title | Drivers and uncertainties of future global marine primary production in marine ecosystem models |
URI | https://www.proquest.com/docview/2414682583 https://hal.science/hal-01805260 https://doaj.org/article/f8648dd0054d4daf86404d0fe36f32a3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoJiRepvElupXKmpDgJcypncR5mjpYKQgmGEPszfJnQYKkazok_nvuEqdQJHhJlPgSJWf7d3fO5XeEPLHWlGjXEpsGCFDAB06kdD4pbCkCsxZrimC2xXk-_yTeXGVXccGtiWmVPSa2QO1qi2vkx2BpRA7hjOQny-sEq0bh19VYQmNAdgGCJQRfu6dn5-8veizmkrVFOcFK54lIC9aR-4DXIo7NArMS8jLLYKRgVdw_7FJL378B6cEXzJH8C6pb-zPbJ3vRcaTTrqfvklu-ukdud6Ukf94n6uWqzbCgunIUbFX3pR_ZUmkdaMccQjv2D_pd4y9_dNkRTdBlR_oKHUS_Vn0jRKUdyTNta-U0D8jl7OzyxTyJxRMSCz7UOpGWC-cnusys8TpjFqCJ-RwC6dTB1gTvU8dTwwprUjDSOStCycFk-kkAEOQPyU5VV_4RoVqXOpTBF9IYkYVUC29yK7nXcFst0yF53mtO2UgsjvUtvikIMFDVyixUOlGoaoWqHpJnmwviq_5b9BS7YiOGZNjtiXq1UHFuqSBzIZ1D79MJp_GQCceC53ngE82H5Ag7UiHdRYX5NAt90zTq9ccLNRUS3rwsWDkkT6NQqOHprY6_J4AOkCFrS3K0JQnz0W41H8F42Xri-fStwnNIlpZBAPkDdDbqh5OKoNGo30P84P_Nh-QOKqfNqilGZGe9uvGPwTdamzEZyNmrcZwGuJ-9-_B53K40_ALG6g_D |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RQguiKcaCLCqQHAxXXvX9vqAUKCEhIYeIEi9rfYZkMAOcQrqj-I_MuNHIEhw6yWSvRPLnp3ZmbFnv4-QR9aaAuNaZOMABQrkwJGUzke5LURg1iKnCHZbnGSTj-LtaXq6Q372e2GwrbJfE5uF2lUW35EfQqQRGZQzkr9YfouQNQq_rvYUGq1ZHPvzH1Cy1c-nRzC_j5Nk_Hr-ahJ1rAKRheRiHUnLhfOJLlJrvE6ZBZ9lPoMKM3bwa4L3seOxYbk1MUSvjOWh4BBLfBJgdeBw2V1ySXBeoEPJ8Zt-4eeSNQygkBJkkYhz1iIJQYokDs0CWyCyIk3BLJGC948g2HAFbCLC7idsyPwrLjTBbnydXOuyVDpqzeoG2fHlTXK55a08v0XU0app56C6dBQCY9tWgNCstAq0hSmhLdQI_apxfyFdtqgWdNkizII10M9lPwglcIsoTRtinvo2mV-ETu-QvbIq_T6hWhc6FMHn0hiRhlgLbzIruddwWS3jAXnWa07ZDsUcyTS-KKhmUNXKLFScKFS1QlUPyNPNH7pH_bfoS5yKjRgibzcnqtVCdY6sgsyEdA5TXSecxkMmHAueZ4Enmg_IAU6kQmyNEpt3FvqsrtX0w3s1EhKevMhZMSBPOqFQwd1b3e2FAB0gHNeW5HBLEpzfbg0fgL1s3fFkNFN4DpHZUqhWv4POhr05qW6FqtVvf7r7_-GH5Mpk_m6mZtOT43vkKiqqaefJh2RvvTrz9yEpW5sHjStQoi7Y9X4BV4hI2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF61qUBceCMCAVYVCC5O_Fjb6wNCKSFKaKl4FNHbap8BAU7IA1T-GX-FX8OM1w6kEtx64BIp3onlnXzzSma_IeS-1qrAuBboyEGBAjlwwLmxQa4L5kKtcaYIdlscZqO37PlxerxFfjRnYbCtsvGJlaM2U42_kfcg0rAMyhme9FzdFvFyMHwy-xLgBCn8p7UZp-Ehsm9PvkH5tng8HsB3_SCOh8-Ono6CesJAoCHRWAZcJ8zYWBapVlamoQb7DW0G1WZk4FU5ayOTRCrMtYogkmVh7ooE4oqNHXiKBG67TXZ4xtO4RXb2hi9evWvCQMLDah4oJAhZwKI89LxCkDCxnppgQ0RWpCmAFAfy_hESq8kB6_iw_R7bM09FiSr0DS-Rn43SfMfLx-5qqbr6-yk-yf9Sq5fJxTohp31vQVfIli2vknN-ROfJNSIG86pzhcrSUMgBfAcFstDSqaOekYV6VhX6WeJRSjrzBB505sl0Afj0Q9ksQrXvybNpNYNocZ0cncXmbpBWOS3tTUKlLKQrnM25Uix1kWRWZZonVsJtJY_apNvAQuiasB3nhnwSULghjoSaiCgWiCOBOGqTR-sP1Fv9u-ge4mwthiTj1YXpfCJqnyUczxg3BrN6w4zEtyEzobNJ5pJYJm2yiygVSCNSInQmcrVYiPGb16LPOOy8yMOiTR7WQm4KT69lfewDdIDMYxuSnQ1J8HN6Y3kXjGHjiUf9A4HXkIQuhcL8K-is0-Bc1M54IX6D_Na_l--R84B-cTA-3L9NLqCeqsalvENay_nK3oH0c6nu1oZOiThjI_gFo32WjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+and+uncertainties+of+future+global+marine+primary+production+in+marine+ecosystem+models&rft.jtitle=Biogeosciences&rft.au=Laufk%C3%B6tter%2C+C&rft.au=Vogt%2C+M&rft.au=Gruber%2C+N&rft.au=Aita-Noguchi%2C+M&rft.date=2015-12-07&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=12&rft.issue=23&rft.spage=6955&rft_id=info:doi/10.5194%2Fbg-12-6955-2015&rft.externalDBID=ISR&rft.externalDocID=A481609709 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon |