Dynamics of Gut Microbiota in Autoimmune Lupus

Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus er...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 80; no. 24; pp. 7551 - 7560
Main Authors Zhang, Husen, Liao, Xiaofeng, Sparks, Joshua B., Luo, Xin M.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.12.2014
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
1098-5336
1098-6596
DOI10.1128/AEM.02676-14

Cover

Loading…
Abstract Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae , both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.
AbstractList Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae , both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.
Author Sparks, Joshua B.
Zhang, Husen
Liao, Xiaofeng
Luo, Xin M.
Author_xml – sequence: 1
  givenname: Husen
  surname: Zhang
  fullname: Zhang, Husen
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 2
  givenname: Xiaofeng
  surname: Liao
  fullname: Liao, Xiaofeng
  organization: Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 3
  givenname: Joshua B.
  surname: Sparks
  fullname: Sparks, Joshua B.
  organization: Carilion School of Medicine, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 4
  givenname: Xin M.
  surname: Luo
  fullname: Luo, Xin M.
  organization: Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25261516$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLxDAUhYMoOj52rqXgxoUdb9K8uhEGH6Mw4kbXIe2kGmmTsWkE_70ZR0XFhasLuV8O556zjdaddwahfQxjjIk8mVzcjIFwwXNM19AIQylzVhR8HY0AyjInhMIW2g7hCQAocLmJtggjHDPMR2h8_up0Z-uQ-SabxiG7sXXvK-sHnVmXTeLgbddFZ7JZXMSwizYa3Qaz9zF30P3lxd3ZVT67nV6fTWZ5zTAecqEZZpJWEiRLfgQXNQiBtWCy5qbSBa9oemlKAVBVghraMAra6HlFQc6bYgedrnQXserMvDZu6HWrFr3tdP-qvLbq58bZR_XgXxQltCSEJ4GjD4HeP0cTBtXZUJu21c74GBTmNEUgZUH_gRJW0GRdJvTwF_rkY-9SEokqGNCyEDhRB9_Nf7n-TD0BZAWkqEPoTaNqO-jB-uUttlUY1LJalapV79UqvLR5_OvTp-6f-BuaW6GZ
CODEN AEMIDF
CitedBy_id crossref_primary_10_1039_D0FO00578A
crossref_primary_10_3389_fimmu_2020_00408
crossref_primary_10_3390_nu14142788
crossref_primary_10_1186_s12866_022_02533_x
crossref_primary_10_1038_s41598_017_15377_7
crossref_primary_10_3390_nu10081016
crossref_primary_10_3389_fimmu_2023_1202850
crossref_primary_10_1111_febs_14076
crossref_primary_10_3390_microorganisms10030617
crossref_primary_10_3389_fimmu_2024_1359534
crossref_primary_10_1016_j_jaut_2023_103114
crossref_primary_10_3390_biomedicines12030616
crossref_primary_10_3390_microorganisms13030556
crossref_primary_10_1038_s41598_019_49897_1
crossref_primary_10_1016_j_clim_2015_04_016
crossref_primary_10_1039_D1FO01848E
crossref_primary_10_1038_s41598_021_03886_5
crossref_primary_10_3177_jnsv_64_116
crossref_primary_10_3389_fmicb_2016_01081
crossref_primary_10_2217_imt_2019_0002
crossref_primary_10_1016_j_jff_2018_07_025
crossref_primary_10_1016_j_taap_2021_115597
crossref_primary_10_1016_j_gpb_2015_09_004
crossref_primary_10_3389_fphar_2021_759095
crossref_primary_10_1111_cei_12609
crossref_primary_10_1128_msystems_00160_18
crossref_primary_10_1038_s44321_024_00023_3
crossref_primary_10_3389_fimmu_2015_00608
crossref_primary_10_3389_fimmu_2019_00658
crossref_primary_10_1016_j_autrev_2019_03_006
crossref_primary_10_1038_ncomms13699
crossref_primary_10_3390_biomedicines11030653
crossref_primary_10_1165_rcmb_2018_0099OC
crossref_primary_10_1016_j_micpath_2020_104684
crossref_primary_10_1016_j_chom_2018_11_009
crossref_primary_10_1038_s41598_021_02422_9
crossref_primary_10_7555_JBR_38_20240009
crossref_primary_10_1079_PAVSNNR202116048
crossref_primary_10_3389_fimmu_2021_749774
crossref_primary_10_1016_j_autrev_2021_102765
crossref_primary_10_1016_j_bj_2024_100754
crossref_primary_10_1097_BOR_0000000000000395
crossref_primary_10_3748_wjg_v22_i42_9257
crossref_primary_10_1128_AEM_02288_17
crossref_primary_10_1177_09612033231155840
crossref_primary_10_1111_cei_12587
crossref_primary_10_22207_JPAM_17_4_40
crossref_primary_10_3390_nu13082669
crossref_primary_10_1128_msphere_00070_23
crossref_primary_10_3390_ijms20194871
crossref_primary_10_3389_fmicb_2018_00757
crossref_primary_10_5937_scriptamed55_45977
crossref_primary_10_3390_medsci6040116
crossref_primary_10_3389_fmicb_2020_00628
crossref_primary_10_1007_s00011_023_01731_1
crossref_primary_10_3390_microorganisms13020445
crossref_primary_10_1007_s00296_023_05346_x
crossref_primary_10_1016_j_clim_2022_109109
crossref_primary_10_1016_j_pharmthera_2019_03_006
crossref_primary_10_3389_fmed_2022_910561
crossref_primary_10_3390_pathophysiology29020020
crossref_primary_10_1126_scitranslmed_aax2220
crossref_primary_10_1093_femsre_fuv013
crossref_primary_10_3389_fimmu_2024_1439176
crossref_primary_10_1080_08830185_2020_1742712
crossref_primary_10_1002_dev_21803
crossref_primary_10_3389_fimmu_2019_02681
crossref_primary_10_3390_microorganisms7120583
crossref_primary_10_1186_s40168_019_0720_8
crossref_primary_10_1038_nrrheum_2016_186
crossref_primary_10_3389_fimmu_2021_684727
crossref_primary_10_1002_iid3_119
crossref_primary_10_1038_s41598_017_14223_0
crossref_primary_10_1016_j_micres_2024_127613
crossref_primary_10_1016_j_berh_2016_10_003
crossref_primary_10_1136_ard_2023_223929
crossref_primary_10_1016_j_cca_2019_07_038
crossref_primary_10_1111_1750_3841_15127
crossref_primary_10_3389_fimmu_2022_917866
crossref_primary_10_1371_journal_pone_0166770
crossref_primary_10_1136_lupus_2022_000776
crossref_primary_10_1016_j_molmed_2024_11_002
crossref_primary_10_1016_j_coi_2018_09_003
crossref_primary_10_1038_s41598_024_77672_4
crossref_primary_10_1016_j_blre_2024_101219
crossref_primary_10_1016_j_jaut_2022_102867
crossref_primary_10_3389_fcimb_2022_812303
crossref_primary_10_1007_s12272_016_0796_7
crossref_primary_10_3389_fimmu_2020_01741
crossref_primary_10_3389_fimmu_2023_1124910
crossref_primary_10_3389_fimmu_2018_01830
crossref_primary_10_1016_j_cytogfr_2024_08_002
crossref_primary_10_1016_j_imlet_2020_03_001
crossref_primary_10_12677_ACM_2021_111034
crossref_primary_10_3390_foods11060877
crossref_primary_10_1080_08916934_2020_1777282
crossref_primary_10_1080_1744666X_2018_1519395
crossref_primary_10_1155_2017_6836498
crossref_primary_10_1016_j_autrev_2021_102845
crossref_primary_10_3390_life11040299
crossref_primary_10_1177_0022034518805739
crossref_primary_10_1177_0961203321995254
crossref_primary_10_3389_fcimb_2024_1288222
crossref_primary_10_1016_j_jaut_2018_05_008
crossref_primary_10_3389_fmicb_2024_1319654
crossref_primary_10_3390_antiox11010084
crossref_primary_10_1186_s40168_017_0252_z
crossref_primary_10_1016_j_neuroscience_2024_07_012
crossref_primary_10_1016_j_autrev_2024_103607
crossref_primary_10_1016_j_isci_2022_104241
crossref_primary_10_3390_antiox10091426
crossref_primary_10_3390_cells11213419
crossref_primary_10_1016_j_autrev_2020_102530
crossref_primary_10_7759_cureus_57512
crossref_primary_10_1155_2021_5516035
crossref_primary_10_1080_09540105_2024_2434475
crossref_primary_10_3390_microorganisms8070981
crossref_primary_10_1080_19490976_2023_2247053
crossref_primary_10_3389_fphar_2020_00643
crossref_primary_10_1080_08916934_2024_2378876
crossref_primary_10_1186_s40168_017_0300_8
crossref_primary_10_1039_D4FO03966A
crossref_primary_10_2174_1381612826666201211114609
crossref_primary_10_1186_s13075_023_03022_w
crossref_primary_10_3389_fimmu_2022_883747
crossref_primary_10_3389_fmicb_2018_00432
crossref_primary_10_3389_fimmu_2022_943241
crossref_primary_10_3389_fimmu_2022_923754
crossref_primary_10_3389_fimmu_2020_593353
crossref_primary_10_1038_s41467_020_15831_7
crossref_primary_10_1038_s41590_021_00914_4
crossref_primary_10_3389_fimmu_2022_906258
crossref_primary_10_1097_BOR_0000000000000309
crossref_primary_10_1007_s40588_023_00213_6
crossref_primary_10_1016_j_blre_2024_101252
crossref_primary_10_1111_odi_12589
crossref_primary_10_3389_fimmu_2021_626217
crossref_primary_10_1155_2021_5579608
crossref_primary_10_3389_fimmu_2021_799788
crossref_primary_10_3390_nu11112676
crossref_primary_10_1007_s12010_023_04827_w
crossref_primary_10_1096_fj_201900545RR
crossref_primary_10_1016_j_jtauto_2020_100078
crossref_primary_10_1002_hsr2_1640
crossref_primary_10_3389_fimmu_2021_651191
crossref_primary_10_3389_fmicb_2024_1477187
crossref_primary_10_1111_odi_12472
crossref_primary_10_1177_0961203318815768
crossref_primary_10_1007_s12026_017_8906_2
crossref_primary_10_1093_procel_pwad016
crossref_primary_10_3389_fimmu_2022_919792
crossref_primary_10_1016_j_jaut_2016_06_009
crossref_primary_10_1007_s00393_016_0175_2
crossref_primary_10_1073_pnas_1501305112
crossref_primary_10_1016_j_rdc_2022_06_005
crossref_primary_10_3390_biomedicines11061582
crossref_primary_10_1186_s42358_021_00201_8
crossref_primary_10_1007_s11926_020_00893_9
crossref_primary_10_3389_fmed_2021_654912
crossref_primary_10_3390_ijms20020283
crossref_primary_10_3390_life12111910
crossref_primary_10_1186_s13326_019_0217_1
crossref_primary_10_1111_imm_12765
crossref_primary_10_3389_fimmu_2015_00594
crossref_primary_10_1093_ndt_gfaa087
crossref_primary_10_1002_art_42008
crossref_primary_10_1016_j_immuni_2018_04_003
crossref_primary_10_2139_ssrn_3985175
crossref_primary_10_5114_reum_163091
crossref_primary_10_3389_fimmu_2020_00282
crossref_primary_10_3389_fimmu_2019_02608
crossref_primary_10_1111_imm_13048
crossref_primary_10_1111_imr_13341
crossref_primary_10_1186_s10020_019_0102_5
crossref_primary_10_3390_microorganisms8101587
crossref_primary_10_1038_s41584_023_01071_8
crossref_primary_10_3389_fnut_2020_604283
crossref_primary_10_1016_j_imbio_2017_11_004
crossref_primary_10_1186_s12859_016_1359_0
crossref_primary_10_3390_ijms25115608
crossref_primary_10_1016_j_jaut_2016_06_020
crossref_primary_10_1016_j_clim_2022_109096
crossref_primary_10_3389_fimmu_2018_00478
crossref_primary_10_3390_ijms231810729
crossref_primary_10_1111_1462_2920_15910
crossref_primary_10_1016_j_tjnut_2024_01_015
crossref_primary_10_1186_s12866_017_1096_1
crossref_primary_10_1093_intimm_dxx033
crossref_primary_10_1093_jn_nxz328
crossref_primary_10_1080_19390211_2023_2179154
crossref_primary_10_1016_j_jaut_2020_102420
crossref_primary_10_4049_immunohorizons_2100082
crossref_primary_10_7554_eLife_08973
crossref_primary_10_1016_j_jaut_2017_03_009
crossref_primary_10_1016_j_phrs_2018_11_023
crossref_primary_10_3389_fimmu_2021_686501
crossref_primary_10_1007_s10067_017_3821_4
crossref_primary_10_3389_fimmu_2023_1120958
crossref_primary_10_3390_nu11112629
crossref_primary_10_1177_03000605211053276
crossref_primary_10_1186_s13059_017_1271_6
crossref_primary_10_15406_jnhfe_2017_06_00199
crossref_primary_10_1111_bph_15512
crossref_primary_10_3389_fimmu_2022_853540
Cites_doi 10.1038/ismej.2011.139
10.1073/pnas.0504978102
10.1038/nature12721
10.1128/iai.64.8.3280-3287.1996
10.1371/journal.pone.0087560
10.1073/pnas.0706625104
10.4161/gmic.2.4.16798
10.1038/nri2515
10.1111/j.1600-065X.2011.01084.x
10.1152/ajpgi.00543.2011
10.4049/jimmunol.133.1.227
10.4049/jimmunol.170.11.5793
10.1053/j.gastro.2004.11.050
10.1053/j.ajkd.2009.06.012
10.1155/2011/432595
10.1126/science.1241165
10.1016/j.immuni.2013.08.013
10.4049/jimmunol.133.4.1955
10.1093/nar/28.1.27
10.1126/science.1233521
10.1128/AEM.03127-09
10.1038/nature07336
10.1016/j.molimm.2007.12.010
10.1016/0006-3207(92)91201-3
10.1126/science.1145697
10.1155/2011/271694
10.1016/j.it.2013.07.001
10.1073/pnas.1000082107
10.1016/j.chom.2012.02.006
10.1016/j.immuni.2013.12.007
10.1038/nature12726
10.1128/AEM.00062-07
10.1056/NEJMra1100359
10.2174/1875036201307010001
10.1038/nri3430
10.1111/j.1365-2249.2005.02654.x
10.1016/j.immuni.2010.06.001
10.1007/s11926-012-0314-y
10.1371/journal.pone.0061126
10.1038/nmeth.f.303
10.1038/nri3312
10.1084/jem.161.3.602
10.1038/nature11450
10.1073/pnas.0812600106
10.1136/bmj.2.3537.691
10.1038/ni.2611
10.1016/j.smim.2013.10.002
10.1172/JCI32639
10.1038/nbt.2676
10.1038/nature10554
10.1038/ismej.2010.201
10.1371/journal.pone.0020460
10.1111/j.1523-1755.2004.00850.x
10.1093/jn/136.11.2803
10.1038/ismej.2012.8
10.3748/wjg.v20.i10.2433
10.1084/jem.148.5.1198
10.1038/nature10809
10.1016/j.chom.2010.08.004
10.1007/0-387-30744-3_35
10.1128/AEM.71.12.8228-8235.2005
10.1093/bioinformatics/btq041
10.1016/j.arcmed.2014.03.008
10.1038/nature05414
10.1177/0961203306075613
10.1073/pnas.1219451110
10.1016/j.cell.2006.02.017
10.1093/bioinformatics/btq461
10.1097/SHK.0000000000000066
10.1073/pnas.1207230109
10.1084/jem.154.5.1671
10.1038/ni0901-777
10.1099/00207713-44-4-812
10.4049/jimmunol.1000598
10.4049/jimmunol.181.4.2277
10.1016/j.immuni.2011.07.002
10.1111/j.1442-9993.2001.01070.pp.x
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Dec 2014
Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Dec 2014
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
7T5
5PM
DOI 10.1128/AEM.02676-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Immunology Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
Immunology Abstracts
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
Virology and AIDS Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-5336
1098-6596
EndPage 7560
ExternalDocumentID PMC4249226
3522616291
25261516
10_1128_AEM_02676_14
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
.55
.GJ
3O-
ABTAH
AFFNX
AGCDD
AI.
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NEJ
NPM
OHT
VH1
WHG
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
7T5
FRP
HH5
LSO
OK1
W2D
5PM
ID FETCH-LOGICAL-c511t-7a51584b8085098767c0771a758c6eba36b4c07f9700bb74e4f540aeadb408df3
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 14:10:54 EDT 2025
Thu Jul 10 19:16:55 EDT 2025
Fri Jul 11 05:56:46 EDT 2025
Mon Jun 30 08:32:28 EDT 2025
Thu Apr 03 07:09:53 EDT 2025
Tue Jul 01 02:19:57 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License Copyright © 2014, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-7a51584b8085098767c0771a758c6eba36b4c07f9700bb74e4f540aeadb408df3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aem.asm.org/content/aem/80/24/7551.full.pdf
PMID 25261516
PQID 1635049371
PQPubID 42251
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4249226
proquest_miscellaneous_1642618834
proquest_miscellaneous_1625347588
proquest_journals_1635049371
pubmed_primary_25261516
crossref_citationtrail_10_1128_AEM_02676_14
crossref_primary_10_1128_AEM_02676_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
Izui S (e_1_3_3_54_2) 1984; 133
e_1_3_3_77_2
e_1_3_3_79_2
Hewicker M (e_1_3_3_48_2) 1990; 33
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
Vaahtovuo J (e_1_3_3_22_2) 2008; 35
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Smathers PA (e_1_3_3_51_2) 1984; 133
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_41_2
e_1_3_3_64_2
22129255 - N Engl J Med. 2011 Dec 1;365(22):2110-21
20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
23973225 - Immunity. 2013 Aug 22;39(2):400-12
24627581 - World J Gastroenterol. 2014 Mar 14;20(10):2433-48
21403825 - J Biomed Biotechnol. 2011;2011:271694
20228095 - Appl Environ Microbiol. 2010 May;76(9):3048-51
23023125 - Nature. 2012 Oct 4;490(7418):55-60
20774205 - Br Med J. 1928 Oct 20;2(3537):691-6
20679534 - J Immunol. 2010 Sep 1;185(5):2675-9
10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
24226773 - Nature. 2013 Dec 19;504(7480):451-5
19343057 - Nat Rev Immunol. 2009 May;9(5):313-23
19628316 - Am J Kidney Dis. 2010 Feb;55(2):344-7
21248858 - ISME J. 2011 Jul;5(7):1115-24
22031325 - Nature. 2011 Nov 24;479(7374):538-41
12759464 - J Immunol. 2003 Jun 1;170(11):5793-8
22168424 - Immunol Rev. 2012 Jan;245(1):239-49
16033867 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5
15606616 - Clin Exp Immunol. 2005 Jan;139(1):74-83
17183312 - Nature. 2006 Dec 21;444(7122):1027-31
21983068 - Gut Microbes. 2011 Jul-Aug;2(4):217-26
24169518 - Semin Immunol. 2013 Nov 30;25(5):364-9
18243320 - Mol Immunol. 2008 May;45(9):2690-9
2238887 - Z Versuchstierkd. 1990;33(4):149-56
16497592 - Cell. 2006 Feb 24;124(4):837-48
23593407 - PLoS One. 2013;8(4):e61126
18528968 - J Rheumatol. 2008 Aug;35(8):1500-5
23618829 - Nat Rev Immunol. 2013 May;13(5):321-35
7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26
18060042 - J Clin Invest. 2008 Jan;118(1):205-16
17569825 - Science. 2007 Jul 13;317(5835):256-60
6332142 - J Immunol. 1984 Oct;133(4):1955-61
22028588 - J Biomed Biotechnol. 2011;2011:432595
15765388 - Gastroenterology. 2005 Mar;128(3):541-51
22297845 - Nature. 2012 Feb 9;482(7384):179-85
22134646 - ISME J. 2012 Mar;6(3):610-8
20620945 - Immunity. 2010 Jun 25;32(6):815-27
24412617 - Immunity. 2014 Jan 16;40(1):128-39
23378145 - Curr Rheumatol Rep. 2013 Mar;15(3):314
20660719 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4615-22
21777796 - Immunity. 2011 Jul 22;35(1):13-22
22520466 - Cell Host Microbe. 2012 Apr 19;11(4):387-96
23957963 - Trends Immunol. 2013 Sep;34(9):423-30
8757865 - Infect Immun. 1996 Aug;64(8):3280-7
20833380 - Cell Host Microbe. 2010 Sep 16;8(3):292-300
309911 - J Exp Med. 1978 Nov 1;148(5):1198-215
2982991 - J Exp Med. 1985 Mar 1;161(3):602-16
19164560 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2365-70
15327395 - Kidney Int. 2004 Sep;66(3):1018-28
24475308 - PLoS One. 2014;9(1):e87560
20383131 - Nat Methods. 2010 May;7(5):335-6
18806780 - Nature. 2008 Oct 23;455(7216):1109-13
23328391 - Science. 2013 Mar 1;339(6123):1084-8
23975157 - Nat Biotechnol. 2013 Sep;31(9):814-21
17432109 - Lupus. 2007;16(3):212-6
17699621 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5
23007572 - Nat Rev Immunol. 2012 Oct;12(10):728-34
23828891 - Science. 2013 Aug 2;341(6145):569-73
24681186 - Arch Med Res. 2014 Apr;45(3):195-202
23671105 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71
18684916 - J Immunol. 2008 Aug 15;181(4):2277-84
22517765 - Am J Physiol Gastrointest Liver Physiol. 2012 Jun 15;302(12):G1405-15
17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35
24226770 - Nature. 2013 Dec 19;504(7480):446-50
6609979 - J Immunol. 1984 Jul;133(1):227-33
22689992 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10462-7
23778793 - Nat Immunol. 2013 Jul;14(7):660-7
20130030 - Bioinformatics. 2010 Mar 15;26(6):715-21
22402401 - ISME J. 2012 Aug;6(8):1621-4
6975351 - J Exp Med. 1981 Nov 1;154(5):1671-80
11526384 - Nat Immunol. 2001 Sep;2(9):777-80
17056804 - J Nutr. 2006 Nov;136(11):2803-7
24240593 - Shock. 2013 Dec;40(6):496-503
21698145 - PLoS One. 2011;6(6):e20460
References_xml – ident: e_1_3_3_39_2
  doi: 10.1038/ismej.2011.139
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0504978102
– ident: e_1_3_3_70_2
  doi: 10.1038/nature12721
– ident: e_1_3_3_9_2
  doi: 10.1128/iai.64.8.3280-3287.1996
– ident: e_1_3_3_57_2
  doi: 10.1371/journal.pone.0087560
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0706625104
– ident: e_1_3_3_59_2
  doi: 10.4161/gmic.2.4.16798
– ident: e_1_3_3_8_2
  doi: 10.1038/nri2515
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1600-065X.2011.01084.x
– volume: 33
  start-page: 149
  year: 1990
  ident: e_1_3_3_48_2
  article-title: Detection of circulating immune complexes in MRL mice with different forms of glomerulonephritis
  publication-title: Z. Versuchstierkd.
– ident: e_1_3_3_72_2
  doi: 10.1152/ajpgi.00543.2011
– volume: 133
  start-page: 227
  year: 1984
  ident: e_1_3_3_54_2
  article-title: Induction of various autoantibodies by mutant gene lpr in several strains of mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.133.1.227
– ident: e_1_3_3_31_2
  doi: 10.4049/jimmunol.170.11.5793
– ident: e_1_3_3_66_2
  doi: 10.1053/j.gastro.2004.11.050
– ident: e_1_3_3_33_2
  doi: 10.1053/j.ajkd.2009.06.012
– ident: e_1_3_3_28_2
  doi: 10.1155/2011/432595
– ident: e_1_3_3_68_2
  doi: 10.1126/science.1241165
– ident: e_1_3_3_20_2
  doi: 10.1016/j.immuni.2013.08.013
– volume: 133
  start-page: 1955
  year: 1984
  ident: e_1_3_3_51_2
  article-title: Studies of lymphoproliferation in MRL-lpr/lpr mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.133.4.1955
– ident: e_1_3_3_43_2
  doi: 10.1093/nar/28.1.27
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1233521
– ident: e_1_3_3_74_2
  doi: 10.1128/AEM.03127-09
– ident: e_1_3_3_18_2
  doi: 10.1038/nature07336
– ident: e_1_3_3_62_2
  doi: 10.1016/j.molimm.2007.12.010
– ident: e_1_3_3_41_2
  doi: 10.1016/0006-3207(92)91201-3
– ident: e_1_3_3_79_2
  doi: 10.1126/science.1145697
– ident: e_1_3_3_46_2
  doi: 10.1155/2011/271694
– ident: e_1_3_3_5_2
  doi: 10.1016/j.it.2013.07.001
– ident: e_1_3_3_25_2
  doi: 10.1073/pnas.1000082107
– ident: e_1_3_3_67_2
  doi: 10.1016/j.chom.2012.02.006
– ident: e_1_3_3_71_2
  doi: 10.1016/j.immuni.2013.12.007
– ident: e_1_3_3_69_2
  doi: 10.1038/nature12726
– ident: e_1_3_3_38_2
  doi: 10.1128/AEM.00062-07
– ident: e_1_3_3_27_2
  doi: 10.1056/NEJMra1100359
– ident: e_1_3_3_35_2
  doi: 10.2174/1875036201307010001
– ident: e_1_3_3_3_2
  doi: 10.1038/nri3430
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1365-2249.2005.02654.x
– ident: e_1_3_3_24_2
  doi: 10.1016/j.immuni.2010.06.001
– ident: e_1_3_3_6_2
  doi: 10.1007/s11926-012-0314-y
– ident: e_1_3_3_60_2
  doi: 10.1371/journal.pone.0061126
– ident: e_1_3_3_36_2
  doi: 10.1038/nmeth.f.303
– ident: e_1_3_3_61_2
  doi: 10.1038/nri3312
– ident: e_1_3_3_53_2
  doi: 10.1084/jem.161.3.602
– ident: e_1_3_3_17_2
  doi: 10.1038/nature11450
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0812600106
– ident: e_1_3_3_76_2
  doi: 10.1136/bmj.2.3537.691
– ident: e_1_3_3_7_2
  doi: 10.1038/ni.2611
– ident: e_1_3_3_4_2
  doi: 10.1016/j.smim.2013.10.002
– ident: e_1_3_3_23_2
  doi: 10.1172/JCI32639
– ident: e_1_3_3_42_2
  doi: 10.1038/nbt.2676
– ident: e_1_3_3_26_2
  doi: 10.1038/nature10554
– ident: e_1_3_3_65_2
  doi: 10.1038/ismej.2010.201
– ident: e_1_3_3_56_2
  doi: 10.1371/journal.pone.0020460
– ident: e_1_3_3_30_2
  doi: 10.1111/j.1523-1755.2004.00850.x
– ident: e_1_3_3_55_2
  doi: 10.1093/jn/136.11.2803
– ident: e_1_3_3_34_2
  doi: 10.1038/ismej.2012.8
– ident: e_1_3_3_75_2
  doi: 10.3748/wjg.v20.i10.2433
– ident: e_1_3_3_47_2
  doi: 10.1084/jem.148.5.1198
– ident: e_1_3_3_12_2
  doi: 10.1038/nature10809
– ident: e_1_3_3_10_2
  doi: 10.1016/j.chom.2010.08.004
– ident: e_1_3_3_50_2
  doi: 10.1007/0-387-30744-3_35
– ident: e_1_3_3_40_2
  doi: 10.1128/AEM.71.12.8228-8235.2005
– ident: e_1_3_3_44_2
  doi: 10.1093/bioinformatics/btq041
– ident: e_1_3_3_58_2
  doi: 10.1016/j.arcmed.2014.03.008
– ident: e_1_3_3_13_2
  doi: 10.1038/nature05414
– ident: e_1_3_3_29_2
  doi: 10.1177/0961203306075613
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1219451110
– ident: e_1_3_3_2_2
  doi: 10.1016/j.cell.2006.02.017
– ident: e_1_3_3_37_2
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_3_3_63_2
  doi: 10.1097/SHK.0000000000000066
– ident: e_1_3_3_64_2
  doi: 10.1073/pnas.1207230109
– ident: e_1_3_3_52_2
  doi: 10.1084/jem.154.5.1671
– volume: 35
  start-page: 1500
  year: 2008
  ident: e_1_3_3_22_2
  article-title: Fecal microbiota in early rheumatoid arthritis
  publication-title: J. Rheumatol.
– ident: e_1_3_3_73_2
  doi: 10.1038/ni0901-777
– ident: e_1_3_3_49_2
  doi: 10.1099/00207713-44-4-812
– ident: e_1_3_3_77_2
  doi: 10.4049/jimmunol.1000598
– ident: e_1_3_3_78_2
  doi: 10.4049/jimmunol.181.4.2277
– ident: e_1_3_3_80_2
  doi: 10.1016/j.immuni.2011.07.002
– ident: e_1_3_3_45_2
  doi: 10.1111/j.1442-9993.2001.01070.pp.x
– reference: 22031325 - Nature. 2011 Nov 24;479(7374):538-41
– reference: 12759464 - J Immunol. 2003 Jun 1;170(11):5793-8
– reference: 19164560 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2365-70
– reference: 22402401 - ISME J. 2012 Aug;6(8):1621-4
– reference: 22520466 - Cell Host Microbe. 2012 Apr 19;11(4):387-96
– reference: 17699621 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5
– reference: 16497592 - Cell. 2006 Feb 24;124(4):837-48
– reference: 20774205 - Br Med J. 1928 Oct 20;2(3537):691-6
– reference: 18528968 - J Rheumatol. 2008 Aug;35(8):1500-5
– reference: 15606616 - Clin Exp Immunol. 2005 Jan;139(1):74-83
– reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
– reference: 18243320 - Mol Immunol. 2008 May;45(9):2690-9
– reference: 19628316 - Am J Kidney Dis. 2010 Feb;55(2):344-7
– reference: 15327395 - Kidney Int. 2004 Sep;66(3):1018-28
– reference: 18684916 - J Immunol. 2008 Aug 15;181(4):2277-84
– reference: 17183312 - Nature. 2006 Dec 21;444(7122):1027-31
– reference: 15765388 - Gastroenterology. 2005 Mar;128(3):541-51
– reference: 17056804 - J Nutr. 2006 Nov;136(11):2803-7
– reference: 20833380 - Cell Host Microbe. 2010 Sep 16;8(3):292-300
– reference: 2238887 - Z Versuchstierkd. 1990;33(4):149-56
– reference: 23671105 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71
– reference: 6609979 - J Immunol. 1984 Jul;133(1):227-33
– reference: 21698145 - PLoS One. 2011;6(6):e20460
– reference: 6332142 - J Immunol. 1984 Oct;133(4):1955-61
– reference: 18060042 - J Clin Invest. 2008 Jan;118(1):205-16
– reference: 2982991 - J Exp Med. 1985 Mar 1;161(3):602-16
– reference: 21403825 - J Biomed Biotechnol. 2011;2011:271694
– reference: 23023125 - Nature. 2012 Oct 4;490(7418):55-60
– reference: 20228095 - Appl Environ Microbiol. 2010 May;76(9):3048-51
– reference: 23973225 - Immunity. 2013 Aug 22;39(2):400-12
– reference: 21248858 - ISME J. 2011 Jul;5(7):1115-24
– reference: 23828891 - Science. 2013 Aug 2;341(6145):569-73
– reference: 309911 - J Exp Med. 1978 Nov 1;148(5):1198-215
– reference: 24412617 - Immunity. 2014 Jan 16;40(1):128-39
– reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
– reference: 24169518 - Semin Immunol. 2013 Nov 30;25(5):364-9
– reference: 20130030 - Bioinformatics. 2010 Mar 15;26(6):715-21
– reference: 22689992 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10462-7
– reference: 23618829 - Nat Rev Immunol. 2013 May;13(5):321-35
– reference: 21777796 - Immunity. 2011 Jul 22;35(1):13-22
– reference: 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26
– reference: 23007572 - Nat Rev Immunol. 2012 Oct;12(10):728-34
– reference: 24226773 - Nature. 2013 Dec 19;504(7480):451-5
– reference: 24475308 - PLoS One. 2014;9(1):e87560
– reference: 23778793 - Nat Immunol. 2013 Jul;14(7):660-7
– reference: 24226770 - Nature. 2013 Dec 19;504(7480):446-50
– reference: 23593407 - PLoS One. 2013;8(4):e61126
– reference: 23378145 - Curr Rheumatol Rep. 2013 Mar;15(3):314
– reference: 24681186 - Arch Med Res. 2014 Apr;45(3):195-202
– reference: 22028588 - J Biomed Biotechnol. 2011;2011:432595
– reference: 22297845 - Nature. 2012 Feb 9;482(7384):179-85
– reference: 22129255 - N Engl J Med. 2011 Dec 1;365(22):2110-21
– reference: 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35
– reference: 16033867 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5
– reference: 22168424 - Immunol Rev. 2012 Jan;245(1):239-49
– reference: 11526384 - Nat Immunol. 2001 Sep;2(9):777-80
– reference: 23328391 - Science. 2013 Mar 1;339(6123):1084-8
– reference: 20383131 - Nat Methods. 2010 May;7(5):335-6
– reference: 23957963 - Trends Immunol. 2013 Sep;34(9):423-30
– reference: 20679534 - J Immunol. 2010 Sep 1;185(5):2675-9
– reference: 6975351 - J Exp Med. 1981 Nov 1;154(5):1671-80
– reference: 8757865 - Infect Immun. 1996 Aug;64(8):3280-7
– reference: 20620945 - Immunity. 2010 Jun 25;32(6):815-27
– reference: 21983068 - Gut Microbes. 2011 Jul-Aug;2(4):217-26
– reference: 17432109 - Lupus. 2007;16(3):212-6
– reference: 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
– reference: 17569825 - Science. 2007 Jul 13;317(5835):256-60
– reference: 24627581 - World J Gastroenterol. 2014 Mar 14;20(10):2433-48
– reference: 20660719 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4615-22
– reference: 22517765 - Am J Physiol Gastrointest Liver Physiol. 2012 Jun 15;302(12):G1405-15
– reference: 19343057 - Nat Rev Immunol. 2009 May;9(5):313-23
– reference: 22134646 - ISME J. 2012 Mar;6(3):610-8
– reference: 18806780 - Nature. 2008 Oct 23;455(7216):1109-13
– reference: 24240593 - Shock. 2013 Dec;40(6):496-503
– reference: 23975157 - Nat Biotechnol. 2013 Sep;31(9):814-21
SSID ssj0004068
ssj0006590
Score 2.5627146
Snippet Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7551
SubjectTerms Animals
Autoimmune diseases
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biodiversity
Clostridiaceae
Digestive system
Disease Models, Animal
Environmental factors
Feces - microbiology
Female
Females
Gastrointestinal Tract - microbiology
Genetics
Humans
Lactobacillus
Lupus
Lupus Erythematosus, Systemic - microbiology
Male
Metagenomics
Mice
Mice, Inbred C57BL
Microbial Ecology
Microbiota
Microorganisms
Rodents
Title Dynamics of Gut Microbiota in Autoimmune Lupus
URI https://www.ncbi.nlm.nih.gov/pubmed/25261516
https://www.proquest.com/docview/1635049371
https://www.proquest.com/docview/1625347588
https://www.proquest.com/docview/1642618834
https://pubmed.ncbi.nlm.nih.gov/PMC4249226
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCAEPCAqDwkBBgqcqJXGc2HmcWKcKtiGkVupbZCcOizbSaUse4K_nLnZ-dB1o8OJWjpu4vrNzd_b3HSHvJc91qD3pgvENhaSxKz1FXZVxSj2RqSBDNPLxSTRfss-rcNVnKmzQJZWapr9uxJX8j1ShDuSKKNl_kGx3U6iA7yBfKEHCUN5KxgcmnXxzGuN7XU1-FIZWqZIYxpB1tS4Q_qEn5_WFdfBbwllrfGLYfIB1QyhJ0VMzbUWV5xiw6c7wFLKJs67gM9f2DdhsxMvLs3Z74bSWg8TOtf1BaYOwNtzgs8HRDbNCIgEp2IiWv_qGOrusmgRNVn0oGyySPDQcs9urN0VEwv7seIp5sSLXwEs3SbJPviaHy6OjZDFbLe6SexS8A0xc8eXbgCTeswhI26sW70DFx-G9Ny2RLffi-inZgdmxeEIeW3_B2TfCf0ru6HJE7psMoj9H5EELLL8akUcDbslnZNoqh7POHVAOp1cOpyidXjmcRjmek-XhbPFp7trkGG4KNnLlcgmWqGBKIOdgDO80nnqc-xL8vzTSSgaRYlCTx9zzlOJMsxyMcwkLh2IwB_Ngl-yU61K_JI4vsogH0teCaoawvCiNMy-mAq3j3A_HZNIOVJJa5nhMYHKeNB4kFQkMa9IMK3iSY_Kha31hGFP-0G6vHfPEzqmrBLyDEHzWgPtj8q67DCsebmPJUq9rbEPDgMH_FH9rg6EBIQJ4zAsjxq4zNKRoxkdjwjcE3DVAxvXNK2Vx2jCvM-TXpNGrW_TtNXnYT589slNd1voN2K-Vetto62_Tx5oS
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+gut+microbiota+in+autoimmune+lupus&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Zhang%2C+Husen&rft.au=Liao%2C+Xiaofeng&rft.au=Sparks%2C+Joshua+B&rft.au=Luo%2C+Xin+M&rft.date=2014-12-01&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=80&rft.issue=24&rft.spage=7551&rft_id=info:doi/10.1128%2FAEM.02676-14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon