Dynamics of Gut Microbiota in Autoimmune Lupus
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus er...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 80; no. 24; pp. 7551 - 7560 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0099-2240 1098-5336 1098-5336 1098-6596 |
DOI | 10.1128/AEM.02676-14 |
Cover
Loading…
Abstract | Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in
Lachnospiraceae
and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of
Lachnospiraceae
in females was associated with an earlier onset of and/or more severe lupus symptoms.
Clostridiaceae
and
Lachnospiraceae
, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients. |
---|---|
AbstractList | Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in
Lachnospiraceae
and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of
Lachnospiraceae
in females was associated with an earlier onset of and/or more severe lupus symptoms.
Clostridiaceae
and
Lachnospiraceae
, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients. Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients. Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients. |
Author | Sparks, Joshua B. Zhang, Husen Liao, Xiaofeng Luo, Xin M. |
Author_xml | – sequence: 1 givenname: Husen surname: Zhang fullname: Zhang, Husen organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 2 givenname: Xiaofeng surname: Liao fullname: Liao, Xiaofeng organization: Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA – sequence: 3 givenname: Joshua B. surname: Sparks fullname: Sparks, Joshua B. organization: Carilion School of Medicine, Virginia Tech, Blacksburg, Virginia, USA – sequence: 4 givenname: Xin M. surname: Luo fullname: Luo, Xin M. organization: Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25261516$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLxDAUhYMoOj52rqXgxoUdb9K8uhEGH6Mw4kbXIe2kGmmTsWkE_70ZR0XFhasLuV8O556zjdaddwahfQxjjIk8mVzcjIFwwXNM19AIQylzVhR8HY0AyjInhMIW2g7hCQAocLmJtggjHDPMR2h8_up0Z-uQ-SabxiG7sXXvK-sHnVmXTeLgbddFZ7JZXMSwizYa3Qaz9zF30P3lxd3ZVT67nV6fTWZ5zTAecqEZZpJWEiRLfgQXNQiBtWCy5qbSBa9oemlKAVBVghraMAra6HlFQc6bYgedrnQXserMvDZu6HWrFr3tdP-qvLbq58bZR_XgXxQltCSEJ4GjD4HeP0cTBtXZUJu21c74GBTmNEUgZUH_gRJW0GRdJvTwF_rkY-9SEokqGNCyEDhRB9_Nf7n-TD0BZAWkqEPoTaNqO-jB-uUttlUY1LJalapV79UqvLR5_OvTp-6f-BuaW6GZ |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1039_D0FO00578A crossref_primary_10_3389_fimmu_2020_00408 crossref_primary_10_3390_nu14142788 crossref_primary_10_1186_s12866_022_02533_x crossref_primary_10_1038_s41598_017_15377_7 crossref_primary_10_3390_nu10081016 crossref_primary_10_3389_fimmu_2023_1202850 crossref_primary_10_1111_febs_14076 crossref_primary_10_3390_microorganisms10030617 crossref_primary_10_3389_fimmu_2024_1359534 crossref_primary_10_1016_j_jaut_2023_103114 crossref_primary_10_3390_biomedicines12030616 crossref_primary_10_3390_microorganisms13030556 crossref_primary_10_1038_s41598_019_49897_1 crossref_primary_10_1016_j_clim_2015_04_016 crossref_primary_10_1039_D1FO01848E crossref_primary_10_1038_s41598_021_03886_5 crossref_primary_10_3177_jnsv_64_116 crossref_primary_10_3389_fmicb_2016_01081 crossref_primary_10_2217_imt_2019_0002 crossref_primary_10_1016_j_jff_2018_07_025 crossref_primary_10_1016_j_taap_2021_115597 crossref_primary_10_1016_j_gpb_2015_09_004 crossref_primary_10_3389_fphar_2021_759095 crossref_primary_10_1111_cei_12609 crossref_primary_10_1128_msystems_00160_18 crossref_primary_10_1038_s44321_024_00023_3 crossref_primary_10_3389_fimmu_2015_00608 crossref_primary_10_3389_fimmu_2019_00658 crossref_primary_10_1016_j_autrev_2019_03_006 crossref_primary_10_1038_ncomms13699 crossref_primary_10_3390_biomedicines11030653 crossref_primary_10_1165_rcmb_2018_0099OC crossref_primary_10_1016_j_micpath_2020_104684 crossref_primary_10_1016_j_chom_2018_11_009 crossref_primary_10_1038_s41598_021_02422_9 crossref_primary_10_7555_JBR_38_20240009 crossref_primary_10_1079_PAVSNNR202116048 crossref_primary_10_3389_fimmu_2021_749774 crossref_primary_10_1016_j_autrev_2021_102765 crossref_primary_10_1016_j_bj_2024_100754 crossref_primary_10_1097_BOR_0000000000000395 crossref_primary_10_3748_wjg_v22_i42_9257 crossref_primary_10_1128_AEM_02288_17 crossref_primary_10_1177_09612033231155840 crossref_primary_10_1111_cei_12587 crossref_primary_10_22207_JPAM_17_4_40 crossref_primary_10_3390_nu13082669 crossref_primary_10_1128_msphere_00070_23 crossref_primary_10_3390_ijms20194871 crossref_primary_10_3389_fmicb_2018_00757 crossref_primary_10_5937_scriptamed55_45977 crossref_primary_10_3390_medsci6040116 crossref_primary_10_3389_fmicb_2020_00628 crossref_primary_10_1007_s00011_023_01731_1 crossref_primary_10_3390_microorganisms13020445 crossref_primary_10_1007_s00296_023_05346_x crossref_primary_10_1016_j_clim_2022_109109 crossref_primary_10_1016_j_pharmthera_2019_03_006 crossref_primary_10_3389_fmed_2022_910561 crossref_primary_10_3390_pathophysiology29020020 crossref_primary_10_1126_scitranslmed_aax2220 crossref_primary_10_1093_femsre_fuv013 crossref_primary_10_3389_fimmu_2024_1439176 crossref_primary_10_1080_08830185_2020_1742712 crossref_primary_10_1002_dev_21803 crossref_primary_10_3389_fimmu_2019_02681 crossref_primary_10_3390_microorganisms7120583 crossref_primary_10_1186_s40168_019_0720_8 crossref_primary_10_1038_nrrheum_2016_186 crossref_primary_10_3389_fimmu_2021_684727 crossref_primary_10_1002_iid3_119 crossref_primary_10_1038_s41598_017_14223_0 crossref_primary_10_1016_j_micres_2024_127613 crossref_primary_10_1016_j_berh_2016_10_003 crossref_primary_10_1136_ard_2023_223929 crossref_primary_10_1016_j_cca_2019_07_038 crossref_primary_10_1111_1750_3841_15127 crossref_primary_10_3389_fimmu_2022_917866 crossref_primary_10_1371_journal_pone_0166770 crossref_primary_10_1136_lupus_2022_000776 crossref_primary_10_1016_j_molmed_2024_11_002 crossref_primary_10_1016_j_coi_2018_09_003 crossref_primary_10_1038_s41598_024_77672_4 crossref_primary_10_1016_j_blre_2024_101219 crossref_primary_10_1016_j_jaut_2022_102867 crossref_primary_10_3389_fcimb_2022_812303 crossref_primary_10_1007_s12272_016_0796_7 crossref_primary_10_3389_fimmu_2020_01741 crossref_primary_10_3389_fimmu_2023_1124910 crossref_primary_10_3389_fimmu_2018_01830 crossref_primary_10_1016_j_cytogfr_2024_08_002 crossref_primary_10_1016_j_imlet_2020_03_001 crossref_primary_10_12677_ACM_2021_111034 crossref_primary_10_3390_foods11060877 crossref_primary_10_1080_08916934_2020_1777282 crossref_primary_10_1080_1744666X_2018_1519395 crossref_primary_10_1155_2017_6836498 crossref_primary_10_1016_j_autrev_2021_102845 crossref_primary_10_3390_life11040299 crossref_primary_10_1177_0022034518805739 crossref_primary_10_1177_0961203321995254 crossref_primary_10_3389_fcimb_2024_1288222 crossref_primary_10_1016_j_jaut_2018_05_008 crossref_primary_10_3389_fmicb_2024_1319654 crossref_primary_10_3390_antiox11010084 crossref_primary_10_1186_s40168_017_0252_z crossref_primary_10_1016_j_neuroscience_2024_07_012 crossref_primary_10_1016_j_autrev_2024_103607 crossref_primary_10_1016_j_isci_2022_104241 crossref_primary_10_3390_antiox10091426 crossref_primary_10_3390_cells11213419 crossref_primary_10_1016_j_autrev_2020_102530 crossref_primary_10_7759_cureus_57512 crossref_primary_10_1155_2021_5516035 crossref_primary_10_1080_09540105_2024_2434475 crossref_primary_10_3390_microorganisms8070981 crossref_primary_10_1080_19490976_2023_2247053 crossref_primary_10_3389_fphar_2020_00643 crossref_primary_10_1080_08916934_2024_2378876 crossref_primary_10_1186_s40168_017_0300_8 crossref_primary_10_1039_D4FO03966A crossref_primary_10_2174_1381612826666201211114609 crossref_primary_10_1186_s13075_023_03022_w crossref_primary_10_3389_fimmu_2022_883747 crossref_primary_10_3389_fmicb_2018_00432 crossref_primary_10_3389_fimmu_2022_943241 crossref_primary_10_3389_fimmu_2022_923754 crossref_primary_10_3389_fimmu_2020_593353 crossref_primary_10_1038_s41467_020_15831_7 crossref_primary_10_1038_s41590_021_00914_4 crossref_primary_10_3389_fimmu_2022_906258 crossref_primary_10_1097_BOR_0000000000000309 crossref_primary_10_1007_s40588_023_00213_6 crossref_primary_10_1016_j_blre_2024_101252 crossref_primary_10_1111_odi_12589 crossref_primary_10_3389_fimmu_2021_626217 crossref_primary_10_1155_2021_5579608 crossref_primary_10_3389_fimmu_2021_799788 crossref_primary_10_3390_nu11112676 crossref_primary_10_1007_s12010_023_04827_w crossref_primary_10_1096_fj_201900545RR crossref_primary_10_1016_j_jtauto_2020_100078 crossref_primary_10_1002_hsr2_1640 crossref_primary_10_3389_fimmu_2021_651191 crossref_primary_10_3389_fmicb_2024_1477187 crossref_primary_10_1111_odi_12472 crossref_primary_10_1177_0961203318815768 crossref_primary_10_1007_s12026_017_8906_2 crossref_primary_10_1093_procel_pwad016 crossref_primary_10_3389_fimmu_2022_919792 crossref_primary_10_1016_j_jaut_2016_06_009 crossref_primary_10_1007_s00393_016_0175_2 crossref_primary_10_1073_pnas_1501305112 crossref_primary_10_1016_j_rdc_2022_06_005 crossref_primary_10_3390_biomedicines11061582 crossref_primary_10_1186_s42358_021_00201_8 crossref_primary_10_1007_s11926_020_00893_9 crossref_primary_10_3389_fmed_2021_654912 crossref_primary_10_3390_ijms20020283 crossref_primary_10_3390_life12111910 crossref_primary_10_1186_s13326_019_0217_1 crossref_primary_10_1111_imm_12765 crossref_primary_10_3389_fimmu_2015_00594 crossref_primary_10_1093_ndt_gfaa087 crossref_primary_10_1002_art_42008 crossref_primary_10_1016_j_immuni_2018_04_003 crossref_primary_10_2139_ssrn_3985175 crossref_primary_10_5114_reum_163091 crossref_primary_10_3389_fimmu_2020_00282 crossref_primary_10_3389_fimmu_2019_02608 crossref_primary_10_1111_imm_13048 crossref_primary_10_1111_imr_13341 crossref_primary_10_1186_s10020_019_0102_5 crossref_primary_10_3390_microorganisms8101587 crossref_primary_10_1038_s41584_023_01071_8 crossref_primary_10_3389_fnut_2020_604283 crossref_primary_10_1016_j_imbio_2017_11_004 crossref_primary_10_1186_s12859_016_1359_0 crossref_primary_10_3390_ijms25115608 crossref_primary_10_1016_j_jaut_2016_06_020 crossref_primary_10_1016_j_clim_2022_109096 crossref_primary_10_3389_fimmu_2018_00478 crossref_primary_10_3390_ijms231810729 crossref_primary_10_1111_1462_2920_15910 crossref_primary_10_1016_j_tjnut_2024_01_015 crossref_primary_10_1186_s12866_017_1096_1 crossref_primary_10_1093_intimm_dxx033 crossref_primary_10_1093_jn_nxz328 crossref_primary_10_1080_19390211_2023_2179154 crossref_primary_10_1016_j_jaut_2020_102420 crossref_primary_10_4049_immunohorizons_2100082 crossref_primary_10_7554_eLife_08973 crossref_primary_10_1016_j_jaut_2017_03_009 crossref_primary_10_1016_j_phrs_2018_11_023 crossref_primary_10_3389_fimmu_2021_686501 crossref_primary_10_1007_s10067_017_3821_4 crossref_primary_10_3389_fimmu_2023_1120958 crossref_primary_10_3390_nu11112629 crossref_primary_10_1177_03000605211053276 crossref_primary_10_1186_s13059_017_1271_6 crossref_primary_10_15406_jnhfe_2017_06_00199 crossref_primary_10_1111_bph_15512 crossref_primary_10_3389_fimmu_2022_853540 |
Cites_doi | 10.1038/ismej.2011.139 10.1073/pnas.0504978102 10.1038/nature12721 10.1128/iai.64.8.3280-3287.1996 10.1371/journal.pone.0087560 10.1073/pnas.0706625104 10.4161/gmic.2.4.16798 10.1038/nri2515 10.1111/j.1600-065X.2011.01084.x 10.1152/ajpgi.00543.2011 10.4049/jimmunol.133.1.227 10.4049/jimmunol.170.11.5793 10.1053/j.gastro.2004.11.050 10.1053/j.ajkd.2009.06.012 10.1155/2011/432595 10.1126/science.1241165 10.1016/j.immuni.2013.08.013 10.4049/jimmunol.133.4.1955 10.1093/nar/28.1.27 10.1126/science.1233521 10.1128/AEM.03127-09 10.1038/nature07336 10.1016/j.molimm.2007.12.010 10.1016/0006-3207(92)91201-3 10.1126/science.1145697 10.1155/2011/271694 10.1016/j.it.2013.07.001 10.1073/pnas.1000082107 10.1016/j.chom.2012.02.006 10.1016/j.immuni.2013.12.007 10.1038/nature12726 10.1128/AEM.00062-07 10.1056/NEJMra1100359 10.2174/1875036201307010001 10.1038/nri3430 10.1111/j.1365-2249.2005.02654.x 10.1016/j.immuni.2010.06.001 10.1007/s11926-012-0314-y 10.1371/journal.pone.0061126 10.1038/nmeth.f.303 10.1038/nri3312 10.1084/jem.161.3.602 10.1038/nature11450 10.1073/pnas.0812600106 10.1136/bmj.2.3537.691 10.1038/ni.2611 10.1016/j.smim.2013.10.002 10.1172/JCI32639 10.1038/nbt.2676 10.1038/nature10554 10.1038/ismej.2010.201 10.1371/journal.pone.0020460 10.1111/j.1523-1755.2004.00850.x 10.1093/jn/136.11.2803 10.1038/ismej.2012.8 10.3748/wjg.v20.i10.2433 10.1084/jem.148.5.1198 10.1038/nature10809 10.1016/j.chom.2010.08.004 10.1007/0-387-30744-3_35 10.1128/AEM.71.12.8228-8235.2005 10.1093/bioinformatics/btq041 10.1016/j.arcmed.2014.03.008 10.1038/nature05414 10.1177/0961203306075613 10.1073/pnas.1219451110 10.1016/j.cell.2006.02.017 10.1093/bioinformatics/btq461 10.1097/SHK.0000000000000066 10.1073/pnas.1207230109 10.1084/jem.154.5.1671 10.1038/ni0901-777 10.1099/00207713-44-4-812 10.4049/jimmunol.1000598 10.4049/jimmunol.181.4.2277 10.1016/j.immuni.2011.07.002 10.1111/j.1442-9993.2001.01070.pp.x |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Dec 2014 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Dec 2014 – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 7T5 5PM |
DOI | 10.1128/AEM.02676-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic Immunology Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic Immunology Abstracts |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-5336 1098-6596 |
EndPage | 7560 |
ExternalDocumentID | PMC4249226 3522616291 25261516 10_1128_AEM_02676_14 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM .55 .GJ 3O- ABTAH AFFNX AGCDD AI. C1A CGR CUY CVF ECM EIF H~9 MVM NEJ NPM OHT VH1 WHG X7M XJT YV5 ZCG ZGI ZXP ZY4 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 7T5 FRP HH5 LSO OK1 W2D 5PM |
ID | FETCH-LOGICAL-c511t-7a51584b8085098767c0771a758c6eba36b4c07f9700bb74e4f540aeadb408df3 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 14:10:54 EDT 2025 Thu Jul 10 19:16:55 EDT 2025 Fri Jul 11 05:56:46 EDT 2025 Mon Jun 30 08:32:28 EDT 2025 Thu Apr 03 07:09:53 EDT 2025 Tue Jul 01 02:19:57 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | Copyright © 2014, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-7a51584b8085098767c0771a758c6eba36b4c07f9700bb74e4f540aeadb408df3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aem.asm.org/content/aem/80/24/7551.full.pdf |
PMID | 25261516 |
PQID | 1635049371 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4249226 proquest_miscellaneous_1642618834 proquest_miscellaneous_1625347588 proquest_journals_1635049371 pubmed_primary_25261516 crossref_citationtrail_10_1128_AEM_02676_14 crossref_primary_10_1128_AEM_02676_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 Izui S (e_1_3_3_54_2) 1984; 133 e_1_3_3_77_2 e_1_3_3_79_2 Hewicker M (e_1_3_3_48_2) 1990; 33 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 Vaahtovuo J (e_1_3_3_22_2) 2008; 35 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 Smathers PA (e_1_3_3_51_2) 1984; 133 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_41_2 e_1_3_3_64_2 22129255 - N Engl J Med. 2011 Dec 1;365(22):2110-21 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 23973225 - Immunity. 2013 Aug 22;39(2):400-12 24627581 - World J Gastroenterol. 2014 Mar 14;20(10):2433-48 21403825 - J Biomed Biotechnol. 2011;2011:271694 20228095 - Appl Environ Microbiol. 2010 May;76(9):3048-51 23023125 - Nature. 2012 Oct 4;490(7418):55-60 20774205 - Br Med J. 1928 Oct 20;2(3537):691-6 20679534 - J Immunol. 2010 Sep 1;185(5):2675-9 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 24226773 - Nature. 2013 Dec 19;504(7480):451-5 19343057 - Nat Rev Immunol. 2009 May;9(5):313-23 19628316 - Am J Kidney Dis. 2010 Feb;55(2):344-7 21248858 - ISME J. 2011 Jul;5(7):1115-24 22031325 - Nature. 2011 Nov 24;479(7374):538-41 12759464 - J Immunol. 2003 Jun 1;170(11):5793-8 22168424 - Immunol Rev. 2012 Jan;245(1):239-49 16033867 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 15606616 - Clin Exp Immunol. 2005 Jan;139(1):74-83 17183312 - Nature. 2006 Dec 21;444(7122):1027-31 21983068 - Gut Microbes. 2011 Jul-Aug;2(4):217-26 24169518 - Semin Immunol. 2013 Nov 30;25(5):364-9 18243320 - Mol Immunol. 2008 May;45(9):2690-9 2238887 - Z Versuchstierkd. 1990;33(4):149-56 16497592 - Cell. 2006 Feb 24;124(4):837-48 23593407 - PLoS One. 2013;8(4):e61126 18528968 - J Rheumatol. 2008 Aug;35(8):1500-5 23618829 - Nat Rev Immunol. 2013 May;13(5):321-35 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26 18060042 - J Clin Invest. 2008 Jan;118(1):205-16 17569825 - Science. 2007 Jul 13;317(5835):256-60 6332142 - J Immunol. 1984 Oct;133(4):1955-61 22028588 - J Biomed Biotechnol. 2011;2011:432595 15765388 - Gastroenterology. 2005 Mar;128(3):541-51 22297845 - Nature. 2012 Feb 9;482(7384):179-85 22134646 - ISME J. 2012 Mar;6(3):610-8 20620945 - Immunity. 2010 Jun 25;32(6):815-27 24412617 - Immunity. 2014 Jan 16;40(1):128-39 23378145 - Curr Rheumatol Rep. 2013 Mar;15(3):314 20660719 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4615-22 21777796 - Immunity. 2011 Jul 22;35(1):13-22 22520466 - Cell Host Microbe. 2012 Apr 19;11(4):387-96 23957963 - Trends Immunol. 2013 Sep;34(9):423-30 8757865 - Infect Immun. 1996 Aug;64(8):3280-7 20833380 - Cell Host Microbe. 2010 Sep 16;8(3):292-300 309911 - J Exp Med. 1978 Nov 1;148(5):1198-215 2982991 - J Exp Med. 1985 Mar 1;161(3):602-16 19164560 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2365-70 15327395 - Kidney Int. 2004 Sep;66(3):1018-28 24475308 - PLoS One. 2014;9(1):e87560 20383131 - Nat Methods. 2010 May;7(5):335-6 18806780 - Nature. 2008 Oct 23;455(7216):1109-13 23328391 - Science. 2013 Mar 1;339(6123):1084-8 23975157 - Nat Biotechnol. 2013 Sep;31(9):814-21 17432109 - Lupus. 2007;16(3):212-6 17699621 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5 23007572 - Nat Rev Immunol. 2012 Oct;12(10):728-34 23828891 - Science. 2013 Aug 2;341(6145):569-73 24681186 - Arch Med Res. 2014 Apr;45(3):195-202 23671105 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71 18684916 - J Immunol. 2008 Aug 15;181(4):2277-84 22517765 - Am J Physiol Gastrointest Liver Physiol. 2012 Jun 15;302(12):G1405-15 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35 24226770 - Nature. 2013 Dec 19;504(7480):446-50 6609979 - J Immunol. 1984 Jul;133(1):227-33 22689992 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10462-7 23778793 - Nat Immunol. 2013 Jul;14(7):660-7 20130030 - Bioinformatics. 2010 Mar 15;26(6):715-21 22402401 - ISME J. 2012 Aug;6(8):1621-4 6975351 - J Exp Med. 1981 Nov 1;154(5):1671-80 11526384 - Nat Immunol. 2001 Sep;2(9):777-80 17056804 - J Nutr. 2006 Nov;136(11):2803-7 24240593 - Shock. 2013 Dec;40(6):496-503 21698145 - PLoS One. 2011;6(6):e20460 |
References_xml | – ident: e_1_3_3_39_2 doi: 10.1038/ismej.2011.139 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0504978102 – ident: e_1_3_3_70_2 doi: 10.1038/nature12721 – ident: e_1_3_3_9_2 doi: 10.1128/iai.64.8.3280-3287.1996 – ident: e_1_3_3_57_2 doi: 10.1371/journal.pone.0087560 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0706625104 – ident: e_1_3_3_59_2 doi: 10.4161/gmic.2.4.16798 – ident: e_1_3_3_8_2 doi: 10.1038/nri2515 – ident: e_1_3_3_19_2 doi: 10.1111/j.1600-065X.2011.01084.x – volume: 33 start-page: 149 year: 1990 ident: e_1_3_3_48_2 article-title: Detection of circulating immune complexes in MRL mice with different forms of glomerulonephritis publication-title: Z. Versuchstierkd. – ident: e_1_3_3_72_2 doi: 10.1152/ajpgi.00543.2011 – volume: 133 start-page: 227 year: 1984 ident: e_1_3_3_54_2 article-title: Induction of various autoantibodies by mutant gene lpr in several strains of mice publication-title: J. Immunol. doi: 10.4049/jimmunol.133.1.227 – ident: e_1_3_3_31_2 doi: 10.4049/jimmunol.170.11.5793 – ident: e_1_3_3_66_2 doi: 10.1053/j.gastro.2004.11.050 – ident: e_1_3_3_33_2 doi: 10.1053/j.ajkd.2009.06.012 – ident: e_1_3_3_28_2 doi: 10.1155/2011/432595 – ident: e_1_3_3_68_2 doi: 10.1126/science.1241165 – ident: e_1_3_3_20_2 doi: 10.1016/j.immuni.2013.08.013 – volume: 133 start-page: 1955 year: 1984 ident: e_1_3_3_51_2 article-title: Studies of lymphoproliferation in MRL-lpr/lpr mice publication-title: J. Immunol. doi: 10.4049/jimmunol.133.4.1955 – ident: e_1_3_3_43_2 doi: 10.1093/nar/28.1.27 – ident: e_1_3_3_21_2 doi: 10.1126/science.1233521 – ident: e_1_3_3_74_2 doi: 10.1128/AEM.03127-09 – ident: e_1_3_3_18_2 doi: 10.1038/nature07336 – ident: e_1_3_3_62_2 doi: 10.1016/j.molimm.2007.12.010 – ident: e_1_3_3_41_2 doi: 10.1016/0006-3207(92)91201-3 – ident: e_1_3_3_79_2 doi: 10.1126/science.1145697 – ident: e_1_3_3_46_2 doi: 10.1155/2011/271694 – ident: e_1_3_3_5_2 doi: 10.1016/j.it.2013.07.001 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.1000082107 – ident: e_1_3_3_67_2 doi: 10.1016/j.chom.2012.02.006 – ident: e_1_3_3_71_2 doi: 10.1016/j.immuni.2013.12.007 – ident: e_1_3_3_69_2 doi: 10.1038/nature12726 – ident: e_1_3_3_38_2 doi: 10.1128/AEM.00062-07 – ident: e_1_3_3_27_2 doi: 10.1056/NEJMra1100359 – ident: e_1_3_3_35_2 doi: 10.2174/1875036201307010001 – ident: e_1_3_3_3_2 doi: 10.1038/nri3430 – ident: e_1_3_3_32_2 doi: 10.1111/j.1365-2249.2005.02654.x – ident: e_1_3_3_24_2 doi: 10.1016/j.immuni.2010.06.001 – ident: e_1_3_3_6_2 doi: 10.1007/s11926-012-0314-y – ident: e_1_3_3_60_2 doi: 10.1371/journal.pone.0061126 – ident: e_1_3_3_36_2 doi: 10.1038/nmeth.f.303 – ident: e_1_3_3_61_2 doi: 10.1038/nri3312 – ident: e_1_3_3_53_2 doi: 10.1084/jem.161.3.602 – ident: e_1_3_3_17_2 doi: 10.1038/nature11450 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0812600106 – ident: e_1_3_3_76_2 doi: 10.1136/bmj.2.3537.691 – ident: e_1_3_3_7_2 doi: 10.1038/ni.2611 – ident: e_1_3_3_4_2 doi: 10.1016/j.smim.2013.10.002 – ident: e_1_3_3_23_2 doi: 10.1172/JCI32639 – ident: e_1_3_3_42_2 doi: 10.1038/nbt.2676 – ident: e_1_3_3_26_2 doi: 10.1038/nature10554 – ident: e_1_3_3_65_2 doi: 10.1038/ismej.2010.201 – ident: e_1_3_3_56_2 doi: 10.1371/journal.pone.0020460 – ident: e_1_3_3_30_2 doi: 10.1111/j.1523-1755.2004.00850.x – ident: e_1_3_3_55_2 doi: 10.1093/jn/136.11.2803 – ident: e_1_3_3_34_2 doi: 10.1038/ismej.2012.8 – ident: e_1_3_3_75_2 doi: 10.3748/wjg.v20.i10.2433 – ident: e_1_3_3_47_2 doi: 10.1084/jem.148.5.1198 – ident: e_1_3_3_12_2 doi: 10.1038/nature10809 – ident: e_1_3_3_10_2 doi: 10.1016/j.chom.2010.08.004 – ident: e_1_3_3_50_2 doi: 10.1007/0-387-30744-3_35 – ident: e_1_3_3_40_2 doi: 10.1128/AEM.71.12.8228-8235.2005 – ident: e_1_3_3_44_2 doi: 10.1093/bioinformatics/btq041 – ident: e_1_3_3_58_2 doi: 10.1016/j.arcmed.2014.03.008 – ident: e_1_3_3_13_2 doi: 10.1038/nature05414 – ident: e_1_3_3_29_2 doi: 10.1177/0961203306075613 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1219451110 – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2006.02.017 – ident: e_1_3_3_37_2 doi: 10.1093/bioinformatics/btq461 – ident: e_1_3_3_63_2 doi: 10.1097/SHK.0000000000000066 – ident: e_1_3_3_64_2 doi: 10.1073/pnas.1207230109 – ident: e_1_3_3_52_2 doi: 10.1084/jem.154.5.1671 – volume: 35 start-page: 1500 year: 2008 ident: e_1_3_3_22_2 article-title: Fecal microbiota in early rheumatoid arthritis publication-title: J. Rheumatol. – ident: e_1_3_3_73_2 doi: 10.1038/ni0901-777 – ident: e_1_3_3_49_2 doi: 10.1099/00207713-44-4-812 – ident: e_1_3_3_77_2 doi: 10.4049/jimmunol.1000598 – ident: e_1_3_3_78_2 doi: 10.4049/jimmunol.181.4.2277 – ident: e_1_3_3_80_2 doi: 10.1016/j.immuni.2011.07.002 – ident: e_1_3_3_45_2 doi: 10.1111/j.1442-9993.2001.01070.pp.x – reference: 22031325 - Nature. 2011 Nov 24;479(7374):538-41 – reference: 12759464 - J Immunol. 2003 Jun 1;170(11):5793-8 – reference: 19164560 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2365-70 – reference: 22402401 - ISME J. 2012 Aug;6(8):1621-4 – reference: 22520466 - Cell Host Microbe. 2012 Apr 19;11(4):387-96 – reference: 17699621 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5 – reference: 16497592 - Cell. 2006 Feb 24;124(4):837-48 – reference: 20774205 - Br Med J. 1928 Oct 20;2(3537):691-6 – reference: 18528968 - J Rheumatol. 2008 Aug;35(8):1500-5 – reference: 15606616 - Clin Exp Immunol. 2005 Jan;139(1):74-83 – reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 – reference: 18243320 - Mol Immunol. 2008 May;45(9):2690-9 – reference: 19628316 - Am J Kidney Dis. 2010 Feb;55(2):344-7 – reference: 15327395 - Kidney Int. 2004 Sep;66(3):1018-28 – reference: 18684916 - J Immunol. 2008 Aug 15;181(4):2277-84 – reference: 17183312 - Nature. 2006 Dec 21;444(7122):1027-31 – reference: 15765388 - Gastroenterology. 2005 Mar;128(3):541-51 – reference: 17056804 - J Nutr. 2006 Nov;136(11):2803-7 – reference: 20833380 - Cell Host Microbe. 2010 Sep 16;8(3):292-300 – reference: 2238887 - Z Versuchstierkd. 1990;33(4):149-56 – reference: 23671105 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71 – reference: 6609979 - J Immunol. 1984 Jul;133(1):227-33 – reference: 21698145 - PLoS One. 2011;6(6):e20460 – reference: 6332142 - J Immunol. 1984 Oct;133(4):1955-61 – reference: 18060042 - J Clin Invest. 2008 Jan;118(1):205-16 – reference: 2982991 - J Exp Med. 1985 Mar 1;161(3):602-16 – reference: 21403825 - J Biomed Biotechnol. 2011;2011:271694 – reference: 23023125 - Nature. 2012 Oct 4;490(7418):55-60 – reference: 20228095 - Appl Environ Microbiol. 2010 May;76(9):3048-51 – reference: 23973225 - Immunity. 2013 Aug 22;39(2):400-12 – reference: 21248858 - ISME J. 2011 Jul;5(7):1115-24 – reference: 23828891 - Science. 2013 Aug 2;341(6145):569-73 – reference: 309911 - J Exp Med. 1978 Nov 1;148(5):1198-215 – reference: 24412617 - Immunity. 2014 Jan 16;40(1):128-39 – reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 – reference: 24169518 - Semin Immunol. 2013 Nov 30;25(5):364-9 – reference: 20130030 - Bioinformatics. 2010 Mar 15;26(6):715-21 – reference: 22689992 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10462-7 – reference: 23618829 - Nat Rev Immunol. 2013 May;13(5):321-35 – reference: 21777796 - Immunity. 2011 Jul 22;35(1):13-22 – reference: 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26 – reference: 23007572 - Nat Rev Immunol. 2012 Oct;12(10):728-34 – reference: 24226773 - Nature. 2013 Dec 19;504(7480):451-5 – reference: 24475308 - PLoS One. 2014;9(1):e87560 – reference: 23778793 - Nat Immunol. 2013 Jul;14(7):660-7 – reference: 24226770 - Nature. 2013 Dec 19;504(7480):446-50 – reference: 23593407 - PLoS One. 2013;8(4):e61126 – reference: 23378145 - Curr Rheumatol Rep. 2013 Mar;15(3):314 – reference: 24681186 - Arch Med Res. 2014 Apr;45(3):195-202 – reference: 22028588 - J Biomed Biotechnol. 2011;2011:432595 – reference: 22297845 - Nature. 2012 Feb 9;482(7384):179-85 – reference: 22129255 - N Engl J Med. 2011 Dec 1;365(22):2110-21 – reference: 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35 – reference: 16033867 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 – reference: 22168424 - Immunol Rev. 2012 Jan;245(1):239-49 – reference: 11526384 - Nat Immunol. 2001 Sep;2(9):777-80 – reference: 23328391 - Science. 2013 Mar 1;339(6123):1084-8 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 23957963 - Trends Immunol. 2013 Sep;34(9):423-30 – reference: 20679534 - J Immunol. 2010 Sep 1;185(5):2675-9 – reference: 6975351 - J Exp Med. 1981 Nov 1;154(5):1671-80 – reference: 8757865 - Infect Immun. 1996 Aug;64(8):3280-7 – reference: 20620945 - Immunity. 2010 Jun 25;32(6):815-27 – reference: 21983068 - Gut Microbes. 2011 Jul-Aug;2(4):217-26 – reference: 17432109 - Lupus. 2007;16(3):212-6 – reference: 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 – reference: 17569825 - Science. 2007 Jul 13;317(5835):256-60 – reference: 24627581 - World J Gastroenterol. 2014 Mar 14;20(10):2433-48 – reference: 20660719 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4615-22 – reference: 22517765 - Am J Physiol Gastrointest Liver Physiol. 2012 Jun 15;302(12):G1405-15 – reference: 19343057 - Nat Rev Immunol. 2009 May;9(5):313-23 – reference: 22134646 - ISME J. 2012 Mar;6(3):610-8 – reference: 18806780 - Nature. 2008 Oct 23;455(7216):1109-13 – reference: 24240593 - Shock. 2013 Dec;40(6):496-503 – reference: 23975157 - Nat Biotechnol. 2013 Sep;31(9):814-21 |
SSID | ssj0004068 ssj0006590 |
Score | 2.5627146 |
Snippet | Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7551 |
SubjectTerms | Animals Autoimmune diseases Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biodiversity Clostridiaceae Digestive system Disease Models, Animal Environmental factors Feces - microbiology Female Females Gastrointestinal Tract - microbiology Genetics Humans Lactobacillus Lupus Lupus Erythematosus, Systemic - microbiology Male Metagenomics Mice Mice, Inbred C57BL Microbial Ecology Microbiota Microorganisms Rodents |
Title | Dynamics of Gut Microbiota in Autoimmune Lupus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25261516 https://www.proquest.com/docview/1635049371 https://www.proquest.com/docview/1625347588 https://www.proquest.com/docview/1642618834 https://pubmed.ncbi.nlm.nih.gov/PMC4249226 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCAEPCAqDwkBBgqcqJXGc2HmcWKcKtiGkVupbZCcOizbSaUse4K_nLnZ-dB1o8OJWjpu4vrNzd_b3HSHvJc91qD3pgvENhaSxKz1FXZVxSj2RqSBDNPLxSTRfss-rcNVnKmzQJZWapr9uxJX8j1ShDuSKKNl_kGx3U6iA7yBfKEHCUN5KxgcmnXxzGuN7XU1-FIZWqZIYxpB1tS4Q_qEn5_WFdfBbwllrfGLYfIB1QyhJ0VMzbUWV5xiw6c7wFLKJs67gM9f2DdhsxMvLs3Z74bSWg8TOtf1BaYOwNtzgs8HRDbNCIgEp2IiWv_qGOrusmgRNVn0oGyySPDQcs9urN0VEwv7seIp5sSLXwEs3SbJPviaHy6OjZDFbLe6SexS8A0xc8eXbgCTeswhI26sW70DFx-G9Ny2RLffi-inZgdmxeEIeW3_B2TfCf0ru6HJE7psMoj9H5EELLL8akUcDbslnZNoqh7POHVAOp1cOpyidXjmcRjmek-XhbPFp7trkGG4KNnLlcgmWqGBKIOdgDO80nnqc-xL8vzTSSgaRYlCTx9zzlOJMsxyMcwkLh2IwB_Ngl-yU61K_JI4vsogH0teCaoawvCiNMy-mAq3j3A_HZNIOVJJa5nhMYHKeNB4kFQkMa9IMK3iSY_Kha31hGFP-0G6vHfPEzqmrBLyDEHzWgPtj8q67DCsebmPJUq9rbEPDgMH_FH9rg6EBIQJ4zAsjxq4zNKRoxkdjwjcE3DVAxvXNK2Vx2jCvM-TXpNGrW_TtNXnYT589slNd1voN2K-Vetto62_Tx5oS |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+gut+microbiota+in+autoimmune+lupus&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Zhang%2C+Husen&rft.au=Liao%2C+Xiaofeng&rft.au=Sparks%2C+Joshua+B&rft.au=Luo%2C+Xin+M&rft.date=2014-12-01&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=80&rft.issue=24&rft.spage=7551&rft_id=info:doi/10.1128%2FAEM.02676-14&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |