N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway
The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum se...
Saved in:
Published in | The Plant cell Vol. 26; no. 6; pp. 2708 - 2723 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
American Society of Plant Biologists
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stornata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that shortchain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-CIO-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. |
---|---|
AbstractList | The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stornata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that shortchain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-CIO-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The proposed mechanism is based on modifications of the cell wall composition and the responsiveness of stomatal guard cells to pathogen attack. The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The proposed mechanism is based on modifications of the cell wall composition and the responsiveness of stomatal guard cells to pathogen attack. The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N -acyl-homoserine lactones ( AHLs ), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N -3-oxo-tetradecanoyl- l -homoserine lactone ( oxo-C14-HSL ) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL -induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs , unlike oxo-C14-HSL , promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis . Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. |
Author | Schenk, Sebastian T. Stein, Elke Kogel, Karl-Heinz Schikora, Adam Reichelt, Michael Becker, Annette Hernández-Reyes, Casandra Mithöfer, Axel Neumann, Christina Schikora, Marek Samans, Birgit |
Author_xml | – sequence: 1 givenname: Sebastian T. surname: Schenk fullname: Schenk, Sebastian T. – sequence: 2 givenname: Casandra surname: Hernández-Reyes fullname: Hernández-Reyes, Casandra – sequence: 3 givenname: Birgit surname: Samans fullname: Samans, Birgit – sequence: 4 givenname: Elke surname: Stein fullname: Stein, Elke – sequence: 5 givenname: Christina surname: Neumann fullname: Neumann, Christina – sequence: 6 givenname: Marek surname: Schikora fullname: Schikora, Marek – sequence: 7 givenname: Michael surname: Reichelt fullname: Reichelt, Michael – sequence: 8 givenname: Axel surname: Mithöfer fullname: Mithöfer, Axel – sequence: 9 givenname: Annette surname: Becker fullname: Becker, Annette – sequence: 10 givenname: Karl-Heinz surname: Kogel fullname: Kogel, Karl-Heinz – sequence: 11 givenname: Adam surname: Schikora fullname: Schikora, Adam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24963057$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuEzEUHaEi-oAtO5CXbCa9nvE8vEEKEdBKEY0KCHaWY99pXM3Y6dgp5FP4W25IWwESYmMf2eec-zzODnzwmGXPOUw4h-o0rQ0BMeFF3dTlo-yIV2WRF7L9ekAYBOSirvhhdhzjNQDwhssn2WEhZF1C1RxlPz7kU7Pt87MwhIij88jm2iQKwhajGzCyRa99iqwLI5th37Mvmo5LdJ5eDA7oE9PesnNvN4bolxhdTNobZCmwN-RFrrpnC51W4Qp9ZLdOs7RC9lH3jkI7w6bG2dOL74TXzv9iftPbp9njTvcRn93dJ9nnd28_zc7y-cX789l0npuK85Q3Wsi2kwbB1A1IbkpdWSu7Gixig8Z09F1WWIgSLNh2CYVsliABrJDSyPIke733XW-WA1pDBY26V2uqXo9bFbRTf_54t1JX4VYJ6rusORm8ujMYw80GY1KDi4ZapT2GTVTFru8tDav9L5W3RV3TXAog6svf03rI5350RBB7ghlDjCN2yrikkwu7LF2vOKjdhijaEAJC7TeEZJO_ZPfO_xS82AuuYwrjA1uUXEIDbfkTQi7J6Q |
CitedBy_id | crossref_primary_10_1093_jxb_erv377 crossref_primary_10_1111_1462_2920_16305 crossref_primary_10_3390_metabo11030143 crossref_primary_10_1007_s11427_017_9092_3 crossref_primary_10_1093_femsec_fiaa226 crossref_primary_10_3389_fpls_2020_594530 crossref_primary_10_3390_ijms22041910 crossref_primary_10_1007_s10886_020_01186_2 crossref_primary_10_1007_s00284_020_02183_0 crossref_primary_10_1094_PBIOMES_03_19_0015_R crossref_primary_10_1007_s11103_016_0457_8 crossref_primary_10_1021_acs_jafc_1c04751 crossref_primary_10_1002_cbin_11749 crossref_primary_10_1007_s11103_017_0660_2 crossref_primary_10_1093_jxb_eraa384 crossref_primary_10_1146_annurev_phyto_080614_120132 crossref_primary_10_3389_fpls_2016_01868 crossref_primary_10_3389_fpls_2021_688003 crossref_primary_10_48130_tia_0024_0025 crossref_primary_10_1186_s12915_022_01254_x crossref_primary_10_1186_s40529_020_00283_5 crossref_primary_10_3390_v11090879 crossref_primary_10_1080_14787210_2020_1794815 crossref_primary_10_1186_s43170_023_00206_x crossref_primary_10_1094_PBIOMES_3_3 crossref_primary_10_1007_s11802_019_4073_5 crossref_primary_10_3389_fpls_2014_00807 crossref_primary_10_1094_PDIS_12_21_2813_RE crossref_primary_10_1146_annurev_arplant_042916_041132 crossref_primary_10_3390_plants9060777 crossref_primary_10_1016_S1002_0160_20_60027_3 crossref_primary_10_1094_PBIOMES_3_1 crossref_primary_10_3389_fpls_2016_01236 crossref_primary_10_1094_MPMI_12_20_0350_FI crossref_primary_10_3390_biology10020101 crossref_primary_10_1016_S2095_3119_21_63681_X crossref_primary_10_1094_PHYTO_05_20_0177_R crossref_primary_10_1111_ppl_12476 crossref_primary_10_3389_fpls_2022_886268 crossref_primary_10_1038_s41598_020_59467_5 crossref_primary_10_3389_fpls_2014_00784 crossref_primary_10_1186_s12870_019_2228_6 crossref_primary_10_3389_fmicb_2017_01097 crossref_primary_10_3389_fpls_2018_00112 crossref_primary_10_1186_s12870_023_04484_5 crossref_primary_10_3389_fcimb_2023_1203582 crossref_primary_10_1093_plphys_kiad017 crossref_primary_10_1111_1462_2920_14631 crossref_primary_10_3389_fpls_2014_00551 crossref_primary_10_1093_femsre_fuv038 crossref_primary_10_1016_j_rhisph_2020_100258 crossref_primary_10_3389_fmicb_2020_01545 crossref_primary_10_1016_j_plantsci_2021_110834 crossref_primary_10_1007_s10658_019_01928_3 crossref_primary_10_15407_frg2021_05_371 crossref_primary_10_1093_hr_uhac242 crossref_primary_10_15407_dopovidi2020_08_092 crossref_primary_10_1038_s41598_022_06690_x crossref_primary_10_1134_S0026261719040131 crossref_primary_10_1080_15592324_2024_2356406 crossref_primary_10_3390_microorganisms10050899 crossref_primary_10_1007_s00438_018_1439_0 crossref_primary_10_1111_pbi_12892 crossref_primary_10_1093_plphys_kiad473 crossref_primary_10_3389_fmicb_2014_00669 crossref_primary_10_3390_microorganisms9040774 crossref_primary_10_3390_plants10112476 crossref_primary_10_1111_mpp_13213 crossref_primary_10_1007_s00425_018_2860_7 crossref_primary_10_1007_s11103_015_0417_8 crossref_primary_10_1094_MPMI_07_17_0167_R crossref_primary_10_1094_MPMI_34_5 crossref_primary_10_1186_s13007_022_00944_5 crossref_primary_10_1105_tpc_15_00496 crossref_primary_10_1186_s41938_023_00748_2 crossref_primary_10_2174_1874285801812010261 crossref_primary_10_1021_acs_jnatprod_3c00672 crossref_primary_10_3390_metabo13010114 crossref_primary_10_1016_j_pbi_2014_12_003 crossref_primary_10_1038_s41598_021_81228_1 crossref_primary_10_1111_mpp_12530 crossref_primary_10_5897_AJMR2016_8370 crossref_primary_10_1039_C9EN00199A crossref_primary_10_1016_j_micres_2020_126589 crossref_primary_10_1016_j_jare_2019_04_007 crossref_primary_10_1016_j_tplants_2016_01_005 crossref_primary_10_1007_s00203_018_1535_x crossref_primary_10_1007_s41348_024_00950_w crossref_primary_10_1007_s11104_018_3679_5 crossref_primary_10_1128_mSphere_00883_20 crossref_primary_10_1007_s13199_022_00893_6 crossref_primary_10_1007_s41348_024_00878_1 crossref_primary_10_1094_MPMI_03_16_0063_R crossref_primary_10_1016_j_bbrc_2018_05_058 crossref_primary_10_1186_s12870_018_1565_1 crossref_primary_10_3390_microorganisms12101936 crossref_primary_10_1007_s13205_021_03057_3 crossref_primary_10_15407_frg2016_06_463 crossref_primary_10_1371_journal_pone_0209460 crossref_primary_10_1111_mpp_12502 crossref_primary_10_3389_fmicb_2021_634807 crossref_primary_10_3390_plants10051012 crossref_primary_10_3390_genes9050263 crossref_primary_10_1016_j_resmic_2024_104218 crossref_primary_10_3390_v14071449 crossref_primary_10_1016_j_mib_2017_03_008 crossref_primary_10_1016_j_apsoil_2023_105151 crossref_primary_10_1111_nph_14537 crossref_primary_10_1094_PBIOMES_09_18_0041_R crossref_primary_10_1016_j_plantsci_2019_04_010 crossref_primary_10_1007_s00468_019_01830_9 crossref_primary_10_3390_plants10081530 crossref_primary_10_1094_MPMI_11_16_0240_R crossref_primary_10_2478_fsmu_2024_0008 crossref_primary_10_1016_j_pbi_2017_08_010 crossref_primary_10_1270_jsbbs_20141 crossref_primary_10_1007_s11103_016_0433_3 crossref_primary_10_3390_ijms23031614 crossref_primary_10_1038_s41438_018_0079_1 crossref_primary_10_5897_AJB2018_16532 crossref_primary_10_1111_1751_7915_12177 crossref_primary_10_3390_molecules29051074 crossref_primary_10_1093_jxb_erab296 crossref_primary_10_1186_s12915_022_01464_3 crossref_primary_10_3390_ijms23116066 crossref_primary_10_1002_1873_3468_13071 crossref_primary_10_1016_j_gep_2021_119201 crossref_primary_10_1007_s11306_016_0984_y crossref_primary_10_1111_mmi_14312 crossref_primary_10_1016_j_molp_2019_05_006 crossref_primary_10_1094_MPMI_03_17_0067_R crossref_primary_10_3390_stresses3010016 |
ContentType | Journal Article |
Copyright | 2014 American Society of Plant Biologists 2014 American Society of Plant Biologists. All rights reserved. 2014 American Society of Plant Biologists. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 American Society of Plant Biologists – notice: 2014 American Society of Plant Biologists. All rights reserved. – notice: 2014 American Society of Plant Biologists. All rights reserved. 2014 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1105/tpc.114.126763 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 2723 |
ExternalDocumentID | PMC4114961 24963057 10_1105_tpc_114_126763 43190708 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ AAYXX ABIME ABPIB ABUWG ABZEO ACFRR ACUTJ ACVCV ACZBC AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AHGBF AJBYB AJDVS ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CITATION D1J DWQXO FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU LK8 M0K M1P M2P M2Q M7P MVM NEJ PHGZM PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG NPM PJZUB PPXIY PQGLB 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c511t-7a498f9ce0c67091c3a5dd9f60dee7eccf98f35e2430d0d8b0297b0900d499c93 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:06:18 EDT 2025 Fri Jul 11 16:14:56 EDT 2025 Fri Jul 11 06:47:02 EDT 2025 Mon Jul 21 05:58:28 EDT 2025 Tue Jul 01 03:49:42 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Fri May 30 12:00:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://aspb.org/publications/aspb-journals/open-articles 2014 American Society of Plant Biologists. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-7a498f9ce0c67091c3a5dd9f60dee7eccf98f35e2430d0d8b0297b0900d499c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Adam Schikora (adam.schikora@agrar.uni-giessen.de). www.plantcell.org/cgi/doi/10.1105/tpc.114.126763 |
ORCID | 0000-0002-0869-6423 |
OpenAccessLink | http://hdl.handle.net/11858/00-001M-0000-0019-B29A-A |
PMID | 24963057 |
PQID | 1826605720 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4114961 proquest_miscellaneous_2000181058 proquest_miscellaneous_1826605720 pubmed_primary_24963057 crossref_citationtrail_10_1105_tpc_114_126763 crossref_primary_10_1105_tpc_114_126763 jstor_primary_43190708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2014 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
SSID | ssj0001719 |
Score | 2.5136895 |
Snippet | The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived... The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The... The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2708 |
SubjectTerms | Bacteria cell wall components Cell walls Genes guard cells Lactones Leaves Molecules oxylipins Pathogens Plant cells Plant roots Plants quorum sensing salicylic acid |
Title | N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway |
URI | https://www.jstor.org/stable/43190708 https://www.ncbi.nlm.nih.gov/pubmed/24963057 https://www.proquest.com/docview/1826605720 https://www.proquest.com/docview/2000181058 https://pubmed.ncbi.nlm.nih.gov/PMC4114961 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqgQQvCAaD8iUjIfFQZbOTNB-PWzU0ARtj3aS9VYnjbBVtWrUpUP4T_lZeuLMdJ2GbBHtJm8SJndwv5zv7_DtC3noy9IIE3NTId8FBCfLUSZOUOzwLYu4lOahlHO84PAoOzvwP5_3zTud3I2ppVabb4ue160puI1U4BnLFVbL_IVl7UzgA_0G-sAUJw_afZHzk7Ir1xDmYTWdLtYyv9wnT58Dv8UKxMGFKolIxLvQGOEinJqJPpGJLFdLGl2P-DozMOpFLNCfxWweTdE8TOYMMj8FMnEErlr1v40SZqsME6YSRIHtXqMf-_AP25uNClf2etCaLEYqqJT2cJqinfi5loXTxUEJfqjTN6XY9Nrso1CQ-x0Fu50SutT4bJEto8cJ2JsNkalyBvfHiYmyDeIZVFs_9yVfZHNrgfh2C1VhNgGrOBLBiVKBqrc7TCW-kMaDJMTYSM7vrnq1S567jxip5sdX3eoW-wXVLeYcsahgCbqhXQl_tZBjycZRzgUTL29wNjI5uIG4-Ve8efNsAFGpYd7Y2BPL4cODD5TG67ndc8HEw_cbHLzXVPQ9VVhr7WIZxFCrfaVeNfNamnpZxpeNrr_Oc_g4AblhUpw_JA-MK0V2N60ekI4tNcndvBgBcb5J7gyoV4WPy6wrQqQE61UCnGugUYE0R6BSBTltApwAbaoBOa6DTckYt0KkFOgWgUwA6tUCnCPSdCubUwPwJOXu_fzo4cExOEUeAa1E6YeLHUR4LyQQyF3LhJf0si_OAZVKGoM9yOO31pet7LGNZlGJyt5TFjGV-HIvY2yIbBTzeM0J9GTHfz4NI8NRPwW7mvmRpLAXHqRaZd4lTCWMkDOE-5n2ZjJTjzfojkCOyAoy0HLvknS0_11QzN5bcUrK1xcALiKHvjrrkTSXsEYgIP-qkkLPVcoTDCAEgxGU3l8FVe2Dwsz7c56kGiK2hQliXhC3o2AJIU98-U4wvFV29gfnzW1_5gtyvtcNLslEuVvIVuAJl-lp9Mn8AS9sOjw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Acyl-Homoserine+Lactone+Primes+Plants+for+Cell+Wall+Reinforcement+and+Induces+Resistance+to+Bacterial+Pathogens+via+the+Salicylic+Acid%2FOxylipin+Pathway&rft.jtitle=The+Plant+cell&rft.au=Schenk%2C+Sebastian+T.&rft.au=Hern%C3%A1ndez-Reyes%2C+Casandra&rft.au=Samans%2C+Birgit&rft.au=Stein%2C+Elke&rft.date=2014-06-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=26&rft.issue=6&rft.spage=2708&rft.epage=2723&rft_id=info:doi/10.1105%2Ftpc.114.126763&rft_id=info%3Apmid%2F24963057&rft.externalDocID=PMC4114961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |