N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway

The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum se...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 26; no. 6; pp. 2708 - 2723
Main Authors Schenk, Sebastian T., Hernández-Reyes, Casandra, Samans, Birgit, Stein, Elke, Neumann, Christina, Schikora, Marek, Reichelt, Michael, Mithöfer, Axel, Becker, Annette, Kogel, Karl-Heinz, Schikora, Adam
Format Journal Article
LanguageEnglish
Published England American Society of Plant Biologists 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stornata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that shortchain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-CIO-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
AbstractList The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stornata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that shortchain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-CIO-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The proposed mechanism is based on modifications of the cell wall composition and the responsiveness of stomatal guard cells to pathogen attack.
The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The proposed mechanism is based on modifications of the cell wall composition and the responsiveness of stomatal guard cells to pathogen attack. The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N -acyl-homoserine lactones ( AHLs ), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N -3-oxo-tetradecanoyl- l -homoserine lactone ( oxo-C14-HSL ) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL -induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs , unlike oxo-C14-HSL , promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis . Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection.
Author Schenk, Sebastian T.
Stein, Elke
Kogel, Karl-Heinz
Schikora, Adam
Reichelt, Michael
Becker, Annette
Hernández-Reyes, Casandra
Mithöfer, Axel
Neumann, Christina
Schikora, Marek
Samans, Birgit
Author_xml – sequence: 1
  givenname: Sebastian T.
  surname: Schenk
  fullname: Schenk, Sebastian T.
– sequence: 2
  givenname: Casandra
  surname: Hernández-Reyes
  fullname: Hernández-Reyes, Casandra
– sequence: 3
  givenname: Birgit
  surname: Samans
  fullname: Samans, Birgit
– sequence: 4
  givenname: Elke
  surname: Stein
  fullname: Stein, Elke
– sequence: 5
  givenname: Christina
  surname: Neumann
  fullname: Neumann, Christina
– sequence: 6
  givenname: Marek
  surname: Schikora
  fullname: Schikora, Marek
– sequence: 7
  givenname: Michael
  surname: Reichelt
  fullname: Reichelt, Michael
– sequence: 8
  givenname: Axel
  surname: Mithöfer
  fullname: Mithöfer, Axel
– sequence: 9
  givenname: Annette
  surname: Becker
  fullname: Becker, Annette
– sequence: 10
  givenname: Karl-Heinz
  surname: Kogel
  fullname: Kogel, Karl-Heinz
– sequence: 11
  givenname: Adam
  surname: Schikora
  fullname: Schikora, Adam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24963057$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEi-oAtO5CXbCa9nvE8vEEKEdBKEY0KCHaWY99pXM3Y6dgp5FP4W25IWwESYmMf2eec-zzODnzwmGXPOUw4h-o0rQ0BMeFF3dTlo-yIV2WRF7L9ekAYBOSirvhhdhzjNQDwhssn2WEhZF1C1RxlPz7kU7Pt87MwhIij88jm2iQKwhajGzCyRa99iqwLI5th37Mvmo5LdJ5eDA7oE9PesnNvN4bolxhdTNobZCmwN-RFrrpnC51W4Qp9ZLdOs7RC9lH3jkI7w6bG2dOL74TXzv9iftPbp9njTvcRn93dJ9nnd28_zc7y-cX789l0npuK85Q3Wsi2kwbB1A1IbkpdWSu7Gixig8Z09F1WWIgSLNh2CYVsliABrJDSyPIke733XW-WA1pDBY26V2uqXo9bFbRTf_54t1JX4VYJ6rusORm8ujMYw80GY1KDi4ZapT2GTVTFru8tDav9L5W3RV3TXAog6svf03rI5350RBB7ghlDjCN2yrikkwu7LF2vOKjdhijaEAJC7TeEZJO_ZPfO_xS82AuuYwrjA1uUXEIDbfkTQi7J6Q
CitedBy_id crossref_primary_10_1093_jxb_erv377
crossref_primary_10_1111_1462_2920_16305
crossref_primary_10_3390_metabo11030143
crossref_primary_10_1007_s11427_017_9092_3
crossref_primary_10_1093_femsec_fiaa226
crossref_primary_10_3389_fpls_2020_594530
crossref_primary_10_3390_ijms22041910
crossref_primary_10_1007_s10886_020_01186_2
crossref_primary_10_1007_s00284_020_02183_0
crossref_primary_10_1094_PBIOMES_03_19_0015_R
crossref_primary_10_1007_s11103_016_0457_8
crossref_primary_10_1021_acs_jafc_1c04751
crossref_primary_10_1002_cbin_11749
crossref_primary_10_1007_s11103_017_0660_2
crossref_primary_10_1093_jxb_eraa384
crossref_primary_10_1146_annurev_phyto_080614_120132
crossref_primary_10_3389_fpls_2016_01868
crossref_primary_10_3389_fpls_2021_688003
crossref_primary_10_48130_tia_0024_0025
crossref_primary_10_1186_s12915_022_01254_x
crossref_primary_10_1186_s40529_020_00283_5
crossref_primary_10_3390_v11090879
crossref_primary_10_1080_14787210_2020_1794815
crossref_primary_10_1186_s43170_023_00206_x
crossref_primary_10_1094_PBIOMES_3_3
crossref_primary_10_1007_s11802_019_4073_5
crossref_primary_10_3389_fpls_2014_00807
crossref_primary_10_1094_PDIS_12_21_2813_RE
crossref_primary_10_1146_annurev_arplant_042916_041132
crossref_primary_10_3390_plants9060777
crossref_primary_10_1016_S1002_0160_20_60027_3
crossref_primary_10_1094_PBIOMES_3_1
crossref_primary_10_3389_fpls_2016_01236
crossref_primary_10_1094_MPMI_12_20_0350_FI
crossref_primary_10_3390_biology10020101
crossref_primary_10_1016_S2095_3119_21_63681_X
crossref_primary_10_1094_PHYTO_05_20_0177_R
crossref_primary_10_1111_ppl_12476
crossref_primary_10_3389_fpls_2022_886268
crossref_primary_10_1038_s41598_020_59467_5
crossref_primary_10_3389_fpls_2014_00784
crossref_primary_10_1186_s12870_019_2228_6
crossref_primary_10_3389_fmicb_2017_01097
crossref_primary_10_3389_fpls_2018_00112
crossref_primary_10_1186_s12870_023_04484_5
crossref_primary_10_3389_fcimb_2023_1203582
crossref_primary_10_1093_plphys_kiad017
crossref_primary_10_1111_1462_2920_14631
crossref_primary_10_3389_fpls_2014_00551
crossref_primary_10_1093_femsre_fuv038
crossref_primary_10_1016_j_rhisph_2020_100258
crossref_primary_10_3389_fmicb_2020_01545
crossref_primary_10_1016_j_plantsci_2021_110834
crossref_primary_10_1007_s10658_019_01928_3
crossref_primary_10_15407_frg2021_05_371
crossref_primary_10_1093_hr_uhac242
crossref_primary_10_15407_dopovidi2020_08_092
crossref_primary_10_1038_s41598_022_06690_x
crossref_primary_10_1134_S0026261719040131
crossref_primary_10_1080_15592324_2024_2356406
crossref_primary_10_3390_microorganisms10050899
crossref_primary_10_1007_s00438_018_1439_0
crossref_primary_10_1111_pbi_12892
crossref_primary_10_1093_plphys_kiad473
crossref_primary_10_3389_fmicb_2014_00669
crossref_primary_10_3390_microorganisms9040774
crossref_primary_10_3390_plants10112476
crossref_primary_10_1111_mpp_13213
crossref_primary_10_1007_s00425_018_2860_7
crossref_primary_10_1007_s11103_015_0417_8
crossref_primary_10_1094_MPMI_07_17_0167_R
crossref_primary_10_1094_MPMI_34_5
crossref_primary_10_1186_s13007_022_00944_5
crossref_primary_10_1105_tpc_15_00496
crossref_primary_10_1186_s41938_023_00748_2
crossref_primary_10_2174_1874285801812010261
crossref_primary_10_1021_acs_jnatprod_3c00672
crossref_primary_10_3390_metabo13010114
crossref_primary_10_1016_j_pbi_2014_12_003
crossref_primary_10_1038_s41598_021_81228_1
crossref_primary_10_1111_mpp_12530
crossref_primary_10_5897_AJMR2016_8370
crossref_primary_10_1039_C9EN00199A
crossref_primary_10_1016_j_micres_2020_126589
crossref_primary_10_1016_j_jare_2019_04_007
crossref_primary_10_1016_j_tplants_2016_01_005
crossref_primary_10_1007_s00203_018_1535_x
crossref_primary_10_1007_s41348_024_00950_w
crossref_primary_10_1007_s11104_018_3679_5
crossref_primary_10_1128_mSphere_00883_20
crossref_primary_10_1007_s13199_022_00893_6
crossref_primary_10_1007_s41348_024_00878_1
crossref_primary_10_1094_MPMI_03_16_0063_R
crossref_primary_10_1016_j_bbrc_2018_05_058
crossref_primary_10_1186_s12870_018_1565_1
crossref_primary_10_3390_microorganisms12101936
crossref_primary_10_1007_s13205_021_03057_3
crossref_primary_10_15407_frg2016_06_463
crossref_primary_10_1371_journal_pone_0209460
crossref_primary_10_1111_mpp_12502
crossref_primary_10_3389_fmicb_2021_634807
crossref_primary_10_3390_plants10051012
crossref_primary_10_3390_genes9050263
crossref_primary_10_1016_j_resmic_2024_104218
crossref_primary_10_3390_v14071449
crossref_primary_10_1016_j_mib_2017_03_008
crossref_primary_10_1016_j_apsoil_2023_105151
crossref_primary_10_1111_nph_14537
crossref_primary_10_1094_PBIOMES_09_18_0041_R
crossref_primary_10_1016_j_plantsci_2019_04_010
crossref_primary_10_1007_s00468_019_01830_9
crossref_primary_10_3390_plants10081530
crossref_primary_10_1094_MPMI_11_16_0240_R
crossref_primary_10_2478_fsmu_2024_0008
crossref_primary_10_1016_j_pbi_2017_08_010
crossref_primary_10_1270_jsbbs_20141
crossref_primary_10_1007_s11103_016_0433_3
crossref_primary_10_3390_ijms23031614
crossref_primary_10_1038_s41438_018_0079_1
crossref_primary_10_5897_AJB2018_16532
crossref_primary_10_1111_1751_7915_12177
crossref_primary_10_3390_molecules29051074
crossref_primary_10_1093_jxb_erab296
crossref_primary_10_1186_s12915_022_01464_3
crossref_primary_10_3390_ijms23116066
crossref_primary_10_1002_1873_3468_13071
crossref_primary_10_1016_j_gep_2021_119201
crossref_primary_10_1007_s11306_016_0984_y
crossref_primary_10_1111_mmi_14312
crossref_primary_10_1016_j_molp_2019_05_006
crossref_primary_10_1094_MPMI_03_17_0067_R
crossref_primary_10_3390_stresses3010016
ContentType Journal Article
Copyright 2014 American Society of Plant Biologists
2014 American Society of Plant Biologists. All rights reserved.
2014 American Society of Plant Biologists. All rights reserved. 2014
Copyright_xml – notice: 2014 American Society of Plant Biologists
– notice: 2014 American Society of Plant Biologists. All rights reserved.
– notice: 2014 American Society of Plant Biologists. All rights reserved. 2014
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1105/tpc.114.126763
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2723
ExternalDocumentID PMC4114961
24963057
10_1105_tpc_114_126763
43190708
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
AAYXX
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACUTJ
ACVCV
ACZBC
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AHGBF
AJBYB
AJDVS
ANFBD
APJGH
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
D1J
DWQXO
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
NPM
PJZUB
PPXIY
PQGLB
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c511t-7a498f9ce0c67091c3a5dd9f60dee7eccf98f35e2430d0d8b0297b0900d499c93
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:06:18 EDT 2025
Fri Jul 11 16:14:56 EDT 2025
Fri Jul 11 06:47:02 EDT 2025
Mon Jul 21 05:58:28 EDT 2025
Tue Jul 01 03:49:42 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Fri May 30 12:00:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://aspb.org/publications/aspb-journals/open-articles
2014 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-7a498f9ce0c67091c3a5dd9f60dee7eccf98f35e2430d0d8b0297b0900d499c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Adam Schikora (adam.schikora@agrar.uni-giessen.de).
www.plantcell.org/cgi/doi/10.1105/tpc.114.126763
ORCID 0000-0002-0869-6423
OpenAccessLink http://hdl.handle.net/11858/00-001M-0000-0019-B29A-A
PMID 24963057
PQID 1826605720
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4114961
proquest_miscellaneous_2000181058
proquest_miscellaneous_1826605720
pubmed_primary_24963057
crossref_citationtrail_10_1105_tpc_114_126763
crossref_primary_10_1105_tpc_114_126763
jstor_primary_43190708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2014
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
SSID ssj0001719
Score 2.5136895
Snippet The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived...
The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The...
The bacterial quorum-sensing molecule N -3-oxo-tetradecanoyl- l -homoserine lactone primes the plant for enhanced resistance to bacterial pathogens. The...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2708
SubjectTerms Bacteria
cell wall components
Cell walls
Genes
guard cells
Lactones
Leaves
Molecules
oxylipins
Pathogens
Plant cells
Plant roots
Plants
quorum sensing
salicylic acid
Title N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway
URI https://www.jstor.org/stable/43190708
https://www.ncbi.nlm.nih.gov/pubmed/24963057
https://www.proquest.com/docview/1826605720
https://www.proquest.com/docview/2000181058
https://pubmed.ncbi.nlm.nih.gov/PMC4114961
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqgQQvCAaD8iUjIfFQZbOTNB-PWzU0ARtj3aS9VYnjbBVtWrUpUP4T_lZeuLMdJ2GbBHtJm8SJndwv5zv7_DtC3noy9IIE3NTId8FBCfLUSZOUOzwLYu4lOahlHO84PAoOzvwP5_3zTud3I2ppVabb4ue160puI1U4BnLFVbL_IVl7UzgA_0G-sAUJw_afZHzk7Ir1xDmYTWdLtYyv9wnT58Dv8UKxMGFKolIxLvQGOEinJqJPpGJLFdLGl2P-DozMOpFLNCfxWweTdE8TOYMMj8FMnEErlr1v40SZqsME6YSRIHtXqMf-_AP25uNClf2etCaLEYqqJT2cJqinfi5loXTxUEJfqjTN6XY9Nrso1CQ-x0Fu50SutT4bJEto8cJ2JsNkalyBvfHiYmyDeIZVFs_9yVfZHNrgfh2C1VhNgGrOBLBiVKBqrc7TCW-kMaDJMTYSM7vrnq1S567jxip5sdX3eoW-wXVLeYcsahgCbqhXQl_tZBjycZRzgUTL29wNjI5uIG4-Ve8efNsAFGpYd7Y2BPL4cODD5TG67ndc8HEw_cbHLzXVPQ9VVhr7WIZxFCrfaVeNfNamnpZxpeNrr_Oc_g4AblhUpw_JA-MK0V2N60ekI4tNcndvBgBcb5J7gyoV4WPy6wrQqQE61UCnGugUYE0R6BSBTltApwAbaoBOa6DTckYt0KkFOgWgUwA6tUCnCPSdCubUwPwJOXu_fzo4cExOEUeAa1E6YeLHUR4LyQQyF3LhJf0si_OAZVKGoM9yOO31pet7LGNZlGJyt5TFjGV-HIvY2yIbBTzeM0J9GTHfz4NI8NRPwW7mvmRpLAXHqRaZd4lTCWMkDOE-5n2ZjJTjzfojkCOyAoy0HLvknS0_11QzN5bcUrK1xcALiKHvjrrkTSXsEYgIP-qkkLPVcoTDCAEgxGU3l8FVe2Dwsz7c56kGiK2hQliXhC3o2AJIU98-U4wvFV29gfnzW1_5gtyvtcNLslEuVvIVuAJl-lp9Mn8AS9sOjw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Acyl-Homoserine+Lactone+Primes+Plants+for+Cell+Wall+Reinforcement+and+Induces+Resistance+to+Bacterial+Pathogens+via+the+Salicylic+Acid%2FOxylipin+Pathway&rft.jtitle=The+Plant+cell&rft.au=Schenk%2C+Sebastian+T.&rft.au=Hern%C3%A1ndez-Reyes%2C+Casandra&rft.au=Samans%2C+Birgit&rft.au=Stein%2C+Elke&rft.date=2014-06-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=26&rft.issue=6&rft.spage=2708&rft.epage=2723&rft_id=info:doi/10.1105%2Ftpc.114.126763&rft_id=info%3Apmid%2F24963057&rft.externalDocID=PMC4114961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon