Hamiltonian learning and certification using quantum resources
In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it...
Saved in:
Published in | Physical review letters Vol. 112; no. 19; p. 190501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
16.05.2014
|
Online Access | Get more information |
Cover
Loading…
Abstract | In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable. |
---|---|
AbstractList | In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable. |
Author | Wiebe, Nathan Cory, D G Ferrie, Christopher Granade, Christopher |
Author_xml | – sequence: 1 givenname: Nathan surname: Wiebe fullname: Wiebe, Nathan organization: Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA and Department of Combinatorics & Optimization, University of Waterloo, Ontario N2L 3G1, Canada and Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada – sequence: 2 givenname: Christopher surname: Granade fullname: Granade, Christopher organization: Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada and Department of Physics, University of Waterloo, Ontario N2L 3G1, Canada – sequence: 3 givenname: Christopher surname: Ferrie fullname: Ferrie, Christopher organization: Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA – sequence: 4 givenname: D G surname: Cory fullname: Cory, D G organization: Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada and Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada and Perimeter Institute, University of Waterloo, Ontario N2L 2Y5, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24877920$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j81KxDAURoMozo--wtAX6Hhv2vxtBBnUEQbc6Hq4TVONtOmYpMK8vSPq6sBZHL5vwc7DGBxjK4Q1IlQ3h_djiu6rdzmfBF-jAQF4xuYIypQKsZ6xRUofAIBc6ks247VWynCYs9stDb7PY_AUit5RDD68FRTawrqYfectZT-GYko__nOikKehiC6NU7QuXbGLjvrkrv-4ZK8P9y-bbbl7fnza3O1KKxBzqaqKZEUtUtcIa7BBoyRZ4YQRxEUFtQbRyFYbOs3SuqNWKut03QkpSXO-ZKvf7mFqBtfuD9EPFI_7_yP8G4-sTkA |
CitedBy_id | crossref_primary_10_1088_1367_2630_abe972 crossref_primary_10_1103_PhysRevA_107_010101 crossref_primary_10_1103_PhysRevLett_117_010503 crossref_primary_10_1103_PhysRevResearch_2_023150 crossref_primary_10_1103_PRXQuantum_2_040355 crossref_primary_10_1038_s41467_023_44012_5 crossref_primary_10_1088_2058_9565_ac74db crossref_primary_10_1007_s11128_023_03970_x crossref_primary_10_1038_s41534_021_00380_8 crossref_primary_10_1103_PhysRevA_94_052119 crossref_primary_10_1214_19_STS745 crossref_primary_10_1088_1367_2630_ab73cd crossref_primary_10_1007_s12065_022_00756_5 crossref_primary_10_1103_PhysRevResearch_6_023160 crossref_primary_10_1088_2633_4356_acb30a crossref_primary_10_1103_PhysRevA_105_023302 crossref_primary_10_1088_2058_9565_ad48b3 crossref_primary_10_1088_1367_2630_ad309d crossref_primary_10_1103_PhysRevLett_122_140504 crossref_primary_10_1103_PhysRevResearch_4_023161 crossref_primary_10_1103_PhysRevA_97_042324 crossref_primary_10_1103_PhysRevA_104_022611 crossref_primary_10_1103_PRXQuantum_2_020349 crossref_primary_10_1103_PhysRevX_9_021019 crossref_primary_10_1038_s41467_023_44008_1 crossref_primary_10_1103_PhysRevA_100_022314 crossref_primary_10_1088_1367_2630_17_2_022005 crossref_primary_10_21468_SciPostPhys_6_2_021 crossref_primary_10_1088_2058_9565_2_1_015004 crossref_primary_10_1038_s41467_023_40684_1 crossref_primary_10_1038_s41534_021_00436_9 crossref_primary_10_1116_5_0007577 crossref_primary_10_1142_S0219749918400130 crossref_primary_10_1109_TPAMI_2022_3203157 crossref_primary_10_1007_s11128_023_03873_x crossref_primary_10_1016_j_physleta_2023_129279 crossref_primary_10_1103_PhysRevLett_113_210404 crossref_primary_10_1007_s11128_019_2364_9 crossref_primary_10_1103_PhysRevA_102_022621 crossref_primary_10_1088_1367_2630_18_3_033024 crossref_primary_10_1103_PhysRevLett_122_020504 crossref_primary_10_1103_PhysRevB_101_241105 crossref_primary_10_1145_3464420 crossref_primary_10_1088_1674_1056_27_5_054207 crossref_primary_10_1088_1367_2630_17_1_013042 crossref_primary_10_1007_s10773_023_05460_3 crossref_primary_10_1103_PhysRevLett_118_150503 crossref_primary_10_1088_1367_2630_16_9_093035 crossref_primary_10_1103_PhysRevLett_113_190404 crossref_primary_10_1088_1367_2630_ac68ff crossref_primary_10_1063_5_0149414 crossref_primary_10_1007_s10440_024_00651_4 crossref_primary_10_1016_j_physleta_2020_126886 crossref_primary_10_1103_PhysRevA_96_052130 crossref_primary_10_1103_PhysRevLett_115_110401 crossref_primary_10_1103_PRXQuantum_3_030324 crossref_primary_10_7498_aps_67_20171911 crossref_primary_10_1103_PhysRevA_104_052427 crossref_primary_10_7566_JPSJ_86_024006 crossref_primary_10_1088_1367_2630_aaf749 crossref_primary_10_1209_0295_5075_115_50001 crossref_primary_10_1038_s41467_022_31679_5 crossref_primary_10_1038_s41598_019_54249_0 crossref_primary_10_1103_PhysRevLett_122_210502 crossref_primary_10_1103_PhysRevLett_124_160502 crossref_primary_10_1088_1367_2630_aafb8e crossref_primary_10_1103_PhysRevLett_132_160401 crossref_primary_10_1103_PhysRevLett_123_190401 crossref_primary_10_1038_s41534_017_0017_3 crossref_primary_10_1103_PhysRevApplied_10_044033 crossref_primary_10_1103_PhysRevLett_118_190502 crossref_primary_10_1137_19M1264011 crossref_primary_10_1021_acs_jpclett_1c00283 crossref_primary_10_1002_qute_202200025 crossref_primary_10_1088_1367_2630_17_9_093017 crossref_primary_10_1088_1367_2630_aa8fe6 crossref_primary_10_1103_PRXQuantum_5_010350 crossref_primary_10_1103_PhysRevA_101_052344 crossref_primary_10_1103_PRXQuantum_2_020303 crossref_primary_10_1109_TQE_2022_3176870 crossref_primary_10_1103_PhysRevLett_118_100503 crossref_primary_10_1126_science_ade7651 crossref_primary_10_1038_s41567_021_01232_0 crossref_primary_10_1140_epjqt_s40507_023_00195_w crossref_primary_10_22331_q_2017_04_25_5 crossref_primary_10_1103_PhysRevA_105_012615 crossref_primary_10_1103_PRXQuantum_3_030345 crossref_primary_10_1103_PhysRevResearch_3_023229 crossref_primary_10_1038_s42254_022_00552_1 crossref_primary_10_1103_PhysRevApplied_15_034080 crossref_primary_10_1007_s10773_018_3721_7 crossref_primary_10_1088_0256_307X_38_9_097502 crossref_primary_10_1038_npjqi_2016_19 crossref_primary_10_1088_1367_2630_aa77cf crossref_primary_10_1002_qute_201800085 crossref_primary_10_3390_math9020193 crossref_primary_10_1103_PhysRevApplied_19_044041 crossref_primary_10_22331_q_2023_06_29_1045 crossref_primary_10_1007_s11432_022_3602_0 crossref_primary_10_1364_OE_27_001838 crossref_primary_10_1103_PhysRevE_105_L062101 crossref_primary_10_1088_1367_2630_ad5464 crossref_primary_10_1039_D0SC04847J crossref_primary_10_1038_s42254_020_0193_5 crossref_primary_10_1088_1361_6633_aab406 crossref_primary_10_1103_PhysRevA_93_012122 crossref_primary_10_1088_1367_2630_abac39 crossref_primary_10_1038_nphys4074 crossref_primary_10_1088_2058_9565_ab60de crossref_primary_10_1002_qute_202000067 crossref_primary_10_1088_1367_2630_17_12_123013 crossref_primary_10_1103_PhysRevA_91_052306 crossref_primary_10_1007_s42484_019_00010_9 crossref_primary_10_1038_nature23474 crossref_primary_10_1103_PhysRevA_98_012315 crossref_primary_10_22331_q_2023_01_26_905 crossref_primary_10_1103_PhysRevA_92_052322 crossref_primary_10_1103_PhysRevResearch_1_033092 crossref_primary_10_1103_PhysRevX_6_041062 crossref_primary_10_1116_5_0137398 crossref_primary_10_1103_PhysRevResearch_4_033223 crossref_primary_10_1103_PhysRevA_93_062306 crossref_primary_10_1038_s41567_021_01201_7 crossref_primary_10_1103_PhysRevA_107_042413 crossref_primary_10_1038_s42254_023_00662_4 crossref_primary_10_1103_PhysRevLett_130_200403 crossref_primary_10_1103_PRXQuantum_2_020317 crossref_primary_10_1021_acsphotonics_0c00960 crossref_primary_10_1103_PhysRevA_109_062609 crossref_primary_10_1103_PhysRevA_92_063852 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/physrevlett.112.190501 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 24877920 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S 8NH ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P0- P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c511t-733a63ad1afb5c91b1976ac5e595a25304805b6d89a79288fad67ce84f566a822 |
IngestDate | Tue Oct 15 23:51:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-733a63ad1afb5c91b1976ac5e595a25304805b6d89a79288fad67ce84f566a822 |
OpenAccessLink | http://arxiv.org/pdf/1309.0876 |
PMID | 24877920 |
ParticipantIDs | pubmed_primary_24877920 |
PublicationCentury | 2000 |
PublicationDate | 2014-May-16 |
PublicationDateYYYYMMDD | 2014-05-16 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-May-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2014 |
SSID | ssj0001268 |
Score | 2.6120422 |
Snippet | In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 190501 |
Title | Hamiltonian learning and certification using quantum resources |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24877920 |
Volume | 112 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9OEbyI39-Sg7eR2bRN01wEGcrwMDxsuNtI2hSEfem2i3-9L2na1W3ix6WUpi1Jfi-PX37Je0HoxtephiGkSCwoI2GWeURwpUjKUi2F8hhM4Mxui3bU6oZPPdZbLBfY6JKZaiQfa-NK_oMqPANcTZTsH5AtfwoP4B7whSsgDNdfYdwy6gSQNzNIB4XGYQPVzG7pzMlx9bnVA97m0InzYf3dCfbTKi99LuByoSwDG-VT8u2XV0Ahd8ZGal9s2jFbxvRSkoKKRO0O61pT2By79Xt3uJcTHmho1sypS1udO0uPC8JpHgRaelPqV81GVJwjcA-WKxerftsz-SOMmAPNNE00oU2N1Q-g_ydDi6YPMy0ubCDdD6VL-bSLohqq8dgc9tE2-s5OocpFsYsjhyrdrq-QSSDtfrI0GbGkpLOHdt1sAt_nprGPNvToAG3nYE4P0V3FQHBhIBgMBH8xEGwNBDsDwaWBHKHu40On2SLuwAySAG-eER4EMgpkSmWmWCKookA2ZcI0E0z6LDD5A5iK0lhIqHwcZzKNeKLjMANSL4EqHqPN0XikTxEG3irhFS6o5GEkhOKBlMDmswgGcKj4GTrJG96f5FlR-kWXnH9bcoF2FnZ0ibYyGIb6CjjdTF1bGD4BJylOkw |
link.rule.ids | 780 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hamiltonian+learning+and+certification+using+quantum+resources&rft.jtitle=Physical+review+letters&rft.au=Wiebe%2C+Nathan&rft.au=Granade%2C+Christopher&rft.au=Ferrie%2C+Christopher&rft.au=Cory%2C+D+G&rft.date=2014-05-16&rft.eissn=1079-7114&rft.volume=112&rft.issue=19&rft.spage=190501&rft_id=info:doi/10.1103%2Fphysrevlett.112.190501&rft_id=info%3Apmid%2F24877920&rft_id=info%3Apmid%2F24877920&rft.externalDocID=24877920 |