Hamiltonian learning and certification using quantum resources

In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 112; no. 19; p. 190501
Main Authors Wiebe, Nathan, Granade, Christopher, Ferrie, Christopher, Cory, D G
Format Journal Article
LanguageEnglish
Published United States 16.05.2014
Online AccessGet more information

Cover

Loading…
Abstract In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable.
AbstractList In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog quantum simulators may be able to perform computational tasks that existing computers cannot, it also introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make certifying analog quantum simulators tractable.
Author Wiebe, Nathan
Cory, D G
Ferrie, Christopher
Granade, Christopher
Author_xml – sequence: 1
  givenname: Nathan
  surname: Wiebe
  fullname: Wiebe, Nathan
  organization: Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA and Department of Combinatorics & Optimization, University of Waterloo, Ontario N2L 3G1, Canada and Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada
– sequence: 2
  givenname: Christopher
  surname: Granade
  fullname: Granade, Christopher
  organization: Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada and Department of Physics, University of Waterloo, Ontario N2L 3G1, Canada
– sequence: 3
  givenname: Christopher
  surname: Ferrie
  fullname: Ferrie, Christopher
  organization: Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
– sequence: 4
  givenname: D G
  surname: Cory
  fullname: Cory, D G
  organization: Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada and Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada and Perimeter Institute, University of Waterloo, Ontario N2L 2Y5, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24877920$$D View this record in MEDLINE/PubMed
BookMark eNo1j81KxDAURoMozo--wtAX6Hhv2vxtBBnUEQbc6Hq4TVONtOmYpMK8vSPq6sBZHL5vwc7DGBxjK4Q1IlQ3h_djiu6rdzmfBF-jAQF4xuYIypQKsZ6xRUofAIBc6ks247VWynCYs9stDb7PY_AUit5RDD68FRTawrqYfectZT-GYko__nOikKehiC6NU7QuXbGLjvrkrv-4ZK8P9y-bbbl7fnza3O1KKxBzqaqKZEUtUtcIa7BBoyRZ4YQRxEUFtQbRyFYbOs3SuqNWKut03QkpSXO-ZKvf7mFqBtfuD9EPFI_7_yP8G4-sTkA
CitedBy_id crossref_primary_10_1088_1367_2630_abe972
crossref_primary_10_1103_PhysRevA_107_010101
crossref_primary_10_1103_PhysRevLett_117_010503
crossref_primary_10_1103_PhysRevResearch_2_023150
crossref_primary_10_1103_PRXQuantum_2_040355
crossref_primary_10_1038_s41467_023_44012_5
crossref_primary_10_1088_2058_9565_ac74db
crossref_primary_10_1007_s11128_023_03970_x
crossref_primary_10_1038_s41534_021_00380_8
crossref_primary_10_1103_PhysRevA_94_052119
crossref_primary_10_1214_19_STS745
crossref_primary_10_1088_1367_2630_ab73cd
crossref_primary_10_1007_s12065_022_00756_5
crossref_primary_10_1103_PhysRevResearch_6_023160
crossref_primary_10_1088_2633_4356_acb30a
crossref_primary_10_1103_PhysRevA_105_023302
crossref_primary_10_1088_2058_9565_ad48b3
crossref_primary_10_1088_1367_2630_ad309d
crossref_primary_10_1103_PhysRevLett_122_140504
crossref_primary_10_1103_PhysRevResearch_4_023161
crossref_primary_10_1103_PhysRevA_97_042324
crossref_primary_10_1103_PhysRevA_104_022611
crossref_primary_10_1103_PRXQuantum_2_020349
crossref_primary_10_1103_PhysRevX_9_021019
crossref_primary_10_1038_s41467_023_44008_1
crossref_primary_10_1103_PhysRevA_100_022314
crossref_primary_10_1088_1367_2630_17_2_022005
crossref_primary_10_21468_SciPostPhys_6_2_021
crossref_primary_10_1088_2058_9565_2_1_015004
crossref_primary_10_1038_s41467_023_40684_1
crossref_primary_10_1038_s41534_021_00436_9
crossref_primary_10_1116_5_0007577
crossref_primary_10_1142_S0219749918400130
crossref_primary_10_1109_TPAMI_2022_3203157
crossref_primary_10_1007_s11128_023_03873_x
crossref_primary_10_1016_j_physleta_2023_129279
crossref_primary_10_1103_PhysRevLett_113_210404
crossref_primary_10_1007_s11128_019_2364_9
crossref_primary_10_1103_PhysRevA_102_022621
crossref_primary_10_1088_1367_2630_18_3_033024
crossref_primary_10_1103_PhysRevLett_122_020504
crossref_primary_10_1103_PhysRevB_101_241105
crossref_primary_10_1145_3464420
crossref_primary_10_1088_1674_1056_27_5_054207
crossref_primary_10_1088_1367_2630_17_1_013042
crossref_primary_10_1007_s10773_023_05460_3
crossref_primary_10_1103_PhysRevLett_118_150503
crossref_primary_10_1088_1367_2630_16_9_093035
crossref_primary_10_1103_PhysRevLett_113_190404
crossref_primary_10_1088_1367_2630_ac68ff
crossref_primary_10_1063_5_0149414
crossref_primary_10_1007_s10440_024_00651_4
crossref_primary_10_1016_j_physleta_2020_126886
crossref_primary_10_1103_PhysRevA_96_052130
crossref_primary_10_1103_PhysRevLett_115_110401
crossref_primary_10_1103_PRXQuantum_3_030324
crossref_primary_10_7498_aps_67_20171911
crossref_primary_10_1103_PhysRevA_104_052427
crossref_primary_10_7566_JPSJ_86_024006
crossref_primary_10_1088_1367_2630_aaf749
crossref_primary_10_1209_0295_5075_115_50001
crossref_primary_10_1038_s41467_022_31679_5
crossref_primary_10_1038_s41598_019_54249_0
crossref_primary_10_1103_PhysRevLett_122_210502
crossref_primary_10_1103_PhysRevLett_124_160502
crossref_primary_10_1088_1367_2630_aafb8e
crossref_primary_10_1103_PhysRevLett_132_160401
crossref_primary_10_1103_PhysRevLett_123_190401
crossref_primary_10_1038_s41534_017_0017_3
crossref_primary_10_1103_PhysRevApplied_10_044033
crossref_primary_10_1103_PhysRevLett_118_190502
crossref_primary_10_1137_19M1264011
crossref_primary_10_1021_acs_jpclett_1c00283
crossref_primary_10_1002_qute_202200025
crossref_primary_10_1088_1367_2630_17_9_093017
crossref_primary_10_1088_1367_2630_aa8fe6
crossref_primary_10_1103_PRXQuantum_5_010350
crossref_primary_10_1103_PhysRevA_101_052344
crossref_primary_10_1103_PRXQuantum_2_020303
crossref_primary_10_1109_TQE_2022_3176870
crossref_primary_10_1103_PhysRevLett_118_100503
crossref_primary_10_1126_science_ade7651
crossref_primary_10_1038_s41567_021_01232_0
crossref_primary_10_1140_epjqt_s40507_023_00195_w
crossref_primary_10_22331_q_2017_04_25_5
crossref_primary_10_1103_PhysRevA_105_012615
crossref_primary_10_1103_PRXQuantum_3_030345
crossref_primary_10_1103_PhysRevResearch_3_023229
crossref_primary_10_1038_s42254_022_00552_1
crossref_primary_10_1103_PhysRevApplied_15_034080
crossref_primary_10_1007_s10773_018_3721_7
crossref_primary_10_1088_0256_307X_38_9_097502
crossref_primary_10_1038_npjqi_2016_19
crossref_primary_10_1088_1367_2630_aa77cf
crossref_primary_10_1002_qute_201800085
crossref_primary_10_3390_math9020193
crossref_primary_10_1103_PhysRevApplied_19_044041
crossref_primary_10_22331_q_2023_06_29_1045
crossref_primary_10_1007_s11432_022_3602_0
crossref_primary_10_1364_OE_27_001838
crossref_primary_10_1103_PhysRevE_105_L062101
crossref_primary_10_1088_1367_2630_ad5464
crossref_primary_10_1039_D0SC04847J
crossref_primary_10_1038_s42254_020_0193_5
crossref_primary_10_1088_1361_6633_aab406
crossref_primary_10_1103_PhysRevA_93_012122
crossref_primary_10_1088_1367_2630_abac39
crossref_primary_10_1038_nphys4074
crossref_primary_10_1088_2058_9565_ab60de
crossref_primary_10_1002_qute_202000067
crossref_primary_10_1088_1367_2630_17_12_123013
crossref_primary_10_1103_PhysRevA_91_052306
crossref_primary_10_1007_s42484_019_00010_9
crossref_primary_10_1038_nature23474
crossref_primary_10_1103_PhysRevA_98_012315
crossref_primary_10_22331_q_2023_01_26_905
crossref_primary_10_1103_PhysRevA_92_052322
crossref_primary_10_1103_PhysRevResearch_1_033092
crossref_primary_10_1103_PhysRevX_6_041062
crossref_primary_10_1116_5_0137398
crossref_primary_10_1103_PhysRevResearch_4_033223
crossref_primary_10_1103_PhysRevA_93_062306
crossref_primary_10_1038_s41567_021_01201_7
crossref_primary_10_1103_PhysRevA_107_042413
crossref_primary_10_1038_s42254_023_00662_4
crossref_primary_10_1103_PhysRevLett_130_200403
crossref_primary_10_1103_PRXQuantum_2_020317
crossref_primary_10_1021_acsphotonics_0c00960
crossref_primary_10_1103_PhysRevA_109_062609
crossref_primary_10_1103_PhysRevA_92_063852
ContentType Journal Article
DBID NPM
DOI 10.1103/physrevlett.112.190501
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 24877920
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c511t-733a63ad1afb5c91b1976ac5e595a25304805b6d89a79288fad67ce84f566a822
IngestDate Tue Oct 15 23:51:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-733a63ad1afb5c91b1976ac5e595a25304805b6d89a79288fad67ce84f566a822
OpenAccessLink http://arxiv.org/pdf/1309.0876
PMID 24877920
ParticipantIDs pubmed_primary_24877920
PublicationCentury 2000
PublicationDate 2014-May-16
PublicationDateYYYYMMDD 2014-05-16
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-May-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2014
SSID ssj0001268
Score 2.6120422
Snippet In recent years quantum simulation has made great strides, culminating in experiments that existing supercomputers cannot easily simulate. Although this raises...
SourceID pubmed
SourceType Index Database
StartPage 190501
Title Hamiltonian learning and certification using quantum resources
URI https://www.ncbi.nlm.nih.gov/pubmed/24877920
Volume 112
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9OEbyI39-Sg7eR2bRN01wEGcrwMDxsuNtI2hSEfem2i3-9L2na1W3ix6WUpi1Jfi-PX37Je0HoxtephiGkSCwoI2GWeURwpUjKUi2F8hhM4Mxui3bU6oZPPdZbLBfY6JKZaiQfa-NK_oMqPANcTZTsH5AtfwoP4B7whSsgDNdfYdwy6gSQNzNIB4XGYQPVzG7pzMlx9bnVA97m0InzYf3dCfbTKi99LuByoSwDG-VT8u2XV0Ahd8ZGal9s2jFbxvRSkoKKRO0O61pT2By79Xt3uJcTHmho1sypS1udO0uPC8JpHgRaelPqV81GVJwjcA-WKxerftsz-SOMmAPNNE00oU2N1Q-g_ydDi6YPMy0ubCDdD6VL-bSLohqq8dgc9tE2-s5OocpFsYsjhyrdrq-QSSDtfrI0GbGkpLOHdt1sAt_nprGPNvToAG3nYE4P0V3FQHBhIBgMBH8xEGwNBDsDwaWBHKHu40On2SLuwAySAG-eER4EMgpkSmWmWCKookA2ZcI0E0z6LDD5A5iK0lhIqHwcZzKNeKLjMANSL4EqHqPN0XikTxEG3irhFS6o5GEkhOKBlMDmswgGcKj4GTrJG96f5FlR-kWXnH9bcoF2FnZ0ibYyGIb6CjjdTF1bGD4BJylOkw
link.rule.ids 780
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hamiltonian+learning+and+certification+using+quantum+resources&rft.jtitle=Physical+review+letters&rft.au=Wiebe%2C+Nathan&rft.au=Granade%2C+Christopher&rft.au=Ferrie%2C+Christopher&rft.au=Cory%2C+D+G&rft.date=2014-05-16&rft.eissn=1079-7114&rft.volume=112&rft.issue=19&rft.spage=190501&rft_id=info:doi/10.1103%2Fphysrevlett.112.190501&rft_id=info%3Apmid%2F24877920&rft_id=info%3Apmid%2F24877920&rft.externalDocID=24877920