The fate and lifespan of human monocyte subsets in steady state and systemic inflammation
In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses....
Saved in:
Published in | The Journal of experimental medicine Vol. 214; no. 7; pp. 1913 - 1923 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
03.07.2017
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells. |
---|---|
AbstractList | In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells. In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells. Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation. In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells. Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation. In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans ( similar to 4 and similar to 7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells. Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation.In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells. |
Author | Gilroy, Derek W. Macallan, Derek Maini, Alexander A. Boelen, Lies Flavell, Richard A. Asquith, Becca Rongvaux, Anthony Bigley, Venetia Zhang, Yan Patel, Amit A. Fullerton, James N. Yona, Simon |
AuthorAffiliation | 2 Institute for Infection and Immunity, St. George’s, University of London, London, England, UK 4 Department of Immunobiology, Yale University, New Haven, CT 1 Division of Medicine, University College London, University of London, London, England, UK 7 St. George’s University Hospitals NHS Foundation Trust, London, England, UK 6 Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, England, UK 3 Theoretical Immunology Group, Faculty of Medicine, Imperial College London, London, England, UK 5 Howard Hughes Medical Institute, Yale University, New Haven, CT |
AuthorAffiliation_xml | – name: 5 Howard Hughes Medical Institute, Yale University, New Haven, CT – name: 1 Division of Medicine, University College London, University of London, London, England, UK – name: 3 Theoretical Immunology Group, Faculty of Medicine, Imperial College London, London, England, UK – name: 2 Institute for Infection and Immunity, St. George’s, University of London, London, England, UK – name: 6 Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, England, UK – name: 4 Department of Immunobiology, Yale University, New Haven, CT – name: 7 St. George’s University Hospitals NHS Foundation Trust, London, England, UK |
Author_xml | – sequence: 1 givenname: Amit A. surname: Patel fullname: Patel, Amit A. – sequence: 2 givenname: Yan orcidid: 0000-0001-6054-1309 surname: Zhang fullname: Zhang, Yan – sequence: 3 givenname: James N. orcidid: 0000-0002-4855-9255 surname: Fullerton fullname: Fullerton, James N. – sequence: 4 givenname: Lies orcidid: 0000-0003-3786-5545 surname: Boelen fullname: Boelen, Lies – sequence: 5 givenname: Anthony surname: Rongvaux fullname: Rongvaux, Anthony – sequence: 6 givenname: Alexander A. surname: Maini fullname: Maini, Alexander A. – sequence: 7 givenname: Venetia orcidid: 0000-0002-3017-2474 surname: Bigley fullname: Bigley, Venetia – sequence: 8 givenname: Richard A. orcidid: 0000-0003-4461-0778 surname: Flavell fullname: Flavell, Richard A. – sequence: 9 givenname: Derek W. surname: Gilroy fullname: Gilroy, Derek W. – sequence: 10 givenname: Becca surname: Asquith fullname: Asquith, Becca – sequence: 11 givenname: Derek orcidid: 0000-0002-3014-7148 surname: Macallan fullname: Macallan, Derek – sequence: 12 givenname: Simon orcidid: 0000-0002-3984-2008 surname: Yona fullname: Yona, Simon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28606987$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFG2cUiQsH0s7YcWJfkFDFR6VKvZQDJ8vrTFivYnuJk0r773FpF0HVA6ex_D7zemY8J-wopkiMvUY4Q1DN-ZbCGQfsQEj5jK1QNlBrKdQRWwFwXiNAd8xOct4CYNPI9gU75qqFVqtuxb7fbKga7EyVjX01-oHyzsYqDdVmCeUQUkxuX-S8rDPNufKxyjPZfl_CIS3vy1XwrojDaEOws0_xJXs-2DHTq4d4yr59_nRz8bW-uv5yefHxqnYSca5bJZCj5GunoQelpW5E4wTnHKhTCFJbK9bKkcC2t4MkBUgdEra6axFbcco-3PvulnWg3lGcJzua3eSDnfYmWW_-VaLfmB_p1kgJvBF3Bu8eDKb0c6E8m-Czo3G0kdKSDWrU5S3ZNf-Bgi6FK6UL-vYRuk3LFMskCqVEabLRWKg3fxf_p-rDBxWA3wNuSjlPNBjn59_zLb340SCYuy0wZQvMYQtK0vtHSQffJ_FfTfex7g |
CitedBy_id | crossref_primary_10_1038_s41398_024_02902_2 crossref_primary_10_1097_TP_0000000000004847 crossref_primary_10_1038_s41590_022_01216_z crossref_primary_10_1093_cei_uxae041 crossref_primary_10_3389_fcell_2021_622035 crossref_primary_10_1590_0001_3765201920190310 crossref_primary_10_1016_j_bbi_2024_12_151 crossref_primary_10_1038_s41591_018_0064_0 crossref_primary_10_1002_JLB_1MIR0420_076R crossref_primary_10_1007_s11538_022_01117_0 crossref_primary_10_1016_j_biopha_2020_110980 crossref_primary_10_1360_SSV_2021_0245 crossref_primary_10_1111_imcb_12032 crossref_primary_10_3389_fimmu_2019_01728 crossref_primary_10_15789_1563_0625_RBT_1924 crossref_primary_10_1093_oxfimm_iqaa005 crossref_primary_10_1371_journal_pntd_0006887 crossref_primary_10_1080_21645515_2022_2040238 crossref_primary_10_3390_ijms22052403 crossref_primary_10_1016_j_ijcard_2024_131780 crossref_primary_10_3389_fphar_2019_00463 crossref_primary_10_1093_jac_dkaf052 crossref_primary_10_1371_journal_pone_0293347 crossref_primary_10_3390_ph16060799 crossref_primary_10_3390_ijms252111662 crossref_primary_10_1002_JLB_5RU1217_477RR crossref_primary_10_1002_psp4_12459 crossref_primary_10_1111_bcp_15428 crossref_primary_10_3389_fimmu_2023_1329026 crossref_primary_10_1007_s00401_021_02268_5 crossref_primary_10_1038_s41556_024_01377_z crossref_primary_10_17816_morph_633989 crossref_primary_10_1016_j_prp_2023_155060 crossref_primary_10_3389_fimmu_2024_1416543 crossref_primary_10_3390_vaccines12010086 crossref_primary_10_1007_s11684_025_1124_8 crossref_primary_10_1371_journal_ppat_1007154 crossref_primary_10_1172_jci_insight_96492 crossref_primary_10_1002_JLB_5A0420_231RR crossref_primary_10_1007_s00430_023_00779_4 crossref_primary_10_1161_CIRCULATIONAHA_118_037975 crossref_primary_10_3389_fimmu_2020_519383 crossref_primary_10_1038_s41598_022_11157_0 crossref_primary_10_1161_CIRCRESAHA_124_323817 crossref_primary_10_14814_phy2_15494 crossref_primary_10_1016_j_immuni_2017_08_016 crossref_primary_10_1111_imr_12965 crossref_primary_10_1111_jop_12760 crossref_primary_10_3390_jpm14030279 crossref_primary_10_1093_immadv_ltab003 crossref_primary_10_1016_j_clim_2023_109728 crossref_primary_10_1097_MOT_0000000000001175 crossref_primary_10_1038_s41398_020_00979_z crossref_primary_10_3390_biomedicines10081925 crossref_primary_10_3390_v12060652 crossref_primary_10_1038_s41551_024_01230_6 crossref_primary_10_3390_ijms19051473 crossref_primary_10_1016_j_ebiom_2021_103612 crossref_primary_10_3390_epigenomes8020017 crossref_primary_10_1038_s41593_023_01487_1 crossref_primary_10_1172_JCI169496 crossref_primary_10_1213_ANE_0000000000003481 crossref_primary_10_1016_j_bbi_2019_07_019 crossref_primary_10_3390_cancers13215442 crossref_primary_10_3390_ijms24108757 crossref_primary_10_1126_sciadv_aaw0158 crossref_primary_10_3389_fcimb_2019_00235 crossref_primary_10_3389_fimmu_2022_1031216 crossref_primary_10_1038_s41420_024_02034_y crossref_primary_10_3389_fimmu_2021_746021 crossref_primary_10_1002_smtd_202301338 crossref_primary_10_3390_biology11050658 crossref_primary_10_1371_journal_ppat_1009430 crossref_primary_10_1016_j_immuni_2024_07_005 crossref_primary_10_1038_s41467_022_28621_0 crossref_primary_10_1038_s41467_020_16849_7 crossref_primary_10_2174_1381612825666190102104642 crossref_primary_10_1016_j_tim_2023_05_006 crossref_primary_10_1097_TP_0000000000003673 crossref_primary_10_3390_jcm12134359 crossref_primary_10_1093_cei_uxae113 crossref_primary_10_3389_fimmu_2018_00053 crossref_primary_10_3389_fimmu_2022_929244 crossref_primary_10_1007_s12016_021_08905_x crossref_primary_10_3389_fimmu_2019_00834 crossref_primary_10_3389_fimmu_2022_872652 crossref_primary_10_1016_j_xcrm_2020_100166 crossref_primary_10_3389_fimmu_2024_1454857 crossref_primary_10_1097_SHK_0000000000001601 crossref_primary_10_1186_s13148_022_01248_0 crossref_primary_10_1371_journal_pone_0250818 crossref_primary_10_3389_fmed_2022_1085339 crossref_primary_10_1111_jsr_14178 crossref_primary_10_1158_1535_7163_MCT_19_1093 crossref_primary_10_3389_fimmu_2020_00793 crossref_primary_10_7554_eLife_60214 crossref_primary_10_1038_s41385_020_00356_5 crossref_primary_10_15789_1563_0625_CAT_2792 crossref_primary_10_1016_j_clim_2023_109634 crossref_primary_10_1038_s41587_024_02186_3 crossref_primary_10_3389_fimmu_2019_00948 crossref_primary_10_1016_j_cyto_2020_155325 crossref_primary_10_1080_03009742_2024_2387483 crossref_primary_10_1016_j_physbeh_2018_07_013 crossref_primary_10_1007_s11538_021_00969_2 crossref_primary_10_1038_nri_2017_158 crossref_primary_10_1182_bloodadvances_2018020123 crossref_primary_10_1189_jlb_3CE0717_273R crossref_primary_10_1136_bmjopen_2023_083046 crossref_primary_10_3389_fcimb_2020_00368 crossref_primary_10_3389_fimmu_2022_967737 crossref_primary_10_1038_s41577_020_0285_6 crossref_primary_10_1038_s41598_022_05062_9 crossref_primary_10_1038_s41598_022_17928_z crossref_primary_10_3390_ijms232415753 crossref_primary_10_1016_j_ijcha_2018_09_005 crossref_primary_10_1016_j_biomaterials_2018_03_005 crossref_primary_10_1016_j_thromres_2023_05_018 crossref_primary_10_1016_j_clim_2023_109765 crossref_primary_10_3390_cancers14030833 crossref_primary_10_1016_j_autrev_2019_06_010 crossref_primary_10_1016_j_immuni_2021_01_006 crossref_primary_10_1167_iovs_65_11_23 crossref_primary_10_3390_cells11193028 crossref_primary_10_1073_pnas_2315659121 crossref_primary_10_1016_j_xcrm_2021_100422 crossref_primary_10_1016_j_celrep_2022_111441 crossref_primary_10_1093_infdis_jiz075 crossref_primary_10_1002_JLB_5A0718_280RR crossref_primary_10_1016_j_jaci_2023_06_014 crossref_primary_10_1111_cei_13448 crossref_primary_10_1111_bcp_14999 crossref_primary_10_1371_journal_pone_0280590 crossref_primary_10_1016_j_jmb_2023_168169 crossref_primary_10_3389_fimmu_2020_00410 crossref_primary_10_1007_s12035_021_02465_z crossref_primary_10_1111_febs_17116 crossref_primary_10_3390_biom15010058 crossref_primary_10_1172_jci_insight_95352 crossref_primary_10_1007_s12250_020_00332_0 crossref_primary_10_2478_amma_2022_0026 crossref_primary_10_3389_fimmu_2025_1506165 crossref_primary_10_1172_jci_insight_98867 crossref_primary_10_1111_hiv_13018 crossref_primary_10_25016_2541_7487_2024_0_4_84_94 crossref_primary_10_3389_fmicb_2019_02828 crossref_primary_10_1371_journal_ppat_1009753 crossref_primary_10_1016_j_isci_2023_106278 crossref_primary_10_1038_s41598_022_08600_7 crossref_primary_10_1016_j_addr_2023_114827 crossref_primary_10_1152_ajpcell_00326_2020 crossref_primary_10_3389_fimmu_2022_827250 crossref_primary_10_1080_08830185_2024_2411998 crossref_primary_10_1371_journal_pone_0233789 crossref_primary_10_2147_JIR_S293993 crossref_primary_10_1176_appi_focus_20104 crossref_primary_10_3389_fimmu_2024_1491729 crossref_primary_10_3389_fimmu_2018_02797 crossref_primary_10_1161_HYPERTENSIONAHA_124_21355 crossref_primary_10_1248_bpb_b21_00112 crossref_primary_10_3389_fimmu_2024_1395479 crossref_primary_10_1016_j_ijcard_2025_133161 crossref_primary_10_1016_j_prp_2023_154818 crossref_primary_10_1007_s00109_018_1672_3 crossref_primary_10_1016_j_autrev_2021_102911 crossref_primary_10_3390_jof6030111 crossref_primary_10_1016_j_jbc_2024_107349 crossref_primary_10_3389_fmed_2020_606462 crossref_primary_10_1136_gutjnl_2018_317071 crossref_primary_10_1016_j_ahjo_2025_100521 crossref_primary_10_1155_2019_3706315 crossref_primary_10_4049_jimmunol_2101123 crossref_primary_10_1007_s00262_020_02656_y crossref_primary_10_46235_1028_7221_16857_PWC crossref_primary_10_7554_eLife_57007 crossref_primary_10_3892_ol_2023_13786 crossref_primary_10_1136_ard_2023_225433 crossref_primary_10_1080_22221751_2022_2147021 crossref_primary_10_3389_fimmu_2020_00594 crossref_primary_10_3389_fphar_2019_01608 crossref_primary_10_3389_fimmu_2018_00127 crossref_primary_10_3390_cells13040300 crossref_primary_10_1038_s41598_021_91948_z crossref_primary_10_1002_glia_24111 crossref_primary_10_1126_scisignal_adn8727 crossref_primary_10_3390_tropicalmed9030064 crossref_primary_10_1097_EJA_0000000000001243 crossref_primary_10_1016_j_ebiom_2019_10_063 crossref_primary_10_3389_fimmu_2019_01435 crossref_primary_10_1111_wrr_12960 crossref_primary_10_1186_s13223_019_0379_5 crossref_primary_10_1016_j_intimp_2021_108037 crossref_primary_10_1111_imr_12693 crossref_primary_10_1007_s00395_023_01023_z crossref_primary_10_1097_QAD_0000000000002195 crossref_primary_10_1002_JLB_1RU0818_310R crossref_primary_10_1097_SHK_0000000000001358 crossref_primary_10_1016_j_jim_2018_06_003 crossref_primary_10_3389_fimmu_2024_1381091 crossref_primary_10_1016_j_exphem_2023_02_001 crossref_primary_10_1146_annurev_immunol_042617_053119 crossref_primary_10_3389_fimmu_2018_02217 crossref_primary_10_3389_fimmu_2020_00226 crossref_primary_10_1093_gerona_glac034 crossref_primary_10_3389_fimmu_2018_01247 crossref_primary_10_1016_j_jid_2021_08_428 crossref_primary_10_2217_fca_2021_0042 crossref_primary_10_1016_j_mam_2019_100835 crossref_primary_10_4049_immunohorizons_2300114 crossref_primary_10_1016_j_xinn_2024_100599 crossref_primary_10_1161_CIRCRESAHA_119_315708 crossref_primary_10_3389_fimmu_2020_01426 crossref_primary_10_3389_fpsyt_2019_00812 crossref_primary_10_3389_fimmu_2023_1235936 crossref_primary_10_3389_falgy_2023_1105588 crossref_primary_10_1182_blood_2023020257 crossref_primary_10_3389_fimmu_2020_00573 crossref_primary_10_1007_s00262_019_02302_2 crossref_primary_10_1016_j_clim_2022_109160 crossref_primary_10_1097_SHK_0000000000001222 crossref_primary_10_3389_fimmu_2018_02685 crossref_primary_10_1161_ATVBAHA_121_317176 crossref_primary_10_3390_ijms231810776 crossref_primary_10_1111_aji_13908 crossref_primary_10_1016_j_clim_2023_109698 crossref_primary_10_1126_science_abl4290 crossref_primary_10_1186_s12859_024_05927_y crossref_primary_10_3390_cancers13020165 crossref_primary_10_1016_j_tice_2022_101825 crossref_primary_10_1128_JVI_01887_18 crossref_primary_10_1038_s41598_021_85148_y crossref_primary_10_3390_hemato2030026 crossref_primary_10_1016_j_imbio_2022_152293 crossref_primary_10_1111_sji_12883 crossref_primary_10_7554_eLife_77345 crossref_primary_10_1097_SHK_0000000000001337 crossref_primary_10_3390_v10020065 crossref_primary_10_1159_000533732 crossref_primary_10_3390_toxics12070484 crossref_primary_10_1038_s41598_020_74639_z crossref_primary_10_1016_j_mucimm_2024_06_010 crossref_primary_10_1093_cvr_cvad069 crossref_primary_10_1097_MOH_0000000000000689 crossref_primary_10_3389_fimmu_2019_01761 crossref_primary_10_3389_fimmu_2019_01642 crossref_primary_10_1152_physrev_00068_2017 crossref_primary_10_3389_fimmu_2024_1414716 crossref_primary_10_3389_fimmu_2020_01384 crossref_primary_10_3389_fimmu_2022_935879 crossref_primary_10_3389_fimmu_2019_01408 crossref_primary_10_4049_jimmunol_2100107 crossref_primary_10_1038_s41598_025_86103_x crossref_primary_10_1016_j_molimm_2020_07_005 crossref_primary_10_1016_j_immuni_2018_10_005 crossref_primary_10_1186_s12967_019_1891_6 crossref_primary_10_3389_fimmu_2023_1291619 crossref_primary_10_1038_s41467_018_02977_8 crossref_primary_10_3389_fimmu_2021_784401 crossref_primary_10_1038_s41591_018_0036_4 crossref_primary_10_1111_joim_13559 crossref_primary_10_1007_s00332_023_10004_4 crossref_primary_10_3389_fimmu_2021_771210 crossref_primary_10_1155_2020_9396021 crossref_primary_10_3389_fnetp_2022_937739 crossref_primary_10_3389_fimmu_2019_01874 crossref_primary_10_3389_fimmu_2023_1257526 crossref_primary_10_1186_s12979_022_00321_9 crossref_primary_10_3389_fimmu_2020_611133 crossref_primary_10_1007_s00109_020_02002_w crossref_primary_10_3389_fimmu_2019_02849 crossref_primary_10_1038_s43587_020_00010_6 crossref_primary_10_33667_2078_5631_2022_19_18_21 crossref_primary_10_1016_j_imlet_2020_12_003 crossref_primary_10_1177_2040622320947378 crossref_primary_10_1371_journal_pone_0267662 crossref_primary_10_3389_fcell_2022_1091801 crossref_primary_10_1007_s13346_024_01591_0 crossref_primary_10_1186_s12896_024_00857_2 crossref_primary_10_1016_j_celrep_2020_108501 crossref_primary_10_1016_j_immuni_2024_04_019 crossref_primary_10_3389_fimmu_2019_01786 crossref_primary_10_3390_toxins12100621 crossref_primary_10_3390_vaccines9020174 crossref_primary_10_1186_s13046_023_02621_4 crossref_primary_10_1093_infdis_jiab044 crossref_primary_10_1093_infdis_jiac370 crossref_primary_10_1038_s44161_021_00002_8 crossref_primary_10_1038_s41598_023_30701_0 crossref_primary_10_1126_sciadv_adp5239 crossref_primary_10_1016_j_bbi_2022_01_005 crossref_primary_10_1002_ctm2_1507 crossref_primary_10_1016_j_jbspin_2022_105364 crossref_primary_10_3389_fmed_2022_997305 crossref_primary_10_1016_j_heliyon_2018_e00557 crossref_primary_10_3389_fimmu_2019_01893 crossref_primary_10_4049_jimmunol_2000841 crossref_primary_10_1186_s12979_023_00377_1 crossref_primary_10_4049_jimmunol_1801456 crossref_primary_10_1111_imr_13328 crossref_primary_10_3390_cells9081894 crossref_primary_10_3389_fimmu_2020_01590 crossref_primary_10_1177_17534259251316152 crossref_primary_10_1038_s41467_024_46322_8 crossref_primary_10_1016_j_smim_2017_12_002 crossref_primary_10_3389_fimmu_2022_842653 crossref_primary_10_3390_ijms23073868 crossref_primary_10_4049_jimmunol_2100136 crossref_primary_10_1016_j_ijmm_2018_06_013 crossref_primary_10_1016_j_it_2019_02_001 crossref_primary_10_3390_ijms241512259 crossref_primary_10_3390_immuno4020011 crossref_primary_10_1097_INF_0000000000002311 crossref_primary_10_1016_j_bbih_2023_100597 crossref_primary_10_1590_0001_3765202420231212 crossref_primary_10_4049_jimmunol_2001225 crossref_primary_10_1002_cti2_1131 crossref_primary_10_2139_ssrn_3991084 crossref_primary_10_1038_s41421_020_00211_8 crossref_primary_10_3389_fimmu_2023_1129261 crossref_primary_10_1128_mBio_01247_21 crossref_primary_10_1371_journal_pone_0266748 crossref_primary_10_1016_j_it_2020_12_001 crossref_primary_10_3389_fphys_2023_1211972 crossref_primary_10_1080_25785826_2024_2331271 crossref_primary_10_1093_intimm_dxz036 crossref_primary_10_4049_immunohorizons_2300095 crossref_primary_10_3390_biomedicines9040374 crossref_primary_10_1136_ard_2022_223398 crossref_primary_10_4049_jimmunol_2001354 crossref_primary_10_1002_JLB_4RI0818_311R crossref_primary_10_1016_j_smim_2023_101814 crossref_primary_10_1038_s41419_018_0327_1 crossref_primary_10_3389_fimmu_2019_00188 crossref_primary_10_1172_JCI172087 crossref_primary_10_1002_cti2_1144 crossref_primary_10_1038_s41598_020_72008_4 crossref_primary_10_1186_s12974_020_01931_0 crossref_primary_10_1038_s41598_021_81058_1 crossref_primary_10_3389_fimmu_2020_00086 crossref_primary_10_3389_fonc_2019_01034 crossref_primary_10_1016_j_ebiom_2020_102964 crossref_primary_10_1016_j_cjca_2020_01_013 crossref_primary_10_1038_s41467_022_34638_2 crossref_primary_10_1038_s41598_018_25047_x crossref_primary_10_5713_ajas_19_0251 crossref_primary_10_7554_eLife_70520 crossref_primary_10_1016_j_imlet_2020_07_007 crossref_primary_10_1016_j_hest_2024_07_004 crossref_primary_10_1016_j_immuni_2020_12_003 crossref_primary_10_1016_j_it_2024_04_013 crossref_primary_10_1016_j_bbih_2024_100777 crossref_primary_10_1136_jitc_2023_006921 crossref_primary_10_1002_eji_201747449 crossref_primary_10_1016_j_celrep_2024_114706 crossref_primary_10_3389_fimmu_2019_02035 crossref_primary_10_1016_j_clim_2024_110203 crossref_primary_10_1002_path_5984 crossref_primary_10_3389_fimmu_2019_01068 crossref_primary_10_1016_j_celrep_2022_110709 crossref_primary_10_1002_JLB_1HI0421_181R crossref_primary_10_1097_SHK_0000000000001193 crossref_primary_10_31083_j_fbl2809210 crossref_primary_10_3389_fimmu_2018_01521 crossref_primary_10_1093_intimm_dxy063 crossref_primary_10_1097_HC9_0000000000000107 crossref_primary_10_3389_fonc_2020_01399 crossref_primary_10_7759_cureus_74816 crossref_primary_10_1016_j_smim_2021_101472 crossref_primary_10_1093_cvr_cvy112 crossref_primary_10_3389_fimmu_2019_00085 crossref_primary_10_3389_fimmu_2025_1539780 crossref_primary_10_4049_jimmunol_2000485 crossref_primary_10_3389_fimmu_2018_02845 crossref_primary_10_1080_14728222_2022_2161889 crossref_primary_10_1038_s41598_019_52671_y crossref_primary_10_1007_s12015_021_10298_5 crossref_primary_10_1016_j_bbih_2019_100033 crossref_primary_10_3390_ijms24087368 crossref_primary_10_3389_fimmu_2020_620339 crossref_primary_10_1016_j_bbi_2019_05_030 crossref_primary_10_3389_fimmu_2020_610300 crossref_primary_10_1128_JVI_01174_19 crossref_primary_10_3389_fimmu_2022_1062849 crossref_primary_10_4049_jimmunol_1800207 crossref_primary_10_1016_j_tpr_2019_100038 crossref_primary_10_1161_CIRCRESAHA_124_324457 crossref_primary_10_1124_jpet_119_258343 crossref_primary_10_1186_s12979_020_00191_z crossref_primary_10_1016_j_bbrc_2019_07_120 crossref_primary_10_1038_s41380_022_01514_w crossref_primary_10_1152_ajpcell_00330_2020 crossref_primary_10_1038_s41467_020_17260_y crossref_primary_10_1186_s12885_024_12177_x crossref_primary_10_3390_biom14101251 crossref_primary_10_3389_fimmu_2024_1419117 crossref_primary_10_7554_eLife_52168 crossref_primary_10_15407_ubj96_05_044 crossref_primary_10_1007_s00281_022_00968_y crossref_primary_10_3892_br_2019_1212 crossref_primary_10_1098_rsif_2021_0806 crossref_primary_10_1016_j_bbi_2020_01_018 crossref_primary_10_1002_path_5404 crossref_primary_10_1111_cas_15800 crossref_primary_10_3389_fimmu_2020_01099 crossref_primary_10_3389_fimmu_2021_641224 crossref_primary_10_1007_s12035_020_02130_x crossref_primary_10_3390_cancers12102966 crossref_primary_10_1055_s_0040_1717096 crossref_primary_10_3389_fimmu_2025_1483764 crossref_primary_10_3389_fcvm_2022_853967 crossref_primary_10_4049_jimmunol_1900182 crossref_primary_10_1016_j_heliyon_2024_e29686 crossref_primary_10_3390_ijms23179868 crossref_primary_10_1172_JCI179527 crossref_primary_10_1111_jcmm_18559 crossref_primary_10_1016_j_jconrel_2019_05_020 crossref_primary_10_1016_j_crimmu_2022_02_001 crossref_primary_10_1093_labmed_lmac133 crossref_primary_10_1016_j_cell_2023_07_019 crossref_primary_10_3390_biomedicines10010178 crossref_primary_10_1111_imm_13697 crossref_primary_10_3389_fmolb_2022_811116 crossref_primary_10_1111_imr_13195 crossref_primary_10_1172_jci_insight_123047 crossref_primary_10_1084_jem_20220867 crossref_primary_10_3390_diseases13040090 crossref_primary_10_4193_RHINOL_21_032 crossref_primary_10_1016_j_molmed_2020_03_002 crossref_primary_10_3389_fimmu_2022_1022361 crossref_primary_10_3389_fimmu_2025_1428978 crossref_primary_10_1016_j_biopha_2021_111614 crossref_primary_10_1097_SHK_0000000000002379 crossref_primary_10_1186_s13075_018_1798_2 crossref_primary_10_1371_journal_pcbi_1008413 crossref_primary_10_1016_j_biocel_2022_106194 crossref_primary_10_1080_08820139_2023_2249531 crossref_primary_10_1007_s10802_025_01303_3 crossref_primary_10_1007_s10753_022_01767_1 crossref_primary_10_1111_imm_13320 crossref_primary_10_3389_fimmu_2023_1130214 crossref_primary_10_1038_s41574_022_00675_6 crossref_primary_10_3390_ijms222111375 crossref_primary_10_1038_s41408_022_00773_8 crossref_primary_10_3389_fimmu_2021_657945 crossref_primary_10_3389_fimmu_2021_729209 crossref_primary_10_3389_fimmu_2021_686111 crossref_primary_10_1016_j_coisb_2019_10_002 crossref_primary_10_3389_fimmu_2018_02818 crossref_primary_10_3389_fnagi_2020_592359 crossref_primary_10_1155_2020_9670360 crossref_primary_10_1183_23120541_00318_2019 crossref_primary_10_1186_s12865_019_0323_y crossref_primary_10_1111_imm_13435 crossref_primary_10_1002_wsbm_1576 crossref_primary_10_4049_jimmunol_2101058 crossref_primary_10_1002_adhm_202402946 crossref_primary_10_3390_cells10010015 crossref_primary_10_3390_medicina56010036 crossref_primary_10_1038_s41598_018_33440_9 crossref_primary_10_1371_journal_pntd_0012417 crossref_primary_10_3389_fimmu_2020_621222 crossref_primary_10_1016_j_jhep_2020_03_027 crossref_primary_10_1172_jci_insight_99274 crossref_primary_10_3389_fimmu_2019_02581 crossref_primary_10_1016_j_lfs_2022_120557 crossref_primary_10_1084_jem_20191236 crossref_primary_10_3389_fimmu_2022_819136 crossref_primary_10_3389_fimmu_2021_661182 crossref_primary_10_1038_s41467_018_07801_x crossref_primary_10_3389_fimmu_2019_00167 crossref_primary_10_3390_cancers13102367 crossref_primary_10_3389_fcvm_2017_00080 crossref_primary_10_3389_fimmu_2022_820480 crossref_primary_10_3389_fimmu_2020_01070 crossref_primary_10_3390_jcm10184139 crossref_primary_10_1183_13993003_00460_2019 crossref_primary_10_1093_burnst_tkaa040 crossref_primary_10_1126_sciadv_adh2284 crossref_primary_10_1097_HEP_0000000000000438 crossref_primary_10_1111_bcpt_14047 crossref_primary_10_1016_j_isci_2024_111103 crossref_primary_10_1111_bjh_17205 crossref_primary_10_3389_fimmu_2020_609921 crossref_primary_10_3389_fimmu_2021_710121 crossref_primary_10_1093_eurheartj_ehab371 crossref_primary_10_1063_5_0023830 crossref_primary_10_1002_ehf2_12837 crossref_primary_10_1177_2058739219851760 crossref_primary_10_3389_fimmu_2021_701656 crossref_primary_10_3389_fimmu_2022_889175 crossref_primary_10_1164_rccm_201804_0670ED crossref_primary_10_1016_j_tins_2020_03_012 crossref_primary_10_1038_s41586_022_05670_5 crossref_primary_10_1038_s41525_022_00335_8 crossref_primary_10_1016_j_cell_2025_01_021 crossref_primary_10_7554_eLife_65553 crossref_primary_10_3389_fimmu_2023_1227873 crossref_primary_10_1007_s00285_023_01940_6 crossref_primary_10_15252_emmm_202114150 crossref_primary_10_1186_s12979_022_00297_6 crossref_primary_10_3389_fimmu_2023_1124894 crossref_primary_10_3390_antiox7120196 crossref_primary_10_1161_CIRCRESAHA_123_322757 crossref_primary_10_1093_eurheartj_ehad787 crossref_primary_10_1371_journal_pone_0303978 crossref_primary_10_1182_blood_2024024144 crossref_primary_10_1111_ijlh_13941 crossref_primary_10_1164_rccm_201712_2530OC crossref_primary_10_1002_cyto_a_24269 crossref_primary_10_1002_cti2_70026 crossref_primary_10_1038_s44161_023_00388_7 crossref_primary_10_1182_blood_2023020714 crossref_primary_10_1016_j_omto_2022_12_006 crossref_primary_10_1016_j_jacl_2021_02_005 crossref_primary_10_1139_bcb_2021_0460 crossref_primary_10_4049_jimmunol_2001194 crossref_primary_10_1007_s13365_023_01137_z crossref_primary_10_1007_s13679_024_00599_4 crossref_primary_10_1186_s13073_021_00948_1 crossref_primary_10_2139_ssrn_3365028 crossref_primary_10_3389_fimmu_2020_00918 crossref_primary_10_1186_s13075_021_02623_7 crossref_primary_10_1128_JVI_01022_20 crossref_primary_10_3389_fimmu_2021_697840 crossref_primary_10_1097_MD_0000000000033967 crossref_primary_10_1093_discim_kyad008 crossref_primary_10_4049_jimmunol_2001047 crossref_primary_10_1161_CIRCRESAHA_120_316203 crossref_primary_10_3390_biom12010100 crossref_primary_10_1016_j_beha_2019_101134 crossref_primary_10_1007_s40262_018_0708_8 crossref_primary_10_1016_j_antiviral_2023_105698 crossref_primary_10_4285_ctr_24_0056 crossref_primary_10_3389_fimmu_2019_01902 crossref_primary_10_1016_j_semcdb_2018_02_018 crossref_primary_10_1002_eji_202170126 crossref_primary_10_1002_JLB_5RU1021_524R crossref_primary_10_1016_j_jneuroim_2021_577524 crossref_primary_10_1186_s13072_021_00383_x crossref_primary_10_3389_fimmu_2019_01907 crossref_primary_10_1038_s41598_020_67039_w crossref_primary_10_1051_medsci_2019236 crossref_primary_10_1186_s12979_024_00413_8 crossref_primary_10_1002_adhm_202101536 crossref_primary_10_1016_j_jaut_2022_102945 crossref_primary_10_3390_antiox13091052 crossref_primary_10_1161_JAHA_117_007849 crossref_primary_10_1002_cyto_b_22176 crossref_primary_10_1016_j_biochi_2018_06_014 crossref_primary_10_1016_j_healun_2021_03_018 crossref_primary_10_1002_JLB_MA0519_149R crossref_primary_10_1371_journal_pcbi_1009839 crossref_primary_10_1183_13993003_03468_2020 crossref_primary_10_3390_biomedicines10112894 crossref_primary_10_1186_s13046_025_03359_x crossref_primary_10_1038_s41398_024_02780_8 crossref_primary_10_1038_s41598_021_92473_9 crossref_primary_10_3390_biology11020195 crossref_primary_10_1111_imcb_12337 crossref_primary_10_3389_fimmu_2024_1383607 crossref_primary_10_1002_eji_202149680 crossref_primary_10_3390_pathogens11060611 crossref_primary_10_1038_s41467_023_44166_2 crossref_primary_10_1183_23120541_00804_2020 crossref_primary_10_3390_jcm10245815 crossref_primary_10_3390_v14020409 crossref_primary_10_3389_fimmu_2022_1050478 crossref_primary_10_1097_CCM_0000000000004273 crossref_primary_10_1016_j_imlet_2023_07_009 crossref_primary_10_1038_s41551_019_0473_5 crossref_primary_10_1038_s41569_019_0169_2 crossref_primary_10_1155_2021_1762584 crossref_primary_10_1002_JLB_MR0318_104R crossref_primary_10_1016_j_jaci_2019_02_030 crossref_primary_10_1016_j_jtbi_2021_110739 crossref_primary_10_1182_bloodadvances_2023010044 crossref_primary_10_1016_j_jacc_2018_08_2149 crossref_primary_10_1002_eji_202048881 crossref_primary_10_1152_ajplung_00085_2023 crossref_primary_10_3389_fneur_2024_1491189 crossref_primary_10_1007_s11538_020_00777_0 crossref_primary_10_1038_s41588_023_01375_1 crossref_primary_10_7554_eLife_85647 crossref_primary_10_1016_j_molimm_2020_02_015 crossref_primary_10_1016_j_vesic_2023_100030 crossref_primary_10_35754_0234_5730_2022_67_4_511_524 crossref_primary_10_1172_JCI152565 crossref_primary_10_1111_imm_12888 crossref_primary_10_1038_s41467_025_57357_w crossref_primary_10_1016_j_jri_2022_103735 crossref_primary_10_1038_s42003_018_0216_2 crossref_primary_10_3389_fneur_2019_01004 crossref_primary_10_1016_j_jacc_2018_08_2148 crossref_primary_10_1097_COH_0000000000000910 crossref_primary_10_3390_biomedicines10061363 crossref_primary_10_3389_fimmu_2022_899296 crossref_primary_10_1093_brain_awae177 crossref_primary_10_1016_j_imlet_2020_09_002 crossref_primary_10_1038_s41598_021_89037_2 crossref_primary_10_1126_scitranslmed_adl3381 crossref_primary_10_1186_s12985_022_01937_5 crossref_primary_10_1007_s00421_022_05131_x crossref_primary_10_3389_fimmu_2019_02287 crossref_primary_10_1172_JCI163451 crossref_primary_10_3389_fimmu_2022_959281 crossref_primary_10_1016_j_trsl_2022_04_004 crossref_primary_10_3389_fimmu_2021_659255 crossref_primary_10_3389_fonc_2024_1414102 crossref_primary_10_3390_cells10040861 crossref_primary_10_1016_j_clnu_2020_02_011 crossref_primary_10_3389_fmolb_2020_00026 crossref_primary_10_3389_fimmu_2024_1357444 crossref_primary_10_1038_s41568_023_00635_w crossref_primary_10_1080_17513758_2020_1733678 crossref_primary_10_3389_fcimb_2024_1405431 crossref_primary_10_1002_jcp_26461 crossref_primary_10_1016_j_bcp_2019_113672 crossref_primary_10_1515_cclm_2024_0371 crossref_primary_10_2337_dbi22_0028 crossref_primary_10_3389_fimmu_2020_611946 crossref_primary_10_1016_j_jri_2020_103151 crossref_primary_10_1038_s41598_019_38985_x crossref_primary_10_3389_fmed_2022_904721 crossref_primary_10_1016_j_atherosclerosis_2017_09_032 crossref_primary_10_1038_s41551_018_0307_x crossref_primary_10_1002_adfm_202409522 crossref_primary_10_1098_rsob_200340 crossref_primary_10_3389_fimmu_2023_1134661 crossref_primary_10_4103_ejh_ejh_45_22 crossref_primary_10_1016_j_burns_2022_10_010 crossref_primary_10_1016_j_isci_2022_104384 crossref_primary_10_1371_journal_pone_0249205 crossref_primary_10_1007_s13365_024_01240_9 crossref_primary_10_1093_discim_kyae014 crossref_primary_10_1016_j_cyto_2024_156633 crossref_primary_10_1016_j_celrep_2018_10_102 crossref_primary_10_1186_s12974_024_03011_z crossref_primary_10_1155_2019_1409383 crossref_primary_10_1016_j_it_2018_11_007 crossref_primary_10_1016_j_it_2018_11_006 crossref_primary_10_1084_jem_20171491 crossref_primary_10_3390_nu17020312 crossref_primary_10_3389_fimmu_2024_1502937 crossref_primary_10_1111_jre_13158 crossref_primary_10_1097_TA_0000000000004173 crossref_primary_10_1111_1348_0421_13083 crossref_primary_10_1111_cts_13457 crossref_primary_10_1093_ecco_jcc_jjab022 crossref_primary_10_1371_journal_pone_0205310 crossref_primary_10_3389_fcell_2020_600160 crossref_primary_10_1016_j_jid_2024_01_034 crossref_primary_10_1186_s40425_019_0536_x crossref_primary_10_1016_j_coi_2021_07_007 crossref_primary_10_1093_jleuko_qiae026 crossref_primary_10_1681_ASN_0000000000000083 crossref_primary_10_1002_mnfr_202300829 |
Cites_doi | 10.1182/blood-2016-03-700336 10.1038/ni.2967 10.1182/blood-2010-02-258558 10.4049/jimmunol.172.7.4410 10.1016/j.immuni.2011.02.016 10.1038/nprot.2015.092 10.1084/jem.20101459 10.1084/jem.20061011 10.1038/nri3671 10.1007/978-1-62703-290-2_10 10.1084/jem.20141442 10.1038/nbt.2858 10.1016/j.immuni.2013.08.007 10.1038/ni.2638 10.1084/jem.20070885 10.1038/ncomms12597 10.1126/science.aad5510 10.4049/jimmunol.176.7.4155 10.1016/S1074-7613(03)00174-2 10.1182/blood-2009-07-235028 10.3791/53913 10.1038/nature14053 10.1016/j.immuni.2013.10.004 10.1016/j.immuni.2009.06.025 10.1182/blood-2010-12-326355 10.1182/blood.V74.7.2527.2527 10.4049/jimmunol.1400574 10.1038/ni1309 10.1038/ni1522 10.1016/j.immuni.2012.08.025 10.1016/j.kint.2016.10.030 10.1084/jem.20131199 10.1126/science.1219179 10.1038/nprot.2007.420 10.1073/pnas.95.2.708 10.1126/science.1142883 10.1038/nm.3589 10.1038/nri3712 10.3389/fimmu.2015.00328 10.1172/JCI28941 10.1084/jem.20070075 10.1038/ni.2705 10.1182/blood-2012-07-445999 10.1002/ijc.2910410324 10.1126/science.1117729 10.1038/nri3070 10.1038/nature12034 10.1016/j.immuni.2013.04.006 10.1016/j.immuni.2012.12.001 10.1016/B978-0-12-417028-5.00003-X 10.1084/jem.128.3.415 10.1371/journal.pone.0028918 10.1038/jcbfm.2009.25 10.1038/ni1518 10.1016/j.immuni.2010.08.012 10.1038/nprot.2009.117 10.1371/journal.ppat.1003310 10.1016/j.immuni.2013.04.004 10.1126/science.1170540 10.1084/jem.20120690 10.1126/science.aaf4238 10.1126/science.1194637 10.1016/j.immuni.2016.10.011 |
ContentType | Journal Article |
Copyright | 2017 Patel et al. Copyright Rockefeller University Press Jul 3, 2017 2017 Patel et al. 2017 |
Copyright_xml | – notice: 2017 Patel et al. – notice: Copyright Rockefeller University Press Jul 3, 2017 – notice: 2017 Patel et al. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1084/jem.20170355 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AIDS and Cancer Research Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Human monocyte kinetics |
EISSN | 1540-9538 |
EndPage | 1923 |
ExternalDocumentID | PMC5502436 28606987 10_1084_jem_20170355 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0601072 – fundername: Wellcome Trust grantid: 103865 – fundername: Medical Research Council grantid: MR/J007439/1 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: Medical Research Council grantid: G1001052 – fundername: ; – fundername: ; grantid: 093053/Z/10/Z – fundername: ; grantid: 15012 – fundername: ; grantid: G1001052 – fundername: ; grantid: FP7/2007–2013; 317040 – fundername: ; grantid: 103865 – fundername: ; grantid: J007439; G1001052 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c511t-68312152bc90d08959434c32220e781059aa3b8ce316daf5e801e71e169761163 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 14:06:06 EDT 2025 Fri Jul 11 09:00:08 EDT 2025 Fri Jul 11 08:18:41 EDT 2025 Mon Jun 30 16:43:08 EDT 2025 Sat May 31 02:10:31 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 00:41:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2017 Patel et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-68312152bc90d08959434c32220e781059aa3b8ce316daf5e801e71e169761163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 R.A. Flavell, D.W. Gilroy, B. Asquith, and D. Macallan contributed equally to this paper. A. Rongvaux’s present address is Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA. |
ORCID | 0000-0003-3786-5545 0000-0002-3984-2008 0000-0002-4855-9255 0000-0001-6054-1309 0000-0002-3017-2474 0000-0003-4461-0778 0000-0002-3014-7148 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5502436 |
PMID | 28606987 |
PQID | 1983434491 |
PQPubID | 2046203 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502436 proquest_miscellaneous_1919976574 proquest_miscellaneous_1909220889 proquest_journals_1983434491 pubmed_primary_28606987 crossref_citationtrail_10_1084_jem_20170355 crossref_primary_10_1084_jem_20170355 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170703 |
PublicationDateYYYYMMDD | 2017-07-03 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170703 day: 3 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2017 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Varol (2023072603574527200_bib53) 2009; 31 Cros (2023072603574527200_bib9) 2010; 33 Liu (2023072603574527200_bib29) 2009; 324 Hashimoto (2023072603574527200_bib21) 2013; 38 Onai (2023072603574527200_bib38) 2013; 38 Jakubzick (2023072603574527200_bib25) 2013; 39 Gamrekelashvili (2023072603574527200_bib14) 2016; 7 Fullerton (2023072603574527200_bib13) 2016 Schulz (2023072603574527200_bib41) 2012; 336 Mass (2023072603574527200_bib32) 2016; 353 Fogg (2023072603574527200_bib12) 2006; 311 Yrlid (2023072603574527200_bib60) 2006; 176 Heidt (2023072603574527200_bib22) 2014; 20 Busch (2023072603574527200_bib7) 2007; 2 Shi (2023072603574527200_bib44) 2011; 34 Ziegler-Heitbrock (2023072603574527200_bib62) 1988; 41 Ginhoux (2023072603574527200_bib16) 2014; 14 Hettinger (2023072603574527200_bib23) 2013; 14 Avraham-Davidi (2023072603574527200_bib3) 2013; 210 Wong (2023072603574527200_bib56) 2011; 118 Guilliams (2023072603574527200_bib19) 2013; 210 Rongvaux (2023072603574527200_bib40) 2014; 32 Griseri (2023072603574527200_bib18) 2012; 37 Urra (2023072603574527200_bib49) 2009; 29 Macallan (2023072603574527200_bib31) 2009; 4 Varol (2023072603574527200_bib52) 2007; 204 Soucie (2023072603574527200_bib45) 2016; 351 Liao (2023072603574527200_bib28) 2017; 91 Bain (2023072603574527200_bib4) 2014; 15 Passlick (2023072603574527200_bib39) 1989; 74 Shi (2023072603574527200_bib43) 2011; 11 Deng (2023072603574527200_bib11) 2015; 517 Wynn (2023072603574527200_bib57) 2013; 496 van Furth (2023072603574527200_bib51) 1972; 47 Vukmanovic-Stejic (2023072603574527200_bib54) 2006; 116 Ziegler-Heitbrock (2023072603574527200_bib63) 2010; 116 Davies (2023072603574527200_bib10) 2013; 14 Guilliams (2023072603574527200_bib20) 2014; 14 Macallan (2023072603574527200_bib30) 1998; 95 Nahrendorf (2023072603574527200_bib35) 2007; 204 Lahoz-Beneytez (2023072603574527200_bib26) 2016; 127 Yona (2023072603574527200_bib58) 2015; 6 Arnold (2023072603574527200_bib1) 2007; 204 Naik (2023072603574527200_bib36) 2007; 8 Westera (2023072603574527200_bib55) 2013; 979 Bigley (2023072603574527200_bib5) 2011; 208 Thomas (2023072603574527200_bib48) 2016; 45 Auffray (2023072603574527200_bib2) 2007; 317 Breton (2023072603574527200_bib6) 2015; 10 Mildner (2023072603574527200_bib33) 2013; 121 Serbina (2023072603574527200_bib42) 2006; 7 Lee (2023072603574527200_bib27) 2015; 212 Ginhoux (2023072603574527200_bib17) 2010; 330 Yona (2023072603574527200_bib59) 2013; 38 Zigmond (2023072603574527200_bib64) 2014; 193 Tamoutounour (2023072603574527200_bib47) 2013; 39 Cooper (2023072603574527200_bib8) 2012; 7 Sunderkötter (2023072603574527200_bib46) 2004; 172 Geissmann (2023072603574527200_bib15) 2003; 19 Mildner (2023072603574527200_bib34) 2013; 120 Zhang (2023072603574527200_bib61) 2013; 9 van Furth (2023072603574527200_bib50) 1968; 128 Ingersoll (2023072603574527200_bib24) 2010; 115 Onai (2023072603574527200_bib37) 2007; 8 |
References_xml | – volume: 127 start-page: 3431 year: 2016 ident: 2023072603574527200_bib26 article-title: Human neutrophil kinetics: Modeling of stable isotope labeling data supports short blood neutrophil half-lives publication-title: Blood. doi: 10.1182/blood-2016-03-700336 – volume: 15 start-page: 929 year: 2014 ident: 2023072603574527200_bib4 article-title: Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice publication-title: Nat. Immunol. doi: 10.1038/ni.2967 – volume: 116 start-page: e74 year: 2010 ident: 2023072603574527200_bib63 article-title: Nomenclature of monocytes and dendritic cells in blood publication-title: Blood. doi: 10.1182/blood-2010-02-258558 – volume: 172 start-page: 4410 year: 2004 ident: 2023072603574527200_bib46 article-title: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response publication-title: J. Immunol. doi: 10.4049/jimmunol.172.7.4410 – volume: 34 start-page: 590 year: 2011 ident: 2023072603574527200_bib44 article-title: Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands publication-title: Immunity. doi: 10.1016/j.immuni.2011.02.016 – volume: 10 start-page: 1407 year: 2015 ident: 2023072603574527200_bib6 article-title: Defining human dendritic cell progenitors by multiparametric flow cytometry publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.092 – volume: 208 start-page: 227 year: 2011 ident: 2023072603574527200_bib5 article-title: The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency publication-title: J. Exp. Med. doi: 10.1084/jem.20101459 – volume: 204 start-page: 171 year: 2007 ident: 2023072603574527200_bib52 article-title: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20061011 – volume: 14 start-page: 392 year: 2014 ident: 2023072603574527200_bib16 article-title: Monocytes and macrophages: Developmental pathways and tissue homeostasis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3671 – volume: 979 start-page: 107 year: 2013 ident: 2023072603574527200_bib55 article-title: Quantitating lymphocyte homeostasis in vivo in humans using stable isotope tracers publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-290-2_10 – volume: 212 start-page: 385 year: 2015 ident: 2023072603574527200_bib27 article-title: Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow publication-title: J. Exp. Med. doi: 10.1084/jem.20141442 – volume: 32 start-page: 364 year: 2014 ident: 2023072603574527200_bib40 article-title: Development and function of human innate immune cells in a humanized mouse model publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2858 – volume: 39 start-page: 599 year: 2013 ident: 2023072603574527200_bib25 article-title: Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes publication-title: Immunity. doi: 10.1016/j.immuni.2013.08.007 – volume: 14 start-page: 821 year: 2013 ident: 2023072603574527200_bib23 article-title: Origin of monocytes and macrophages in a committed progenitor publication-title: Nat. Immunol. doi: 10.1038/ni.2638 – volume: 204 start-page: 3037 year: 2007 ident: 2023072603574527200_bib35 article-title: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions publication-title: J. Exp. Med. doi: 10.1084/jem.20070885 – volume: 7 start-page: 12597 year: 2016 ident: 2023072603574527200_bib14 article-title: Regulation of monocyte cell fate by blood vessels mediated by Notch signalling publication-title: Nat. Commun. doi: 10.1038/ncomms12597 – volume: 351 start-page: aad5510 year: 2016 ident: 2023072603574527200_bib45 article-title: Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells publication-title: Science. doi: 10.1126/science.aad5510 – volume: 176 start-page: 4155 year: 2006 ident: 2023072603574527200_bib60 article-title: Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions publication-title: J. Immunol. doi: 10.4049/jimmunol.176.7.4155 – volume: 19 start-page: 71 year: 2003 ident: 2023072603574527200_bib15 article-title: Blood monocytes consist of two principal subsets with distinct migratory properties publication-title: Immunity. doi: 10.1016/S1074-7613(03)00174-2 – volume: 115 start-page: e10 year: 2010 ident: 2023072603574527200_bib24 article-title: Comparison of gene expression profiles between human and mouse monocyte subsets publication-title: Blood. doi: 10.1182/blood-2009-07-235028 – start-page: e53913 year: 2016 ident: 2023072603574527200_bib13 article-title: Intravenous endotoxin challenge in healthy humans: An experimental platform to investigate and modulate systemic inflammation publication-title: J. Vis. Exp. doi: 10.3791/53913 – volume: 517 start-page: 381 year: 2015 ident: 2023072603574527200_bib11 article-title: Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations publication-title: Nature. doi: 10.1038/nature14053 – volume: 39 start-page: 925 year: 2013 ident: 2023072603574527200_bib47 article-title: Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin publication-title: Immunity. doi: 10.1016/j.immuni.2013.10.004 – volume: 31 start-page: 502 year: 2009 ident: 2023072603574527200_bib53 article-title: Intestinal lamina propria dendritic cell subsets have different origin and functions publication-title: Immunity. doi: 10.1016/j.immuni.2009.06.025 – volume: 118 start-page: e16 year: 2011 ident: 2023072603574527200_bib56 article-title: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets publication-title: Blood. doi: 10.1182/blood-2010-12-326355 – volume: 74 start-page: 2527 year: 1989 ident: 2023072603574527200_bib39 article-title: Identification and characterization of a novel monocyte subpopulation in human peripheral blood publication-title: Blood. doi: 10.1182/blood.V74.7.2527.2527 – volume: 193 start-page: 344 year: 2014 ident: 2023072603574527200_bib64 article-title: Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury publication-title: J. Immunol. doi: 10.4049/jimmunol.1400574 – volume: 7 start-page: 311 year: 2006 ident: 2023072603574527200_bib42 article-title: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2 publication-title: Nat. Immunol. doi: 10.1038/ni1309 – volume: 8 start-page: 1217 year: 2007 ident: 2023072603574527200_bib36 article-title: Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo publication-title: Nat. Immunol. doi: 10.1038/ni1522 – volume: 37 start-page: 1116 year: 2012 ident: 2023072603574527200_bib18 article-title: Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation publication-title: Immunity. doi: 10.1016/j.immuni.2012.08.025 – volume: 91 start-page: 1088 year: 2017 ident: 2023072603574527200_bib28 article-title: Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes publication-title: Kidney Int. doi: 10.1016/j.kint.2016.10.030 – volume: 210 start-page: 1977 year: 2013 ident: 2023072603574527200_bib19 article-title: Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF publication-title: J. Exp. Med. doi: 10.1084/jem.20131199 – volume: 336 start-page: 86 year: 2012 ident: 2023072603574527200_bib41 article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells publication-title: Science. doi: 10.1126/science.1219179 – volume: 2 start-page: 3045 year: 2007 ident: 2023072603574527200_bib7 article-title: Measurement of cell proliferation by heavy water labeling publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.420 – volume: 95 start-page: 708 year: 1998 ident: 2023072603574527200_bib30 article-title: Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: Studies in vitro, in animals, and in humans publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.95.2.708 – volume: 317 start-page: 666 year: 2007 ident: 2023072603574527200_bib2 article-title: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior publication-title: Science. doi: 10.1126/science.1142883 – volume: 20 start-page: 754 year: 2014 ident: 2023072603574527200_bib22 article-title: Chronic variable stress activates hematopoietic stem cells publication-title: Nat. Med. doi: 10.1038/nm.3589 – volume: 14 start-page: 571 year: 2014 ident: 2023072603574527200_bib20 article-title: Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3712 – volume: 6 start-page: 328 year: 2015 ident: 2023072603574527200_bib58 article-title: From the reticuloendothelial to mononuclear phagocyte system - The unaccounted years publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00328 – volume: 116 start-page: 2423 year: 2006 ident: 2023072603574527200_bib54 article-title: Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo publication-title: J. Clin. Invest. doi: 10.1172/JCI28941 – volume: 204 start-page: 1057 year: 2007 ident: 2023072603574527200_bib1 article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis publication-title: J. Exp. Med. doi: 10.1084/jem.20070075 – volume: 14 start-page: 986 year: 2013 ident: 2023072603574527200_bib10 article-title: Tissue-resident macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2705 – volume: 121 start-page: 1016 year: 2013 ident: 2023072603574527200_bib33 article-title: Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis publication-title: Blood. doi: 10.1182/blood-2012-07-445999 – volume: 41 start-page: 456 year: 1988 ident: 2023072603574527200_bib62 article-title: Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes publication-title: Int. J. Cancer. doi: 10.1002/ijc.2910410324 – volume: 311 start-page: 83 year: 2006 ident: 2023072603574527200_bib12 article-title: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells publication-title: Science. doi: 10.1126/science.1117729 – volume: 11 start-page: 762 year: 2011 ident: 2023072603574527200_bib43 article-title: Monocyte recruitment during infection and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3070 – volume: 496 start-page: 445 year: 2013 ident: 2023072603574527200_bib57 article-title: Macrophage biology in development, homeostasis and disease publication-title: Nature. doi: 10.1038/nature12034 – volume: 38 start-page: 943 year: 2013 ident: 2023072603574527200_bib38 article-title: A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential publication-title: Immunity. doi: 10.1016/j.immuni.2013.04.006 – volume: 38 start-page: 79 year: 2013 ident: 2023072603574527200_bib59 article-title: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis publication-title: Immunity. doi: 10.1016/j.immuni.2012.12.001 – volume: 120 start-page: 69 year: 2013 ident: 2023072603574527200_bib34 article-title: A close encounter of the third kind: Monocyte-derived cells publication-title: Adv. Immunol. doi: 10.1016/B978-0-12-417028-5.00003-X – volume: 128 start-page: 415 year: 1968 ident: 2023072603574527200_bib50 article-title: The origin and kinetics of mononuclear phagocytes publication-title: J. Exp. Med. doi: 10.1084/jem.128.3.415 – volume: 7 start-page: e28918 year: 2012 ident: 2023072603574527200_bib8 article-title: FcγRIIIa expression on monocytes in rheumatoid arthritis: Role in immune-complex stimulated TNF production and non-response to methotrexate therapy publication-title: PLoS One. doi: 10.1371/journal.pone.0028918 – volume: 29 start-page: 994 year: 2009 ident: 2023072603574527200_bib49 article-title: Monocyte subtypes predict clinical course and prognosis in human stroke publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2009.25 – volume: 8 start-page: 1207 year: 2007 ident: 2023072603574527200_bib37 article-title: Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow publication-title: Nat. Immunol. doi: 10.1038/ni1518 – volume: 33 start-page: 375 year: 2010 ident: 2023072603574527200_bib9 article-title: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors publication-title: Immunity. doi: 10.1016/j.immuni.2010.08.012 – volume: 4 start-page: 1313 year: 2009 ident: 2023072603574527200_bib31 article-title: Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.117 – volume: 9 start-page: e1003310 year: 2013 ident: 2023072603574527200_bib61 article-title: Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003310 – volume: 38 start-page: 792 year: 2013 ident: 2023072603574527200_bib21 article-title: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes publication-title: Immunity. doi: 10.1016/j.immuni.2013.04.004 – volume: 47 start-page: 651 year: 1972 ident: 2023072603574527200_bib51 article-title: [Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line] publication-title: Bull. World Health Organ. – volume: 324 start-page: 392 year: 2009 ident: 2023072603574527200_bib29 article-title: In vivo analysis of dendritic cell development and homeostasis publication-title: Science. doi: 10.1126/science.1170540 – volume: 210 start-page: 2611 year: 2013 ident: 2023072603574527200_bib3 article-title: On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells publication-title: J. Exp. Med. doi: 10.1084/jem.20120690 – volume: 353 start-page: aaf4238 year: 2016 ident: 2023072603574527200_bib32 article-title: Specification of tissue-resident macrophages during organogenesis publication-title: Science. doi: 10.1126/science.aaf4238 – volume: 330 start-page: 841 year: 2010 ident: 2023072603574527200_bib17 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science. doi: 10.1126/science.1194637 – volume: 45 start-page: 975 year: 2016 ident: 2023072603574527200_bib48 article-title: Deleting an Nr4a1 super-enhancer subdomain ablates Ly6C(low) monocytes while preserving macrophage gene function publication-title: Immunity. doi: 10.1016/j.immuni.2016.10.011 |
SSID | ssj0014456 |
Score | 2.6766145 |
Snippet | In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying... Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1913 |
SubjectTerms | Animals Bone marrow Bone Marrow Cells - immunology Cell Differentiation - immunology Cell fate Cell Survival - immunology Cells, Cultured Deuterium Deuterium - metabolism Endotoxemia Endotoxemia - blood Endotoxemia - immunology Fate maps Flow Cytometry Homeostasis Homeostasis - immunology Human behavior Humans Inflammation Inflammation - blood Inflammation - immunology Isotope Labeling - methods Kinetics Labeling Life span Mice Monocytes Monocytes - immunology Repopulation Restoration Steady state Time Factors |
Title | The fate and lifespan of human monocyte subsets in steady state and systemic inflammation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28606987 https://www.proquest.com/docview/1983434491 https://www.proquest.com/docview/1909220889 https://www.proquest.com/docview/1919976574 https://pubmed.ncbi.nlm.nih.gov/PMC5502436 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDeBgowEp1UgThzHOQJqVaFtQWhX2p6ixHHUoDZB2-yh_Ap-MjOO82pLBVyiVeJ4nXxfZsaehwl5owrQYpxrN_aV7_I0xG1emHbTIgV9ninBGGYjHx6JgxX_vA7Xs9mvUdTStsneqZ_X5pX8D6pwDnDFLNl_QLbvFE7Ab8AXjoAwHP8a4wKMReMBOC0LDeKhNf_M0jyMo1YXcPkcpINuTOSrAfVibvKIzG1tKedSYVgWsONsQOr78Ccjs3WyJcBlz_xX6LX1-p-VzbBM2q9KHw9cxLmv3tjgfROrO3iFPtaoDOeLLsDRrkows9zpBT2PvoEw1wW6HjZXUh7H4hhmwhim0SojK4G5hz5lORbRfptoarkYjQQuTDeDkfJGe_VaxeBJjopBY_EBBlKurQ08rb999CXZXy0WyXJvvbxFbvsw8TDp4-s-aAhmn2Y_4H7gNpUCen8_7ntq5FyZuVwOwB1ZNMv75J7FlH5oefWAzHT1kNw5tJA-IseAPEV6UeAJ7ehF64IaetGOXtTSi5YVbelFDb3MbR296Jhej8lqf2_56cC1O3G4CgzyxhUywCokfqZiL_dkHGJVQYVOOk9HEk30NA0yqXTARJ4WoQa7R0dMMwHWLgOT_wnZqepKPyMUJuSRzAMuWIE-eiVzxdI4DvM0YIXMPYfMu1eXKFumHndLOU1MuITkCbzopHvRDnnbt_7Rlmf5Q7vdDoXEfsDnCYtlAM_BY-aQ1_1lEK_oM0srXW-xjRfDU0oZ39QGo7VEGHGHPG2B7QfjS-GJWEYOiSaQ9w2wvPv0SlWemDLvYYjVQsXzm4f-gtwdvr9dstNstvol2MlN9spQ9zcfcMG5 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fate+and+lifespan+of+human+monocyte+subsets+in+steady+state+and+systemic+inflammation&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Patel%2C+Amit+A&rft.au=Zhang%2C+Yan&rft.au=Fullerton%2C+James+N&rft.au=Boelen+Lies&rft.date=2017-07-03&rft.pub=Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=214&rft.issue=7&rft.spage=1913&rft.epage=1923&rft_id=info:doi/10.1084%2Fjem.20170355&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |