The fate and lifespan of human monocyte subsets in steady state and systemic inflammation

In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 214; no. 7; pp. 1913 - 1923
Main Authors Patel, Amit A., Zhang, Yan, Fullerton, James N., Boelen, Lies, Rongvaux, Anthony, Maini, Alexander A., Bigley, Venetia, Flavell, Richard A., Gilroy, Derek W., Asquith, Becca, Macallan, Derek, Yona, Simon
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 03.07.2017
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
AbstractList In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation. In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation. In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans ( similar to 4 and similar to 7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation.In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
Author Gilroy, Derek W.
Macallan, Derek
Maini, Alexander A.
Boelen, Lies
Flavell, Richard A.
Asquith, Becca
Rongvaux, Anthony
Bigley, Venetia
Zhang, Yan
Patel, Amit A.
Fullerton, James N.
Yona, Simon
AuthorAffiliation 2 Institute for Infection and Immunity, St. George’s, University of London, London, England, UK
4 Department of Immunobiology, Yale University, New Haven, CT
1 Division of Medicine, University College London, University of London, London, England, UK
7 St. George’s University Hospitals NHS Foundation Trust, London, England, UK
6 Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, England, UK
3 Theoretical Immunology Group, Faculty of Medicine, Imperial College London, London, England, UK
5 Howard Hughes Medical Institute, Yale University, New Haven, CT
AuthorAffiliation_xml – name: 5 Howard Hughes Medical Institute, Yale University, New Haven, CT
– name: 1 Division of Medicine, University College London, University of London, London, England, UK
– name: 3 Theoretical Immunology Group, Faculty of Medicine, Imperial College London, London, England, UK
– name: 2 Institute for Infection and Immunity, St. George’s, University of London, London, England, UK
– name: 6 Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, England, UK
– name: 4 Department of Immunobiology, Yale University, New Haven, CT
– name: 7 St. George’s University Hospitals NHS Foundation Trust, London, England, UK
Author_xml – sequence: 1
  givenname: Amit A.
  surname: Patel
  fullname: Patel, Amit A.
– sequence: 2
  givenname: Yan
  orcidid: 0000-0001-6054-1309
  surname: Zhang
  fullname: Zhang, Yan
– sequence: 3
  givenname: James N.
  orcidid: 0000-0002-4855-9255
  surname: Fullerton
  fullname: Fullerton, James N.
– sequence: 4
  givenname: Lies
  orcidid: 0000-0003-3786-5545
  surname: Boelen
  fullname: Boelen, Lies
– sequence: 5
  givenname: Anthony
  surname: Rongvaux
  fullname: Rongvaux, Anthony
– sequence: 6
  givenname: Alexander A.
  surname: Maini
  fullname: Maini, Alexander A.
– sequence: 7
  givenname: Venetia
  orcidid: 0000-0002-3017-2474
  surname: Bigley
  fullname: Bigley, Venetia
– sequence: 8
  givenname: Richard A.
  orcidid: 0000-0003-4461-0778
  surname: Flavell
  fullname: Flavell, Richard A.
– sequence: 9
  givenname: Derek W.
  surname: Gilroy
  fullname: Gilroy, Derek W.
– sequence: 10
  givenname: Becca
  surname: Asquith
  fullname: Asquith, Becca
– sequence: 11
  givenname: Derek
  orcidid: 0000-0002-3014-7148
  surname: Macallan
  fullname: Macallan, Derek
– sequence: 12
  givenname: Simon
  orcidid: 0000-0002-3984-2008
  surname: Yona
  fullname: Yona, Simon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28606987$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFG2cUiQsH0s7YcWJfkFDFR6VKvZQDJ8vrTFivYnuJk0r773FpF0HVA6ex_D7zemY8J-wopkiMvUY4Q1DN-ZbCGQfsQEj5jK1QNlBrKdQRWwFwXiNAd8xOct4CYNPI9gU75qqFVqtuxb7fbKga7EyVjX01-oHyzsYqDdVmCeUQUkxuX-S8rDPNufKxyjPZfl_CIS3vy1XwrojDaEOws0_xJXs-2DHTq4d4yr59_nRz8bW-uv5yefHxqnYSca5bJZCj5GunoQelpW5E4wTnHKhTCFJbK9bKkcC2t4MkBUgdEra6axFbcco-3PvulnWg3lGcJzua3eSDnfYmWW_-VaLfmB_p1kgJvBF3Bu8eDKb0c6E8m-Czo3G0kdKSDWrU5S3ZNf-Bgi6FK6UL-vYRuk3LFMskCqVEabLRWKg3fxf_p-rDBxWA3wNuSjlPNBjn59_zLb340SCYuy0wZQvMYQtK0vtHSQffJ_FfTfex7g
CitedBy_id crossref_primary_10_1038_s41398_024_02902_2
crossref_primary_10_1097_TP_0000000000004847
crossref_primary_10_1038_s41590_022_01216_z
crossref_primary_10_1093_cei_uxae041
crossref_primary_10_3389_fcell_2021_622035
crossref_primary_10_1590_0001_3765201920190310
crossref_primary_10_1016_j_bbi_2024_12_151
crossref_primary_10_1038_s41591_018_0064_0
crossref_primary_10_1002_JLB_1MIR0420_076R
crossref_primary_10_1007_s11538_022_01117_0
crossref_primary_10_1016_j_biopha_2020_110980
crossref_primary_10_1360_SSV_2021_0245
crossref_primary_10_1111_imcb_12032
crossref_primary_10_3389_fimmu_2019_01728
crossref_primary_10_15789_1563_0625_RBT_1924
crossref_primary_10_1093_oxfimm_iqaa005
crossref_primary_10_1371_journal_pntd_0006887
crossref_primary_10_1080_21645515_2022_2040238
crossref_primary_10_3390_ijms22052403
crossref_primary_10_1016_j_ijcard_2024_131780
crossref_primary_10_3389_fphar_2019_00463
crossref_primary_10_1093_jac_dkaf052
crossref_primary_10_1371_journal_pone_0293347
crossref_primary_10_3390_ph16060799
crossref_primary_10_3390_ijms252111662
crossref_primary_10_1002_JLB_5RU1217_477RR
crossref_primary_10_1002_psp4_12459
crossref_primary_10_1111_bcp_15428
crossref_primary_10_3389_fimmu_2023_1329026
crossref_primary_10_1007_s00401_021_02268_5
crossref_primary_10_1038_s41556_024_01377_z
crossref_primary_10_17816_morph_633989
crossref_primary_10_1016_j_prp_2023_155060
crossref_primary_10_3389_fimmu_2024_1416543
crossref_primary_10_3390_vaccines12010086
crossref_primary_10_1007_s11684_025_1124_8
crossref_primary_10_1371_journal_ppat_1007154
crossref_primary_10_1172_jci_insight_96492
crossref_primary_10_1002_JLB_5A0420_231RR
crossref_primary_10_1007_s00430_023_00779_4
crossref_primary_10_1161_CIRCULATIONAHA_118_037975
crossref_primary_10_3389_fimmu_2020_519383
crossref_primary_10_1038_s41598_022_11157_0
crossref_primary_10_1161_CIRCRESAHA_124_323817
crossref_primary_10_14814_phy2_15494
crossref_primary_10_1016_j_immuni_2017_08_016
crossref_primary_10_1111_imr_12965
crossref_primary_10_1111_jop_12760
crossref_primary_10_3390_jpm14030279
crossref_primary_10_1093_immadv_ltab003
crossref_primary_10_1016_j_clim_2023_109728
crossref_primary_10_1097_MOT_0000000000001175
crossref_primary_10_1038_s41398_020_00979_z
crossref_primary_10_3390_biomedicines10081925
crossref_primary_10_3390_v12060652
crossref_primary_10_1038_s41551_024_01230_6
crossref_primary_10_3390_ijms19051473
crossref_primary_10_1016_j_ebiom_2021_103612
crossref_primary_10_3390_epigenomes8020017
crossref_primary_10_1038_s41593_023_01487_1
crossref_primary_10_1172_JCI169496
crossref_primary_10_1213_ANE_0000000000003481
crossref_primary_10_1016_j_bbi_2019_07_019
crossref_primary_10_3390_cancers13215442
crossref_primary_10_3390_ijms24108757
crossref_primary_10_1126_sciadv_aaw0158
crossref_primary_10_3389_fcimb_2019_00235
crossref_primary_10_3389_fimmu_2022_1031216
crossref_primary_10_1038_s41420_024_02034_y
crossref_primary_10_3389_fimmu_2021_746021
crossref_primary_10_1002_smtd_202301338
crossref_primary_10_3390_biology11050658
crossref_primary_10_1371_journal_ppat_1009430
crossref_primary_10_1016_j_immuni_2024_07_005
crossref_primary_10_1038_s41467_022_28621_0
crossref_primary_10_1038_s41467_020_16849_7
crossref_primary_10_2174_1381612825666190102104642
crossref_primary_10_1016_j_tim_2023_05_006
crossref_primary_10_1097_TP_0000000000003673
crossref_primary_10_3390_jcm12134359
crossref_primary_10_1093_cei_uxae113
crossref_primary_10_3389_fimmu_2018_00053
crossref_primary_10_3389_fimmu_2022_929244
crossref_primary_10_1007_s12016_021_08905_x
crossref_primary_10_3389_fimmu_2019_00834
crossref_primary_10_3389_fimmu_2022_872652
crossref_primary_10_1016_j_xcrm_2020_100166
crossref_primary_10_3389_fimmu_2024_1454857
crossref_primary_10_1097_SHK_0000000000001601
crossref_primary_10_1186_s13148_022_01248_0
crossref_primary_10_1371_journal_pone_0250818
crossref_primary_10_3389_fmed_2022_1085339
crossref_primary_10_1111_jsr_14178
crossref_primary_10_1158_1535_7163_MCT_19_1093
crossref_primary_10_3389_fimmu_2020_00793
crossref_primary_10_7554_eLife_60214
crossref_primary_10_1038_s41385_020_00356_5
crossref_primary_10_15789_1563_0625_CAT_2792
crossref_primary_10_1016_j_clim_2023_109634
crossref_primary_10_1038_s41587_024_02186_3
crossref_primary_10_3389_fimmu_2019_00948
crossref_primary_10_1016_j_cyto_2020_155325
crossref_primary_10_1080_03009742_2024_2387483
crossref_primary_10_1016_j_physbeh_2018_07_013
crossref_primary_10_1007_s11538_021_00969_2
crossref_primary_10_1038_nri_2017_158
crossref_primary_10_1182_bloodadvances_2018020123
crossref_primary_10_1189_jlb_3CE0717_273R
crossref_primary_10_1136_bmjopen_2023_083046
crossref_primary_10_3389_fcimb_2020_00368
crossref_primary_10_3389_fimmu_2022_967737
crossref_primary_10_1038_s41577_020_0285_6
crossref_primary_10_1038_s41598_022_05062_9
crossref_primary_10_1038_s41598_022_17928_z
crossref_primary_10_3390_ijms232415753
crossref_primary_10_1016_j_ijcha_2018_09_005
crossref_primary_10_1016_j_biomaterials_2018_03_005
crossref_primary_10_1016_j_thromres_2023_05_018
crossref_primary_10_1016_j_clim_2023_109765
crossref_primary_10_3390_cancers14030833
crossref_primary_10_1016_j_autrev_2019_06_010
crossref_primary_10_1016_j_immuni_2021_01_006
crossref_primary_10_1167_iovs_65_11_23
crossref_primary_10_3390_cells11193028
crossref_primary_10_1073_pnas_2315659121
crossref_primary_10_1016_j_xcrm_2021_100422
crossref_primary_10_1016_j_celrep_2022_111441
crossref_primary_10_1093_infdis_jiz075
crossref_primary_10_1002_JLB_5A0718_280RR
crossref_primary_10_1016_j_jaci_2023_06_014
crossref_primary_10_1111_cei_13448
crossref_primary_10_1111_bcp_14999
crossref_primary_10_1371_journal_pone_0280590
crossref_primary_10_1016_j_jmb_2023_168169
crossref_primary_10_3389_fimmu_2020_00410
crossref_primary_10_1007_s12035_021_02465_z
crossref_primary_10_1111_febs_17116
crossref_primary_10_3390_biom15010058
crossref_primary_10_1172_jci_insight_95352
crossref_primary_10_1007_s12250_020_00332_0
crossref_primary_10_2478_amma_2022_0026
crossref_primary_10_3389_fimmu_2025_1506165
crossref_primary_10_1172_jci_insight_98867
crossref_primary_10_1111_hiv_13018
crossref_primary_10_25016_2541_7487_2024_0_4_84_94
crossref_primary_10_3389_fmicb_2019_02828
crossref_primary_10_1371_journal_ppat_1009753
crossref_primary_10_1016_j_isci_2023_106278
crossref_primary_10_1038_s41598_022_08600_7
crossref_primary_10_1016_j_addr_2023_114827
crossref_primary_10_1152_ajpcell_00326_2020
crossref_primary_10_3389_fimmu_2022_827250
crossref_primary_10_1080_08830185_2024_2411998
crossref_primary_10_1371_journal_pone_0233789
crossref_primary_10_2147_JIR_S293993
crossref_primary_10_1176_appi_focus_20104
crossref_primary_10_3389_fimmu_2024_1491729
crossref_primary_10_3389_fimmu_2018_02797
crossref_primary_10_1161_HYPERTENSIONAHA_124_21355
crossref_primary_10_1248_bpb_b21_00112
crossref_primary_10_3389_fimmu_2024_1395479
crossref_primary_10_1016_j_ijcard_2025_133161
crossref_primary_10_1016_j_prp_2023_154818
crossref_primary_10_1007_s00109_018_1672_3
crossref_primary_10_1016_j_autrev_2021_102911
crossref_primary_10_3390_jof6030111
crossref_primary_10_1016_j_jbc_2024_107349
crossref_primary_10_3389_fmed_2020_606462
crossref_primary_10_1136_gutjnl_2018_317071
crossref_primary_10_1016_j_ahjo_2025_100521
crossref_primary_10_1155_2019_3706315
crossref_primary_10_4049_jimmunol_2101123
crossref_primary_10_1007_s00262_020_02656_y
crossref_primary_10_46235_1028_7221_16857_PWC
crossref_primary_10_7554_eLife_57007
crossref_primary_10_3892_ol_2023_13786
crossref_primary_10_1136_ard_2023_225433
crossref_primary_10_1080_22221751_2022_2147021
crossref_primary_10_3389_fimmu_2020_00594
crossref_primary_10_3389_fphar_2019_01608
crossref_primary_10_3389_fimmu_2018_00127
crossref_primary_10_3390_cells13040300
crossref_primary_10_1038_s41598_021_91948_z
crossref_primary_10_1002_glia_24111
crossref_primary_10_1126_scisignal_adn8727
crossref_primary_10_3390_tropicalmed9030064
crossref_primary_10_1097_EJA_0000000000001243
crossref_primary_10_1016_j_ebiom_2019_10_063
crossref_primary_10_3389_fimmu_2019_01435
crossref_primary_10_1111_wrr_12960
crossref_primary_10_1186_s13223_019_0379_5
crossref_primary_10_1016_j_intimp_2021_108037
crossref_primary_10_1111_imr_12693
crossref_primary_10_1007_s00395_023_01023_z
crossref_primary_10_1097_QAD_0000000000002195
crossref_primary_10_1002_JLB_1RU0818_310R
crossref_primary_10_1097_SHK_0000000000001358
crossref_primary_10_1016_j_jim_2018_06_003
crossref_primary_10_3389_fimmu_2024_1381091
crossref_primary_10_1016_j_exphem_2023_02_001
crossref_primary_10_1146_annurev_immunol_042617_053119
crossref_primary_10_3389_fimmu_2018_02217
crossref_primary_10_3389_fimmu_2020_00226
crossref_primary_10_1093_gerona_glac034
crossref_primary_10_3389_fimmu_2018_01247
crossref_primary_10_1016_j_jid_2021_08_428
crossref_primary_10_2217_fca_2021_0042
crossref_primary_10_1016_j_mam_2019_100835
crossref_primary_10_4049_immunohorizons_2300114
crossref_primary_10_1016_j_xinn_2024_100599
crossref_primary_10_1161_CIRCRESAHA_119_315708
crossref_primary_10_3389_fimmu_2020_01426
crossref_primary_10_3389_fpsyt_2019_00812
crossref_primary_10_3389_fimmu_2023_1235936
crossref_primary_10_3389_falgy_2023_1105588
crossref_primary_10_1182_blood_2023020257
crossref_primary_10_3389_fimmu_2020_00573
crossref_primary_10_1007_s00262_019_02302_2
crossref_primary_10_1016_j_clim_2022_109160
crossref_primary_10_1097_SHK_0000000000001222
crossref_primary_10_3389_fimmu_2018_02685
crossref_primary_10_1161_ATVBAHA_121_317176
crossref_primary_10_3390_ijms231810776
crossref_primary_10_1111_aji_13908
crossref_primary_10_1016_j_clim_2023_109698
crossref_primary_10_1126_science_abl4290
crossref_primary_10_1186_s12859_024_05927_y
crossref_primary_10_3390_cancers13020165
crossref_primary_10_1016_j_tice_2022_101825
crossref_primary_10_1128_JVI_01887_18
crossref_primary_10_1038_s41598_021_85148_y
crossref_primary_10_3390_hemato2030026
crossref_primary_10_1016_j_imbio_2022_152293
crossref_primary_10_1111_sji_12883
crossref_primary_10_7554_eLife_77345
crossref_primary_10_1097_SHK_0000000000001337
crossref_primary_10_3390_v10020065
crossref_primary_10_1159_000533732
crossref_primary_10_3390_toxics12070484
crossref_primary_10_1038_s41598_020_74639_z
crossref_primary_10_1016_j_mucimm_2024_06_010
crossref_primary_10_1093_cvr_cvad069
crossref_primary_10_1097_MOH_0000000000000689
crossref_primary_10_3389_fimmu_2019_01761
crossref_primary_10_3389_fimmu_2019_01642
crossref_primary_10_1152_physrev_00068_2017
crossref_primary_10_3389_fimmu_2024_1414716
crossref_primary_10_3389_fimmu_2020_01384
crossref_primary_10_3389_fimmu_2022_935879
crossref_primary_10_3389_fimmu_2019_01408
crossref_primary_10_4049_jimmunol_2100107
crossref_primary_10_1038_s41598_025_86103_x
crossref_primary_10_1016_j_molimm_2020_07_005
crossref_primary_10_1016_j_immuni_2018_10_005
crossref_primary_10_1186_s12967_019_1891_6
crossref_primary_10_3389_fimmu_2023_1291619
crossref_primary_10_1038_s41467_018_02977_8
crossref_primary_10_3389_fimmu_2021_784401
crossref_primary_10_1038_s41591_018_0036_4
crossref_primary_10_1111_joim_13559
crossref_primary_10_1007_s00332_023_10004_4
crossref_primary_10_3389_fimmu_2021_771210
crossref_primary_10_1155_2020_9396021
crossref_primary_10_3389_fnetp_2022_937739
crossref_primary_10_3389_fimmu_2019_01874
crossref_primary_10_3389_fimmu_2023_1257526
crossref_primary_10_1186_s12979_022_00321_9
crossref_primary_10_3389_fimmu_2020_611133
crossref_primary_10_1007_s00109_020_02002_w
crossref_primary_10_3389_fimmu_2019_02849
crossref_primary_10_1038_s43587_020_00010_6
crossref_primary_10_33667_2078_5631_2022_19_18_21
crossref_primary_10_1016_j_imlet_2020_12_003
crossref_primary_10_1177_2040622320947378
crossref_primary_10_1371_journal_pone_0267662
crossref_primary_10_3389_fcell_2022_1091801
crossref_primary_10_1007_s13346_024_01591_0
crossref_primary_10_1186_s12896_024_00857_2
crossref_primary_10_1016_j_celrep_2020_108501
crossref_primary_10_1016_j_immuni_2024_04_019
crossref_primary_10_3389_fimmu_2019_01786
crossref_primary_10_3390_toxins12100621
crossref_primary_10_3390_vaccines9020174
crossref_primary_10_1186_s13046_023_02621_4
crossref_primary_10_1093_infdis_jiab044
crossref_primary_10_1093_infdis_jiac370
crossref_primary_10_1038_s44161_021_00002_8
crossref_primary_10_1038_s41598_023_30701_0
crossref_primary_10_1126_sciadv_adp5239
crossref_primary_10_1016_j_bbi_2022_01_005
crossref_primary_10_1002_ctm2_1507
crossref_primary_10_1016_j_jbspin_2022_105364
crossref_primary_10_3389_fmed_2022_997305
crossref_primary_10_1016_j_heliyon_2018_e00557
crossref_primary_10_3389_fimmu_2019_01893
crossref_primary_10_4049_jimmunol_2000841
crossref_primary_10_1186_s12979_023_00377_1
crossref_primary_10_4049_jimmunol_1801456
crossref_primary_10_1111_imr_13328
crossref_primary_10_3390_cells9081894
crossref_primary_10_3389_fimmu_2020_01590
crossref_primary_10_1177_17534259251316152
crossref_primary_10_1038_s41467_024_46322_8
crossref_primary_10_1016_j_smim_2017_12_002
crossref_primary_10_3389_fimmu_2022_842653
crossref_primary_10_3390_ijms23073868
crossref_primary_10_4049_jimmunol_2100136
crossref_primary_10_1016_j_ijmm_2018_06_013
crossref_primary_10_1016_j_it_2019_02_001
crossref_primary_10_3390_ijms241512259
crossref_primary_10_3390_immuno4020011
crossref_primary_10_1097_INF_0000000000002311
crossref_primary_10_1016_j_bbih_2023_100597
crossref_primary_10_1590_0001_3765202420231212
crossref_primary_10_4049_jimmunol_2001225
crossref_primary_10_1002_cti2_1131
crossref_primary_10_2139_ssrn_3991084
crossref_primary_10_1038_s41421_020_00211_8
crossref_primary_10_3389_fimmu_2023_1129261
crossref_primary_10_1128_mBio_01247_21
crossref_primary_10_1371_journal_pone_0266748
crossref_primary_10_1016_j_it_2020_12_001
crossref_primary_10_3389_fphys_2023_1211972
crossref_primary_10_1080_25785826_2024_2331271
crossref_primary_10_1093_intimm_dxz036
crossref_primary_10_4049_immunohorizons_2300095
crossref_primary_10_3390_biomedicines9040374
crossref_primary_10_1136_ard_2022_223398
crossref_primary_10_4049_jimmunol_2001354
crossref_primary_10_1002_JLB_4RI0818_311R
crossref_primary_10_1016_j_smim_2023_101814
crossref_primary_10_1038_s41419_018_0327_1
crossref_primary_10_3389_fimmu_2019_00188
crossref_primary_10_1172_JCI172087
crossref_primary_10_1002_cti2_1144
crossref_primary_10_1038_s41598_020_72008_4
crossref_primary_10_1186_s12974_020_01931_0
crossref_primary_10_1038_s41598_021_81058_1
crossref_primary_10_3389_fimmu_2020_00086
crossref_primary_10_3389_fonc_2019_01034
crossref_primary_10_1016_j_ebiom_2020_102964
crossref_primary_10_1016_j_cjca_2020_01_013
crossref_primary_10_1038_s41467_022_34638_2
crossref_primary_10_1038_s41598_018_25047_x
crossref_primary_10_5713_ajas_19_0251
crossref_primary_10_7554_eLife_70520
crossref_primary_10_1016_j_imlet_2020_07_007
crossref_primary_10_1016_j_hest_2024_07_004
crossref_primary_10_1016_j_immuni_2020_12_003
crossref_primary_10_1016_j_it_2024_04_013
crossref_primary_10_1016_j_bbih_2024_100777
crossref_primary_10_1136_jitc_2023_006921
crossref_primary_10_1002_eji_201747449
crossref_primary_10_1016_j_celrep_2024_114706
crossref_primary_10_3389_fimmu_2019_02035
crossref_primary_10_1016_j_clim_2024_110203
crossref_primary_10_1002_path_5984
crossref_primary_10_3389_fimmu_2019_01068
crossref_primary_10_1016_j_celrep_2022_110709
crossref_primary_10_1002_JLB_1HI0421_181R
crossref_primary_10_1097_SHK_0000000000001193
crossref_primary_10_31083_j_fbl2809210
crossref_primary_10_3389_fimmu_2018_01521
crossref_primary_10_1093_intimm_dxy063
crossref_primary_10_1097_HC9_0000000000000107
crossref_primary_10_3389_fonc_2020_01399
crossref_primary_10_7759_cureus_74816
crossref_primary_10_1016_j_smim_2021_101472
crossref_primary_10_1093_cvr_cvy112
crossref_primary_10_3389_fimmu_2019_00085
crossref_primary_10_3389_fimmu_2025_1539780
crossref_primary_10_4049_jimmunol_2000485
crossref_primary_10_3389_fimmu_2018_02845
crossref_primary_10_1080_14728222_2022_2161889
crossref_primary_10_1038_s41598_019_52671_y
crossref_primary_10_1007_s12015_021_10298_5
crossref_primary_10_1016_j_bbih_2019_100033
crossref_primary_10_3390_ijms24087368
crossref_primary_10_3389_fimmu_2020_620339
crossref_primary_10_1016_j_bbi_2019_05_030
crossref_primary_10_3389_fimmu_2020_610300
crossref_primary_10_1128_JVI_01174_19
crossref_primary_10_3389_fimmu_2022_1062849
crossref_primary_10_4049_jimmunol_1800207
crossref_primary_10_1016_j_tpr_2019_100038
crossref_primary_10_1161_CIRCRESAHA_124_324457
crossref_primary_10_1124_jpet_119_258343
crossref_primary_10_1186_s12979_020_00191_z
crossref_primary_10_1016_j_bbrc_2019_07_120
crossref_primary_10_1038_s41380_022_01514_w
crossref_primary_10_1152_ajpcell_00330_2020
crossref_primary_10_1038_s41467_020_17260_y
crossref_primary_10_1186_s12885_024_12177_x
crossref_primary_10_3390_biom14101251
crossref_primary_10_3389_fimmu_2024_1419117
crossref_primary_10_7554_eLife_52168
crossref_primary_10_15407_ubj96_05_044
crossref_primary_10_1007_s00281_022_00968_y
crossref_primary_10_3892_br_2019_1212
crossref_primary_10_1098_rsif_2021_0806
crossref_primary_10_1016_j_bbi_2020_01_018
crossref_primary_10_1002_path_5404
crossref_primary_10_1111_cas_15800
crossref_primary_10_3389_fimmu_2020_01099
crossref_primary_10_3389_fimmu_2021_641224
crossref_primary_10_1007_s12035_020_02130_x
crossref_primary_10_3390_cancers12102966
crossref_primary_10_1055_s_0040_1717096
crossref_primary_10_3389_fimmu_2025_1483764
crossref_primary_10_3389_fcvm_2022_853967
crossref_primary_10_4049_jimmunol_1900182
crossref_primary_10_1016_j_heliyon_2024_e29686
crossref_primary_10_3390_ijms23179868
crossref_primary_10_1172_JCI179527
crossref_primary_10_1111_jcmm_18559
crossref_primary_10_1016_j_jconrel_2019_05_020
crossref_primary_10_1016_j_crimmu_2022_02_001
crossref_primary_10_1093_labmed_lmac133
crossref_primary_10_1016_j_cell_2023_07_019
crossref_primary_10_3390_biomedicines10010178
crossref_primary_10_1111_imm_13697
crossref_primary_10_3389_fmolb_2022_811116
crossref_primary_10_1111_imr_13195
crossref_primary_10_1172_jci_insight_123047
crossref_primary_10_1084_jem_20220867
crossref_primary_10_3390_diseases13040090
crossref_primary_10_4193_RHINOL_21_032
crossref_primary_10_1016_j_molmed_2020_03_002
crossref_primary_10_3389_fimmu_2022_1022361
crossref_primary_10_3389_fimmu_2025_1428978
crossref_primary_10_1016_j_biopha_2021_111614
crossref_primary_10_1097_SHK_0000000000002379
crossref_primary_10_1186_s13075_018_1798_2
crossref_primary_10_1371_journal_pcbi_1008413
crossref_primary_10_1016_j_biocel_2022_106194
crossref_primary_10_1080_08820139_2023_2249531
crossref_primary_10_1007_s10802_025_01303_3
crossref_primary_10_1007_s10753_022_01767_1
crossref_primary_10_1111_imm_13320
crossref_primary_10_3389_fimmu_2023_1130214
crossref_primary_10_1038_s41574_022_00675_6
crossref_primary_10_3390_ijms222111375
crossref_primary_10_1038_s41408_022_00773_8
crossref_primary_10_3389_fimmu_2021_657945
crossref_primary_10_3389_fimmu_2021_729209
crossref_primary_10_3389_fimmu_2021_686111
crossref_primary_10_1016_j_coisb_2019_10_002
crossref_primary_10_3389_fimmu_2018_02818
crossref_primary_10_3389_fnagi_2020_592359
crossref_primary_10_1155_2020_9670360
crossref_primary_10_1183_23120541_00318_2019
crossref_primary_10_1186_s12865_019_0323_y
crossref_primary_10_1111_imm_13435
crossref_primary_10_1002_wsbm_1576
crossref_primary_10_4049_jimmunol_2101058
crossref_primary_10_1002_adhm_202402946
crossref_primary_10_3390_cells10010015
crossref_primary_10_3390_medicina56010036
crossref_primary_10_1038_s41598_018_33440_9
crossref_primary_10_1371_journal_pntd_0012417
crossref_primary_10_3389_fimmu_2020_621222
crossref_primary_10_1016_j_jhep_2020_03_027
crossref_primary_10_1172_jci_insight_99274
crossref_primary_10_3389_fimmu_2019_02581
crossref_primary_10_1016_j_lfs_2022_120557
crossref_primary_10_1084_jem_20191236
crossref_primary_10_3389_fimmu_2022_819136
crossref_primary_10_3389_fimmu_2021_661182
crossref_primary_10_1038_s41467_018_07801_x
crossref_primary_10_3389_fimmu_2019_00167
crossref_primary_10_3390_cancers13102367
crossref_primary_10_3389_fcvm_2017_00080
crossref_primary_10_3389_fimmu_2022_820480
crossref_primary_10_3389_fimmu_2020_01070
crossref_primary_10_3390_jcm10184139
crossref_primary_10_1183_13993003_00460_2019
crossref_primary_10_1093_burnst_tkaa040
crossref_primary_10_1126_sciadv_adh2284
crossref_primary_10_1097_HEP_0000000000000438
crossref_primary_10_1111_bcpt_14047
crossref_primary_10_1016_j_isci_2024_111103
crossref_primary_10_1111_bjh_17205
crossref_primary_10_3389_fimmu_2020_609921
crossref_primary_10_3389_fimmu_2021_710121
crossref_primary_10_1093_eurheartj_ehab371
crossref_primary_10_1063_5_0023830
crossref_primary_10_1002_ehf2_12837
crossref_primary_10_1177_2058739219851760
crossref_primary_10_3389_fimmu_2021_701656
crossref_primary_10_3389_fimmu_2022_889175
crossref_primary_10_1164_rccm_201804_0670ED
crossref_primary_10_1016_j_tins_2020_03_012
crossref_primary_10_1038_s41586_022_05670_5
crossref_primary_10_1038_s41525_022_00335_8
crossref_primary_10_1016_j_cell_2025_01_021
crossref_primary_10_7554_eLife_65553
crossref_primary_10_3389_fimmu_2023_1227873
crossref_primary_10_1007_s00285_023_01940_6
crossref_primary_10_15252_emmm_202114150
crossref_primary_10_1186_s12979_022_00297_6
crossref_primary_10_3389_fimmu_2023_1124894
crossref_primary_10_3390_antiox7120196
crossref_primary_10_1161_CIRCRESAHA_123_322757
crossref_primary_10_1093_eurheartj_ehad787
crossref_primary_10_1371_journal_pone_0303978
crossref_primary_10_1182_blood_2024024144
crossref_primary_10_1111_ijlh_13941
crossref_primary_10_1164_rccm_201712_2530OC
crossref_primary_10_1002_cyto_a_24269
crossref_primary_10_1002_cti2_70026
crossref_primary_10_1038_s44161_023_00388_7
crossref_primary_10_1182_blood_2023020714
crossref_primary_10_1016_j_omto_2022_12_006
crossref_primary_10_1016_j_jacl_2021_02_005
crossref_primary_10_1139_bcb_2021_0460
crossref_primary_10_4049_jimmunol_2001194
crossref_primary_10_1007_s13365_023_01137_z
crossref_primary_10_1007_s13679_024_00599_4
crossref_primary_10_1186_s13073_021_00948_1
crossref_primary_10_2139_ssrn_3365028
crossref_primary_10_3389_fimmu_2020_00918
crossref_primary_10_1186_s13075_021_02623_7
crossref_primary_10_1128_JVI_01022_20
crossref_primary_10_3389_fimmu_2021_697840
crossref_primary_10_1097_MD_0000000000033967
crossref_primary_10_1093_discim_kyad008
crossref_primary_10_4049_jimmunol_2001047
crossref_primary_10_1161_CIRCRESAHA_120_316203
crossref_primary_10_3390_biom12010100
crossref_primary_10_1016_j_beha_2019_101134
crossref_primary_10_1007_s40262_018_0708_8
crossref_primary_10_1016_j_antiviral_2023_105698
crossref_primary_10_4285_ctr_24_0056
crossref_primary_10_3389_fimmu_2019_01902
crossref_primary_10_1016_j_semcdb_2018_02_018
crossref_primary_10_1002_eji_202170126
crossref_primary_10_1002_JLB_5RU1021_524R
crossref_primary_10_1016_j_jneuroim_2021_577524
crossref_primary_10_1186_s13072_021_00383_x
crossref_primary_10_3389_fimmu_2019_01907
crossref_primary_10_1038_s41598_020_67039_w
crossref_primary_10_1051_medsci_2019236
crossref_primary_10_1186_s12979_024_00413_8
crossref_primary_10_1002_adhm_202101536
crossref_primary_10_1016_j_jaut_2022_102945
crossref_primary_10_3390_antiox13091052
crossref_primary_10_1161_JAHA_117_007849
crossref_primary_10_1002_cyto_b_22176
crossref_primary_10_1016_j_biochi_2018_06_014
crossref_primary_10_1016_j_healun_2021_03_018
crossref_primary_10_1002_JLB_MA0519_149R
crossref_primary_10_1371_journal_pcbi_1009839
crossref_primary_10_1183_13993003_03468_2020
crossref_primary_10_3390_biomedicines10112894
crossref_primary_10_1186_s13046_025_03359_x
crossref_primary_10_1038_s41398_024_02780_8
crossref_primary_10_1038_s41598_021_92473_9
crossref_primary_10_3390_biology11020195
crossref_primary_10_1111_imcb_12337
crossref_primary_10_3389_fimmu_2024_1383607
crossref_primary_10_1002_eji_202149680
crossref_primary_10_3390_pathogens11060611
crossref_primary_10_1038_s41467_023_44166_2
crossref_primary_10_1183_23120541_00804_2020
crossref_primary_10_3390_jcm10245815
crossref_primary_10_3390_v14020409
crossref_primary_10_3389_fimmu_2022_1050478
crossref_primary_10_1097_CCM_0000000000004273
crossref_primary_10_1016_j_imlet_2023_07_009
crossref_primary_10_1038_s41551_019_0473_5
crossref_primary_10_1038_s41569_019_0169_2
crossref_primary_10_1155_2021_1762584
crossref_primary_10_1002_JLB_MR0318_104R
crossref_primary_10_1016_j_jaci_2019_02_030
crossref_primary_10_1016_j_jtbi_2021_110739
crossref_primary_10_1182_bloodadvances_2023010044
crossref_primary_10_1016_j_jacc_2018_08_2149
crossref_primary_10_1002_eji_202048881
crossref_primary_10_1152_ajplung_00085_2023
crossref_primary_10_3389_fneur_2024_1491189
crossref_primary_10_1007_s11538_020_00777_0
crossref_primary_10_1038_s41588_023_01375_1
crossref_primary_10_7554_eLife_85647
crossref_primary_10_1016_j_molimm_2020_02_015
crossref_primary_10_1016_j_vesic_2023_100030
crossref_primary_10_35754_0234_5730_2022_67_4_511_524
crossref_primary_10_1172_JCI152565
crossref_primary_10_1111_imm_12888
crossref_primary_10_1038_s41467_025_57357_w
crossref_primary_10_1016_j_jri_2022_103735
crossref_primary_10_1038_s42003_018_0216_2
crossref_primary_10_3389_fneur_2019_01004
crossref_primary_10_1016_j_jacc_2018_08_2148
crossref_primary_10_1097_COH_0000000000000910
crossref_primary_10_3390_biomedicines10061363
crossref_primary_10_3389_fimmu_2022_899296
crossref_primary_10_1093_brain_awae177
crossref_primary_10_1016_j_imlet_2020_09_002
crossref_primary_10_1038_s41598_021_89037_2
crossref_primary_10_1126_scitranslmed_adl3381
crossref_primary_10_1186_s12985_022_01937_5
crossref_primary_10_1007_s00421_022_05131_x
crossref_primary_10_3389_fimmu_2019_02287
crossref_primary_10_1172_JCI163451
crossref_primary_10_3389_fimmu_2022_959281
crossref_primary_10_1016_j_trsl_2022_04_004
crossref_primary_10_3389_fimmu_2021_659255
crossref_primary_10_3389_fonc_2024_1414102
crossref_primary_10_3390_cells10040861
crossref_primary_10_1016_j_clnu_2020_02_011
crossref_primary_10_3389_fmolb_2020_00026
crossref_primary_10_3389_fimmu_2024_1357444
crossref_primary_10_1038_s41568_023_00635_w
crossref_primary_10_1080_17513758_2020_1733678
crossref_primary_10_3389_fcimb_2024_1405431
crossref_primary_10_1002_jcp_26461
crossref_primary_10_1016_j_bcp_2019_113672
crossref_primary_10_1515_cclm_2024_0371
crossref_primary_10_2337_dbi22_0028
crossref_primary_10_3389_fimmu_2020_611946
crossref_primary_10_1016_j_jri_2020_103151
crossref_primary_10_1038_s41598_019_38985_x
crossref_primary_10_3389_fmed_2022_904721
crossref_primary_10_1016_j_atherosclerosis_2017_09_032
crossref_primary_10_1038_s41551_018_0307_x
crossref_primary_10_1002_adfm_202409522
crossref_primary_10_1098_rsob_200340
crossref_primary_10_3389_fimmu_2023_1134661
crossref_primary_10_4103_ejh_ejh_45_22
crossref_primary_10_1016_j_burns_2022_10_010
crossref_primary_10_1016_j_isci_2022_104384
crossref_primary_10_1371_journal_pone_0249205
crossref_primary_10_1007_s13365_024_01240_9
crossref_primary_10_1093_discim_kyae014
crossref_primary_10_1016_j_cyto_2024_156633
crossref_primary_10_1016_j_celrep_2018_10_102
crossref_primary_10_1186_s12974_024_03011_z
crossref_primary_10_1155_2019_1409383
crossref_primary_10_1016_j_it_2018_11_007
crossref_primary_10_1016_j_it_2018_11_006
crossref_primary_10_1084_jem_20171491
crossref_primary_10_3390_nu17020312
crossref_primary_10_3389_fimmu_2024_1502937
crossref_primary_10_1111_jre_13158
crossref_primary_10_1097_TA_0000000000004173
crossref_primary_10_1111_1348_0421_13083
crossref_primary_10_1111_cts_13457
crossref_primary_10_1093_ecco_jcc_jjab022
crossref_primary_10_1371_journal_pone_0205310
crossref_primary_10_3389_fcell_2020_600160
crossref_primary_10_1016_j_jid_2024_01_034
crossref_primary_10_1186_s40425_019_0536_x
crossref_primary_10_1016_j_coi_2021_07_007
crossref_primary_10_1093_jleuko_qiae026
crossref_primary_10_1681_ASN_0000000000000083
crossref_primary_10_1002_mnfr_202300829
Cites_doi 10.1182/blood-2016-03-700336
10.1038/ni.2967
10.1182/blood-2010-02-258558
10.4049/jimmunol.172.7.4410
10.1016/j.immuni.2011.02.016
10.1038/nprot.2015.092
10.1084/jem.20101459
10.1084/jem.20061011
10.1038/nri3671
10.1007/978-1-62703-290-2_10
10.1084/jem.20141442
10.1038/nbt.2858
10.1016/j.immuni.2013.08.007
10.1038/ni.2638
10.1084/jem.20070885
10.1038/ncomms12597
10.1126/science.aad5510
10.4049/jimmunol.176.7.4155
10.1016/S1074-7613(03)00174-2
10.1182/blood-2009-07-235028
10.3791/53913
10.1038/nature14053
10.1016/j.immuni.2013.10.004
10.1016/j.immuni.2009.06.025
10.1182/blood-2010-12-326355
10.1182/blood.V74.7.2527.2527
10.4049/jimmunol.1400574
10.1038/ni1309
10.1038/ni1522
10.1016/j.immuni.2012.08.025
10.1016/j.kint.2016.10.030
10.1084/jem.20131199
10.1126/science.1219179
10.1038/nprot.2007.420
10.1073/pnas.95.2.708
10.1126/science.1142883
10.1038/nm.3589
10.1038/nri3712
10.3389/fimmu.2015.00328
10.1172/JCI28941
10.1084/jem.20070075
10.1038/ni.2705
10.1182/blood-2012-07-445999
10.1002/ijc.2910410324
10.1126/science.1117729
10.1038/nri3070
10.1038/nature12034
10.1016/j.immuni.2013.04.006
10.1016/j.immuni.2012.12.001
10.1016/B978-0-12-417028-5.00003-X
10.1084/jem.128.3.415
10.1371/journal.pone.0028918
10.1038/jcbfm.2009.25
10.1038/ni1518
10.1016/j.immuni.2010.08.012
10.1038/nprot.2009.117
10.1371/journal.ppat.1003310
10.1016/j.immuni.2013.04.004
10.1126/science.1170540
10.1084/jem.20120690
10.1126/science.aaf4238
10.1126/science.1194637
10.1016/j.immuni.2016.10.011
ContentType Journal Article
Copyright 2017 Patel et al.
Copyright Rockefeller University Press Jul 3, 2017
2017 Patel et al. 2017
Copyright_xml – notice: 2017 Patel et al.
– notice: Copyright Rockefeller University Press Jul 3, 2017
– notice: 2017 Patel et al. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1084/jem.20170355
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

AIDS and Cancer Research Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Human monocyte kinetics
EISSN 1540-9538
EndPage 1923
ExternalDocumentID PMC5502436
28606987
10_1084_jem_20170355
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0601072
– fundername: Wellcome Trust
  grantid: 103865
– fundername: Medical Research Council
  grantid: MR/J007439/1
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: Medical Research Council
  grantid: G1001052
– fundername: ;
– fundername: ;
  grantid: 093053/Z/10/Z
– fundername: ;
  grantid: 15012
– fundername: ;
  grantid: G1001052
– fundername: ;
  grantid: FP7/2007–2013; 317040
– fundername: ;
  grantid: 103865
– fundername: ;
  grantid: J007439; G1001052
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c511t-68312152bc90d08959434c32220e781059aa3b8ce316daf5e801e71e169761163
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 14:06:06 EDT 2025
Fri Jul 11 09:00:08 EDT 2025
Fri Jul 11 08:18:41 EDT 2025
Mon Jun 30 16:43:08 EDT 2025
Sat May 31 02:10:31 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 00:41:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2017 Patel et al.
This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-68312152bc90d08959434c32220e781059aa3b8ce316daf5e801e71e169761163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
R.A. Flavell, D.W. Gilroy, B. Asquith, and D. Macallan contributed equally to this paper.
A. Rongvaux’s present address is Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
ORCID 0000-0003-3786-5545
0000-0002-3984-2008
0000-0002-4855-9255
0000-0001-6054-1309
0000-0002-3017-2474
0000-0003-4461-0778
0000-0002-3014-7148
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5502436
PMID 28606987
PQID 1983434491
PQPubID 2046203
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5502436
proquest_miscellaneous_1919976574
proquest_miscellaneous_1909220889
proquest_journals_1983434491
pubmed_primary_28606987
crossref_citationtrail_10_1084_jem_20170355
crossref_primary_10_1084_jem_20170355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170703
PublicationDateYYYYMMDD 2017-07-03
PublicationDate_xml – month: 7
  year: 2017
  text: 20170703
  day: 3
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2017
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Varol (2023072603574527200_bib53) 2009; 31
Cros (2023072603574527200_bib9) 2010; 33
Liu (2023072603574527200_bib29) 2009; 324
Hashimoto (2023072603574527200_bib21) 2013; 38
Onai (2023072603574527200_bib38) 2013; 38
Jakubzick (2023072603574527200_bib25) 2013; 39
Gamrekelashvili (2023072603574527200_bib14) 2016; 7
Fullerton (2023072603574527200_bib13) 2016
Schulz (2023072603574527200_bib41) 2012; 336
Mass (2023072603574527200_bib32) 2016; 353
Fogg (2023072603574527200_bib12) 2006; 311
Yrlid (2023072603574527200_bib60) 2006; 176
Heidt (2023072603574527200_bib22) 2014; 20
Busch (2023072603574527200_bib7) 2007; 2
Shi (2023072603574527200_bib44) 2011; 34
Ziegler-Heitbrock (2023072603574527200_bib62) 1988; 41
Ginhoux (2023072603574527200_bib16) 2014; 14
Hettinger (2023072603574527200_bib23) 2013; 14
Avraham-Davidi (2023072603574527200_bib3) 2013; 210
Wong (2023072603574527200_bib56) 2011; 118
Guilliams (2023072603574527200_bib19) 2013; 210
Rongvaux (2023072603574527200_bib40) 2014; 32
Griseri (2023072603574527200_bib18) 2012; 37
Urra (2023072603574527200_bib49) 2009; 29
Macallan (2023072603574527200_bib31) 2009; 4
Varol (2023072603574527200_bib52) 2007; 204
Soucie (2023072603574527200_bib45) 2016; 351
Liao (2023072603574527200_bib28) 2017; 91
Bain (2023072603574527200_bib4) 2014; 15
Passlick (2023072603574527200_bib39) 1989; 74
Shi (2023072603574527200_bib43) 2011; 11
Deng (2023072603574527200_bib11) 2015; 517
Wynn (2023072603574527200_bib57) 2013; 496
van Furth (2023072603574527200_bib51) 1972; 47
Vukmanovic-Stejic (2023072603574527200_bib54) 2006; 116
Ziegler-Heitbrock (2023072603574527200_bib63) 2010; 116
Davies (2023072603574527200_bib10) 2013; 14
Guilliams (2023072603574527200_bib20) 2014; 14
Macallan (2023072603574527200_bib30) 1998; 95
Nahrendorf (2023072603574527200_bib35) 2007; 204
Lahoz-Beneytez (2023072603574527200_bib26) 2016; 127
Yona (2023072603574527200_bib58) 2015; 6
Arnold (2023072603574527200_bib1) 2007; 204
Naik (2023072603574527200_bib36) 2007; 8
Westera (2023072603574527200_bib55) 2013; 979
Bigley (2023072603574527200_bib5) 2011; 208
Thomas (2023072603574527200_bib48) 2016; 45
Auffray (2023072603574527200_bib2) 2007; 317
Breton (2023072603574527200_bib6) 2015; 10
Mildner (2023072603574527200_bib33) 2013; 121
Serbina (2023072603574527200_bib42) 2006; 7
Lee (2023072603574527200_bib27) 2015; 212
Ginhoux (2023072603574527200_bib17) 2010; 330
Yona (2023072603574527200_bib59) 2013; 38
Zigmond (2023072603574527200_bib64) 2014; 193
Tamoutounour (2023072603574527200_bib47) 2013; 39
Cooper (2023072603574527200_bib8) 2012; 7
Sunderkötter (2023072603574527200_bib46) 2004; 172
Geissmann (2023072603574527200_bib15) 2003; 19
Mildner (2023072603574527200_bib34) 2013; 120
Zhang (2023072603574527200_bib61) 2013; 9
van Furth (2023072603574527200_bib50) 1968; 128
Ingersoll (2023072603574527200_bib24) 2010; 115
Onai (2023072603574527200_bib37) 2007; 8
References_xml – volume: 127
  start-page: 3431
  year: 2016
  ident: 2023072603574527200_bib26
  article-title: Human neutrophil kinetics: Modeling of stable isotope labeling data supports short blood neutrophil half-lives
  publication-title: Blood.
  doi: 10.1182/blood-2016-03-700336
– volume: 15
  start-page: 929
  year: 2014
  ident: 2023072603574527200_bib4
  article-title: Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2967
– volume: 116
  start-page: e74
  year: 2010
  ident: 2023072603574527200_bib63
  article-title: Nomenclature of monocytes and dendritic cells in blood
  publication-title: Blood.
  doi: 10.1182/blood-2010-02-258558
– volume: 172
  start-page: 4410
  year: 2004
  ident: 2023072603574527200_bib46
  article-title: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.7.4410
– volume: 34
  start-page: 590
  year: 2011
  ident: 2023072603574527200_bib44
  article-title: Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2011.02.016
– volume: 10
  start-page: 1407
  year: 2015
  ident: 2023072603574527200_bib6
  article-title: Defining human dendritic cell progenitors by multiparametric flow cytometry
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.092
– volume: 208
  start-page: 227
  year: 2011
  ident: 2023072603574527200_bib5
  article-title: The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101459
– volume: 204
  start-page: 171
  year: 2007
  ident: 2023072603574527200_bib52
  article-title: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061011
– volume: 14
  start-page: 392
  year: 2014
  ident: 2023072603574527200_bib16
  article-title: Monocytes and macrophages: Developmental pathways and tissue homeostasis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3671
– volume: 979
  start-page: 107
  year: 2013
  ident: 2023072603574527200_bib55
  article-title: Quantitating lymphocyte homeostasis in vivo in humans using stable isotope tracers
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-290-2_10
– volume: 212
  start-page: 385
  year: 2015
  ident: 2023072603574527200_bib27
  article-title: Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141442
– volume: 32
  start-page: 364
  year: 2014
  ident: 2023072603574527200_bib40
  article-title: Development and function of human innate immune cells in a humanized mouse model
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2858
– volume: 39
  start-page: 599
  year: 2013
  ident: 2023072603574527200_bib25
  article-title: Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2013.08.007
– volume: 14
  start-page: 821
  year: 2013
  ident: 2023072603574527200_bib23
  article-title: Origin of monocytes and macrophages in a committed progenitor
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2638
– volume: 204
  start-page: 3037
  year: 2007
  ident: 2023072603574527200_bib35
  article-title: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070885
– volume: 7
  start-page: 12597
  year: 2016
  ident: 2023072603574527200_bib14
  article-title: Regulation of monocyte cell fate by blood vessels mediated by Notch signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12597
– volume: 351
  start-page: aad5510
  year: 2016
  ident: 2023072603574527200_bib45
  article-title: Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells
  publication-title: Science.
  doi: 10.1126/science.aad5510
– volume: 176
  start-page: 4155
  year: 2006
  ident: 2023072603574527200_bib60
  article-title: Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.7.4155
– volume: 19
  start-page: 71
  year: 2003
  ident: 2023072603574527200_bib15
  article-title: Blood monocytes consist of two principal subsets with distinct migratory properties
  publication-title: Immunity.
  doi: 10.1016/S1074-7613(03)00174-2
– volume: 115
  start-page: e10
  year: 2010
  ident: 2023072603574527200_bib24
  article-title: Comparison of gene expression profiles between human and mouse monocyte subsets
  publication-title: Blood.
  doi: 10.1182/blood-2009-07-235028
– start-page: e53913
  year: 2016
  ident: 2023072603574527200_bib13
  article-title: Intravenous endotoxin challenge in healthy humans: An experimental platform to investigate and modulate systemic inflammation
  publication-title: J. Vis. Exp.
  doi: 10.3791/53913
– volume: 517
  start-page: 381
  year: 2015
  ident: 2023072603574527200_bib11
  article-title: Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations
  publication-title: Nature.
  doi: 10.1038/nature14053
– volume: 39
  start-page: 925
  year: 2013
  ident: 2023072603574527200_bib47
  article-title: Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2013.10.004
– volume: 31
  start-page: 502
  year: 2009
  ident: 2023072603574527200_bib53
  article-title: Intestinal lamina propria dendritic cell subsets have different origin and functions
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2009.06.025
– volume: 118
  start-page: e16
  year: 2011
  ident: 2023072603574527200_bib56
  article-title: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets
  publication-title: Blood.
  doi: 10.1182/blood-2010-12-326355
– volume: 74
  start-page: 2527
  year: 1989
  ident: 2023072603574527200_bib39
  article-title: Identification and characterization of a novel monocyte subpopulation in human peripheral blood
  publication-title: Blood.
  doi: 10.1182/blood.V74.7.2527.2527
– volume: 193
  start-page: 344
  year: 2014
  ident: 2023072603574527200_bib64
  article-title: Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400574
– volume: 7
  start-page: 311
  year: 2006
  ident: 2023072603574527200_bib42
  article-title: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1309
– volume: 8
  start-page: 1217
  year: 2007
  ident: 2023072603574527200_bib36
  article-title: Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1522
– volume: 37
  start-page: 1116
  year: 2012
  ident: 2023072603574527200_bib18
  article-title: Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2012.08.025
– volume: 91
  start-page: 1088
  year: 2017
  ident: 2023072603574527200_bib28
  article-title: Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.10.030
– volume: 210
  start-page: 1977
  year: 2013
  ident: 2023072603574527200_bib19
  article-title: Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131199
– volume: 336
  start-page: 86
  year: 2012
  ident: 2023072603574527200_bib41
  article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells
  publication-title: Science.
  doi: 10.1126/science.1219179
– volume: 2
  start-page: 3045
  year: 2007
  ident: 2023072603574527200_bib7
  article-title: Measurement of cell proliferation by heavy water labeling
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.420
– volume: 95
  start-page: 708
  year: 1998
  ident: 2023072603574527200_bib30
  article-title: Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: Studies in vitro, in animals, and in humans
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.95.2.708
– volume: 317
  start-page: 666
  year: 2007
  ident: 2023072603574527200_bib2
  article-title: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
  publication-title: Science.
  doi: 10.1126/science.1142883
– volume: 20
  start-page: 754
  year: 2014
  ident: 2023072603574527200_bib22
  article-title: Chronic variable stress activates hematopoietic stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.3589
– volume: 14
  start-page: 571
  year: 2014
  ident: 2023072603574527200_bib20
  article-title: Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3712
– volume: 6
  start-page: 328
  year: 2015
  ident: 2023072603574527200_bib58
  article-title: From the reticuloendothelial to mononuclear phagocyte system - The unaccounted years
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00328
– volume: 116
  start-page: 2423
  year: 2006
  ident: 2023072603574527200_bib54
  article-title: Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI28941
– volume: 204
  start-page: 1057
  year: 2007
  ident: 2023072603574527200_bib1
  article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070075
– volume: 14
  start-page: 986
  year: 2013
  ident: 2023072603574527200_bib10
  article-title: Tissue-resident macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2705
– volume: 121
  start-page: 1016
  year: 2013
  ident: 2023072603574527200_bib33
  article-title: Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis
  publication-title: Blood.
  doi: 10.1182/blood-2012-07-445999
– volume: 41
  start-page: 456
  year: 1988
  ident: 2023072603574527200_bib62
  article-title: Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes
  publication-title: Int. J. Cancer.
  doi: 10.1002/ijc.2910410324
– volume: 311
  start-page: 83
  year: 2006
  ident: 2023072603574527200_bib12
  article-title: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
  publication-title: Science.
  doi: 10.1126/science.1117729
– volume: 11
  start-page: 762
  year: 2011
  ident: 2023072603574527200_bib43
  article-title: Monocyte recruitment during infection and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3070
– volume: 496
  start-page: 445
  year: 2013
  ident: 2023072603574527200_bib57
  article-title: Macrophage biology in development, homeostasis and disease
  publication-title: Nature.
  doi: 10.1038/nature12034
– volume: 38
  start-page: 943
  year: 2013
  ident: 2023072603574527200_bib38
  article-title: A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2013.04.006
– volume: 38
  start-page: 79
  year: 2013
  ident: 2023072603574527200_bib59
  article-title: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2012.12.001
– volume: 120
  start-page: 69
  year: 2013
  ident: 2023072603574527200_bib34
  article-title: A close encounter of the third kind: Monocyte-derived cells
  publication-title: Adv. Immunol.
  doi: 10.1016/B978-0-12-417028-5.00003-X
– volume: 128
  start-page: 415
  year: 1968
  ident: 2023072603574527200_bib50
  article-title: The origin and kinetics of mononuclear phagocytes
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.128.3.415
– volume: 7
  start-page: e28918
  year: 2012
  ident: 2023072603574527200_bib8
  article-title: FcγRIIIa expression on monocytes in rheumatoid arthritis: Role in immune-complex stimulated TNF production and non-response to methotrexate therapy
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0028918
– volume: 29
  start-page: 994
  year: 2009
  ident: 2023072603574527200_bib49
  article-title: Monocyte subtypes predict clinical course and prognosis in human stroke
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2009.25
– volume: 8
  start-page: 1207
  year: 2007
  ident: 2023072603574527200_bib37
  article-title: Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1518
– volume: 33
  start-page: 375
  year: 2010
  ident: 2023072603574527200_bib9
  article-title: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2010.08.012
– volume: 4
  start-page: 1313
  year: 2009
  ident: 2023072603574527200_bib31
  article-title: Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.117
– volume: 9
  start-page: e1003310
  year: 2013
  ident: 2023072603574527200_bib61
  article-title: Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003310
– volume: 38
  start-page: 792
  year: 2013
  ident: 2023072603574527200_bib21
  article-title: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2013.04.004
– volume: 47
  start-page: 651
  year: 1972
  ident: 2023072603574527200_bib51
  article-title: [Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line]
  publication-title: Bull. World Health Organ.
– volume: 324
  start-page: 392
  year: 2009
  ident: 2023072603574527200_bib29
  article-title: In vivo analysis of dendritic cell development and homeostasis
  publication-title: Science.
  doi: 10.1126/science.1170540
– volume: 210
  start-page: 2611
  year: 2013
  ident: 2023072603574527200_bib3
  article-title: On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20120690
– volume: 353
  start-page: aaf4238
  year: 2016
  ident: 2023072603574527200_bib32
  article-title: Specification of tissue-resident macrophages during organogenesis
  publication-title: Science.
  doi: 10.1126/science.aaf4238
– volume: 330
  start-page: 841
  year: 2010
  ident: 2023072603574527200_bib17
  article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages
  publication-title: Science.
  doi: 10.1126/science.1194637
– volume: 45
  start-page: 975
  year: 2016
  ident: 2023072603574527200_bib48
  article-title: Deleting an Nr4a1 super-enhancer subdomain ablates Ly6C(low) monocytes while preserving macrophage gene function
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2016.10.011
SSID ssj0014456
Score 2.6766145
Snippet In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying...
Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1913
SubjectTerms Animals
Bone marrow
Bone Marrow Cells - immunology
Cell Differentiation - immunology
Cell fate
Cell Survival - immunology
Cells, Cultured
Deuterium
Deuterium - metabolism
Endotoxemia
Endotoxemia - blood
Endotoxemia - immunology
Fate maps
Flow Cytometry
Homeostasis
Homeostasis - immunology
Human behavior
Humans
Inflammation
Inflammation - blood
Inflammation - immunology
Isotope Labeling - methods
Kinetics
Labeling
Life span
Mice
Monocytes
Monocytes - immunology
Repopulation
Restoration
Steady state
Time Factors
Title The fate and lifespan of human monocyte subsets in steady state and systemic inflammation
URI https://www.ncbi.nlm.nih.gov/pubmed/28606987
https://www.proquest.com/docview/1983434491
https://www.proquest.com/docview/1909220889
https://www.proquest.com/docview/1919976574
https://pubmed.ncbi.nlm.nih.gov/PMC5502436
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDeBgowEp1UgThzHOQJqVaFtQWhX2p6ixHHUoDZB2-yh_Ap-MjOO82pLBVyiVeJ4nXxfZsaehwl5owrQYpxrN_aV7_I0xG1emHbTIgV9ninBGGYjHx6JgxX_vA7Xs9mvUdTStsneqZ_X5pX8D6pwDnDFLNl_QLbvFE7Ab8AXjoAwHP8a4wKMReMBOC0LDeKhNf_M0jyMo1YXcPkcpINuTOSrAfVibvKIzG1tKedSYVgWsONsQOr78Ccjs3WyJcBlz_xX6LX1-p-VzbBM2q9KHw9cxLmv3tjgfROrO3iFPtaoDOeLLsDRrkows9zpBT2PvoEw1wW6HjZXUh7H4hhmwhim0SojK4G5hz5lORbRfptoarkYjQQuTDeDkfJGe_VaxeBJjopBY_EBBlKurQ08rb999CXZXy0WyXJvvbxFbvsw8TDp4-s-aAhmn2Y_4H7gNpUCen8_7ntq5FyZuVwOwB1ZNMv75J7FlH5oefWAzHT1kNw5tJA-IseAPEV6UeAJ7ehF64IaetGOXtTSi5YVbelFDb3MbR296Jhej8lqf2_56cC1O3G4CgzyxhUywCokfqZiL_dkHGJVQYVOOk9HEk30NA0yqXTARJ4WoQa7R0dMMwHWLgOT_wnZqepKPyMUJuSRzAMuWIE-eiVzxdI4DvM0YIXMPYfMu1eXKFumHndLOU1MuITkCbzopHvRDnnbt_7Rlmf5Q7vdDoXEfsDnCYtlAM_BY-aQ1_1lEK_oM0srXW-xjRfDU0oZ39QGo7VEGHGHPG2B7QfjS-GJWEYOiSaQ9w2wvPv0SlWemDLvYYjVQsXzm4f-gtwdvr9dstNstvol2MlN9spQ9zcfcMG5
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fate+and+lifespan+of+human+monocyte+subsets+in+steady+state+and+systemic+inflammation&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Patel%2C+Amit+A&rft.au=Zhang%2C+Yan&rft.au=Fullerton%2C+James+N&rft.au=Boelen+Lies&rft.date=2017-07-03&rft.pub=Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=214&rft.issue=7&rft.spage=1913&rft.epage=1923&rft_id=info:doi/10.1084%2Fjem.20170355&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon