"Black" Responses Dominate Macaque Primary Visual Cortex V1

Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and OFF-center cells “black” information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neuro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 29; no. 38; pp. 11753 - 11760
Main Authors Yeh, Chun-I, Xing, Dajun, Shapley, Robert M
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 23.09.2009
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.1991-09.2009

Cover

Loading…
Abstract Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and OFF-center cells “black” information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008).
AbstractList Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008).Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008).
Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008).
Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and OFF-center cells “black” information ( Nelson et al., 1978 ; Schiller, 1982 ; Schiller et al., 1986 ). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude ( Krüger and Fischer, 1975 ; Kremers et al., 1993 ), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) ( Blackwell, 1946 ; Short, 1966 ; Krauskopf, 1980 ; Whittle, 1986 ; Bowen et al., 1989 ; Chan and Tyler, 1992 ; Kontsevich and Tyler, 1999 ; Chubb and Nam, 2000 ; Dannemiller and Stephens, 2001 ). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments ( Zemon et al., 1988 , 1995 ; Olman et al., 2008 ).
Author Shapley, Robert M
Xing, Dajun
Yeh, Chun-I
Author_xml – sequence: 1
  fullname: Yeh, Chun-I
– sequence: 2
  fullname: Xing, Dajun
– sequence: 3
  fullname: Shapley, Robert M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19776262$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFr1BFPSAuWWbsxBMLhARLgaJCUaG9Wo7jdA1OvMRZFr49WW0pfy6cfJjfe_PG74Dt9bF3jB0hzLHk4vHb9yeXF-cfF6dzVApzUHMOoO6w2TRVOS8A99gMOEEuCyr22UFKnwGAAOke20dFJLnkM_bk-EUw9stxduHSKvbJpexl7HxvRpe9M9Z8Xbvsw-A7M_zIrnxam5At4jC679kV3md3WxOSe3DzHrLLVyefFm_ys_PXp4vnZ7ktEce8NEXFbS1JUEtcKiVMhQ0UQJVsAFG2thaNgIZ43ZqmorI1E8QV1iSsbMUhe7bzXa3rzjXW9eNggl7tYulovP570vulvo7fNCclK1FMBg9vDIY4HZRG3flkXQimd3GdtCQpqeRyAo_-3HS74td_TYDcAXaIKQ2u_Y2A3hajb4vR22I0KL0tZhI-_Udo_WhGH7eJffi__NFOvvTXy40fnE6dCWGKiXqz2XClRaURqRTiJ1hsoco
CitedBy_id crossref_primary_10_1073_pnas_1314690111
crossref_primary_10_1152_jn_01000_2015
crossref_primary_10_1093_cercor_bht133
crossref_primary_10_1038_s41598_021_89277_2
crossref_primary_10_1146_annurev_vision_091517_034122
crossref_primary_10_1038_nn_3878
crossref_primary_10_7554_eLife_26117
crossref_primary_10_1111_ejn_15233
crossref_primary_10_1371_journal_pcbi_1007254
crossref_primary_10_1002_cne_23907
crossref_primary_10_1167_jov_24_1_10
crossref_primary_10_1016_j_cub_2021_05_017
crossref_primary_10_1038_s41467_021_27892_3
crossref_primary_10_1093_brain_awab383
crossref_primary_10_1016_j_visres_2014_06_001
crossref_primary_10_1016_j_visres_2016_06_003
crossref_primary_10_1073_pnas_1200125109
crossref_primary_10_1167_jov_20_12_3
crossref_primary_10_1167_tvst_9_10_6
crossref_primary_10_1038_nn_3634
crossref_primary_10_1523_JNEUROSCI_2021_16_2017
crossref_primary_10_1371_journal_pone_0041960
crossref_primary_10_1038_srep12597
crossref_primary_10_1016_j_neuropsychologia_2020_107489
crossref_primary_10_1152_jn_00431_2015
crossref_primary_10_1167_iovs_63_11_16
crossref_primary_10_1016_j_visres_2018_06_003
crossref_primary_10_1523_JNEUROSCI_2456_11_2011
crossref_primary_10_14814_phy2_12746
crossref_primary_10_1523_JNEUROSCI_1336_14_2014
crossref_primary_10_3389_fpsyg_2014_01545
crossref_primary_10_1093_cercor_bhr133
crossref_primary_10_1523_JNEUROSCI_1004_13_2013
crossref_primary_10_1523_JNEUROSCI_1032_14_2014
crossref_primary_10_1038_s42003_018_0066_y
crossref_primary_10_1523_JNEUROSCI_1220_22_2023
crossref_primary_10_1088_1741_2552_acbee0
crossref_primary_10_1371_journal_pbio_1002390
crossref_primary_10_1007_s00247_015_3365_1
crossref_primary_10_1038_s41598_017_06916_3
crossref_primary_10_1167_jov_21_5_15
crossref_primary_10_1016_j_neuron_2015_10_019
crossref_primary_10_1515_prolas_2017_0063
crossref_primary_10_1016_j_celrep_2021_108692
crossref_primary_10_1371_journal_pcbi_1004268
crossref_primary_10_1016_j_visres_2020_06_006
crossref_primary_10_1523_JNEUROSCI_1350_16_2016
crossref_primary_10_1111_ejn_14297
crossref_primary_10_3389_fnins_2017_00474
crossref_primary_10_1152_jn_00150_2018
crossref_primary_10_1016_j_visres_2014_01_008
crossref_primary_10_1167_jov_20_7_9
crossref_primary_10_1093_cercor_bhy221
crossref_primary_10_1146_annurev_vision_111022_123817
crossref_primary_10_3389_fopht_2022_989002
crossref_primary_10_1016_j_cub_2021_06_094
crossref_primary_10_1038_s41467_024_44809_y
crossref_primary_10_1523_JNEUROSCI_2008_18_2018
crossref_primary_10_1371_journal_pbio_3002947
crossref_primary_10_1167_iovs_64_4_26
crossref_primary_10_1016_j_celrep_2019_05_007
crossref_primary_10_1016_j_cub_2021_07_057
crossref_primary_10_1111_ejn_12567
crossref_primary_10_1152_jn_00412_2022
crossref_primary_10_3389_fpsyg_2024_1494964
crossref_primary_10_1016_j_visres_2012_11_006
crossref_primary_10_1093_nc_niy003
crossref_primary_10_1016_j_visres_2012_07_022
crossref_primary_10_1016_j_visres_2015_05_018
crossref_primary_10_1080_15502724_2019_1674661
crossref_primary_10_1093_cercor_bhac016
crossref_primary_10_1038_nn_3707
crossref_primary_10_1152_jn_00560_2015
crossref_primary_10_1523_JNEUROSCI_1489_22_2022
crossref_primary_10_1007_s00506_020_00654_z
crossref_primary_10_1152_jn_00288_2011
crossref_primary_10_1371_journal_pone_0060782
crossref_primary_10_1523_JNEUROSCI_1672_22_2022
crossref_primary_10_1038_nn_2620
crossref_primary_10_3389_fncom_2022_979830
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1016_j_neuroimage_2011_01_004
crossref_primary_10_1152_jn_00289_2023
crossref_primary_10_1523_JNEUROSCI_6304_11_2012
crossref_primary_10_1016_j_neuron_2014_02_020
crossref_primary_10_1073_pnas_1201478109
crossref_primary_10_1523_JNEUROSCI_3235_15_2016
crossref_primary_10_1038_s41598_025_87090_9
crossref_primary_10_1117_1_NPh_4_3_031206
crossref_primary_10_1073_pnas_1310442111
crossref_primary_10_1523_JNEUROSCI_2473_10_2010
crossref_primary_10_1038_s41467_019_13029_0
crossref_primary_10_1152_jn_00305_2018
crossref_primary_10_1523_JNEUROSCI_0848_14_2014
crossref_primary_10_1016_j_celrep_2022_111438
crossref_primary_10_1167_jov_23_4_3
crossref_primary_10_1523_JNEUROSCI_3465_13_2013
crossref_primary_10_1016_j_celrep_2018_04_076
crossref_primary_10_1038_s41598_024_76879_9
crossref_primary_10_1152_jn_00388_2011
crossref_primary_10_1080_00140139_2014_948496
crossref_primary_10_7554_eLife_72081
crossref_primary_10_1523_JNEUROSCI_3938_16_2017
crossref_primary_10_1523_JNEUROSCI_0168_23_2023
crossref_primary_10_1167_jov_24_4_10
crossref_primary_10_1016_j_neuron_2018_10_020
crossref_primary_10_7554_eLife_42101
crossref_primary_10_1017_S095252382400004X
crossref_primary_10_1113_JP282152
crossref_primary_10_14814_phy2_12966
Cites_doi 10.1111/j.1469-7793.1999.0775n.x
10.1523/JNEUROSCI.03-07-01389.1983
10.1523/JNEUROSCI.22-07-02737.2002
10.1016/0042-6989(93)90023-P
10.1152/jn.2002.88.1.455
10.1016/S0042-6989(99)00205-9
10.1152/jn.1999.82.5.2490
10.1073/pnas.0907406106
10.1016/S0042-6989(98)00286-7
10.1016/0006-8993(79)90284-1
10.1038/nn2029
10.1016/0042-6989(86)90055-6
10.1523/JNEUROSCI.20-17-06594.2000
10.1016/j.visres.2004.07.019
10.1523/JNEUROSCI.12-06-02247.1992
10.1113/jphysiol.1984.sp015104
10.1038/322824a0
10.1038/nature04519
10.1152/jn.1987.58.6.1187
10.1523/JNEUROSCI.22-13-05639.2002
10.1152/jn.00498.2005
10.1007/BF00342642
10.1167/1.2.5
10.1016/S0042-6989(96)00247-7
10.1017/S0952523800001085
10.1364/JOSA.36.000624
10.1523/JNEUROSCI.04-02-00381.1984
10.1152/jn.00830.2006
10.1038/nature05724
10.1523/JNEUROSCI.1422-04.2004
10.3109/00207459508986100
10.1016/S0042-6989(00)00007-9
10.1523/JNEUROSCI.08-10-03541.1988
10.1017/S0952523898151027
10.1523/JNEUROSCI.2091-06.2006
10.1016/0042-6989(80)90091-7
10.1364/JOSA.73.001832
10.1113/jphysiol.1966.sp008007
10.1152/jn.1978.41.2.472
10.1017/S0952523800008853
10.1002/cne.902160307
10.1016/0042-6989(89)90134-X
10.1038/297580a0
10.1146/annurev.ne.11.030188.001345
10.1152/jn.01139.2004
10.1038/378281a0
10.1002/cne.902330203
10.1167/8.6.345
10.1016/j.visres.2004.09.042
10.1080/00140130701306413
10.1097/00006324-200311000-00010
10.1016/0278-4327(84)90011-7
ContentType Journal Article
Copyright Copyright © 2009 Society for Neuroscience 0270-6474/09/2911753-08$15.00/0 2009
Copyright_xml – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/2911753-08$15.00/0 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.1991-09.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 11760
ExternalDocumentID PMC2796834
19776262
10_1523_JNEUROSCI_1991_09_2009
www29_38_11753
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY001472
– fundername: NEI NIH HHS
  grantid: EY-001472
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c511t-5a482cb6737f726993a81d040786d0116fcb3d30d72bfad875fa993291b73c6f3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 13:54:31 EDT 2025
Fri Sep 05 07:49:58 EDT 2025
Sat May 31 02:09:57 EDT 2025
Tue Jul 01 02:59:07 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Nov 10 19:20:02 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-5a482cb6737f726993a81d040786d0116fcb3d30d72bfad875fa993291b73c6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
C.-I.Y. and D.X. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/29/38/11753.full.pdf
PMID 19776262
PQID 67667526
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2796834
proquest_miscellaneous_67667526
pubmed_primary_19776262
crossref_primary_10_1523_JNEUROSCI_1991_09_2009
crossref_citationtrail_10_1523_JNEUROSCI_1991_09_2009
highwire_smallpub1_www29_38_11753
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090923
2009-09-23
2009-Sep-23
PublicationDateYYYYMMDD 2009-09-23
PublicationDate_xml – month: 09
  year: 2009
  text: 20090923
  day: 23
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2009
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Ringach (2023041303402764000_29.38.11753.37) 2002; 22
2023041303402764000_29.38.11753.52
2023041303402764000_29.38.11753.53
2023041303402764000_29.38.11753.50
2023041303402764000_29.38.11753.51
Ringach (2023041303402764000_29.38.11753.35) 2002; 88
Sherk (2023041303402764000_29.38.11753.43) 1984; 4
2023041303402764000_29.38.11753.16
Zhou (2023041303402764000_29.38.11753.54) 2000; 20
2023041303402764000_29.38.11753.17
2023041303402764000_29.38.11753.14
2023041303402764000_29.38.11753.15
2023041303402764000_29.38.11753.10
2023041303402764000_29.38.11753.18
Blasdel (2023041303402764000_29.38.11753.8) 1983; 3
Nelson (2023041303402764000_29.38.11753.31) 1978; 41
2023041303402764000_29.38.11753.2
2023041303402764000_29.38.11753.20
2023041303402764000_29.38.11753.3
2023041303402764000_29.38.11753.4
2023041303402764000_29.38.11753.5
2023041303402764000_29.38.11753.6
2023041303402764000_29.38.11753.7
2023041303402764000_29.38.11753.27
2023041303402764000_29.38.11753.28
2023041303402764000_29.38.11753.25
2023041303402764000_29.38.11753.26
2023041303402764000_29.38.11753.23
2023041303402764000_29.38.11753.24
2023041303402764000_29.38.11753.21
Bowen (2023041303402764000_29.38.11753.9) 1989; 29
2023041303402764000_29.38.11753.29
Chan (2023041303402764000_29.38.11753.12) 1992; 23
Short (2023041303402764000_29.38.11753.44) 1966; 185
Chichilnisky (2023041303402764000_29.38.11753.13) 2002; 22
2023041303402764000_29.38.11753.30
Hawken (2023041303402764000_29.38.11753.19) 1988; 8
2023041303402764000_29.38.11753.38
2023041303402764000_29.38.11753.39
2023041303402764000_29.38.11753.36
2023041303402764000_29.38.11753.34
2023041303402764000_29.38.11753.32
Jones (2023041303402764000_29.38.11753.22) 1987; 58
2023041303402764000_29.38.11753.41
Pasupathy (2023041303402764000_29.38.11753.33) 1999; 82
2023041303402764000_29.38.11753.42
Albus (2023041303402764000_29.38.11753.1) 1984; 348
2023041303402764000_29.38.11753.40
Buchner (2023041303402764000_29.38.11753.11) 2007; 50
2023041303402764000_29.38.11753.49
2023041303402764000_29.38.11753.47
2023041303402764000_29.38.11753.48
2023041303402764000_29.38.11753.45
Wehrhahn (2023041303402764000_29.38.11753.46) 1992; 12
References_xml – ident: 2023041303402764000_29.38.11753.6
  doi: 10.1111/j.1469-7793.1999.0775n.x
– volume: 3
  start-page: 1389
  year: 1983
  ident: 2023041303402764000_29.38.11753.8
  article-title: Termination of afferent axons in macaque striate cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.03-07-01389.1983
– ident: 2023041303402764000_29.38.11753.4
– volume: 22
  start-page: 2737
  year: 2002
  ident: 2023041303402764000_29.38.11753.13
  article-title: Functional asymmetries in ON and OFF ganglion cells of primate retina
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-07-02737.2002
– ident: 2023041303402764000_29.38.11753.25
  doi: 10.1016/0042-6989(93)90023-P
– volume: 23
  start-page: 251
  year: 1992
  ident: 2023041303402764000_29.38.11753.12
  article-title: Increment and decrement asymmetries: implications for pattern detection and appearance
  publication-title: Soc Inform Display Symp Dig
– volume: 88
  start-page: 455
  year: 2002
  ident: 2023041303402764000_29.38.11753.35
  article-title: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2002.88.1.455
– ident: 2023041303402764000_29.38.11753.2
  doi: 10.1016/S0042-6989(99)00205-9
– volume: 82
  start-page: 2490
  year: 1999
  ident: 2023041303402764000_29.38.11753.33
  article-title: Responses to contour features in macaque area V4
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.5.2490
– ident: 2023041303402764000_29.38.11753.51
  doi: 10.1073/pnas.0907406106
– ident: 2023041303402764000_29.38.11753.23
  doi: 10.1016/S0042-6989(98)00286-7
– ident: 2023041303402764000_29.38.11753.49
  doi: 10.1016/0006-8993(79)90284-1
– ident: 2023041303402764000_29.38.11753.21
  doi: 10.1038/nn2029
– ident: 2023041303402764000_29.38.11753.48
  doi: 10.1016/0042-6989(86)90055-6
– volume: 20
  start-page: 6594
  year: 2000
  ident: 2023041303402764000_29.38.11753.54
  article-title: Coding of border ownership in monkey visual cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-17-06594.2000
– ident: 2023041303402764000_29.38.11753.15
  doi: 10.1016/j.visres.2004.07.019
– volume: 12
  start-page: 2247
  year: 1992
  ident: 2023041303402764000_29.38.11753.46
  article-title: ON- and OFF-pathways form separate neural substrates for motion perception: psychophysical evidence
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.12-06-02247.1992
– volume: 348
  start-page: 153
  year: 1984
  ident: 2023041303402764000_29.38.11753.1
  article-title: Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1984.sp015104
– ident: 2023041303402764000_29.38.11753.40
  doi: 10.1038/322824a0
– ident: 2023041303402764000_29.38.11753.42
  doi: 10.1038/nature04519
– volume: 58
  start-page: 1187
  year: 1987
  ident: 2023041303402764000_29.38.11753.22
  article-title: The two-dimensional spatial structure of simple receptive fields in cat striate cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1987.58.6.1187
– volume: 22
  start-page: 5639
  year: 2002
  ident: 2023041303402764000_29.38.11753.37
  article-title: Orientation selectivity in macaque V1: diversity and laminar dependence
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-13-05639.2002
– ident: 2023041303402764000_29.38.11753.45
  doi: 10.1152/jn.00498.2005
– ident: 2023041303402764000_29.38.11753.26
  doi: 10.1007/BF00342642
– ident: 2023041303402764000_29.38.11753.17
  doi: 10.1167/1.2.5
– ident: 2023041303402764000_29.38.11753.36
  doi: 10.1016/S0042-6989(96)00247-7
– ident: 2023041303402764000_29.38.11753.52
  doi: 10.1017/S0952523800001085
– ident: 2023041303402764000_29.38.11753.7
  doi: 10.1364/JOSA.36.000624
– volume: 4
  start-page: 381
  year: 1984
  ident: 2023041303402764000_29.38.11753.43
  article-title: Receptive field properties in the cat's area 17 in the absence of on-center geniculate input
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.04-02-00381.1984
– ident: 2023041303402764000_29.38.11753.29
  doi: 10.1152/jn.00830.2006
– ident: 2023041303402764000_29.38.11753.30
  doi: 10.1038/nature05724
– ident: 2023041303402764000_29.38.11753.18
  doi: 10.1523/JNEUROSCI.1422-04.2004
– ident: 2023041303402764000_29.38.11753.53
  doi: 10.3109/00207459508986100
– ident: 2023041303402764000_29.38.11753.14
  doi: 10.1016/S0042-6989(00)00007-9
– volume: 8
  start-page: 3541
  year: 1988
  ident: 2023041303402764000_29.38.11753.19
  article-title: Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.08-10-03541.1988
– ident: 2023041303402764000_29.38.11753.27
  doi: 10.1017/S0952523898151027
– ident: 2023041303402764000_29.38.11753.16
  doi: 10.1523/JNEUROSCI.2091-06.2006
– ident: 2023041303402764000_29.38.11753.24
  doi: 10.1016/0042-6989(80)90091-7
– ident: 2023041303402764000_29.38.11753.10
  doi: 10.1364/JOSA.73.001832
– volume: 185
  start-page: 646
  year: 1966
  ident: 2023041303402764000_29.38.11753.44
  article-title: Decremental and incremental visual thresholds
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1966.sp008007
– volume: 41
  start-page: 472
  year: 1978
  ident: 2023041303402764000_29.38.11753.31
  article-title: Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1978.41.2.472
– ident: 2023041303402764000_29.38.11753.5
  doi: 10.1017/S0952523800008853
– ident: 2023041303402764000_29.38.11753.38
  doi: 10.1002/cne.902160307
– volume: 29
  start-page: 1501
  year: 1989
  ident: 2023041303402764000_29.38.11753.9
  article-title: Sawtooth contrast sensitivity: decrements have the edge
  publication-title: Vision Res
  doi: 10.1016/0042-6989(89)90134-X
– ident: 2023041303402764000_29.38.11753.39
  doi: 10.1038/297580a0
– ident: 2023041303402764000_29.38.11753.28
  doi: 10.1146/annurev.ne.11.030188.001345
– ident: 2023041303402764000_29.38.11753.50
  doi: 10.1152/jn.01139.2004
– ident: 2023041303402764000_29.38.11753.34
  doi: 10.1038/378281a0
– ident: 2023041303402764000_29.38.11753.20
  doi: 10.1002/cne.902330203
– ident: 2023041303402764000_29.38.11753.32
  doi: 10.1167/8.6.345
– ident: 2023041303402764000_29.38.11753.3
  doi: 10.1016/j.visres.2004.09.042
– volume: 50
  start-page: 1036
  year: 2007
  ident: 2023041303402764000_29.38.11753.11
  article-title: Text-background polarity affects performance irrespective of ambient illumination and colour contrast
  publication-title: Ergonomics
  doi: 10.1080/00140130701306413
– ident: 2023041303402764000_29.38.11753.47
  doi: 10.1097/00006324-200311000-00010
– ident: 2023041303402764000_29.38.11753.41
  doi: 10.1016/0278-4327(84)90011-7
SSID ssj0007017
Score 2.3496478
Snippet Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and...
Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11753
SubjectTerms Action Potentials
Animals
Color
Macaca fascicularis
Microelectrodes
Neurons - physiology
Photic Stimulation
Reaction Time
Thalamus - physiology
Time Factors
Visual Cortex - physiology
Visual Pathways - physiology
Visual Perception - physiology
Title "Black" Responses Dominate Macaque Primary Visual Cortex V1
URI http://www.jneurosci.org/cgi/content/abstract/29/38/11753
https://www.ncbi.nlm.nih.gov/pubmed/19776262
https://www.proquest.com/docview/67667526
https://pubmed.ncbi.nlm.nih.gov/PMC2796834
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCgPGRbYCZgJcqW-J8NeJpGpvGGEVorVSeLCe21aEundqkBf56zh9JWhRpwEsauUmd-nex73x3v0PoDSziisdNuqKfRi6sUL6bJZy4mdL-syTiEVEJzp8H8dkoPB9H47Yync4uKbOD_FdnXsn_oAptgKvKkv0HZJsfhQY4B3zhCAjD8a8wfkuI3oCDz97cBLuKRY_PVHhLqSJTc6bYWW8so8TyalFpOpB5KX70lv66YtqmiGnldI3mskH-mzDumElVuM1e69jWRPnAvleNnF1O2I3dCzeR23bPtd5d0OFTJgG4nhCJ9sCYRxIdbXYWtfsWRloMYYudEzUZaOdsHWnWiPOBClq8PP54YMKwdPpQ2q5PtU9-8IWeji4u6PBkPLyL7hGwC1Stjk9fW3r4xNMllpsHtCnh0M9hdy-b2kjNEN1lbfwZNLumhQwfogcWIXxkZOERuiOKx2j7COCeXf_E77AO6NWekm30fl8Lxz5uRAPXooGtaGArGtiIBjaigZf-EzQ6PRken7m2Voabg8pcuhEL-yTPVNUhmZAYtE4GloinvLQxV842mWcBDzyekEwyDlaqZHARSeGFDPJYBk_RVjErxHOERRB5IszA7uQyFCmcMCJ9zrlkUoZR5qCoHjOaWyJ5Vc9kSpVBCWNNm7Gmaqypl6pip6mDDpv77L-79Y7XNSR0cc2mU0DAp6vViqQ06FMtWA56VWNFYWZU7i5WiFm1oHESgzVMYgc9M8i1vYLRA4Y8cVCygWlzgeJc3_ymuJpo7nWSpHE_CHdu7XUX3W_fpz20Vc4r8QL01zJ7qWX2Ny5Ql3s
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Black%22+responses+dominate+macaque+primary+visual+cortex+v1&rft.jtitle=The+Journal+of+neuroscience&rft.au=Yeh%2C+Chun-I&rft.au=Xing%2C+Dajun&rft.au=Shapley%2C+Robert+M&rft.date=2009-09-23&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=29&rft.issue=38&rft.spage=11753&rft_id=info:doi/10.1523%2FJNEUROSCI.1991-09.2009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon