"Black" Responses Dominate Macaque Primary Visual Cortex V1
Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and OFF-center cells “black” information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neuro...
Saved in:
Published in | The Journal of neuroscience Vol. 29; no. 38; pp. 11753 - 11760 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
23.09.2009
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.1991-09.2009 |
Cover
Loading…
Abstract | Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and OFF-center cells “black” information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008). |
---|---|
AbstractList | Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008).Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008). Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008). Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and OFF-center cells “black” information ( Nelson et al., 1978 ; Schiller, 1982 ; Schiller et al., 1986 ). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude ( Krüger and Fischer, 1975 ; Kremers et al., 1993 ), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) ( Blackwell, 1946 ; Short, 1966 ; Krauskopf, 1980 ; Whittle, 1986 ; Bowen et al., 1989 ; Chan and Tyler, 1992 ; Kontsevich and Tyler, 1999 ; Chubb and Nam, 2000 ; Dannemiller and Stephens, 2001 ). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments ( Zemon et al., 1988 , 1995 ; Olman et al., 2008 ). |
Author | Shapley, Robert M Xing, Dajun Yeh, Chun-I |
Author_xml | – sequence: 1 fullname: Yeh, Chun-I – sequence: 2 fullname: Xing, Dajun – sequence: 3 fullname: Shapley, Robert M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19776262$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFr1BFPSAuWWbsxBMLhARLgaJCUaG9Wo7jdA1OvMRZFr49WW0pfy6cfJjfe_PG74Dt9bF3jB0hzLHk4vHb9yeXF-cfF6dzVApzUHMOoO6w2TRVOS8A99gMOEEuCyr22UFKnwGAAOke20dFJLnkM_bk-EUw9stxduHSKvbJpexl7HxvRpe9M9Z8Xbvsw-A7M_zIrnxam5At4jC679kV3md3WxOSe3DzHrLLVyefFm_ys_PXp4vnZ7ktEce8NEXFbS1JUEtcKiVMhQ0UQJVsAFG2thaNgIZ43ZqmorI1E8QV1iSsbMUhe7bzXa3rzjXW9eNggl7tYulovP570vulvo7fNCclK1FMBg9vDIY4HZRG3flkXQimd3GdtCQpqeRyAo_-3HS74td_TYDcAXaIKQ2u_Y2A3hajb4vR22I0KL0tZhI-_Udo_WhGH7eJffi__NFOvvTXy40fnE6dCWGKiXqz2XClRaURqRTiJ1hsoco |
CitedBy_id | crossref_primary_10_1073_pnas_1314690111 crossref_primary_10_1152_jn_01000_2015 crossref_primary_10_1093_cercor_bht133 crossref_primary_10_1038_s41598_021_89277_2 crossref_primary_10_1146_annurev_vision_091517_034122 crossref_primary_10_1038_nn_3878 crossref_primary_10_7554_eLife_26117 crossref_primary_10_1111_ejn_15233 crossref_primary_10_1371_journal_pcbi_1007254 crossref_primary_10_1002_cne_23907 crossref_primary_10_1167_jov_24_1_10 crossref_primary_10_1016_j_cub_2021_05_017 crossref_primary_10_1038_s41467_021_27892_3 crossref_primary_10_1093_brain_awab383 crossref_primary_10_1016_j_visres_2014_06_001 crossref_primary_10_1016_j_visres_2016_06_003 crossref_primary_10_1073_pnas_1200125109 crossref_primary_10_1167_jov_20_12_3 crossref_primary_10_1167_tvst_9_10_6 crossref_primary_10_1038_nn_3634 crossref_primary_10_1523_JNEUROSCI_2021_16_2017 crossref_primary_10_1371_journal_pone_0041960 crossref_primary_10_1038_srep12597 crossref_primary_10_1016_j_neuropsychologia_2020_107489 crossref_primary_10_1152_jn_00431_2015 crossref_primary_10_1167_iovs_63_11_16 crossref_primary_10_1016_j_visres_2018_06_003 crossref_primary_10_1523_JNEUROSCI_2456_11_2011 crossref_primary_10_14814_phy2_12746 crossref_primary_10_1523_JNEUROSCI_1336_14_2014 crossref_primary_10_3389_fpsyg_2014_01545 crossref_primary_10_1093_cercor_bhr133 crossref_primary_10_1523_JNEUROSCI_1004_13_2013 crossref_primary_10_1523_JNEUROSCI_1032_14_2014 crossref_primary_10_1038_s42003_018_0066_y crossref_primary_10_1523_JNEUROSCI_1220_22_2023 crossref_primary_10_1088_1741_2552_acbee0 crossref_primary_10_1371_journal_pbio_1002390 crossref_primary_10_1007_s00247_015_3365_1 crossref_primary_10_1038_s41598_017_06916_3 crossref_primary_10_1167_jov_21_5_15 crossref_primary_10_1016_j_neuron_2015_10_019 crossref_primary_10_1515_prolas_2017_0063 crossref_primary_10_1016_j_celrep_2021_108692 crossref_primary_10_1371_journal_pcbi_1004268 crossref_primary_10_1016_j_visres_2020_06_006 crossref_primary_10_1523_JNEUROSCI_1350_16_2016 crossref_primary_10_1111_ejn_14297 crossref_primary_10_3389_fnins_2017_00474 crossref_primary_10_1152_jn_00150_2018 crossref_primary_10_1016_j_visres_2014_01_008 crossref_primary_10_1167_jov_20_7_9 crossref_primary_10_1093_cercor_bhy221 crossref_primary_10_1146_annurev_vision_111022_123817 crossref_primary_10_3389_fopht_2022_989002 crossref_primary_10_1016_j_cub_2021_06_094 crossref_primary_10_1038_s41467_024_44809_y crossref_primary_10_1523_JNEUROSCI_2008_18_2018 crossref_primary_10_1371_journal_pbio_3002947 crossref_primary_10_1167_iovs_64_4_26 crossref_primary_10_1016_j_celrep_2019_05_007 crossref_primary_10_1016_j_cub_2021_07_057 crossref_primary_10_1111_ejn_12567 crossref_primary_10_1152_jn_00412_2022 crossref_primary_10_3389_fpsyg_2024_1494964 crossref_primary_10_1016_j_visres_2012_11_006 crossref_primary_10_1093_nc_niy003 crossref_primary_10_1016_j_visres_2012_07_022 crossref_primary_10_1016_j_visres_2015_05_018 crossref_primary_10_1080_15502724_2019_1674661 crossref_primary_10_1093_cercor_bhac016 crossref_primary_10_1038_nn_3707 crossref_primary_10_1152_jn_00560_2015 crossref_primary_10_1523_JNEUROSCI_1489_22_2022 crossref_primary_10_1007_s00506_020_00654_z crossref_primary_10_1152_jn_00288_2011 crossref_primary_10_1371_journal_pone_0060782 crossref_primary_10_1523_JNEUROSCI_1672_22_2022 crossref_primary_10_1038_nn_2620 crossref_primary_10_3389_fncom_2022_979830 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1016_j_neuroimage_2011_01_004 crossref_primary_10_1152_jn_00289_2023 crossref_primary_10_1523_JNEUROSCI_6304_11_2012 crossref_primary_10_1016_j_neuron_2014_02_020 crossref_primary_10_1073_pnas_1201478109 crossref_primary_10_1523_JNEUROSCI_3235_15_2016 crossref_primary_10_1038_s41598_025_87090_9 crossref_primary_10_1117_1_NPh_4_3_031206 crossref_primary_10_1073_pnas_1310442111 crossref_primary_10_1523_JNEUROSCI_2473_10_2010 crossref_primary_10_1038_s41467_019_13029_0 crossref_primary_10_1152_jn_00305_2018 crossref_primary_10_1523_JNEUROSCI_0848_14_2014 crossref_primary_10_1016_j_celrep_2022_111438 crossref_primary_10_1167_jov_23_4_3 crossref_primary_10_1523_JNEUROSCI_3465_13_2013 crossref_primary_10_1016_j_celrep_2018_04_076 crossref_primary_10_1038_s41598_024_76879_9 crossref_primary_10_1152_jn_00388_2011 crossref_primary_10_1080_00140139_2014_948496 crossref_primary_10_7554_eLife_72081 crossref_primary_10_1523_JNEUROSCI_3938_16_2017 crossref_primary_10_1523_JNEUROSCI_0168_23_2023 crossref_primary_10_1167_jov_24_4_10 crossref_primary_10_1016_j_neuron_2018_10_020 crossref_primary_10_7554_eLife_42101 crossref_primary_10_1017_S095252382400004X crossref_primary_10_1113_JP282152 crossref_primary_10_14814_phy2_12966 |
Cites_doi | 10.1111/j.1469-7793.1999.0775n.x 10.1523/JNEUROSCI.03-07-01389.1983 10.1523/JNEUROSCI.22-07-02737.2002 10.1016/0042-6989(93)90023-P 10.1152/jn.2002.88.1.455 10.1016/S0042-6989(99)00205-9 10.1152/jn.1999.82.5.2490 10.1073/pnas.0907406106 10.1016/S0042-6989(98)00286-7 10.1016/0006-8993(79)90284-1 10.1038/nn2029 10.1016/0042-6989(86)90055-6 10.1523/JNEUROSCI.20-17-06594.2000 10.1016/j.visres.2004.07.019 10.1523/JNEUROSCI.12-06-02247.1992 10.1113/jphysiol.1984.sp015104 10.1038/322824a0 10.1038/nature04519 10.1152/jn.1987.58.6.1187 10.1523/JNEUROSCI.22-13-05639.2002 10.1152/jn.00498.2005 10.1007/BF00342642 10.1167/1.2.5 10.1016/S0042-6989(96)00247-7 10.1017/S0952523800001085 10.1364/JOSA.36.000624 10.1523/JNEUROSCI.04-02-00381.1984 10.1152/jn.00830.2006 10.1038/nature05724 10.1523/JNEUROSCI.1422-04.2004 10.3109/00207459508986100 10.1016/S0042-6989(00)00007-9 10.1523/JNEUROSCI.08-10-03541.1988 10.1017/S0952523898151027 10.1523/JNEUROSCI.2091-06.2006 10.1016/0042-6989(80)90091-7 10.1364/JOSA.73.001832 10.1113/jphysiol.1966.sp008007 10.1152/jn.1978.41.2.472 10.1017/S0952523800008853 10.1002/cne.902160307 10.1016/0042-6989(89)90134-X 10.1038/297580a0 10.1146/annurev.ne.11.030188.001345 10.1152/jn.01139.2004 10.1038/378281a0 10.1002/cne.902330203 10.1167/8.6.345 10.1016/j.visres.2004.09.042 10.1080/00140130701306413 10.1097/00006324-200311000-00010 10.1016/0278-4327(84)90011-7 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Society for Neuroscience 0270-6474/09/2911753-08$15.00/0 2009 |
Copyright_xml | – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/2911753-08$15.00/0 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.1991-09.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 11760 |
ExternalDocumentID | PMC2796834 19776262 10_1523_JNEUROSCI_1991_09_2009 www29_38_11753 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY001472 – fundername: NEI NIH HHS grantid: EY-001472 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c511t-5a482cb6737f726993a81d040786d0116fcb3d30d72bfad875fa993291b73c6f3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 13:54:31 EDT 2025 Fri Sep 05 07:49:58 EDT 2025 Sat May 31 02:09:57 EDT 2025 Tue Jul 01 02:59:07 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Nov 10 19:20:02 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-5a482cb6737f726993a81d040786d0116fcb3d30d72bfad875fa993291b73c6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 C.-I.Y. and D.X. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/29/38/11753.full.pdf |
PMID | 19776262 |
PQID | 67667526 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2796834 proquest_miscellaneous_67667526 pubmed_primary_19776262 crossref_primary_10_1523_JNEUROSCI_1991_09_2009 crossref_citationtrail_10_1523_JNEUROSCI_1991_09_2009 highwire_smallpub1_www29_38_11753 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090923 2009-09-23 2009-Sep-23 |
PublicationDateYYYYMMDD | 2009-09-23 |
PublicationDate_xml | – month: 09 year: 2009 text: 20090923 day: 23 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2009 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Ringach (2023041303402764000_29.38.11753.37) 2002; 22 2023041303402764000_29.38.11753.52 2023041303402764000_29.38.11753.53 2023041303402764000_29.38.11753.50 2023041303402764000_29.38.11753.51 Ringach (2023041303402764000_29.38.11753.35) 2002; 88 Sherk (2023041303402764000_29.38.11753.43) 1984; 4 2023041303402764000_29.38.11753.16 Zhou (2023041303402764000_29.38.11753.54) 2000; 20 2023041303402764000_29.38.11753.17 2023041303402764000_29.38.11753.14 2023041303402764000_29.38.11753.15 2023041303402764000_29.38.11753.10 2023041303402764000_29.38.11753.18 Blasdel (2023041303402764000_29.38.11753.8) 1983; 3 Nelson (2023041303402764000_29.38.11753.31) 1978; 41 2023041303402764000_29.38.11753.2 2023041303402764000_29.38.11753.20 2023041303402764000_29.38.11753.3 2023041303402764000_29.38.11753.4 2023041303402764000_29.38.11753.5 2023041303402764000_29.38.11753.6 2023041303402764000_29.38.11753.7 2023041303402764000_29.38.11753.27 2023041303402764000_29.38.11753.28 2023041303402764000_29.38.11753.25 2023041303402764000_29.38.11753.26 2023041303402764000_29.38.11753.23 2023041303402764000_29.38.11753.24 2023041303402764000_29.38.11753.21 Bowen (2023041303402764000_29.38.11753.9) 1989; 29 2023041303402764000_29.38.11753.29 Chan (2023041303402764000_29.38.11753.12) 1992; 23 Short (2023041303402764000_29.38.11753.44) 1966; 185 Chichilnisky (2023041303402764000_29.38.11753.13) 2002; 22 2023041303402764000_29.38.11753.30 Hawken (2023041303402764000_29.38.11753.19) 1988; 8 2023041303402764000_29.38.11753.38 2023041303402764000_29.38.11753.39 2023041303402764000_29.38.11753.36 2023041303402764000_29.38.11753.34 2023041303402764000_29.38.11753.32 Jones (2023041303402764000_29.38.11753.22) 1987; 58 2023041303402764000_29.38.11753.41 Pasupathy (2023041303402764000_29.38.11753.33) 1999; 82 2023041303402764000_29.38.11753.42 Albus (2023041303402764000_29.38.11753.1) 1984; 348 2023041303402764000_29.38.11753.40 Buchner (2023041303402764000_29.38.11753.11) 2007; 50 2023041303402764000_29.38.11753.49 2023041303402764000_29.38.11753.47 2023041303402764000_29.38.11753.48 2023041303402764000_29.38.11753.45 Wehrhahn (2023041303402764000_29.38.11753.46) 1992; 12 |
References_xml | – ident: 2023041303402764000_29.38.11753.6 doi: 10.1111/j.1469-7793.1999.0775n.x – volume: 3 start-page: 1389 year: 1983 ident: 2023041303402764000_29.38.11753.8 article-title: Termination of afferent axons in macaque striate cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.03-07-01389.1983 – ident: 2023041303402764000_29.38.11753.4 – volume: 22 start-page: 2737 year: 2002 ident: 2023041303402764000_29.38.11753.13 article-title: Functional asymmetries in ON and OFF ganglion cells of primate retina publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-07-02737.2002 – ident: 2023041303402764000_29.38.11753.25 doi: 10.1016/0042-6989(93)90023-P – volume: 23 start-page: 251 year: 1992 ident: 2023041303402764000_29.38.11753.12 article-title: Increment and decrement asymmetries: implications for pattern detection and appearance publication-title: Soc Inform Display Symp Dig – volume: 88 start-page: 455 year: 2002 ident: 2023041303402764000_29.38.11753.35 article-title: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex publication-title: J Neurophysiol doi: 10.1152/jn.2002.88.1.455 – ident: 2023041303402764000_29.38.11753.2 doi: 10.1016/S0042-6989(99)00205-9 – volume: 82 start-page: 2490 year: 1999 ident: 2023041303402764000_29.38.11753.33 article-title: Responses to contour features in macaque area V4 publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.5.2490 – ident: 2023041303402764000_29.38.11753.51 doi: 10.1073/pnas.0907406106 – ident: 2023041303402764000_29.38.11753.23 doi: 10.1016/S0042-6989(98)00286-7 – ident: 2023041303402764000_29.38.11753.49 doi: 10.1016/0006-8993(79)90284-1 – ident: 2023041303402764000_29.38.11753.21 doi: 10.1038/nn2029 – ident: 2023041303402764000_29.38.11753.48 doi: 10.1016/0042-6989(86)90055-6 – volume: 20 start-page: 6594 year: 2000 ident: 2023041303402764000_29.38.11753.54 article-title: Coding of border ownership in monkey visual cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-17-06594.2000 – ident: 2023041303402764000_29.38.11753.15 doi: 10.1016/j.visres.2004.07.019 – volume: 12 start-page: 2247 year: 1992 ident: 2023041303402764000_29.38.11753.46 article-title: ON- and OFF-pathways form separate neural substrates for motion perception: psychophysical evidence publication-title: J Neurosci doi: 10.1523/JNEUROSCI.12-06-02247.1992 – volume: 348 start-page: 153 year: 1984 ident: 2023041303402764000_29.38.11753.1 article-title: Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis publication-title: J Physiol doi: 10.1113/jphysiol.1984.sp015104 – ident: 2023041303402764000_29.38.11753.40 doi: 10.1038/322824a0 – ident: 2023041303402764000_29.38.11753.42 doi: 10.1038/nature04519 – volume: 58 start-page: 1187 year: 1987 ident: 2023041303402764000_29.38.11753.22 article-title: The two-dimensional spatial structure of simple receptive fields in cat striate cortex publication-title: J Neurophysiol doi: 10.1152/jn.1987.58.6.1187 – volume: 22 start-page: 5639 year: 2002 ident: 2023041303402764000_29.38.11753.37 article-title: Orientation selectivity in macaque V1: diversity and laminar dependence publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-13-05639.2002 – ident: 2023041303402764000_29.38.11753.45 doi: 10.1152/jn.00498.2005 – ident: 2023041303402764000_29.38.11753.26 doi: 10.1007/BF00342642 – ident: 2023041303402764000_29.38.11753.17 doi: 10.1167/1.2.5 – ident: 2023041303402764000_29.38.11753.36 doi: 10.1016/S0042-6989(96)00247-7 – ident: 2023041303402764000_29.38.11753.52 doi: 10.1017/S0952523800001085 – ident: 2023041303402764000_29.38.11753.7 doi: 10.1364/JOSA.36.000624 – volume: 4 start-page: 381 year: 1984 ident: 2023041303402764000_29.38.11753.43 article-title: Receptive field properties in the cat's area 17 in the absence of on-center geniculate input publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-02-00381.1984 – ident: 2023041303402764000_29.38.11753.29 doi: 10.1152/jn.00830.2006 – ident: 2023041303402764000_29.38.11753.30 doi: 10.1038/nature05724 – ident: 2023041303402764000_29.38.11753.18 doi: 10.1523/JNEUROSCI.1422-04.2004 – ident: 2023041303402764000_29.38.11753.53 doi: 10.3109/00207459508986100 – ident: 2023041303402764000_29.38.11753.14 doi: 10.1016/S0042-6989(00)00007-9 – volume: 8 start-page: 3541 year: 1988 ident: 2023041303402764000_29.38.11753.19 article-title: Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey publication-title: J Neurosci doi: 10.1523/JNEUROSCI.08-10-03541.1988 – ident: 2023041303402764000_29.38.11753.27 doi: 10.1017/S0952523898151027 – ident: 2023041303402764000_29.38.11753.16 doi: 10.1523/JNEUROSCI.2091-06.2006 – ident: 2023041303402764000_29.38.11753.24 doi: 10.1016/0042-6989(80)90091-7 – ident: 2023041303402764000_29.38.11753.10 doi: 10.1364/JOSA.73.001832 – volume: 185 start-page: 646 year: 1966 ident: 2023041303402764000_29.38.11753.44 article-title: Decremental and incremental visual thresholds publication-title: J Physiol doi: 10.1113/jphysiol.1966.sp008007 – volume: 41 start-page: 472 year: 1978 ident: 2023041303402764000_29.38.11753.31 article-title: Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina publication-title: J Neurophysiol doi: 10.1152/jn.1978.41.2.472 – ident: 2023041303402764000_29.38.11753.5 doi: 10.1017/S0952523800008853 – ident: 2023041303402764000_29.38.11753.38 doi: 10.1002/cne.902160307 – volume: 29 start-page: 1501 year: 1989 ident: 2023041303402764000_29.38.11753.9 article-title: Sawtooth contrast sensitivity: decrements have the edge publication-title: Vision Res doi: 10.1016/0042-6989(89)90134-X – ident: 2023041303402764000_29.38.11753.39 doi: 10.1038/297580a0 – ident: 2023041303402764000_29.38.11753.28 doi: 10.1146/annurev.ne.11.030188.001345 – ident: 2023041303402764000_29.38.11753.50 doi: 10.1152/jn.01139.2004 – ident: 2023041303402764000_29.38.11753.34 doi: 10.1038/378281a0 – ident: 2023041303402764000_29.38.11753.20 doi: 10.1002/cne.902330203 – ident: 2023041303402764000_29.38.11753.32 doi: 10.1167/8.6.345 – ident: 2023041303402764000_29.38.11753.3 doi: 10.1016/j.visres.2004.09.042 – volume: 50 start-page: 1036 year: 2007 ident: 2023041303402764000_29.38.11753.11 article-title: Text-background polarity affects performance irrespective of ambient illumination and colour contrast publication-title: Ergonomics doi: 10.1080/00140130701306413 – ident: 2023041303402764000_29.38.11753.47 doi: 10.1097/00006324-200311000-00010 – ident: 2023041303402764000_29.38.11753.41 doi: 10.1016/0278-4327(84)90011-7 |
SSID | ssj0007017 |
Score | 2.3496478 |
Snippet | Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry “white” information and... Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11753 |
SubjectTerms | Action Potentials Animals Color Macaca fascicularis Microelectrodes Neurons - physiology Photic Stimulation Reaction Time Thalamus - physiology Time Factors Visual Cortex - physiology Visual Pathways - physiology Visual Perception - physiology |
Title | "Black" Responses Dominate Macaque Primary Visual Cortex V1 |
URI | http://www.jneurosci.org/cgi/content/abstract/29/38/11753 https://www.ncbi.nlm.nih.gov/pubmed/19776262 https://www.proquest.com/docview/67667526 https://pubmed.ncbi.nlm.nih.gov/PMC2796834 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCgPGRbYCZgJcqW-J8NeJpGpvGGEVorVSeLCe21aEundqkBf56zh9JWhRpwEsauUmd-nex73x3v0PoDSziisdNuqKfRi6sUL6bJZy4mdL-syTiEVEJzp8H8dkoPB9H47Yync4uKbOD_FdnXsn_oAptgKvKkv0HZJsfhQY4B3zhCAjD8a8wfkuI3oCDz97cBLuKRY_PVHhLqSJTc6bYWW8so8TyalFpOpB5KX70lv66YtqmiGnldI3mskH-mzDumElVuM1e69jWRPnAvleNnF1O2I3dCzeR23bPtd5d0OFTJgG4nhCJ9sCYRxIdbXYWtfsWRloMYYudEzUZaOdsHWnWiPOBClq8PP54YMKwdPpQ2q5PtU9-8IWeji4u6PBkPLyL7hGwC1Stjk9fW3r4xNMllpsHtCnh0M9hdy-b2kjNEN1lbfwZNLumhQwfogcWIXxkZOERuiOKx2j7COCeXf_E77AO6NWekm30fl8Lxz5uRAPXooGtaGArGtiIBjaigZf-EzQ6PRken7m2Voabg8pcuhEL-yTPVNUhmZAYtE4GloinvLQxV842mWcBDzyekEwyDlaqZHARSeGFDPJYBk_RVjErxHOERRB5IszA7uQyFCmcMCJ9zrlkUoZR5qCoHjOaWyJ5Vc9kSpVBCWNNm7Gmaqypl6pip6mDDpv77L-79Y7XNSR0cc2mU0DAp6vViqQ06FMtWA56VWNFYWZU7i5WiFm1oHESgzVMYgc9M8i1vYLRA4Y8cVCygWlzgeJc3_ymuJpo7nWSpHE_CHdu7XUX3W_fpz20Vc4r8QL01zJ7qWX2Ny5Ql3s |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Black%22+responses+dominate+macaque+primary+visual+cortex+v1&rft.jtitle=The+Journal+of+neuroscience&rft.au=Yeh%2C+Chun-I&rft.au=Xing%2C+Dajun&rft.au=Shapley%2C+Robert+M&rft.date=2009-09-23&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=29&rft.issue=38&rft.spage=11753&rft_id=info:doi/10.1523%2FJNEUROSCI.1991-09.2009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |