[¹⁸F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor
[¹⁸F]MK-9470 is a selective, high-affinity, inverse agonist (human IC₅₀, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [¹⁸F]MK-9470 binding is aligned with the reported distribution...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 23; pp. 9800 - 9805 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.06.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [¹⁸F]MK-9470 is a selective, high-affinity, inverse agonist (human IC₅₀, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [¹⁸F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [¹⁸F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [¹⁸F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [¹⁸F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. |
---|---|
AbstractList | [¹⁸F]MK-9470 is a selective, high-affinity, inverse agonist (human IC₅₀, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [¹⁸F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [¹⁸F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [¹⁸F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [¹⁸F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. [...F]MK-9470 is a selective, high-affinity, inverse agonist (human IC..., 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [...F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [...F] MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [...F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [...F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.) [ 18 F]MK-9470 is a selective, high-affinity, inverse agonist (human IC 50 , 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [ 18 F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4–5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [ 18 F]MK-9470 very similar to that seen in monkeys, with very good test–retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [ 18 F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [ 18 F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. inverse agonist occupancy [ 18 F]MK-9470 is a selective, high-affinity, inverse agonist (human IC 50 , 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [ 18 F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4–5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [ 18 F]MK-9470 very similar to that seen in monkeys, with very good test–retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [ 18 F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [ 18 F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. [ super(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC sub(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [ super(18)F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [ super(18)F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [ super(18)F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [ super(18)F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. [¹⁸F]MK-9470 is a selective, high-affinity, inverse agonist (human IC₅₀ 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [¹⁸F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [¹⁸F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [¹⁸F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [¹⁸F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatrie disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. [(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [(18)F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [(18)F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [(18)F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [(18)F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists. |
Author | Sanabria-Bohórquez, Sandra Goulet, Mark T Vanko, Amy Gibson, Ray Fong, Tung M Jewell, James P Van Hecken, Anne Liu, Ping Krause, Stephen Hargreaves, Richard J Gottesdiener, Keith Eng, Wai-si Hamill, Terence G De Lepeleire, Inge Burns, H. Donald de Hoon, Jan Ryan, Christine Hagmann, William K Lin, Linus S Mortelmans, Luc Patel, Shil Van Laere, Koen Rothenberg, Paul Stoch, S. Aubrey Connolly, Brett Wagner, John A Dupont, Patrick Cote, Josee Bormans, Guy |
Author_xml | – sequence: 1 fullname: Burns, H. Donald – sequence: 2 fullname: Van Laere, Koen – sequence: 3 fullname: Sanabria-Bohórquez, Sandra – sequence: 4 fullname: Hamill, Terence G – sequence: 5 fullname: Bormans, Guy – sequence: 6 fullname: Eng, Wai-si – sequence: 7 fullname: Gibson, Ray – sequence: 8 fullname: Ryan, Christine – sequence: 9 fullname: Connolly, Brett – sequence: 10 fullname: Patel, Shil – sequence: 11 fullname: Krause, Stephen – sequence: 12 fullname: Vanko, Amy – sequence: 13 fullname: Van Hecken, Anne – sequence: 14 fullname: Dupont, Patrick – sequence: 15 fullname: De Lepeleire, Inge – sequence: 16 fullname: Rothenberg, Paul – sequence: 17 fullname: Stoch, S. Aubrey – sequence: 18 fullname: Cote, Josee – sequence: 19 fullname: Hagmann, William K – sequence: 20 fullname: Jewell, James P – sequence: 21 fullname: Lin, Linus S – sequence: 22 fullname: Liu, Ping – sequence: 23 fullname: Goulet, Mark T – sequence: 24 fullname: Gottesdiener, Keith – sequence: 25 fullname: Wagner, John A – sequence: 26 fullname: de Hoon, Jan – sequence: 27 fullname: Mortelmans, Luc – sequence: 28 fullname: Fong, Tung M – sequence: 29 fullname: Hargreaves, Richard J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17535893$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxiNURLeFMyfA4oCKRFr_je0LEqpaQBSBRHtCyHISZ9erxA52sqIXJN4KrjwKT4KjXbrQQznZ8vxm_M3Mt5ftOO9Mlt1H8BBBTo56p-Mh5JBQjhGkt7IZghLlBZVwJ5tBiHkuKKa72V6MSwihZALeyXYRZ4QJSWbZ148_f_z69v3009s3uaQcPgMa9D7aIXgHTGdjtOky-M7Pg-4Xl-Dg_cn5UzAEXZkAGh-AdWBlVx4sxk47kKKgDDo92k7PrZsD34BhYUClndOldd7WOQLBVKYffLib3W50G829zbmfXZyenB-_ys_evXx9_OIsrxhCQ84kLmtds6YsZGEKpDGjGBUEY4llXYsSE6ELzIkgUjKkiShozWvd4EIQRCuynz1f1-3HsjN1ZVzqoFV9SCrDpfLaqn8jzi7U3K8UEpxLwVKBJ5sCwX8eTRxUmk1l2lY748eoKCcMMwb_CyJZCFrgCXx8DVz6Mbg0BYUhIhISThP08G_dV4L_LDABR2ugCj7GYJotAtVkETVZRG0tkjLYtYzKDnpIa06N2_aGvIONlCmw_YUqTJQUEKpmbNvBfBkS-uhmNBEP1sQyJhdcIdNauaRwW6HRXul5sFFdfJjGAiEXiFNKfgPrLOrK |
CitedBy_id | crossref_primary_10_3390_pharmaceutics12100925 crossref_primary_10_3389_fnbeh_2020_596509 crossref_primary_10_1177_1087057113475871 crossref_primary_10_1017_S0954579416001280 crossref_primary_10_2310_7290_2011_00019 crossref_primary_10_1038_s41401_018_0081_z crossref_primary_10_1007_s00259_010_1518_x crossref_primary_10_1007_s00259_013_2456_1 crossref_primary_10_1002_jlcr_3219 crossref_primary_10_1111_jnc_15657 crossref_primary_10_3389_fncir_2021_781113 crossref_primary_10_3390_psychoactives2040019 crossref_primary_10_1007_s00259_009_1340_5 crossref_primary_10_1007_s12170_008_0014_3 crossref_primary_10_1016_j_neuroimage_2014_04_020 crossref_primary_10_1021_jm800329z crossref_primary_10_1016_j_neurobiolaging_2011_02_009 crossref_primary_10_1002_cpt_132 crossref_primary_10_1016_j_lfs_2020_118430 crossref_primary_10_1016_j_biopsycho_2015_07_013 crossref_primary_10_3390_pharmaceutics14122566 crossref_primary_10_1111_bph_14564 crossref_primary_10_1016_S1575_0973_11_70021_6 crossref_primary_10_1080_24740527_2022_2132138 crossref_primary_10_1007_s12264_024_01188_0 crossref_primary_10_1016_j_yfrne_2019_100789 crossref_primary_10_1038_tp_2016_118 crossref_primary_10_1038_npp_2015_295 crossref_primary_10_1016_j_nucmedbio_2011_04_004 crossref_primary_10_1021_acschemneuro_1c00508 crossref_primary_10_1080_08958378_2020_1767237 crossref_primary_10_1111_j_1468_1331_2010_03154_x crossref_primary_10_1007_s11481_014_9544_2 crossref_primary_10_1111_adb_13167 crossref_primary_10_1002_jlcr_1491 crossref_primary_10_1007_s00259_012_2163_3 crossref_primary_10_1016_j_pain_2012_09_017 crossref_primary_10_1146_annurev_pharmtox_010716_104615 crossref_primary_10_1038_ijo_2009_132 crossref_primary_10_1038_psp_2013_72 crossref_primary_10_1155_2011_548123 crossref_primary_10_3389_fphar_2020_618184 crossref_primary_10_1038_npp_2014_67 crossref_primary_10_4329_wjr_v6_i6_301 crossref_primary_10_1016_j_neuroimage_2010_04_034 crossref_primary_10_1007_s00259_012_2209_6 crossref_primary_10_1002_hbm_25324 crossref_primary_10_1016_j_drudis_2008_09_001 crossref_primary_10_1002_jnr_25252 crossref_primary_10_4236_jbbs_2020_108022 crossref_primary_10_1002_jnr_25136 crossref_primary_10_1007_s00259_019_04445_x crossref_primary_10_3389_fnmol_2019_00255 crossref_primary_10_1017_S1092852915000395 crossref_primary_10_3390_brainsci12070819 crossref_primary_10_1089_can_2021_0113 crossref_primary_10_1016_j_medidd_2021_100083 crossref_primary_10_1016_j_jep_2017_09_011 crossref_primary_10_1177_09727531221120988 crossref_primary_10_1016_j_ejmech_2008_03_040 crossref_primary_10_1016_j_euroneuro_2015_08_007 crossref_primary_10_2967_jnumed_109_067074 crossref_primary_10_1523_JNEUROSCI_0849_13_2014 crossref_primary_10_1016_j_ejphar_2010_08_055 crossref_primary_10_1016_j_neuroimage_2013_09_043 crossref_primary_10_1089_can_2022_0151 crossref_primary_10_1016_j_neuroimage_2008_03_004 crossref_primary_10_1053_j_semnuclmed_2008_02_004 crossref_primary_10_1111_epi_14059 crossref_primary_10_1016_j_neuroimage_2011_09_046 crossref_primary_10_1021_acschemneuro_0c00313 crossref_primary_10_1124_pr_116_013243 crossref_primary_10_1007_s00259_010_1383_7 crossref_primary_10_1007_s40429_017_0141_3 crossref_primary_10_1016_j_bmc_2010_02_011 crossref_primary_10_1021_cn500073j crossref_primary_10_1177_0269881119841568 crossref_primary_10_1038_sj_bjp_0707506 crossref_primary_10_1080_00952990_2019_1634086 crossref_primary_10_1016_j_neuroimage_2009_06_059 crossref_primary_10_1089_can_2018_0035 crossref_primary_10_1016_j_ymeth_2009_03_010 crossref_primary_10_1111_add_15764 crossref_primary_10_1007_s00213_021_05938_0 crossref_primary_10_1248_bpb_31_1274 crossref_primary_10_1089_can_2022_0144 crossref_primary_10_1016_j_brainres_2011_07_031 crossref_primary_10_1177_1536012119871455 crossref_primary_10_1007_s10928_012_9282_0 crossref_primary_10_1016_j_baga_2012_06_005 crossref_primary_10_1016_j_nbd_2013_08_017 crossref_primary_10_1002_syn_20578 crossref_primary_10_1089_can_2017_0021 crossref_primary_10_1136_bmjment_2024_301065 crossref_primary_10_3389_fphar_2019_01481 crossref_primary_10_1007_s00259_016_3457_7 crossref_primary_10_3390_ph7030339 crossref_primary_10_1093_brain_awq385 crossref_primary_10_1002_cmdc_201000426 crossref_primary_10_2967_jnumed_118_210393 crossref_primary_10_1016_j_nucmedbio_2013_04_009 crossref_primary_10_1016_j_neurobiolaging_2014_06_010 crossref_primary_10_1002_ddr_20333 crossref_primary_10_1002_ddr_20335 crossref_primary_10_1016_j_neuroimage_2007_10_053 crossref_primary_10_3917_psyt_232_0111 crossref_primary_10_1159_000375454 crossref_primary_10_1016_j_jfluchem_2014_07_010 crossref_primary_10_1007_s00259_010_1574_2 crossref_primary_10_1016_j_neulet_2019_05_033 crossref_primary_10_1001_jamanetworkopen_2024_57069 crossref_primary_10_1146_annurev_neuro_051508_135335 crossref_primary_10_3389_fnana_2020_593793 crossref_primary_10_1021_jm800416m crossref_primary_10_1007_s00259_022_05999_z crossref_primary_10_1016_j_nucmedbio_2017_06_003 crossref_primary_10_1016_j_beem_2008_10_007 crossref_primary_10_1021_acs_jmedchem_0c01714 crossref_primary_10_1007_s00259_013_2483_y crossref_primary_10_1111_adb_12027 crossref_primary_10_1016_j_neuroimage_2013_04_052 crossref_primary_10_1038_npp_2010_75 crossref_primary_10_1111_add_15626 crossref_primary_10_1080_09658211_2016_1172642 crossref_primary_10_1146_annurev_neuro_062111_150420 crossref_primary_10_1016_j_nucmedbio_2019_05_004 crossref_primary_10_1007_s40473_020_00222_5 crossref_primary_10_1021_jm2000536 crossref_primary_10_1111_j_1526_4610_2011_02030_x crossref_primary_10_1016_j_jneumeth_2014_09_006 crossref_primary_10_1002_ddr_20311 crossref_primary_10_1016_j_nucmedbio_2011_10_019 crossref_primary_10_1016_j_disamonth_2024_101832 crossref_primary_10_1016_j_neuroimage_2018_10_013 crossref_primary_10_1517_13543784_17_3_321 crossref_primary_10_1002_syn_20769 crossref_primary_10_1016_j_cmet_2007_11_012 crossref_primary_10_1080_00952990_2024_2332602 crossref_primary_10_1016_j_bbr_2012_08_031 crossref_primary_10_1016_j_expneurol_2014_05_004 crossref_primary_10_1016_j_biopsych_2015_12_002 crossref_primary_10_1016_j_neuroimage_2020_117183 crossref_primary_10_1016_j_biopsych_2015_08_021 crossref_primary_10_1016_j_brainresbull_2013_01_001 crossref_primary_10_1002_mp_12732 crossref_primary_10_1002_ange_201006579 crossref_primary_10_1007_s00259_010_1426_0 crossref_primary_10_1016_j_bmcl_2011_09_016 crossref_primary_10_1016_j_bmcl_2010_01_074 crossref_primary_10_1016_j_euroneuro_2013_10_002 crossref_primary_10_1126_scitranslmed_aaf4696 crossref_primary_10_1002_jlcr_3845 crossref_primary_10_1016_j_bbr_2017_02_015 crossref_primary_10_1016_j_nucmedbio_2011_09_005 crossref_primary_10_1176_appi_ajp_rj_2017_120603 crossref_primary_10_1177_0269881108096509 crossref_primary_10_1007_s40429_016_0102_2 crossref_primary_10_1007_s12264_014_1460_6 crossref_primary_10_1016_j_neurobiolaging_2018_05_013 crossref_primary_10_3390_ijms23062923 crossref_primary_10_1088_0031_9155_60_22_R363 crossref_primary_10_1089_can_2018_0049 crossref_primary_10_1016_j_ntt_2016_05_010 crossref_primary_10_1016_j_biopsych_2011_05_010 crossref_primary_10_1016_j_euroneuro_2018_12_003 crossref_primary_10_1111_adb_12111 crossref_primary_10_1111_adb_12116 crossref_primary_10_1002_ardp_200700255 crossref_primary_10_1007_s12031_010_9340_2 crossref_primary_10_1016_j_expneurol_2011_03_014 crossref_primary_10_1016_j_pscychresns_2009_12_004 crossref_primary_10_1542_peds_2017_1818 crossref_primary_10_1016_j_neuropharm_2017_06_018 crossref_primary_10_2967_jnumed_110_077156 crossref_primary_10_1111_j_1530_0277_2012_01815_x crossref_primary_10_1016_j_nucmedbio_2009_01_009 crossref_primary_10_1016_j_jpsychires_2009_04_005 crossref_primary_10_1159_000504626 crossref_primary_10_1016_j_pnpbp_2020_110066 crossref_primary_10_1155_2016_6526437 crossref_primary_10_1016_j_brainres_2009_12_026 crossref_primary_10_1016_j_neulet_2011_03_013 crossref_primary_10_1016_j_nucmedbio_2008_10_002 crossref_primary_10_3389_fntpr_2023_1196321 crossref_primary_10_1016_j_ejphar_2008_02_099 crossref_primary_10_3389_fnins_2021_744762 crossref_primary_10_1097_AJP_0b013e31824c5e4c crossref_primary_10_1007_s00213_009_1591_7 crossref_primary_10_1016_j_neubiorev_2017_02_004 crossref_primary_10_1038_jcbfm_2015_133 crossref_primary_10_1111_j_1365_2982_2012_01919_x crossref_primary_10_1186_2191_219X_3_59 crossref_primary_10_1016_j_bmcl_2009_08_092 crossref_primary_10_1523_JNEUROSCI_3375_17_2018 crossref_primary_10_1001_jamapediatrics_2024_3045 crossref_primary_10_1016_j_neubiorev_2010_04_008 crossref_primary_10_1007_s11307_013_0626_y crossref_primary_10_1007_s10072_020_04514_2 crossref_primary_10_1016_j_nbd_2009_09_025 crossref_primary_10_1007_s00259_013_2522_8 crossref_primary_10_1111_jnc_15615 crossref_primary_10_1002_jlcr_3017 crossref_primary_10_3390_ijms242115829 crossref_primary_10_1016_j_jaac_2019_05_034 crossref_primary_10_1002_anie_201006579 crossref_primary_10_1007_s11886_019_1210_0 crossref_primary_10_1016_j_neuint_2011_11_004 crossref_primary_10_1016_j_neuroimage_2022_119674 crossref_primary_10_1016_j_neuropharm_2015_03_002 crossref_primary_10_1038_jcbfm_2015_46 crossref_primary_10_1038_nrn3937 crossref_primary_10_1021_acs_jmedchem_0c01459 crossref_primary_10_1523_JNEUROSCI_4745_13_2014 crossref_primary_10_1021_ol902038y crossref_primary_10_2967_jnumed_112_107995 crossref_primary_10_1016_j_jfluchem_2013_03_006 crossref_primary_10_1186_s41181_023_00189_0 crossref_primary_10_1016_j_euroneuro_2016_08_015 crossref_primary_10_1021_acschemneuro_4c00259 crossref_primary_10_1007_s11307_008_0194_8 crossref_primary_10_1371_journal_pone_0055821 crossref_primary_10_1016_j_physbeh_2007_11_012 crossref_primary_10_1021_acs_bioconjchem_1c00369 crossref_primary_10_1016_j_phrs_2019_02_029 crossref_primary_10_1016_j_neuropharm_2008_02_018 crossref_primary_10_1007_s11011_015_9753_2 crossref_primary_10_3389_fnmol_2025_1534324 crossref_primary_10_3390_ph14100965 crossref_primary_10_2967_jnumed_107_047290 crossref_primary_10_1007_s00259_007_0505_3 crossref_primary_10_1016_j_biopsych_2011_08_018 crossref_primary_10_1124_dmd_116_070359 crossref_primary_10_2174_1381612827666210127120411 crossref_primary_10_3390_ph3092799 crossref_primary_10_1093_ijnp_pyv061 crossref_primary_10_1186_1747_597X_2_19 crossref_primary_10_1371_journal_pone_0181064 |
Cites_doi | 10.1212/01.wnl.0000176753.45410.8b 10.1016/S0031-9384(02)00725-4 10.1007/s11307-005-0932-0 10.1016/j.bcp.2004.08.033 10.1046/j.1471-4159.1999.0730493.x 10.1016/S0022-3565(24)37979-0 10.1016/0896-6273(89)90027-5 10.1136/bjo.2003.032250 10.1038/sj.ijo.0802583 10.1016/S0306-4522(97)00436-3 10.1016/j.biopsych.2004.01.005 10.1523/JNEUROSCI.21-07-02425.2001 10.1016/0006-8993(91)90970-7 10.1016/j.pscychresns.2006.02.002 10.1016/j.tips.2006.04.004 10.1016/j.neuropharm.2003.11.004 10.1016/S0163-7258(97)82001-3 10.1176/ajp.156.2.286 10.1096/fj.04-3010fje 10.1016/0304-3940(92)90832-R 10.1523/JNEUROSCI.4540-04.2005 10.1073/pnas.87.5.1932 10.1093/brain/awg143 10.1016/j.neuropharm.2005.03.016 10.1038/nn1457 10.1016/S0306-4522(96)00428-9 10.1016/0306-4522(94)90511-8 10.1016/S0079-6123(05)50015-3 10.1126/science.1115740 10.1097/00004647-199910000-00012 10.1016/j.pain.2004.09.013 10.1038/35003583 10.1212/01.WNL.0000140288.48796.8E 10.1016/j.tins.2006.01.008 10.1016/j.neuroscience.2006.02.024 10.1016/S1536-1632(03)00041-6 10.1212/WNL.57.11.2108 10.1054/plef.2001.0341 10.1097/00008877-200509000-00006 10.1046/j.1471-4159.1998.70010417.x 10.1016/S0024-3205(99)00289-1 10.1016/j.biopsych.2004.12.006 10.1016/0014-2999(96)00279-8 10.1523/JNEUROSCI.11-02-00563.1991 10.1016/j.neuroimage.2006.04.041 10.1038/sj.tpj.6500301 10.1007/s11307-005-0005-4 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 5, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 5, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7S9 L.6 5PM |
DOI | 10.1073/pnas.0703472104 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts Engineering Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9805 |
ExternalDocumentID | PMC1877985 1284659021 17535893 10_1073_pnas_0703472104 104_23_9800 25427940 US201300781744 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c511t-592bdad5fb696e61a254216322929dd8b238a6273839951a3864d7daf268314c3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:24:35 EDT 2025 Fri Jul 11 13:04:56 EDT 2025 Fri Jul 11 10:02:43 EDT 2025 Mon Jun 30 08:33:27 EDT 2025 Wed Feb 19 02:10:52 EST 2025 Thu Apr 24 22:56:30 EDT 2025 Tue Jul 01 02:38:41 EDT 2025 Thu May 30 08:53:49 EDT 2019 Wed Nov 11 00:29:33 EST 2020 Thu May 29 08:42:40 EDT 2025 Wed Dec 27 19:21:38 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-592bdad5fb696e61a254216322929dd8b238a6273839951a3864d7daf268314c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: H.D.B., K.V.L., S.S.-B., T.G.H., W.-s.E., R.G., C.R., P.R., S.A.S., J.C., W.K.H., J.P.J., L.S.L., P.L., M.T.G., K.G., J.A.W., T.M.F., and R.J.H. designed research; K.V.L., S.S.-B., T.G.H., G.B., W.-s.E., R.G., C.R., B.C., S.P., S.K., A.V., A.V.H., P.D., I.D.L., W.K.H., J.P.J., L.S.L., P.L., M.T.G., J.d.H., and L.M. performed research; T.G.H. and G.B. contributed new reagents/analytic tools; H.D.B., S.S.-B., G.B., W.-s.E., R.G., B.C., S.P., A.V., P.R., S.A.S., J.C., K.G., T.M.F., and R.J.H. analyzed data; and H.D.B., K.V.L., S.S.-B., T.G.H., G.B., W.-s.E., R.G., C.R., B.C., A.V.H., P.D., I.D.L., S.A.S., K.G., J.A.W., J.d.H., L.M., T.M.F., and R.J.H. wrote the paper. Communicated by Michael E. Phelps, University of California School of Medicine, Los Angeles, CA, April 20, 2007 |
PMID | 17535893 |
PQID | 201390374 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_19684620 crossref_citationtrail_10_1073_pnas_0703472104 pnas_primary_104_23_9800_fulltext pubmedcentral_primary_oai_pubmedcentral_nih_gov_1877985 crossref_primary_10_1073_pnas_0703472104 fao_agris_US201300781744 pubmed_primary_17535893 pnas_primary_104_23_9800 proquest_journals_201390374 proquest_miscellaneous_47352550 jstor_primary_25427940 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-06-05 |
PublicationDateYYYYMMDD | 2007-06-05 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 Kent RS (e_1_3_4_44_2) 1980; 17 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 Gifford AN (e_1_3_4_41_2) 1999; 288 e_1_3_4_23_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 Horti AG (e_1_3_4_24_2) 2006; 47 e_1_3_4_15_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 Yasuno F (e_1_3_4_50_2) 2007 e_1_3_4_17_2 Kapur S (e_1_3_4_38_2) 1999; 156 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 16186025 - Prog Brain Res. 2005;150:205-17 12052030 - Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):101-21 6104284 - Mol Pharmacol. 1980 Jan;17(1):14-23 15588725 - Biochem Pharmacol. 2005 Jan 1;69(1):169-78 16080024 - Mol Imaging Biol. 2005 Jul-Aug;7(4):314-23 11264316 - J Neurosci. 2001 Apr 1;21(7):2425-33 15912275 - Mol Imaging Biol. 2005 Jan-Feb;7(1):45-52 15878779 - Neuropharmacology. 2005 Jun;48(8):1105-16 15728830 - J Neurosci. 2005 Feb 23;25(8):1904-13 2308954 - Proc Natl Acad Sci U S A. 1990 Mar;87(5):1932-6 9422389 - J Neurochem. 1998 Jan;70(1):417-23 9336020 - Pharmacol Ther. 1997;74(2):129-80 15110734 - Biol Psychiatry. 2004 May 1;55(9):904-15 12044596 - Physiol Behav. 2002 Jun 1;76(2):241-50 16148438 - Behav Pharmacol. 2005 Sep;16(5-6):333-52 1300492 - Neurosci Lett. 1992 Dec 14;148(1-2):173-6 10532640 - J Cereb Blood Flow Metab. 1999 Oct;19(10):1150-63 16919917 - Psychiatry Res. 2006 Oct 30;147(2-3):249-56 9460749 - Neuroscience. 1998 Mar;83(2):393-411 9989565 - Am J Psychiatry. 1999 Feb;156(2):286-93 15668727 - Pharmacogenomics J. 2005;5(2):135-41 16483675 - Trends Neurosci. 2006 Apr;29(4):225-32 11739835 - Neurology. 2001 Dec 11;57(11):2108-11 16563642 - Neuroscience. 2006 Jun 30;140(2):635-43 8836622 - Eur J Pharmacol. 1996 Jul 4;307(3):331-8 17392732 - Neuropsychopharmacology. 2008 Jan;33(2):259-69 14996549 - Neuropharmacology. 2004 Apr;46(5):716-26 1992016 - J Neurosci. 1991 Feb;11(2):563-83 15090428 - Br J Ophthalmol. 2004 May;88(5):708-13 10462067 - Life Sci. 1999;65(6-7):665-73 16224028 - Science. 2005 Oct 14;310(5746):329-32 15780846 - Biol Psychiatry. 2005 Mar 15;57(6):594-608 1909204 - Brain Res. 1991 May 3;547(2):267-74 17015906 - J Nucl Med. 2006 Oct;47(10):1689-96 9918548 - J Pharmacol Exp Ther. 1999 Feb;288(2):478-83 14499146 - Mol Imaging Biol. 2003 Mar-Apr;5(2):65-71 15477546 - Neurology. 2004 Oct 12;63(7):1245-50 16186518 - Neurology. 2005 Sep 27;65(6):812-9 7898667 - Neuroscience. 1994 Dec;63(3):637-52 15894565 - FASEB J. 2005 Jul;19(9):1140-2 9472392 - Neuroscience. 1997 Mar;77(2):299-318 14770190 - Int J Obes Relat Metab Disord. 2004 Apr;28(4):640-8 15856067 - Nat Neurosci. 2005 May;8(5):585-9 16678917 - Trends Pharmacol Sci. 2006 Jun;27(6):310-6 10428044 - J Neurochem. 1999 Aug;73(2):493-501 15561385 - Pain. 2004 Dec;112(3):299-306 10716447 - Nature. 2000 Mar 2;404(6773):84-7 12764049 - Brain. 2003 Jun;126(Pt 6):1252-70 2560388 - Neuron. 1989 Aug;3(2):141-52 |
References_xml | – ident: e_1_3_4_1_2 doi: 10.1212/01.wnl.0000176753.45410.8b – ident: e_1_3_4_18_2 doi: 10.1016/S0031-9384(02)00725-4 – ident: e_1_3_4_36_2 doi: 10.1007/s11307-005-0932-0 – ident: e_1_3_4_34_2 doi: 10.1016/j.bcp.2004.08.033 – ident: e_1_3_4_42_2 doi: 10.1046/j.1471-4159.1999.0730493.x – volume: 288 start-page: 478 year: 1999 ident: e_1_3_4_41_2 publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)37979-0 – ident: e_1_3_4_45_2 doi: 10.1016/0896-6273(89)90027-5 – volume: 17 start-page: 14 year: 1980 ident: e_1_3_4_44_2 publication-title: Mol Pharmacol – ident: e_1_3_4_5_2 doi: 10.1136/bjo.2003.032250 – ident: e_1_3_4_19_2 doi: 10.1038/sj.ijo.0802583 – ident: e_1_3_4_30_2 doi: 10.1016/S0306-4522(97)00436-3 – ident: e_1_3_4_22_2 doi: 10.1016/j.biopsych.2004.01.005 – ident: e_1_3_4_43_2 doi: 10.1523/JNEUROSCI.21-07-02425.2001 – ident: e_1_3_4_28_2 doi: 10.1016/0006-8993(91)90970-7 – ident: e_1_3_4_23_2 doi: 10.1016/j.pscychresns.2006.02.002 – ident: e_1_3_4_37_2 doi: 10.1016/j.tips.2006.04.004 – ident: e_1_3_4_31_2 doi: 10.1016/j.neuropharm.2003.11.004 – ident: e_1_3_4_35_2 doi: 10.1016/S0163-7258(97)82001-3 – volume: 156 start-page: 286 year: 1999 ident: e_1_3_4_38_2 publication-title: Am J Psychiatry doi: 10.1176/ajp.156.2.286 – ident: e_1_3_4_8_2 doi: 10.1096/fj.04-3010fje – ident: e_1_3_4_29_2 doi: 10.1016/0304-3940(92)90832-R – ident: e_1_3_4_27_2 doi: 10.1523/JNEUROSCI.4540-04.2005 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.87.5.1932 – ident: e_1_3_4_11_2 doi: 10.1093/brain/awg143 – ident: e_1_3_4_17_2 doi: 10.1016/j.neuropharm.2005.03.016 – ident: e_1_3_4_15_2 doi: 10.1038/nn1457 – volume: 47 start-page: 1689 year: 2006 ident: e_1_3_4_24_2 publication-title: J Nucl Med – ident: e_1_3_4_13_2 doi: 10.1016/S0306-4522(96)00428-9 – ident: e_1_3_4_32_2 doi: 10.1016/0306-4522(94)90511-8 – ident: e_1_3_4_39_2 doi: 10.1016/S0079-6123(05)50015-3 – ident: e_1_3_4_12_2 doi: 10.1126/science.1115740 – ident: e_1_3_4_49_2 doi: 10.1097/00004647-199910000-00012 – ident: e_1_3_4_4_2 doi: 10.1016/j.pain.2004.09.013 – year: 2007 ident: e_1_3_4_50_2 publication-title: Neuropsychopharmacology – ident: e_1_3_4_3_2 doi: 10.1038/35003583 – ident: e_1_3_4_7_2 doi: 10.1212/01.WNL.0000140288.48796.8E – ident: e_1_3_4_16_2 doi: 10.1016/j.tins.2006.01.008 – ident: e_1_3_4_40_2 doi: 10.1016/j.neuroscience.2006.02.024 – ident: e_1_3_4_47_2 doi: 10.1016/S1536-1632(03)00041-6 – ident: e_1_3_4_6_2 doi: 10.1212/WNL.57.11.2108 – ident: e_1_3_4_33_2 doi: 10.1054/plef.2001.0341 – ident: e_1_3_4_9_2 doi: 10.1097/00008877-200509000-00006 – ident: e_1_3_4_21_2 doi: 10.1046/j.1471-4159.1998.70010417.x – ident: e_1_3_4_2_2 doi: 10.1016/S0024-3205(99)00289-1 – ident: e_1_3_4_10_2 doi: 10.1016/j.biopsych.2004.12.006 – ident: e_1_3_4_20_2 doi: 10.1016/0014-2999(96)00279-8 – ident: e_1_3_4_26_2 doi: 10.1523/JNEUROSCI.11-02-00563.1991 – ident: e_1_3_4_25_2 doi: 10.1016/j.neuroimage.2006.04.041 – ident: e_1_3_4_46_2 doi: 10.1038/sj.tpj.6500301 – ident: e_1_3_4_48_2 doi: 10.1007/s11307-005-0005-4 – reference: 15728830 - J Neurosci. 2005 Feb 23;25(8):1904-13 – reference: 16148438 - Behav Pharmacol. 2005 Sep;16(5-6):333-52 – reference: 9989565 - Am J Psychiatry. 1999 Feb;156(2):286-93 – reference: 14499146 - Mol Imaging Biol. 2003 Mar-Apr;5(2):65-71 – reference: 15561385 - Pain. 2004 Dec;112(3):299-306 – reference: 9460749 - Neuroscience. 1998 Mar;83(2):393-411 – reference: 8836622 - Eur J Pharmacol. 1996 Jul 4;307(3):331-8 – reference: 15878779 - Neuropharmacology. 2005 Jun;48(8):1105-16 – reference: 1300492 - Neurosci Lett. 1992 Dec 14;148(1-2):173-6 – reference: 10428044 - J Neurochem. 1999 Aug;73(2):493-501 – reference: 2560388 - Neuron. 1989 Aug;3(2):141-52 – reference: 15894565 - FASEB J. 2005 Jul;19(9):1140-2 – reference: 14996549 - Neuropharmacology. 2004 Apr;46(5):716-26 – reference: 1992016 - J Neurosci. 1991 Feb;11(2):563-83 – reference: 16224028 - Science. 2005 Oct 14;310(5746):329-32 – reference: 9336020 - Pharmacol Ther. 1997;74(2):129-80 – reference: 15477546 - Neurology. 2004 Oct 12;63(7):1245-50 – reference: 11739835 - Neurology. 2001 Dec 11;57(11):2108-11 – reference: 16563642 - Neuroscience. 2006 Jun 30;140(2):635-43 – reference: 17392732 - Neuropsychopharmacology. 2008 Jan;33(2):259-69 – reference: 6104284 - Mol Pharmacol. 1980 Jan;17(1):14-23 – reference: 15090428 - Br J Ophthalmol. 2004 May;88(5):708-13 – reference: 9472392 - Neuroscience. 1997 Mar;77(2):299-318 – reference: 12764049 - Brain. 2003 Jun;126(Pt 6):1252-70 – reference: 15668727 - Pharmacogenomics J. 2005;5(2):135-41 – reference: 15780846 - Biol Psychiatry. 2005 Mar 15;57(6):594-608 – reference: 17015906 - J Nucl Med. 2006 Oct;47(10):1689-96 – reference: 11264316 - J Neurosci. 2001 Apr 1;21(7):2425-33 – reference: 9918548 - J Pharmacol Exp Ther. 1999 Feb;288(2):478-83 – reference: 10462067 - Life Sci. 1999;65(6-7):665-73 – reference: 15110734 - Biol Psychiatry. 2004 May 1;55(9):904-15 – reference: 15588725 - Biochem Pharmacol. 2005 Jan 1;69(1):169-78 – reference: 16483675 - Trends Neurosci. 2006 Apr;29(4):225-32 – reference: 16080024 - Mol Imaging Biol. 2005 Jul-Aug;7(4):314-23 – reference: 16919917 - Psychiatry Res. 2006 Oct 30;147(2-3):249-56 – reference: 12044596 - Physiol Behav. 2002 Jun 1;76(2):241-50 – reference: 1909204 - Brain Res. 1991 May 3;547(2):267-74 – reference: 12052030 - Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):101-21 – reference: 7898667 - Neuroscience. 1994 Dec;63(3):637-52 – reference: 10716447 - Nature. 2000 Mar 2;404(6773):84-7 – reference: 16678917 - Trends Pharmacol Sci. 2006 Jun;27(6):310-6 – reference: 15912275 - Mol Imaging Biol. 2005 Jan-Feb;7(1):45-52 – reference: 9422389 - J Neurochem. 1998 Jan;70(1):417-23 – reference: 2308954 - Proc Natl Acad Sci U S A. 1990 Mar;87(5):1932-6 – reference: 16186518 - Neurology. 2005 Sep 27;65(6):812-9 – reference: 10532640 - J Cereb Blood Flow Metab. 1999 Oct;19(10):1150-63 – reference: 14770190 - Int J Obes Relat Metab Disord. 2004 Apr;28(4):640-8 – reference: 15856067 - Nat Neurosci. 2005 May;8(5):585-9 – reference: 16186025 - Prog Brain Res. 2005;150:205-17 |
SSID | ssj0009580 |
Score | 2.39169 |
Snippet | [¹⁸F]MK-9470 is a selective, high-affinity, inverse agonist (human IC₅₀, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in... [¹⁸F]MK-9470 is a selective, high-affinity, inverse agonist (human IC₅₀ 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in... [ 18 F]MK-9470 is a selective, high-affinity, inverse agonist (human IC 50 , 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in... [ 18 F]MK-9470 is a selective, high-affinity, inverse agonist (human IC 50 , 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in... [(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in... [...F]MK-9470 is a selective, high-affinity, inverse agonist (human IC..., 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in... [ super(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC sub(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9800 |
SubjectTerms | Agonists Amides - metabolism Animals Autoradiography Biological Sciences Boluses Brain Brain - anatomy & histology Brain - metabolism Brain research cannabinoids Cerebellum cerebral cortex clinical trials Dosage drugs Emissions Fluorine Radioisotopes hippocampus Humans image analysis Image Processing, Computer-Assisted Imaging in vivo studies inhibitory concentration 50 Macaca mulatta Male males Molecular Structure Monkeys Monkeys & apes Neuroimaging Neurology Pharmacology Placebos Positron emission tomography Positron-Emission Tomography - methods Pyridines - metabolism Radioactive Tracers Receptor, Cannabinoid, CB1 - metabolism Receptor, Cannabinoid, CB1 - ultrastructure Receptors Tomography |
Title | [¹⁸F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor |
URI | https://www.jstor.org/stable/25427940 http://www.pnas.org/content/104/23/9800.abstract https://www.ncbi.nlm.nih.gov/pubmed/17535893 https://www.proquest.com/docview/201390374 https://www.proquest.com/docview/19684620 https://www.proquest.com/docview/47352550 https://pubmed.ncbi.nlm.nih.gov/PMC1877985 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rT9RAEN8AfjExRlTkxMeaSAKpPdvtbh8fAUEigVzCYUyMabYvucRrSe_gA_7zzuxuH0fAKF-au2532-v8dnZmb-Y3hLzPuA8ocQvbjfLQ5mni2WEa5LafJiloSrRoMXf4-MQ_PONfvolvS8uPelFLl_NkmF7fmldyH6nCOZArZsn-h2TbQeEEfAb5whEkDMd_kvGm2HXDg03x6fjIjnjgqFBMS8Vh1SBVLOWGm2FgX04NMzUalKP9Me4FzGuZ5rUKM5yU1tXkqjIF-6DdSrByhDWZmhpGOo4ApFBK8KSrSWa7FqjK_EJzFbfm7ahdDmdNp5Nmt3Gny10xCmVm2dbopF8JudZW_eHQ0nvWTctXLC4sc71fflR16WunEp4I3rS9W53jf_67Xg0L3bXe6y6zWnYadmqIu8eGWPfzcGHHQ4XnOaILCPnLc_dVPYPll-sE7WGutTsYR7bPdX3SVv3r8scG58zrafModJyeZQBfxa2rDqhJLJVcytkQNSgHr1oP2sPgxVSBEIlRRaiLQt4g-h4d77lhEEShWCYPGHg9TK0zfQ7pUGdUmV_WMFUF3scb90YqXHOjBXtruZBVE3iLbL7Q6zbP6maAcM_iGj8hj42rRHc07lfJUl4-JauNDOiWYUzffkZ-f4dp8MNMgg9U0mYK0GYK0G4K0C0A-DbV8KcAfzopKcKfKvhTaKUK_tTAn1YFBSTTBfjTBv7PydnB_njv0DZVRewUnIu5LSKWZDITReJHfu67kgnOwCthDDyFLAsTMGKljxlrmPXtSi_0eRZksmB-6Lk89dbISlmV-TqhbgIODNjchchSzsMk5Dwp3NTxIuFnIgsGZNi8-zg1lPtY-eVXrEI_Ai9GCcSd3AZkq-1wodlm7r50HYQZy59gC8RnpwwjEJC4K-DQtKYk3A6BvxDWXQf6qFG6oXnMvBhhPiDv7mqKCxOGNiAbDVRiowVnMd44QhKrAXnbtoJs8X9HWebV5SyGRR68HObcfQXWP2dCwBUvNPC65zAwHpBgAZLtBUiPv9hSTs4VTb6ZTC_v3XODPOzUzyuyMq8v89fggsyTN2pi_gG12ifO |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5B18F%5DMK-9470%2C+a+positron+emission+tomography+%28PET%29+tracer+for+in+vivo+human+PET+brain+imaging+of+the+cannabinoid-1+receptor&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Burns%2C+H.+Donald&rft.au=Van+Laere%2C+Koen&rft.au=Sanabria-Boh%C3%B3rquez%2C+Sandra&rft.au=Hamill%2C+Terence+G.&rft.date=2007-06-05&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=23&rft.spage=9800&rft.epage=9805&rft_id=info:doi/10.1073%2Fpnas.0703472104&rft_id=info%3Apmid%2F17535893&rft.externalDocID=PMC1877985 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F23.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F23.cover.gif |