Mapping gene regulatory networks from single-cell omics data

Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss...

Full description

Saved in:
Bibliographic Details
Published inBriefings in functional genomics Vol. 17; no. 4; pp. 246 - 254
Main Authors Fiers, Mark W E J, Minnoye, Liesbeth, Aibar, Sara, Bravo González-Blas, Carmen, Kalender Atak, Zeynep, Aerts, Stein
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
AbstractList Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
Author Bravo González-Blas, Carmen
Aerts, Stein
Fiers, Mark W E J
Kalender Atak, Zeynep
Minnoye, Liesbeth
Aibar, Sara
AuthorAffiliation 1 VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
2 KU Leuven, Department of Human Genetics, Leuven, Belgium
AuthorAffiliation_xml – name: 2 KU Leuven, Department of Human Genetics, Leuven, Belgium
– name: 1 VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
Author_xml – sequence: 1
  givenname: Mark W E J
  orcidid: 0000-0001-5694-2409
  surname: Fiers
  fullname: Fiers, Mark W E J
  organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
– sequence: 2
  givenname: Liesbeth
  surname: Minnoye
  fullname: Minnoye, Liesbeth
  organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
– sequence: 3
  givenname: Sara
  surname: Aibar
  fullname: Aibar, Sara
  organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
– sequence: 4
  givenname: Carmen
  surname: Bravo González-Blas
  fullname: Bravo González-Blas, Carmen
  organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
– sequence: 5
  givenname: Zeynep
  surname: Kalender Atak
  fullname: Kalender Atak, Zeynep
  organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
– sequence: 6
  givenname: Stein
  surname: Aerts
  fullname: Aerts, Stein
  email: stein.aerts@kuleuven.vib.be
  organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29342231$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3TAQhUVJyXvVffEqFIoTjSzZFoRACc0DErpp1kLSHblKbcuR7LT59_HlJpcm0GQ2MzDfHGbm7JCNPvRIyCegh0BlcWRcMxxh-5fy8gPZZpRDzkpRbaxrLrfIfkq3dI4COAe6SbaYLDhjBWyT42s9DL5vsgZ7zCI2U6vHEB-yHsc_If5OmYuhy9KMtJhbbNssdN6mbKFHvUc-Ot0m3H_Ku-Tm7PvP04v86sf55em3q9wKgDEXUDkshDauBItItTRoGBNYM2ltgW7hdA0CpbGOI1TM2IpLarmtXW24KXbJyUp3mEyHC4v9GHWrhug7HR9U0F697PT-l2rCvSppWbBKzgJfngRiuJswjarzaXmM7jFMSTHGgJYUOLyLgqylqIUUbEY__7vWep_n787A1xVgY0gpolsjQNXSPrW0T63sm2l4RVs_6tGH5U2-_c_MwWomTMOb4o-DM63L
CitedBy_id crossref_primary_10_1093_bib_bbac061
crossref_primary_10_1093_nargab_lqad018
crossref_primary_10_3389_fnmol_2021_718241
crossref_primary_10_1016_j_compbiolchem_2021_107512
crossref_primary_10_1093_gigascience_giaa113
crossref_primary_10_3389_fcell_2021_661243
crossref_primary_10_1007_s00285_021_01683_2
crossref_primary_10_1016_j_nbd_2023_106201
crossref_primary_10_1186_s13059_022_02835_3
crossref_primary_10_1016_j_exer_2023_109520
crossref_primary_10_1016_j_sysconle_2022_105287
crossref_primary_10_3389_fonc_2022_899825
crossref_primary_10_1016_j_molcel_2021_12_012
crossref_primary_10_3389_fgene_2021_687813
crossref_primary_10_1038_s41596_020_0336_2
crossref_primary_10_1080_10618600_2023_2252023
crossref_primary_10_3390_ht7010008
crossref_primary_10_1038_s12276_020_00528_0
crossref_primary_10_3389_fgene_2019_00294
crossref_primary_10_1038_s41598_022_11507_y
crossref_primary_10_3389_fgene_2022_1063233
crossref_primary_10_3390_e24020141
crossref_primary_10_1093_nar_gkab745
crossref_primary_10_3390_cells8101180
crossref_primary_10_1177_11779322241287120
crossref_primary_10_1016_j_csbj_2022_08_003
crossref_primary_10_7554_eLife_46994
crossref_primary_10_1016_j_cels_2020_02_003
crossref_primary_10_1016_j_cels_2021_04_010
crossref_primary_10_1155_2021_8060477
crossref_primary_10_1093_bfgp_elac047
crossref_primary_10_1042_ETLS20180176
crossref_primary_10_1186_s12859_023_05250_y
crossref_primary_10_3389_fpls_2018_01770
crossref_primary_10_1016_j_xgen_2024_100702
crossref_primary_10_1038_s41592_024_02353_z
crossref_primary_10_3389_fcvm_2018_00167
crossref_primary_10_3389_fgene_2021_655536
crossref_primary_10_1038_s41556_023_01316_4
crossref_primary_10_3389_fgene_2020_00295
crossref_primary_10_1016_j_bbagrm_2019_194416
crossref_primary_10_1016_j_stemcr_2022_11_011
crossref_primary_10_1038_s43588_021_00103_1
crossref_primary_10_1038_s41590_024_01768_2
crossref_primary_10_3389_fncel_2020_00238
crossref_primary_10_1016_j_devcel_2024_01_015
crossref_primary_10_1016_j_patter_2020_100139
crossref_primary_10_3389_fgene_2021_617282
crossref_primary_10_1038_s41576_023_00618_5
crossref_primary_10_1038_s41592_019_0367_1
crossref_primary_10_1038_s41598_022_21496_7
crossref_primary_10_1038_s41467_024_46045_w
crossref_primary_10_1109_TCBB_2018_2873010
crossref_primary_10_1002_jbmr_4882
crossref_primary_10_1080_17501911_2024_2343276
crossref_primary_10_1126_science_adi7453
crossref_primary_10_1111_febs_14613
crossref_primary_10_3389_fcell_2020_593007
crossref_primary_10_1146_annurev_bioeng_060418_052538
crossref_primary_10_1186_s12859_019_2798_1
crossref_primary_10_1111_jne_13072
crossref_primary_10_1016_j_csbj_2020_06_033
crossref_primary_10_1007_s12312_024_01337_6
crossref_primary_10_1002_bies_202300210
crossref_primary_10_1002_cti2_70006
crossref_primary_10_1002_widm_1414
crossref_primary_10_1093_bib_bbae091
crossref_primary_10_1042_BCJ20190467
crossref_primary_10_1093_bioinformatics_btac288
crossref_primary_10_26508_lsa_202000658
crossref_primary_10_1007_s13258_023_01473_8
crossref_primary_10_3389_fpls_2023_1111875
crossref_primary_10_1146_annurev_pathmechdis_012418_013046
crossref_primary_10_1186_s13059_019_1713_4
crossref_primary_10_1016_j_patter_2021_100332
crossref_primary_10_1016_j_pbi_2018_10_005
crossref_primary_10_1093_nar_gkaf138
crossref_primary_10_3390_genes14071476
crossref_primary_10_1093_bib_bbae286
crossref_primary_10_1186_s12859_020_03707_y
crossref_primary_10_1155_2021_7663366
crossref_primary_10_1007_s00292_024_01308_7
crossref_primary_10_1371_journal_pcbi_1009907
crossref_primary_10_1038_s41586_022_05688_9
crossref_primary_10_1186_s12920_018_0433_z
crossref_primary_10_1042_EBC20220042
crossref_primary_10_1038_s41598_021_01558_y
crossref_primary_10_1007_s12572_018_0239_4
crossref_primary_10_1093_bfgp_elz004
crossref_primary_10_1186_s12864_019_5720_3
crossref_primary_10_3389_fevo_2023_1185566
crossref_primary_10_3390_ijms24032595
crossref_primary_10_1093_bib_bbab568
crossref_primary_10_1146_annurev_immunol_090419_020340
crossref_primary_10_1097_BS9_0000000000000172
crossref_primary_10_3389_fgene_2022_875762
crossref_primary_10_1038_s41467_023_44369_7
crossref_primary_10_15252_msb_20209438
crossref_primary_10_1186_s12859_023_05349_2
crossref_primary_10_1186_s13059_018_1496_z
crossref_primary_10_1016_j_celrep_2018_10_045
crossref_primary_10_1186_s41065_019_0105_9
crossref_primary_10_1093_bib_bbaf089
crossref_primary_10_1093_bib_bbaa190
crossref_primary_10_3389_fimmu_2024_1360687
crossref_primary_10_26508_lsa_202302415
crossref_primary_10_1038_s41593_020_0685_8
crossref_primary_10_7554_eLife_52155
crossref_primary_10_1016_j_bbagrm_2023_194911
crossref_primary_10_1109_TCYB_2020_3022430
crossref_primary_10_1371_journal_pcbi_1010287
crossref_primary_10_1214_20_STS792
crossref_primary_10_1371_journal_pcbi_1011254
crossref_primary_10_1109_ACCESS_2022_3202187
crossref_primary_10_1016_j_copbio_2018_09_012
crossref_primary_10_1038_s41588_022_01106_y
crossref_primary_10_1080_01621459_2019_1677242
crossref_primary_10_7554_eLife_81173
crossref_primary_10_1038_s41597_022_01839_9
crossref_primary_10_1016_j_bbagrm_2019_194430
crossref_primary_10_1038_s42003_022_03319_7
crossref_primary_10_1093_bioinformatics_btac199
crossref_primary_10_3390_insects12070591
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_2174_0115748936282613231211112920
crossref_primary_10_1080_15476286_2020_1728961
crossref_primary_10_1042_BST20210138
crossref_primary_10_1017_qpb_2022_26
crossref_primary_10_15252_msb_20209497
crossref_primary_10_1093_bib_bbab229
crossref_primary_10_1186_s12864_022_09020_7
crossref_primary_10_1093_bib_bbad369
crossref_primary_10_1016_j_gene_2024_148798
crossref_primary_10_1155_2021_7643209
crossref_primary_10_1002_pmic_202000034
crossref_primary_10_1111_exd_14251
crossref_primary_10_3389_fpls_2021_661361
crossref_primary_10_1093_nargab_lqad068
crossref_primary_10_1186_s13073_018_0608_4
crossref_primary_10_1016_j_neucom_2020_05_028
crossref_primary_10_1038_s42256_022_00469_5
crossref_primary_10_1093_icb_icaa055
crossref_primary_10_1101_gr_277488_122
crossref_primary_10_3390_cells11030510
crossref_primary_10_3390_cancers16101884
crossref_primary_10_1093_g3journal_jkad004
crossref_primary_10_1002_iid3_362
Cites_doi 10.1016/j.cell.2016.11.038
10.1016/j.tibtech.2016.04.004
10.1093/bioinformatics/btv257
10.1016/j.tig.2016.12.003
10.1016/j.cell.2006.07.024
10.1186/s12859-016-1235-y
10.1038/nrg1655
10.1186/s13059-016-1133-7
10.1371/journal.pone.0158247
10.1093/bioinformatics/btw729
10.1038/srep33883
10.1038/nbt.3383
10.1016/j.molcel.2017.03.007
10.1186/1471-2105-9-559
10.1038/nmeth.4177
10.1038/nrg2538
10.1038/nmeth.4463
10.1016/j.compbiomed.2014.02.011
10.1038/nrg.2016.127
10.1101/gr.161679.113
10.1038/nrg3833
10.1038/nbt.2345
10.1016/j.cell.2016.11.039
10.1016/j.cell.2015.05.002
10.1093/bib/bbw139
10.1038/nbt.3102
10.1038/nprot.2016.187
10.1007/978-3-319-21690-4_38
10.1371/journal.pone.0012776
10.1016/j.mrfmmm.2015.01.002
10.1038/nmeth.3035
10.1016/j.molcel.2017.01.023
10.7554/eLife.23203
10.1371/journal.pcbi.1004575
10.1038/ncomms9083
10.1093/bioinformatics/btu777
10.1016/j.celrep.2015.05.016
10.1186/s13059-016-0964-6
10.1038/nmeth.1315
10.1038/nature14590
10.1038/cr.2016.23
10.1038/nature15740
10.1016/j.cell.2015.08.046
10.1016/j.celrep.2015.02.001
10.1038/nrg3230
10.1038/nmeth.3734
10.1016/j.cels.2017.08.014
10.1038/nrg3354
10.1016/j.cell.2012.08.023
10.1126/science.aab1601
10.1038/ng.3646
10.1016/j.gde.2017.01.003
10.1126/science.aaf1204
10.1186/s13059-015-0737-7
10.1016/j.cell.2015.11.009
10.1186/s12859-016-1109-3
10.1016/j.cell.2015.08.040
10.1038/nrm.2015.2
10.1038/nmeth.4401
10.1038/nrm2503
10.1038/nmeth.4220
10.1016/j.cell.2016.11.048
10.1002/eji.201646347
10.1038/nmeth.2016
10.1016/j.cell.2010.07.002
10.1038/nbt.3711
10.1093/bioinformatics/btx194
10.1038/nature13437
10.1038/nmeth.3728
10.1038/ncomms14049
10.1038/nbt.3129
10.1038/nbt.3154
10.1038/nprot.2016.154
10.1038/nmeth.3370
10.1038/nmeth.4402
10.1038/srep05400
10.1016/j.celrep.2016.04.043
10.1126/science.aaa1934
10.1186/s13059-017-1189-z
10.1186/s13059-017-1269-0
10.1126/science.1254257
10.1371/journal.pone.0029348
10.1146/annurev-cellbio-100913-012908
10.1126/science.aaf6463
10.1186/s13059-016-0950-z
10.1038/nn.4216
10.1016/j.stem.2011.09.002
10.1038/msb4100120
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. 2018
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/bfgp/elx046
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Special Issue: Single-cell genomics
EISSN 2041-2657
EndPage 254
ExternalDocumentID PMC6063279
29342231
10_1093_bfgp_elx046
10.1093/bfgp/elx046
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: ERC Consolidator
  grantid: 724226_cis-CONTROL
– fundername: Special Research Fund
  funderid: 10.13039/501100007229
– fundername: KU Leuven
  grantid: PF/10/016; OT/13/103
  funderid: 10.13039/501100004040
– fundername: The Research Foundation – Flanders
  grantid: G.0640.13; G.0791.14; G092916N
– fundername: Foundation Against Cancer
  grantid: 2012-F2; 2016-070; 2015-143
– fundername: ;
  grantid: G.0640.13; G.0791.14; G092916N
– fundername: ;
  grantid: 2012-F2; 2016-070; 2015-143
– fundername: ; ;
  grantid: PF/10/016; OT/13/103
– fundername: ;
  grantid: 724226_cis-CONTROL
– fundername: ; ;
GroupedDBID ---
.2P
.I3
0R~
4.4
48X
53G
5VS
6J9
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUHS
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADNBA
ADOCK
ADPDF
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EAD
EAP
EAS
EBD
EBS
EE~
EJD
EMK
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OJZSN
OK1
OVD
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TLC
TOX
TR2
TUS
X7H
Y6R
YAYTL
YKOAZ
YXANX
~91
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c511t-517fe35abf61cee0a9beb225e829cc3efdfa815e9bcf4e172bc7490c4c8f8b4b3
IEDL.DBID TOX
ISSN 2041-2649
2041-2657
IngestDate Thu Aug 21 14:14:32 EDT 2025
Fri Jul 11 12:03:29 EDT 2025
Fri Jul 11 13:47:59 EDT 2025
Mon Jul 21 06:17:56 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Tue Jul 01 03:26:56 EDT 2025
Wed Apr 02 07:03:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords single-cell transcriptomics
single-cell epigenomics
gene regulatory networks
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-517fe35abf61cee0a9beb225e829cc3efdfa815e9bcf4e172bc7490c4c8f8b4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Mark W.E.J Fiers, Liesbeth Minnoye and Sara Aibar authors contributed to this work equally.
ORCID 0000-0001-5694-2409
OpenAccessLink https://dx.doi.org/10.1093/bfgp/elx046
PMID 29342231
PQID 1989585952
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063279
proquest_miscellaneous_2221060141
proquest_miscellaneous_1989585952
pubmed_primary_29342231
crossref_primary_10_1093_bfgp_elx046
crossref_citationtrail_10_1093_bfgp_elx046
oup_primary_10_1093_bfgp_elx046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in functional genomics
PublicationTitleAlternate Brief Funct Genomics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Andrews ( key 20180727063919_elx046-B23) 2017
Yuan ( key 20180727063919_elx046-B16) 2016; 6
Chan ( key 20180727063919_elx046-B44) 2017; 5
Matsumoto ( key 20180727063919_elx046-B45) 2017; 33
Papili Gao ( key 20180727063919_elx046-B42) 2017
Jin ( key 20180727063919_elx046-B55) 2015; 528
Jaitin ( key 20180727063919_elx046-B88) 2016; 167
Xie ( key 20180727063919_elx046-B92) 2017; 66
Qiu ( key 20180727063919_elx046-B65) 2017; 14
Corces ( key 20180727063919_elx046-B61) 2016; 48
Ocone ( key 20180727063919_elx046-B46) 2015; 31
Macaulay ( key 20180727063919_elx046-B78) 2017; 33
Cannoodt ( key 20180727063919_elx046-B24) 2016; 46
Hu ( key 20180727063919_elx046-B83) 2016; 17
Svensson ( key 20180727063919_elx046-B11) 2017; 14
Fan ( key 20180727063919_elx046-B14) 2016; 13
Lim ( key 20180727063919_elx046-B29) 2016; 17
Welch ( key 20180727063919_elx046-B87) 2017; 18
Chai ( key 20180727063919_elx046-B7) 2014; 48
Zeisel ( key 20180727063919_elx046-B49) 2015; 347
Crow ( key 20180727063919_elx046-B39) 2016; 17
Adamson ( key 20180727063919_elx046-B90) 2016; 167
Angermueller ( key 20180727063919_elx046-B82) 2016; 13
Schep ( key 20180727063919_elx046-B63) 2017; 14
Pliner ( key 20180727063919_elx046-B64) 2017
Wynn ( key 20180727063919_elx046-B30) 2012; 4
Bock ( key 20180727063919_elx046-B77) 2016; 34
van Dam ( key 20180727063919_elx046-B32) 2017
Zilionis ( key 20180727063919_elx046-B13) 2017; 12
Sanchez-Castillo ( key 20180727063919_elx046-B48) 2017
Clark ( key 20180727063919_elx046-B86) 2017
Chen ( key 20180727063919_elx046-B97) 2015; 31
Langfelder ( key 20180727063919_elx046-B34) 2008; 9
Bansal ( key 20180727063919_elx046-B25) 2007; 3
Patel ( key 20180727063919_elx046-B36) 2014; 344
Matsumoto ( key 20180727063919_elx046-B43) 2016; 17
Dixit ( key 20180727063919_elx046-B89) 2016; 167
Liu ( key 20180727063919_elx046-B98) 2016; 11
Zamanighomi ( key 20180727063919_elx046-B62) 2017
Litzenburger ( key 20180727063919_elx046-B76) 2017; 18
Guo ( key 20180727063919_elx046-B68) 2013; 23
Datlinger ( key 20180727063919_elx046-B91) 2017; 14
Stelzer ( key 20180727063919_elx046-B74) 2015; 163
Shalek ( key 20180727063919_elx046-B22) 2014; 510
Allen ( key 20180727063919_elx046-B35) 2012; 7
Jones ( key 20180727063919_elx046-B72) 2012; 13
Huynh-Thu ( key 20180727063919_elx046-B33) 2010; 5
Wagner ( key 20180727063919_elx046-B93) 2016; 34
Specht ( key 20180727063919_elx046-B41) 2017; 33
Dominguez ( key 20180727063919_elx046-B94) 2016; 17
Ieda ( key 20180727063919_elx046-B4) 2010; 142
Li ( key 20180727063919_elx046-B81) 2015; 772
Gaublomme ( key 20180727063919_elx046-B37) 2015; 163
Clark ( key 20180727063919_elx046-B69) 2017; 12
Zheng ( key 20180727063919_elx046-B15) 2017; 8
Marques ( key 20180727063919_elx046-B20) 2016; 352
Wouters ( key 20180727063919_elx046-B6) 2017; 43
Karlebach ( key 20180727063919_elx046-B26) 2008; 9
Cusanovich ( key 20180727063919_elx046-B59) 2015; 348
Li ( key 20180727063919_elx046-B40) 2016; 15
Smith ( key 20180727063919_elx046-B66) 2013; 14
Pina ( key 20180727063919_elx046-B38) 2015; 11
Guo ( key 20180727063919_elx046-B52) 2015; 11
Han ( key 20180727063919_elx046-B71) 2017; 45
Macaulay ( key 20180727063919_elx046-B79) 2015; 12
Fisher ( key 20180727063919_elx046-B28) 2015
Thompson ( key 20180727063919_elx046-B8) 2015; 31
Kind ( key 20180727063919_elx046-B56) 2015; 163
Arendt ( key 20180727063919_elx046-B1) 2016; 17
Buenrostro ( key 20180727063919_elx046-B58) 2015; 523
Vidigal ( key 20180727063919_elx046-B96) 2015; 6
Aibar ( key 20180727063919_elx046-B54) 2017; 14
Ziegenhain ( key 20180727063919_elx046-B17) 2017; 65
Cordero ( key 20180727063919_elx046-B47) 2017; 22
Pott ( key 20180727063919_elx046-B60) 2015; 16
Rotem ( key 20180727063919_elx046-B57) 2015; 33
Smallwood ( key 20180727063919_elx046-B73) 2014; 11
Hou ( key 20180727063919_elx046-B84) 2016; 26
Stegle ( key 20180727063919_elx046-B18) 2015; 16
Tang ( key 20180727063919_elx046-B10) 2009; 6
Macosko ( key 20180727063919_elx046-B12) 2015; 161
Lake ( key 20180727063919_elx046-B51) 2016; 352
Vaquerizas ( key 20180727063919_elx046-B19) 2009; 10
Buettner ( key 20180727063919_elx046-B21) 2015; 33
Robertson ( key 20180727063919_elx046-B67) 2005; 6
Dey ( key 20180727063919_elx046-B80) 2015; 33
Takahashi ( key 20180727063919_elx046-B2) 2006; 126
Creixell ( key 20180727063919_elx046-B5) 2012; 30
Buganim ( key 20180727063919_elx046-B31) 2012; 150
Angermueller ( key 20180727063919_elx046-B75) 2017; 18
Moignard ( key 20180727063919_elx046-B9) 2015; 33
Marbach ( key 20180727063919_elx046-B27) 2012; 9
Marro ( key 20180727063919_elx046-B3) 2011; 9
Pott ( key 20180727063919_elx046-B85) 2017; 6
Mohammadi ( key 20180727063919_elx046-B53) 2017
Farlik ( key 20180727063919_elx046-B70) 2015; 10
Sakuma ( key 20180727063919_elx046-B95) 2014; 4
Tasic ( key 20180727063919_elx046-B50) 2016; 19
References_xml – volume: 167
  start-page: 1853
  issue: 7
  year: 2016
  ident: key 20180727063919_elx046-B89
  article-title: Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.038
– volume: 34
  start-page: 605
  issue: 8
  year: 2016
  ident: key 20180727063919_elx046-B77
  article-title: Multi-omics of single cells: strategies and applications
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2016.04.004
– volume: 31
  start-page: i89
  issue: 12
  year: 2015
  ident: key 20180727063919_elx046-B46
  article-title: Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv257
– volume: 33
  start-page: 155
  issue: 2
  year: 2017
  ident: key 20180727063919_elx046-B78
  article-title: Single-cell multiomics: multiple measurements from single cells
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2016.12.003
– year: 2017
  ident: key 20180727063919_elx046-B23
  article-title: Identifying cell populations with scRNASeq
  publication-title: Mol Aspects Med
– volume: 126
  start-page: 663
  issue: 4
  year: 2006
  ident: key 20180727063919_elx046-B2
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 17
  start-page: 355
  year: 2016
  ident: key 20180727063919_elx046-B29
  article-title: BTR: training asynchronous Boolean models using single-cell expression data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1235-y
– volume: 6
  start-page: 597
  issue: 8
  year: 2005
  ident: key 20180727063919_elx046-B67
  article-title: DNA methylation and human disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1655
– volume: 18
  start-page: 15
  year: 2017
  ident: key 20180727063919_elx046-B76
  article-title: Single-cell epigenomic variability reveals functional cancer heterogeneity
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1133-7
– volume: 11
  start-page: e0158247
  issue: 7
  year: 2016
  ident: key 20180727063919_elx046-B98
  article-title: Nonlinear network reconstruction from gene expression data using marginal dependencies measured by DCOL
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158247
– volume: 33
  start-page: 764
  issue: 5
  year: 2017
  ident: key 20180727063919_elx046-B41
  article-title: LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw729
– volume: 6
  start-page: 33883.
  year: 2016
  ident: key 20180727063919_elx046-B16
  article-title: An automated microwell platform for large-scale single cell RNA-seq
  publication-title: Sci Rep
  doi: 10.1038/srep33883
– volume: 33
  start-page: 1165
  issue: 11
  year: 2015
  ident: key 20180727063919_elx046-B57
  article-title: Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3383
– volume: 66
  start-page: 285
  issue: 2
  year: 2017
  ident: key 20180727063919_elx046-B92
  article-title: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.03.007
– volume: 9
  start-page: 559.
  year: 2008
  ident: key 20180727063919_elx046-B34
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume: 14
  start-page: 297
  issue: 3
  year: 2017
  ident: key 20180727063919_elx046-B91
  article-title: Pooled CRISPR screening with single-cell transcriptome readout
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4177
– volume: 10
  start-page: 252
  year: 2009
  ident: key 20180727063919_elx046-B19
  article-title: A census of human transcription factors: function, expression and evolution
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2538
– volume: 14
  start-page: 1083
  year: 2017
  ident: key 20180727063919_elx046-B54
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4463
– volume: 48
  start-page: 55
  year: 2014
  ident: key 20180727063919_elx046-B7
  article-title: A review on the computational approaches for gene regulatory network construction
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2014.02.011
– volume: 4
  start-page: 1323
  issue: 11
  year: 2012
  ident: key 20180727063919_elx046-B30
  article-title: Logic-based models in systems biology: a predictive and parameter-free network analysis method
  publication-title: Integr Biol Quant Biosci Nano Macro
– volume: 17
  start-page: 744
  issue: 12
  year: 2016
  ident: key 20180727063919_elx046-B1
  article-title: The origin and evolution of cell types
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.127
– volume: 23
  start-page: 2126
  issue: 12
  year: 2013
  ident: key 20180727063919_elx046-B68
  article-title: Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.161679.113
– volume: 16
  start-page: 133
  issue: 3
  year: 2015
  ident: key 20180727063919_elx046-B18
  article-title: Computational and analytical challenges in single-cell transcriptomics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3833
– volume: 30
  start-page: 842
  year: 2012
  ident: key 20180727063919_elx046-B5
  article-title: Navigating cancer network attractors for tumor-specific therapy
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2345
– year: 2017
  ident: key 20180727063919_elx046-B53
  article-title: Take ACTION to characterize the functional identity of single cells
  publication-title: bioRxiv
– volume: 167
  start-page: 1883
  issue: 7
  year: 2016
  ident: key 20180727063919_elx046-B88
  article-title: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.039
– volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  ident: key 20180727063919_elx046-B12
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– year: 2017
  ident: key 20180727063919_elx046-B32
  article-title: Gene co-expression analysis for functional classification and gene–disease predictions
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw139
– volume: 33
  start-page: 155
  year: 2015
  ident: key 20180727063919_elx046-B21
  article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3102
– volume: 12
  start-page: 534
  issue: 3
  year: 2017
  ident: key 20180727063919_elx046-B69
  article-title: Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq)
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.187
– start-page: 544
  year: 2015
  ident: key 20180727063919_elx046-B28
  article-title: Synthesising executable gene regulatory networks from single-cell gene expression data
  publication-title: Comput Aided Verification
  doi: 10.1007/978-3-319-21690-4_38
– year: 2017
  ident: key 20180727063919_elx046-B86
  article-title: Joint profiling of chromatin accessibility, DNA methylation and transcription in single cells
  publication-title: bioRxiv
– volume: 5
  start-page: e12776
  issue: 9
  year: 2010
  ident: key 20180727063919_elx046-B33
  article-title: Inferring regulatory networks from expression data using tree-based methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 772
  start-page: 55
  year: 2015
  ident: key 20180727063919_elx046-B81
  article-title: Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2015.01.002
– volume: 11
  start-page: 817
  issue: 8
  year: 2014
  ident: key 20180727063919_elx046-B73
  article-title: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3035
– volume: 65
  start-page: 631
  issue: 4
  year: 2017
  ident: key 20180727063919_elx046-B17
  article-title: Comparative analysis of single-cell RNA sequencing methods
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.01.023
– volume: 6
  start-page: e23203
  year: 2017
  ident: key 20180727063919_elx046-B85
  article-title: Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells
  publication-title: eLife
  doi: 10.7554/eLife.23203
– volume: 11
  start-page: e1004575
  issue: 11
  year: 2015
  ident: key 20180727063919_elx046-B52
  article-title: SINCERA: a pipeline for single-cell RNA-seq profiling analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004575
– volume: 6
  start-page: 8083.
  year: 2015
  ident: key 20180727063919_elx046-B96
  article-title: Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries
  publication-title: Nat Commun
  doi: 10.1038/ncomms9083
– volume: 31
  start-page: 1060
  issue: 7
  year: 2015
  ident: key 20180727063919_elx046-B97
  article-title: Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu777
– volume: 11
  start-page: 1503
  issue: 10
  year: 2015
  ident: key 20180727063919_elx046-B38
  article-title: Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.05.016
– volume: 17
  start-page: 101.
  year: 2016
  ident: key 20180727063919_elx046-B39
  article-title: Exploiting single-cell expression to characterize co-expression replicability
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0964-6
– volume: 6
  start-page: 377
  issue: 5
  year: 2009
  ident: key 20180727063919_elx046-B10
  article-title: mRNA-Seq whole-transcriptome analysis of a single cell
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1315
– volume: 523
  start-page: 486
  issue: 7561
  year: 2015
  ident: key 20180727063919_elx046-B58
  article-title: Single-cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
  doi: 10.1038/nature14590
– volume: 26
  start-page: 304
  issue: 3
  year: 2016
  ident: key 20180727063919_elx046-B84
  article-title: Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
  publication-title: Cell Res
  doi: 10.1038/cr.2016.23
– volume: 528
  start-page: 142
  issue: 7580
  year: 2015
  ident: key 20180727063919_elx046-B55
  article-title: Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE samples
  publication-title: Nature
  doi: 10.1038/nature15740
– volume: 163
  start-page: 218
  issue: 1
  year: 2015
  ident: key 20180727063919_elx046-B74
  article-title: Tracing dynamic changes of DNA methylation at single cell resolution
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.046
– volume: 10
  start-page: 1386
  issue: 8
  year: 2015
  ident: key 20180727063919_elx046-B70
  article-title: Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.02.001
– volume: 13
  start-page: 484
  issue: 7
  year: 2012
  ident: key 20180727063919_elx046-B72
  article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3230
– year: 2017
  ident: key 20180727063919_elx046-B64
  article-title: Chromatin accessibility dynamics of myogenesis at single cell resolution
  publication-title: bioRxiv
– volume: 13
  start-page: 241
  year: 2016
  ident: key 20180727063919_elx046-B14
  article-title: Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3734
– volume: 5
  start-page: 251
  issue: 3
  year: 2017
  ident: key 20180727063919_elx046-B44
  article-title: Gene regulatory network inference from single-cell data using multivariate information measures
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.08.014
– volume: 14
  start-page: 204
  issue: 3
  year: 2013
  ident: key 20180727063919_elx046-B66
  article-title: DNA methylation: roles in mammalian development
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3354
– volume: 150
  start-page: 1209
  issue: 6
  year: 2012
  ident: key 20180727063919_elx046-B31
  article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.023
– volume: 348
  start-page: 910
  issue: 6237
  year: 2015
  ident: key 20180727063919_elx046-B59
  article-title: Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
  publication-title: Science
  doi: 10.1126/science.aab1601
– volume: 48
  start-page: 1193
  year: 2016
  ident: key 20180727063919_elx046-B61
  article-title: Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
  publication-title: Nat Genet
  doi: 10.1038/ng.3646
– volume: 43
  start-page: 82
  year: 2017
  ident: key 20180727063919_elx046-B6
  article-title: Decoding transcriptional states in cancer
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2017.01.003
– year: 2017
  ident: key 20180727063919_elx046-B48
  article-title: A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data
  publication-title: Bioinformatics
– volume: 22
  start-page: 576
  year: 2017
  ident: key 20180727063919_elx046-B47
  article-title: Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories
  publication-title: Pac Symp Biocomput Pac Symp Biocomput
– volume: 352
  start-page: 1586
  issue: 6293
  year: 2016
  ident: key 20180727063919_elx046-B51
  article-title: Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain
  publication-title: Science
  doi: 10.1126/science.aaf1204
– volume: 16
  start-page: 172.
  year: 2015
  ident: key 20180727063919_elx046-B60
  article-title: Single-cell ATAC-seq: strength in numbers
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0737-7
– volume: 163
  start-page: 1400
  issue: 6
  year: 2015
  ident: key 20180727063919_elx046-B37
  article-title: Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.009
– volume: 17
  start-page: 232
  year: 2016
  ident: key 20180727063919_elx046-B43
  article-title: SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1109-3
– volume: 163
  start-page: 134
  issue: 1
  year: 2015
  ident: key 20180727063919_elx046-B56
  article-title: Genome-wide maps of nuclear lamina interactions in single human cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.040
– volume: 17
  start-page: 5
  issue: 1
  year: 2016
  ident: key 20180727063919_elx046-B94
  article-title: Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2015.2
– volume: 14
  start-page: 975
  year: 2017
  ident: key 20180727063919_elx046-B63
  article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4401
– volume: 9
  start-page: 770
  issue: 10
  year: 2008
  ident: key 20180727063919_elx046-B26
  article-title: Modelling and analysis of gene regulatory networks
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2503
– volume: 14
  start-page: 381
  issue: 4
  year: 2017
  ident: key 20180727063919_elx046-B11
  article-title: Power analysis of single-cell RNA-sequencing experiments
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4220
– volume: 167
  start-page: 1867
  year: 2016
  ident: key 20180727063919_elx046-B90
  article-title: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.048
– volume: 46
  start-page: 2496
  issue: 11
  year: 2016
  ident: key 20180727063919_elx046-B24
  article-title: Computational methods for trajectory inference from single-cell transcriptomics
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201646347
– volume: 9
  start-page: 796
  issue: 8
  year: 2012
  ident: key 20180727063919_elx046-B27
  article-title: Wisdom of crowds for robust gene network inference
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2016
– volume: 142
  start-page: 375
  issue: 3
  year: 2010
  ident: key 20180727063919_elx046-B4
  article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.002
– volume: 34
  start-page: 1145
  issue: 11
  year: 2016
  ident: key 20180727063919_elx046-B93
  article-title: Revealing the vectors of cellular identity with single-cell genomics
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3711
– volume: 33
  start-page: 2314
  issue: 15
  year: 2017
  ident: key 20180727063919_elx046-B45
  article-title: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx194
– volume: 510
  start-page: 363
  issue: 7505
  year: 2014
  ident: key 20180727063919_elx046-B22
  article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
  publication-title: Nature
  doi: 10.1038/nature13437
– volume: 13
  start-page: 229
  issue: 3
  year: 2016
  ident: key 20180727063919_elx046-B82
  article-title: Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3728
– volume: 8
  start-page: 14049
  year: 2017
  ident: key 20180727063919_elx046-B15
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 33
  start-page: 285
  issue: 3
  year: 2015
  ident: key 20180727063919_elx046-B80
  article-title: Integrated genome and transcriptome sequencing of the same cell
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3129
– volume: 33
  start-page: 269
  issue: 3
  year: 2015
  ident: key 20180727063919_elx046-B9
  article-title: Decoding the regulatory network of early blood development from single-cell gene expression measurements
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3154
– volume: 12
  start-page: 44
  issue: 1
  year: 2017
  ident: key 20180727063919_elx046-B13
  article-title: Single-cell barcoding and sequencing using droplet microfluidics
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.154
– volume: 12
  start-page: 519
  issue: 6
  year: 2015
  ident: key 20180727063919_elx046-B79
  article-title: G&T-seq: parallel sequencing of single-cell genomes and transcriptomes
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3370
– year: 2017
  ident: key 20180727063919_elx046-B42
  article-title: SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles
  publication-title: Bioinformatics
– volume: 14
  start-page: 979
  issue: 10
  year: 2017
  ident: key 20180727063919_elx046-B65
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4402
– volume: 4
  start-page: 5400
  year: 2014
  ident: key 20180727063919_elx046-B95
  article-title: Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system
  publication-title: Sci Rep
  doi: 10.1038/srep05400
– volume: 15
  start-page: 1467
  issue: 7
  year: 2016
  ident: key 20180727063919_elx046-B40
  article-title: Systematic reconstruction of molecular cascades regulating GP development using single-cell RNA-seq
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.04.043
– volume: 347
  start-page: 1138
  year: 2015
  ident: key 20180727063919_elx046-B49
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 18
  start-page: 67
  year: 2017
  ident: key 20180727063919_elx046-B75
  article-title: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1189-z
– volume: 18
  start-page: 138
  year: 2017
  ident: key 20180727063919_elx046-B87
  article-title: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1269-0
– volume: 344
  start-page: 1396
  issue: 6190
  year: 2014
  ident: key 20180727063919_elx046-B36
  article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
  doi: 10.1126/science.1254257
– volume: 7
  start-page: e29348
  issue: 1
  year: 2012
  ident: key 20180727063919_elx046-B35
  article-title: Comparing statistical methods for constructing large scale gene networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029348
– volume: 31
  start-page: 399
  year: 2015
  ident: key 20180727063919_elx046-B8
  article-title: Comparative analysis of gene regulatory networks: from network reconstruction to evolution
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-100913-012908
– year: 2017
  ident: key 20180727063919_elx046-B62
  article-title: Unsupervised clustering and epigenetic classification of single cells
  publication-title: bioRxiv
– volume: 352
  start-page: 1326
  issue: 6291
  year: 2016
  ident: key 20180727063919_elx046-B20
  article-title: Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system
  publication-title: Science
  doi: 10.1126/science.aaf6463
– volume: 17
  start-page: 88.
  year: 2016
  ident: key 20180727063919_elx046-B83
  article-title: Simultaneous profiling of transcriptome and DNA methylome from a single cell
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0950-z
– volume: 19
  start-page: 335
  issue: 2
  year: 2016
  ident: key 20180727063919_elx046-B50
  article-title: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4216
– volume: 9
  start-page: 374
  issue: 4
  year: 2011
  ident: key 20180727063919_elx046-B3
  article-title: Direct lineage conversion of terminally differentiated hepatocytes to functional neurons
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.09.002
– volume: 45
  start-page: e77
  year: 2017
  ident: key 20180727063919_elx046-B71
  article-title: Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: 78.
  year: 2007
  ident: key 20180727063919_elx046-B25
  article-title: How to infer gene networks from expression profiles
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100120
SSID ssj0000314410
Score 2.5502985
SecondaryResourceType review_article
Snippet Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks...
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs)...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 246
SubjectTerms DNA methylation
epigenetics
Epigenomics - methods
Gene Expression Profiling - methods
Gene Regulatory Networks
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
transcriptomics
Title Mapping gene regulatory networks from single-cell omics data
URI https://www.ncbi.nlm.nih.gov/pubmed/29342231
https://www.proquest.com/docview/1989585952
https://www.proquest.com/docview/2221060141
https://pubmed.ncbi.nlm.nih.gov/PMC6063279
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da8IwEA_DMdjL2Pfch8vAp0HRtknbwF50m8jA7UXBt9LExA2kih8w__vdmVqsuO05F1ruQu53l7vfEVIF0MYUN8YRfJBAgKKYI5N65OhAh4ZJnyuJ-Y7Oe9Dusbc-72cFsrMdT_jCr0kznNT06BsiObhqwf0iRX73o5-nUpCBna14B7w6c7FmS2SdeFvbC76n0M-2ASu3qyM33E3rmBxlOJE2rGFPyJ5OT8mBnRy5PCNPnQSJFYYU7K_p1A6UH0-XNLVl3TOKfSMUEwEj7WB2nmL78YxiReg56bVeu89tJxuE4CjAQ3OHu6HRPk-kCVxwavVESAiIPa4jTyjlazMwSeRyLaQyTAMkkSpkAvSuIhNJ0PgFKaXjVF8ROmCRq_CWS8Cv-wwAgR-EQkoGewMTmjJ5XKsoVhlLOA6rGMX2tdqPUZ-x1WeZVHPhiSXH2C12D7r-W-JhbYcYjjdqJUn1eDGLsaSLIweb97sMQBwXaWWYWyaX1nb5xwDNMEBAsBIWrJoLIL12cSX9-lzRbENo53uhuP7372_IIcCoyBbx3pLSfLrQdwBV5rJC9hvNl2arsjqwP3Wo6zo
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+gene+regulatory+networks+from+single-cell+omics+data&rft.jtitle=Briefings+in+functional+genomics&rft.au=Fiers%2C+Mark+W+E+J&rft.au=Minnoye%2C+Liesbeth&rft.au=Aibar%2C+Sara&rft.au=Bravo+Gonz%C3%A1lez-Blas%2C+Carmen&rft.date=2018-07-01&rft.eissn=2041-2657&rft.volume=17&rft.issue=4&rft.spage=246&rft_id=info:doi/10.1093%2Fbfgp%2Felx046&rft_id=info%3Apmid%2F29342231&rft.externalDocID=29342231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon