Mapping gene regulatory networks from single-cell omics data
Abstract Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss...
Saved in:
Published in | Briefings in functional genomics Vol. 17; no. 4; pp. 246 - 254 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future. |
---|---|
AbstractList | Abstract
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future. Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future. Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future. |
Author | Bravo González-Blas, Carmen Aerts, Stein Fiers, Mark W E J Kalender Atak, Zeynep Minnoye, Liesbeth Aibar, Sara |
AuthorAffiliation | 1 VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium 2 KU Leuven, Department of Human Genetics, Leuven, Belgium |
AuthorAffiliation_xml | – name: 2 KU Leuven, Department of Human Genetics, Leuven, Belgium – name: 1 VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium |
Author_xml | – sequence: 1 givenname: Mark W E J orcidid: 0000-0001-5694-2409 surname: Fiers fullname: Fiers, Mark W E J organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium – sequence: 2 givenname: Liesbeth surname: Minnoye fullname: Minnoye, Liesbeth organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium – sequence: 3 givenname: Sara surname: Aibar fullname: Aibar, Sara organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium – sequence: 4 givenname: Carmen surname: Bravo González-Blas fullname: Bravo González-Blas, Carmen organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium – sequence: 5 givenname: Zeynep surname: Kalender Atak fullname: Kalender Atak, Zeynep organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium – sequence: 6 givenname: Stein surname: Aerts fullname: Aerts, Stein email: stein.aerts@kuleuven.vib.be organization: VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29342231$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3TAQhUVJyXvVffEqFIoTjSzZFoRACc0DErpp1kLSHblKbcuR7LT59_HlJpcm0GQ2MzDfHGbm7JCNPvRIyCegh0BlcWRcMxxh-5fy8gPZZpRDzkpRbaxrLrfIfkq3dI4COAe6SbaYLDhjBWyT42s9DL5vsgZ7zCI2U6vHEB-yHsc_If5OmYuhy9KMtJhbbNssdN6mbKFHvUc-Ot0m3H_Ku-Tm7PvP04v86sf55em3q9wKgDEXUDkshDauBItItTRoGBNYM2ltgW7hdA0CpbGOI1TM2IpLarmtXW24KXbJyUp3mEyHC4v9GHWrhug7HR9U0F697PT-l2rCvSppWbBKzgJfngRiuJswjarzaXmM7jFMSTHGgJYUOLyLgqylqIUUbEY__7vWep_n787A1xVgY0gpolsjQNXSPrW0T63sm2l4RVs_6tGH5U2-_c_MwWomTMOb4o-DM63L |
CitedBy_id | crossref_primary_10_1093_bib_bbac061 crossref_primary_10_1093_nargab_lqad018 crossref_primary_10_3389_fnmol_2021_718241 crossref_primary_10_1016_j_compbiolchem_2021_107512 crossref_primary_10_1093_gigascience_giaa113 crossref_primary_10_3389_fcell_2021_661243 crossref_primary_10_1007_s00285_021_01683_2 crossref_primary_10_1016_j_nbd_2023_106201 crossref_primary_10_1186_s13059_022_02835_3 crossref_primary_10_1016_j_exer_2023_109520 crossref_primary_10_1016_j_sysconle_2022_105287 crossref_primary_10_3389_fonc_2022_899825 crossref_primary_10_1016_j_molcel_2021_12_012 crossref_primary_10_3389_fgene_2021_687813 crossref_primary_10_1038_s41596_020_0336_2 crossref_primary_10_1080_10618600_2023_2252023 crossref_primary_10_3390_ht7010008 crossref_primary_10_1038_s12276_020_00528_0 crossref_primary_10_3389_fgene_2019_00294 crossref_primary_10_1038_s41598_022_11507_y crossref_primary_10_3389_fgene_2022_1063233 crossref_primary_10_3390_e24020141 crossref_primary_10_1093_nar_gkab745 crossref_primary_10_3390_cells8101180 crossref_primary_10_1177_11779322241287120 crossref_primary_10_1016_j_csbj_2022_08_003 crossref_primary_10_7554_eLife_46994 crossref_primary_10_1016_j_cels_2020_02_003 crossref_primary_10_1016_j_cels_2021_04_010 crossref_primary_10_1155_2021_8060477 crossref_primary_10_1093_bfgp_elac047 crossref_primary_10_1042_ETLS20180176 crossref_primary_10_1186_s12859_023_05250_y crossref_primary_10_3389_fpls_2018_01770 crossref_primary_10_1016_j_xgen_2024_100702 crossref_primary_10_1038_s41592_024_02353_z crossref_primary_10_3389_fcvm_2018_00167 crossref_primary_10_3389_fgene_2021_655536 crossref_primary_10_1038_s41556_023_01316_4 crossref_primary_10_3389_fgene_2020_00295 crossref_primary_10_1016_j_bbagrm_2019_194416 crossref_primary_10_1016_j_stemcr_2022_11_011 crossref_primary_10_1038_s43588_021_00103_1 crossref_primary_10_1038_s41590_024_01768_2 crossref_primary_10_3389_fncel_2020_00238 crossref_primary_10_1016_j_devcel_2024_01_015 crossref_primary_10_1016_j_patter_2020_100139 crossref_primary_10_3389_fgene_2021_617282 crossref_primary_10_1038_s41576_023_00618_5 crossref_primary_10_1038_s41592_019_0367_1 crossref_primary_10_1038_s41598_022_21496_7 crossref_primary_10_1038_s41467_024_46045_w crossref_primary_10_1109_TCBB_2018_2873010 crossref_primary_10_1002_jbmr_4882 crossref_primary_10_1080_17501911_2024_2343276 crossref_primary_10_1126_science_adi7453 crossref_primary_10_1111_febs_14613 crossref_primary_10_3389_fcell_2020_593007 crossref_primary_10_1146_annurev_bioeng_060418_052538 crossref_primary_10_1186_s12859_019_2798_1 crossref_primary_10_1111_jne_13072 crossref_primary_10_1016_j_csbj_2020_06_033 crossref_primary_10_1007_s12312_024_01337_6 crossref_primary_10_1002_bies_202300210 crossref_primary_10_1002_cti2_70006 crossref_primary_10_1002_widm_1414 crossref_primary_10_1093_bib_bbae091 crossref_primary_10_1042_BCJ20190467 crossref_primary_10_1093_bioinformatics_btac288 crossref_primary_10_26508_lsa_202000658 crossref_primary_10_1007_s13258_023_01473_8 crossref_primary_10_3389_fpls_2023_1111875 crossref_primary_10_1146_annurev_pathmechdis_012418_013046 crossref_primary_10_1186_s13059_019_1713_4 crossref_primary_10_1016_j_patter_2021_100332 crossref_primary_10_1016_j_pbi_2018_10_005 crossref_primary_10_1093_nar_gkaf138 crossref_primary_10_3390_genes14071476 crossref_primary_10_1093_bib_bbae286 crossref_primary_10_1186_s12859_020_03707_y crossref_primary_10_1155_2021_7663366 crossref_primary_10_1007_s00292_024_01308_7 crossref_primary_10_1371_journal_pcbi_1009907 crossref_primary_10_1038_s41586_022_05688_9 crossref_primary_10_1186_s12920_018_0433_z crossref_primary_10_1042_EBC20220042 crossref_primary_10_1038_s41598_021_01558_y crossref_primary_10_1007_s12572_018_0239_4 crossref_primary_10_1093_bfgp_elz004 crossref_primary_10_1186_s12864_019_5720_3 crossref_primary_10_3389_fevo_2023_1185566 crossref_primary_10_3390_ijms24032595 crossref_primary_10_1093_bib_bbab568 crossref_primary_10_1146_annurev_immunol_090419_020340 crossref_primary_10_1097_BS9_0000000000000172 crossref_primary_10_3389_fgene_2022_875762 crossref_primary_10_1038_s41467_023_44369_7 crossref_primary_10_15252_msb_20209438 crossref_primary_10_1186_s12859_023_05349_2 crossref_primary_10_1186_s13059_018_1496_z crossref_primary_10_1016_j_celrep_2018_10_045 crossref_primary_10_1186_s41065_019_0105_9 crossref_primary_10_1093_bib_bbaf089 crossref_primary_10_1093_bib_bbaa190 crossref_primary_10_3389_fimmu_2024_1360687 crossref_primary_10_26508_lsa_202302415 crossref_primary_10_1038_s41593_020_0685_8 crossref_primary_10_7554_eLife_52155 crossref_primary_10_1016_j_bbagrm_2023_194911 crossref_primary_10_1109_TCYB_2020_3022430 crossref_primary_10_1371_journal_pcbi_1010287 crossref_primary_10_1214_20_STS792 crossref_primary_10_1371_journal_pcbi_1011254 crossref_primary_10_1109_ACCESS_2022_3202187 crossref_primary_10_1016_j_copbio_2018_09_012 crossref_primary_10_1038_s41588_022_01106_y crossref_primary_10_1080_01621459_2019_1677242 crossref_primary_10_7554_eLife_81173 crossref_primary_10_1038_s41597_022_01839_9 crossref_primary_10_1016_j_bbagrm_2019_194430 crossref_primary_10_1038_s42003_022_03319_7 crossref_primary_10_1093_bioinformatics_btac199 crossref_primary_10_3390_insects12070591 crossref_primary_10_1146_annurev_pathmechdis_051222_113147 crossref_primary_10_2174_0115748936282613231211112920 crossref_primary_10_1080_15476286_2020_1728961 crossref_primary_10_1042_BST20210138 crossref_primary_10_1017_qpb_2022_26 crossref_primary_10_15252_msb_20209497 crossref_primary_10_1093_bib_bbab229 crossref_primary_10_1186_s12864_022_09020_7 crossref_primary_10_1093_bib_bbad369 crossref_primary_10_1016_j_gene_2024_148798 crossref_primary_10_1155_2021_7643209 crossref_primary_10_1002_pmic_202000034 crossref_primary_10_1111_exd_14251 crossref_primary_10_3389_fpls_2021_661361 crossref_primary_10_1093_nargab_lqad068 crossref_primary_10_1186_s13073_018_0608_4 crossref_primary_10_1016_j_neucom_2020_05_028 crossref_primary_10_1038_s42256_022_00469_5 crossref_primary_10_1093_icb_icaa055 crossref_primary_10_1101_gr_277488_122 crossref_primary_10_3390_cells11030510 crossref_primary_10_3390_cancers16101884 crossref_primary_10_1093_g3journal_jkad004 crossref_primary_10_1002_iid3_362 |
Cites_doi | 10.1016/j.cell.2016.11.038 10.1016/j.tibtech.2016.04.004 10.1093/bioinformatics/btv257 10.1016/j.tig.2016.12.003 10.1016/j.cell.2006.07.024 10.1186/s12859-016-1235-y 10.1038/nrg1655 10.1186/s13059-016-1133-7 10.1371/journal.pone.0158247 10.1093/bioinformatics/btw729 10.1038/srep33883 10.1038/nbt.3383 10.1016/j.molcel.2017.03.007 10.1186/1471-2105-9-559 10.1038/nmeth.4177 10.1038/nrg2538 10.1038/nmeth.4463 10.1016/j.compbiomed.2014.02.011 10.1038/nrg.2016.127 10.1101/gr.161679.113 10.1038/nrg3833 10.1038/nbt.2345 10.1016/j.cell.2016.11.039 10.1016/j.cell.2015.05.002 10.1093/bib/bbw139 10.1038/nbt.3102 10.1038/nprot.2016.187 10.1007/978-3-319-21690-4_38 10.1371/journal.pone.0012776 10.1016/j.mrfmmm.2015.01.002 10.1038/nmeth.3035 10.1016/j.molcel.2017.01.023 10.7554/eLife.23203 10.1371/journal.pcbi.1004575 10.1038/ncomms9083 10.1093/bioinformatics/btu777 10.1016/j.celrep.2015.05.016 10.1186/s13059-016-0964-6 10.1038/nmeth.1315 10.1038/nature14590 10.1038/cr.2016.23 10.1038/nature15740 10.1016/j.cell.2015.08.046 10.1016/j.celrep.2015.02.001 10.1038/nrg3230 10.1038/nmeth.3734 10.1016/j.cels.2017.08.014 10.1038/nrg3354 10.1016/j.cell.2012.08.023 10.1126/science.aab1601 10.1038/ng.3646 10.1016/j.gde.2017.01.003 10.1126/science.aaf1204 10.1186/s13059-015-0737-7 10.1016/j.cell.2015.11.009 10.1186/s12859-016-1109-3 10.1016/j.cell.2015.08.040 10.1038/nrm.2015.2 10.1038/nmeth.4401 10.1038/nrm2503 10.1038/nmeth.4220 10.1016/j.cell.2016.11.048 10.1002/eji.201646347 10.1038/nmeth.2016 10.1016/j.cell.2010.07.002 10.1038/nbt.3711 10.1093/bioinformatics/btx194 10.1038/nature13437 10.1038/nmeth.3728 10.1038/ncomms14049 10.1038/nbt.3129 10.1038/nbt.3154 10.1038/nprot.2016.154 10.1038/nmeth.3370 10.1038/nmeth.4402 10.1038/srep05400 10.1016/j.celrep.2016.04.043 10.1126/science.aaa1934 10.1186/s13059-017-1189-z 10.1186/s13059-017-1269-0 10.1126/science.1254257 10.1371/journal.pone.0029348 10.1146/annurev-cellbio-100913-012908 10.1126/science.aaf6463 10.1186/s13059-016-0950-z 10.1038/nn.4216 10.1016/j.stem.2011.09.002 10.1038/msb4100120 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. 2018 |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/bfgp/elx046 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Special Issue: Single-cell genomics |
EISSN | 2041-2657 |
EndPage | 254 |
ExternalDocumentID | PMC6063279 29342231 10_1093_bfgp_elx046 10.1093/bfgp/elx046 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ERC Consolidator grantid: 724226_cis-CONTROL – fundername: Special Research Fund funderid: 10.13039/501100007229 – fundername: KU Leuven grantid: PF/10/016; OT/13/103 funderid: 10.13039/501100004040 – fundername: The Research Foundation – Flanders grantid: G.0640.13; G.0791.14; G092916N – fundername: Foundation Against Cancer grantid: 2012-F2; 2016-070; 2015-143 – fundername: ; grantid: G.0640.13; G.0791.14; G092916N – fundername: ; grantid: 2012-F2; 2016-070; 2015-143 – fundername: ; ; grantid: PF/10/016; OT/13/103 – fundername: ; grantid: 724226_cis-CONTROL – fundername: ; ; |
GroupedDBID | --- .2P .I3 0R~ 4.4 48X 53G 5VS 6J9 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABNKS ABPQP ABPTD ABQLI ABQTQ ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUHS ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADNBA ADOCK ADPDF ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMNDL APIBT APWMN ARIXL AXUDD AYOIW BAWUL BAYMD BEYMZ BHONS BQDIO BSWAC C45 CDBKE CZ4 DAKXR DIK DILTD DU5 D~K EAD EAP EAS EBD EBS EE~ EJD EMK EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OJZSN OK1 OVD PAFKI PEELM PQQKQ Q1. Q5Y RD5 RPM RUSNO RW1 RXO SV3 TEORI TLC TOX TR2 TUS X7H Y6R YAYTL YKOAZ YXANX ~91 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c511t-517fe35abf61cee0a9beb225e829cc3efdfa815e9bcf4e172bc7490c4c8f8b4b3 |
IEDL.DBID | TOX |
ISSN | 2041-2649 2041-2657 |
IngestDate | Thu Aug 21 14:14:32 EDT 2025 Fri Jul 11 12:03:29 EDT 2025 Fri Jul 11 13:47:59 EDT 2025 Mon Jul 21 06:17:56 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 03:26:56 EDT 2025 Wed Apr 02 07:03:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | single-cell transcriptomics single-cell epigenomics gene regulatory networks |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-517fe35abf61cee0a9beb225e829cc3efdfa815e9bcf4e172bc7490c4c8f8b4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Mark W.E.J Fiers, Liesbeth Minnoye and Sara Aibar authors contributed to this work equally. |
ORCID | 0000-0001-5694-2409 |
OpenAccessLink | https://dx.doi.org/10.1093/bfgp/elx046 |
PMID | 29342231 |
PQID | 1989585952 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063279 proquest_miscellaneous_2221060141 proquest_miscellaneous_1989585952 pubmed_primary_29342231 crossref_primary_10_1093_bfgp_elx046 crossref_citationtrail_10_1093_bfgp_elx046 oup_primary_10_1093_bfgp_elx046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in functional genomics |
PublicationTitleAlternate | Brief Funct Genomics |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Andrews ( key 20180727063919_elx046-B23) 2017 Yuan ( key 20180727063919_elx046-B16) 2016; 6 Chan ( key 20180727063919_elx046-B44) 2017; 5 Matsumoto ( key 20180727063919_elx046-B45) 2017; 33 Papili Gao ( key 20180727063919_elx046-B42) 2017 Jin ( key 20180727063919_elx046-B55) 2015; 528 Jaitin ( key 20180727063919_elx046-B88) 2016; 167 Xie ( key 20180727063919_elx046-B92) 2017; 66 Qiu ( key 20180727063919_elx046-B65) 2017; 14 Corces ( key 20180727063919_elx046-B61) 2016; 48 Ocone ( key 20180727063919_elx046-B46) 2015; 31 Macaulay ( key 20180727063919_elx046-B78) 2017; 33 Cannoodt ( key 20180727063919_elx046-B24) 2016; 46 Hu ( key 20180727063919_elx046-B83) 2016; 17 Svensson ( key 20180727063919_elx046-B11) 2017; 14 Fan ( key 20180727063919_elx046-B14) 2016; 13 Lim ( key 20180727063919_elx046-B29) 2016; 17 Welch ( key 20180727063919_elx046-B87) 2017; 18 Chai ( key 20180727063919_elx046-B7) 2014; 48 Zeisel ( key 20180727063919_elx046-B49) 2015; 347 Crow ( key 20180727063919_elx046-B39) 2016; 17 Adamson ( key 20180727063919_elx046-B90) 2016; 167 Angermueller ( key 20180727063919_elx046-B82) 2016; 13 Schep ( key 20180727063919_elx046-B63) 2017; 14 Pliner ( key 20180727063919_elx046-B64) 2017 Wynn ( key 20180727063919_elx046-B30) 2012; 4 Bock ( key 20180727063919_elx046-B77) 2016; 34 van Dam ( key 20180727063919_elx046-B32) 2017 Zilionis ( key 20180727063919_elx046-B13) 2017; 12 Sanchez-Castillo ( key 20180727063919_elx046-B48) 2017 Clark ( key 20180727063919_elx046-B86) 2017 Chen ( key 20180727063919_elx046-B97) 2015; 31 Langfelder ( key 20180727063919_elx046-B34) 2008; 9 Bansal ( key 20180727063919_elx046-B25) 2007; 3 Patel ( key 20180727063919_elx046-B36) 2014; 344 Matsumoto ( key 20180727063919_elx046-B43) 2016; 17 Dixit ( key 20180727063919_elx046-B89) 2016; 167 Liu ( key 20180727063919_elx046-B98) 2016; 11 Zamanighomi ( key 20180727063919_elx046-B62) 2017 Litzenburger ( key 20180727063919_elx046-B76) 2017; 18 Guo ( key 20180727063919_elx046-B68) 2013; 23 Datlinger ( key 20180727063919_elx046-B91) 2017; 14 Stelzer ( key 20180727063919_elx046-B74) 2015; 163 Shalek ( key 20180727063919_elx046-B22) 2014; 510 Allen ( key 20180727063919_elx046-B35) 2012; 7 Jones ( key 20180727063919_elx046-B72) 2012; 13 Huynh-Thu ( key 20180727063919_elx046-B33) 2010; 5 Wagner ( key 20180727063919_elx046-B93) 2016; 34 Specht ( key 20180727063919_elx046-B41) 2017; 33 Dominguez ( key 20180727063919_elx046-B94) 2016; 17 Ieda ( key 20180727063919_elx046-B4) 2010; 142 Li ( key 20180727063919_elx046-B81) 2015; 772 Gaublomme ( key 20180727063919_elx046-B37) 2015; 163 Clark ( key 20180727063919_elx046-B69) 2017; 12 Zheng ( key 20180727063919_elx046-B15) 2017; 8 Marques ( key 20180727063919_elx046-B20) 2016; 352 Wouters ( key 20180727063919_elx046-B6) 2017; 43 Karlebach ( key 20180727063919_elx046-B26) 2008; 9 Cusanovich ( key 20180727063919_elx046-B59) 2015; 348 Li ( key 20180727063919_elx046-B40) 2016; 15 Smith ( key 20180727063919_elx046-B66) 2013; 14 Pina ( key 20180727063919_elx046-B38) 2015; 11 Guo ( key 20180727063919_elx046-B52) 2015; 11 Han ( key 20180727063919_elx046-B71) 2017; 45 Macaulay ( key 20180727063919_elx046-B79) 2015; 12 Fisher ( key 20180727063919_elx046-B28) 2015 Thompson ( key 20180727063919_elx046-B8) 2015; 31 Kind ( key 20180727063919_elx046-B56) 2015; 163 Arendt ( key 20180727063919_elx046-B1) 2016; 17 Buenrostro ( key 20180727063919_elx046-B58) 2015; 523 Vidigal ( key 20180727063919_elx046-B96) 2015; 6 Aibar ( key 20180727063919_elx046-B54) 2017; 14 Ziegenhain ( key 20180727063919_elx046-B17) 2017; 65 Cordero ( key 20180727063919_elx046-B47) 2017; 22 Pott ( key 20180727063919_elx046-B60) 2015; 16 Rotem ( key 20180727063919_elx046-B57) 2015; 33 Smallwood ( key 20180727063919_elx046-B73) 2014; 11 Hou ( key 20180727063919_elx046-B84) 2016; 26 Stegle ( key 20180727063919_elx046-B18) 2015; 16 Tang ( key 20180727063919_elx046-B10) 2009; 6 Macosko ( key 20180727063919_elx046-B12) 2015; 161 Lake ( key 20180727063919_elx046-B51) 2016; 352 Vaquerizas ( key 20180727063919_elx046-B19) 2009; 10 Buettner ( key 20180727063919_elx046-B21) 2015; 33 Robertson ( key 20180727063919_elx046-B67) 2005; 6 Dey ( key 20180727063919_elx046-B80) 2015; 33 Takahashi ( key 20180727063919_elx046-B2) 2006; 126 Creixell ( key 20180727063919_elx046-B5) 2012; 30 Buganim ( key 20180727063919_elx046-B31) 2012; 150 Angermueller ( key 20180727063919_elx046-B75) 2017; 18 Moignard ( key 20180727063919_elx046-B9) 2015; 33 Marbach ( key 20180727063919_elx046-B27) 2012; 9 Marro ( key 20180727063919_elx046-B3) 2011; 9 Pott ( key 20180727063919_elx046-B85) 2017; 6 Mohammadi ( key 20180727063919_elx046-B53) 2017 Farlik ( key 20180727063919_elx046-B70) 2015; 10 Sakuma ( key 20180727063919_elx046-B95) 2014; 4 Tasic ( key 20180727063919_elx046-B50) 2016; 19 |
References_xml | – volume: 167 start-page: 1853 issue: 7 year: 2016 ident: key 20180727063919_elx046-B89 article-title: Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens publication-title: Cell doi: 10.1016/j.cell.2016.11.038 – volume: 34 start-page: 605 issue: 8 year: 2016 ident: key 20180727063919_elx046-B77 article-title: Multi-omics of single cells: strategies and applications publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2016.04.004 – volume: 31 start-page: i89 issue: 12 year: 2015 ident: key 20180727063919_elx046-B46 article-title: Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv257 – volume: 33 start-page: 155 issue: 2 year: 2017 ident: key 20180727063919_elx046-B78 article-title: Single-cell multiomics: multiple measurements from single cells publication-title: Trends Genet doi: 10.1016/j.tig.2016.12.003 – year: 2017 ident: key 20180727063919_elx046-B23 article-title: Identifying cell populations with scRNASeq publication-title: Mol Aspects Med – volume: 126 start-page: 663 issue: 4 year: 2006 ident: key 20180727063919_elx046-B2 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 17 start-page: 355 year: 2016 ident: key 20180727063919_elx046-B29 article-title: BTR: training asynchronous Boolean models using single-cell expression data publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1235-y – volume: 6 start-page: 597 issue: 8 year: 2005 ident: key 20180727063919_elx046-B67 article-title: DNA methylation and human disease publication-title: Nat Rev Genet doi: 10.1038/nrg1655 – volume: 18 start-page: 15 year: 2017 ident: key 20180727063919_elx046-B76 article-title: Single-cell epigenomic variability reveals functional cancer heterogeneity publication-title: Genome Biol doi: 10.1186/s13059-016-1133-7 – volume: 11 start-page: e0158247 issue: 7 year: 2016 ident: key 20180727063919_elx046-B98 article-title: Nonlinear network reconstruction from gene expression data using marginal dependencies measured by DCOL publication-title: PLoS One doi: 10.1371/journal.pone.0158247 – volume: 33 start-page: 764 issue: 5 year: 2017 ident: key 20180727063919_elx046-B41 article-title: LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw729 – volume: 6 start-page: 33883. year: 2016 ident: key 20180727063919_elx046-B16 article-title: An automated microwell platform for large-scale single cell RNA-seq publication-title: Sci Rep doi: 10.1038/srep33883 – volume: 33 start-page: 1165 issue: 11 year: 2015 ident: key 20180727063919_elx046-B57 article-title: Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state publication-title: Nat Biotechnol doi: 10.1038/nbt.3383 – volume: 66 start-page: 285 issue: 2 year: 2017 ident: key 20180727063919_elx046-B92 article-title: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells publication-title: Mol Cell doi: 10.1016/j.molcel.2017.03.007 – volume: 9 start-page: 559. year: 2008 ident: key 20180727063919_elx046-B34 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 14 start-page: 297 issue: 3 year: 2017 ident: key 20180727063919_elx046-B91 article-title: Pooled CRISPR screening with single-cell transcriptome readout publication-title: Nat Methods doi: 10.1038/nmeth.4177 – volume: 10 start-page: 252 year: 2009 ident: key 20180727063919_elx046-B19 article-title: A census of human transcription factors: function, expression and evolution publication-title: Nat Rev Genet doi: 10.1038/nrg2538 – volume: 14 start-page: 1083 year: 2017 ident: key 20180727063919_elx046-B54 article-title: SCENIC: single-cell regulatory network inference and clustering publication-title: Nat Methods doi: 10.1038/nmeth.4463 – volume: 48 start-page: 55 year: 2014 ident: key 20180727063919_elx046-B7 article-title: A review on the computational approaches for gene regulatory network construction publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2014.02.011 – volume: 4 start-page: 1323 issue: 11 year: 2012 ident: key 20180727063919_elx046-B30 article-title: Logic-based models in systems biology: a predictive and parameter-free network analysis method publication-title: Integr Biol Quant Biosci Nano Macro – volume: 17 start-page: 744 issue: 12 year: 2016 ident: key 20180727063919_elx046-B1 article-title: The origin and evolution of cell types publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.127 – volume: 23 start-page: 2126 issue: 12 year: 2013 ident: key 20180727063919_elx046-B68 article-title: Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing publication-title: Genome Res doi: 10.1101/gr.161679.113 – volume: 16 start-page: 133 issue: 3 year: 2015 ident: key 20180727063919_elx046-B18 article-title: Computational and analytical challenges in single-cell transcriptomics publication-title: Nat Rev Genet doi: 10.1038/nrg3833 – volume: 30 start-page: 842 year: 2012 ident: key 20180727063919_elx046-B5 article-title: Navigating cancer network attractors for tumor-specific therapy publication-title: Nat Biotechnol doi: 10.1038/nbt.2345 – year: 2017 ident: key 20180727063919_elx046-B53 article-title: Take ACTION to characterize the functional identity of single cells publication-title: bioRxiv – volume: 167 start-page: 1883 issue: 7 year: 2016 ident: key 20180727063919_elx046-B88 article-title: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq publication-title: Cell doi: 10.1016/j.cell.2016.11.039 – volume: 161 start-page: 1202 issue: 5 year: 2015 ident: key 20180727063919_elx046-B12 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – year: 2017 ident: key 20180727063919_elx046-B32 article-title: Gene co-expression analysis for functional classification and gene–disease predictions publication-title: Brief Bioinform doi: 10.1093/bib/bbw139 – volume: 33 start-page: 155 year: 2015 ident: key 20180727063919_elx046-B21 article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells publication-title: Nat Biotechnol doi: 10.1038/nbt.3102 – volume: 12 start-page: 534 issue: 3 year: 2017 ident: key 20180727063919_elx046-B69 article-title: Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq) publication-title: Nat Protoc doi: 10.1038/nprot.2016.187 – start-page: 544 year: 2015 ident: key 20180727063919_elx046-B28 article-title: Synthesising executable gene regulatory networks from single-cell gene expression data publication-title: Comput Aided Verification doi: 10.1007/978-3-319-21690-4_38 – year: 2017 ident: key 20180727063919_elx046-B86 article-title: Joint profiling of chromatin accessibility, DNA methylation and transcription in single cells publication-title: bioRxiv – volume: 5 start-page: e12776 issue: 9 year: 2010 ident: key 20180727063919_elx046-B33 article-title: Inferring regulatory networks from expression data using tree-based methods publication-title: PLoS One doi: 10.1371/journal.pone.0012776 – volume: 772 start-page: 55 year: 2015 ident: key 20180727063919_elx046-B81 article-title: Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2015.01.002 – volume: 11 start-page: 817 issue: 8 year: 2014 ident: key 20180727063919_elx046-B73 article-title: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity publication-title: Nat Methods doi: 10.1038/nmeth.3035 – volume: 65 start-page: 631 issue: 4 year: 2017 ident: key 20180727063919_elx046-B17 article-title: Comparative analysis of single-cell RNA sequencing methods publication-title: Mol Cell doi: 10.1016/j.molcel.2017.01.023 – volume: 6 start-page: e23203 year: 2017 ident: key 20180727063919_elx046-B85 article-title: Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells publication-title: eLife doi: 10.7554/eLife.23203 – volume: 11 start-page: e1004575 issue: 11 year: 2015 ident: key 20180727063919_elx046-B52 article-title: SINCERA: a pipeline for single-cell RNA-seq profiling analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004575 – volume: 6 start-page: 8083. year: 2015 ident: key 20180727063919_elx046-B96 article-title: Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries publication-title: Nat Commun doi: 10.1038/ncomms9083 – volume: 31 start-page: 1060 issue: 7 year: 2015 ident: key 20180727063919_elx046-B97 article-title: Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu777 – volume: 11 start-page: 1503 issue: 10 year: 2015 ident: key 20180727063919_elx046-B38 article-title: Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis publication-title: Cell Rep doi: 10.1016/j.celrep.2015.05.016 – volume: 17 start-page: 101. year: 2016 ident: key 20180727063919_elx046-B39 article-title: Exploiting single-cell expression to characterize co-expression replicability publication-title: Genome Biol doi: 10.1186/s13059-016-0964-6 – volume: 6 start-page: 377 issue: 5 year: 2009 ident: key 20180727063919_elx046-B10 article-title: mRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nat Methods doi: 10.1038/nmeth.1315 – volume: 523 start-page: 486 issue: 7561 year: 2015 ident: key 20180727063919_elx046-B58 article-title: Single-cell chromatin accessibility reveals principles of regulatory variation publication-title: Nature doi: 10.1038/nature14590 – volume: 26 start-page: 304 issue: 3 year: 2016 ident: key 20180727063919_elx046-B84 article-title: Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas publication-title: Cell Res doi: 10.1038/cr.2016.23 – volume: 528 start-page: 142 issue: 7580 year: 2015 ident: key 20180727063919_elx046-B55 article-title: Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE samples publication-title: Nature doi: 10.1038/nature15740 – volume: 163 start-page: 218 issue: 1 year: 2015 ident: key 20180727063919_elx046-B74 article-title: Tracing dynamic changes of DNA methylation at single cell resolution publication-title: Cell doi: 10.1016/j.cell.2015.08.046 – volume: 10 start-page: 1386 issue: 8 year: 2015 ident: key 20180727063919_elx046-B70 article-title: Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics publication-title: Cell Rep doi: 10.1016/j.celrep.2015.02.001 – volume: 13 start-page: 484 issue: 7 year: 2012 ident: key 20180727063919_elx046-B72 article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond publication-title: Nat Rev Genet doi: 10.1038/nrg3230 – year: 2017 ident: key 20180727063919_elx046-B64 article-title: Chromatin accessibility dynamics of myogenesis at single cell resolution publication-title: bioRxiv – volume: 13 start-page: 241 year: 2016 ident: key 20180727063919_elx046-B14 article-title: Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis publication-title: Nat Methods doi: 10.1038/nmeth.3734 – volume: 5 start-page: 251 issue: 3 year: 2017 ident: key 20180727063919_elx046-B44 article-title: Gene regulatory network inference from single-cell data using multivariate information measures publication-title: Cell Syst doi: 10.1016/j.cels.2017.08.014 – volume: 14 start-page: 204 issue: 3 year: 2013 ident: key 20180727063919_elx046-B66 article-title: DNA methylation: roles in mammalian development publication-title: Nat Rev Genet doi: 10.1038/nrg3354 – volume: 150 start-page: 1209 issue: 6 year: 2012 ident: key 20180727063919_elx046-B31 article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase publication-title: Cell doi: 10.1016/j.cell.2012.08.023 – volume: 348 start-page: 910 issue: 6237 year: 2015 ident: key 20180727063919_elx046-B59 article-title: Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing publication-title: Science doi: 10.1126/science.aab1601 – volume: 48 start-page: 1193 year: 2016 ident: key 20180727063919_elx046-B61 article-title: Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution publication-title: Nat Genet doi: 10.1038/ng.3646 – volume: 43 start-page: 82 year: 2017 ident: key 20180727063919_elx046-B6 article-title: Decoding transcriptional states in cancer publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2017.01.003 – year: 2017 ident: key 20180727063919_elx046-B48 article-title: A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data publication-title: Bioinformatics – volume: 22 start-page: 576 year: 2017 ident: key 20180727063919_elx046-B47 article-title: Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories publication-title: Pac Symp Biocomput Pac Symp Biocomput – volume: 352 start-page: 1586 issue: 6293 year: 2016 ident: key 20180727063919_elx046-B51 article-title: Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain publication-title: Science doi: 10.1126/science.aaf1204 – volume: 16 start-page: 172. year: 2015 ident: key 20180727063919_elx046-B60 article-title: Single-cell ATAC-seq: strength in numbers publication-title: Genome Biol doi: 10.1186/s13059-015-0737-7 – volume: 163 start-page: 1400 issue: 6 year: 2015 ident: key 20180727063919_elx046-B37 article-title: Single-cell genomics unveils critical regulators of Th17 cell pathogenicity publication-title: Cell doi: 10.1016/j.cell.2015.11.009 – volume: 17 start-page: 232 year: 2016 ident: key 20180727063919_elx046-B43 article-title: SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1109-3 – volume: 163 start-page: 134 issue: 1 year: 2015 ident: key 20180727063919_elx046-B56 article-title: Genome-wide maps of nuclear lamina interactions in single human cells publication-title: Cell doi: 10.1016/j.cell.2015.08.040 – volume: 17 start-page: 5 issue: 1 year: 2016 ident: key 20180727063919_elx046-B94 article-title: Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2015.2 – volume: 14 start-page: 975 year: 2017 ident: key 20180727063919_elx046-B63 article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data publication-title: Nat Methods doi: 10.1038/nmeth.4401 – volume: 9 start-page: 770 issue: 10 year: 2008 ident: key 20180727063919_elx046-B26 article-title: Modelling and analysis of gene regulatory networks publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2503 – volume: 14 start-page: 381 issue: 4 year: 2017 ident: key 20180727063919_elx046-B11 article-title: Power analysis of single-cell RNA-sequencing experiments publication-title: Nat Methods doi: 10.1038/nmeth.4220 – volume: 167 start-page: 1867 year: 2016 ident: key 20180727063919_elx046-B90 article-title: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response publication-title: Cell doi: 10.1016/j.cell.2016.11.048 – volume: 46 start-page: 2496 issue: 11 year: 2016 ident: key 20180727063919_elx046-B24 article-title: Computational methods for trajectory inference from single-cell transcriptomics publication-title: Eur J Immunol doi: 10.1002/eji.201646347 – volume: 9 start-page: 796 issue: 8 year: 2012 ident: key 20180727063919_elx046-B27 article-title: Wisdom of crowds for robust gene network inference publication-title: Nat Methods doi: 10.1038/nmeth.2016 – volume: 142 start-page: 375 issue: 3 year: 2010 ident: key 20180727063919_elx046-B4 article-title: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors publication-title: Cell doi: 10.1016/j.cell.2010.07.002 – volume: 34 start-page: 1145 issue: 11 year: 2016 ident: key 20180727063919_elx046-B93 article-title: Revealing the vectors of cellular identity with single-cell genomics publication-title: Nat Biotechnol doi: 10.1038/nbt.3711 – volume: 33 start-page: 2314 issue: 15 year: 2017 ident: key 20180727063919_elx046-B45 article-title: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx194 – volume: 510 start-page: 363 issue: 7505 year: 2014 ident: key 20180727063919_elx046-B22 article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation publication-title: Nature doi: 10.1038/nature13437 – volume: 13 start-page: 229 issue: 3 year: 2016 ident: key 20180727063919_elx046-B82 article-title: Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity publication-title: Nat Methods doi: 10.1038/nmeth.3728 – volume: 8 start-page: 14049 year: 2017 ident: key 20180727063919_elx046-B15 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 33 start-page: 285 issue: 3 year: 2015 ident: key 20180727063919_elx046-B80 article-title: Integrated genome and transcriptome sequencing of the same cell publication-title: Nat Biotechnol doi: 10.1038/nbt.3129 – volume: 33 start-page: 269 issue: 3 year: 2015 ident: key 20180727063919_elx046-B9 article-title: Decoding the regulatory network of early blood development from single-cell gene expression measurements publication-title: Nat Biotechnol doi: 10.1038/nbt.3154 – volume: 12 start-page: 44 issue: 1 year: 2017 ident: key 20180727063919_elx046-B13 article-title: Single-cell barcoding and sequencing using droplet microfluidics publication-title: Nat Protoc doi: 10.1038/nprot.2016.154 – volume: 12 start-page: 519 issue: 6 year: 2015 ident: key 20180727063919_elx046-B79 article-title: G&T-seq: parallel sequencing of single-cell genomes and transcriptomes publication-title: Nat Methods doi: 10.1038/nmeth.3370 – year: 2017 ident: key 20180727063919_elx046-B42 article-title: SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles publication-title: Bioinformatics – volume: 14 start-page: 979 issue: 10 year: 2017 ident: key 20180727063919_elx046-B65 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat Methods doi: 10.1038/nmeth.4402 – volume: 4 start-page: 5400 year: 2014 ident: key 20180727063919_elx046-B95 article-title: Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system publication-title: Sci Rep doi: 10.1038/srep05400 – volume: 15 start-page: 1467 issue: 7 year: 2016 ident: key 20180727063919_elx046-B40 article-title: Systematic reconstruction of molecular cascades regulating GP development using single-cell RNA-seq publication-title: Cell Rep doi: 10.1016/j.celrep.2016.04.043 – volume: 347 start-page: 1138 year: 2015 ident: key 20180727063919_elx046-B49 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 18 start-page: 67 year: 2017 ident: key 20180727063919_elx046-B75 article-title: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning publication-title: Genome Biol doi: 10.1186/s13059-017-1189-z – volume: 18 start-page: 138 year: 2017 ident: key 20180727063919_elx046-B87 article-title: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics publication-title: Genome Biol doi: 10.1186/s13059-017-1269-0 – volume: 344 start-page: 1396 issue: 6190 year: 2014 ident: key 20180727063919_elx046-B36 article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – volume: 7 start-page: e29348 issue: 1 year: 2012 ident: key 20180727063919_elx046-B35 article-title: Comparing statistical methods for constructing large scale gene networks publication-title: PLoS One doi: 10.1371/journal.pone.0029348 – volume: 31 start-page: 399 year: 2015 ident: key 20180727063919_elx046-B8 article-title: Comparative analysis of gene regulatory networks: from network reconstruction to evolution publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-100913-012908 – year: 2017 ident: key 20180727063919_elx046-B62 article-title: Unsupervised clustering and epigenetic classification of single cells publication-title: bioRxiv – volume: 352 start-page: 1326 issue: 6291 year: 2016 ident: key 20180727063919_elx046-B20 article-title: Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system publication-title: Science doi: 10.1126/science.aaf6463 – volume: 17 start-page: 88. year: 2016 ident: key 20180727063919_elx046-B83 article-title: Simultaneous profiling of transcriptome and DNA methylome from a single cell publication-title: Genome Biol doi: 10.1186/s13059-016-0950-z – volume: 19 start-page: 335 issue: 2 year: 2016 ident: key 20180727063919_elx046-B50 article-title: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics publication-title: Nat Neurosci doi: 10.1038/nn.4216 – volume: 9 start-page: 374 issue: 4 year: 2011 ident: key 20180727063919_elx046-B3 article-title: Direct lineage conversion of terminally differentiated hepatocytes to functional neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.09.002 – volume: 45 start-page: e77 year: 2017 ident: key 20180727063919_elx046-B71 article-title: Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells publication-title: Nucleic Acids Res – volume: 3 start-page: 78. year: 2007 ident: key 20180727063919_elx046-B25 article-title: How to infer gene networks from expression profiles publication-title: Mol Syst Biol doi: 10.1038/msb4100120 |
SSID | ssj0000314410 |
Score | 2.5502985 |
SecondaryResourceType | review_article |
Snippet | Abstract
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks... Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs)... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 246 |
SubjectTerms | DNA methylation epigenetics Epigenomics - methods Gene Expression Profiling - methods Gene Regulatory Networks Sequence Analysis, RNA - methods Single-Cell Analysis - methods transcriptomics |
Title | Mapping gene regulatory networks from single-cell omics data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29342231 https://www.proquest.com/docview/1989585952 https://www.proquest.com/docview/2221060141 https://pubmed.ncbi.nlm.nih.gov/PMC6063279 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da8IwEA_DMdjL2Pfch8vAp0HRtknbwF50m8jA7UXBt9LExA2kih8w__vdmVqsuO05F1ruQu53l7vfEVIF0MYUN8YRfJBAgKKYI5N65OhAh4ZJnyuJ-Y7Oe9Dusbc-72cFsrMdT_jCr0kznNT06BsiObhqwf0iRX73o5-nUpCBna14B7w6c7FmS2SdeFvbC76n0M-2ASu3qyM33E3rmBxlOJE2rGFPyJ5OT8mBnRy5PCNPnQSJFYYU7K_p1A6UH0-XNLVl3TOKfSMUEwEj7WB2nmL78YxiReg56bVeu89tJxuE4CjAQ3OHu6HRPk-kCVxwavVESAiIPa4jTyjlazMwSeRyLaQyTAMkkSpkAvSuIhNJ0PgFKaXjVF8ROmCRq_CWS8Cv-wwAgR-EQkoGewMTmjJ5XKsoVhlLOA6rGMX2tdqPUZ-x1WeZVHPhiSXH2C12D7r-W-JhbYcYjjdqJUn1eDGLsaSLIweb97sMQBwXaWWYWyaX1nb5xwDNMEBAsBIWrJoLIL12cSX9-lzRbENo53uhuP7372_IIcCoyBbx3pLSfLrQdwBV5rJC9hvNl2arsjqwP3Wo6zo |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+gene+regulatory+networks+from+single-cell+omics+data&rft.jtitle=Briefings+in+functional+genomics&rft.au=Fiers%2C+Mark+W+E+J&rft.au=Minnoye%2C+Liesbeth&rft.au=Aibar%2C+Sara&rft.au=Bravo+Gonz%C3%A1lez-Blas%2C+Carmen&rft.date=2018-07-01&rft.eissn=2041-2657&rft.volume=17&rft.issue=4&rft.spage=246&rft_id=info:doi/10.1093%2Fbfgp%2Felx046&rft_id=info%3Apmid%2F29342231&rft.externalDocID=29342231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon |