Current and Future Clinical Applications of ctDNA in Immuno-Oncology
Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic an...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 82; no. 3; pp. 349 - 358 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non–small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy. |
---|---|
AbstractList | Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non-small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy. Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non-small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy.Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non-small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy. Abstract Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non–small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy. |
Author | Pantel, Klaus Heidrich, Isabel Keller, Laura Gebhardt, Christoffer Sementsov, Mark Belloum, Yassine Stadler, Julia-Christina Deitert, Benjamin |
AuthorAffiliation | 1 Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 2 Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 3 Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany |
AuthorAffiliation_xml | – name: 2 Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany – name: 3 Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany – name: 1 Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany |
Author_xml | – sequence: 1 givenname: Julia-Christina surname: Stadler fullname: Stadler, Julia-Christina – sequence: 2 givenname: Yassine surname: Belloum fullname: Belloum, Yassine – sequence: 3 givenname: Benjamin surname: Deitert fullname: Deitert, Benjamin – sequence: 4 givenname: Mark surname: Sementsov fullname: Sementsov, Mark – sequence: 5 givenname: Isabel surname: Heidrich fullname: Heidrich, Isabel – sequence: 6 givenname: Christoffer surname: Gebhardt fullname: Gebhardt, Christoffer – sequence: 7 givenname: Laura surname: Keller fullname: Keller, Laura – sequence: 8 givenname: Klaus surname: Pantel fullname: Pantel, Klaus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34815256$$D View this record in MEDLINE/PubMed https://hal.science/hal-04954580$$DView record in HAL |
BookMark | eNqFkc1u1DAUhS1URKeFRwBlCYsUX8eOHSEhRSmllUbtBtaW4zitkWMPdlKpb4_DlBHtpiv_3HOO7_V3go588Aah94DPAJj4jDEWJaOcnHXtdUmgBA7iFdoAq0TJKWVHaHPQHKOTlH7lIwPM3qDjigpghNUbdN4tMRo_F8oPxcUyL9EUnbPeauWKdrdzeTPb4FMRxkLP59dtYX1xNU2LD-WN18GF24e36PWoXDLvHtdT9PPi24_ustzefL_q2m2pGcBcVqrnHAbSN9wMhnKqCAUwozDAdY8VF2I0UA20oT3Fuh8FYabuMfSgDDF9dYq-7nN3Sz-ZQee-o3JyF-2k4oMMysqnFW_v5G24l03V8JqSHPBpH3D3zHbZbuV6h2nDKBP4HrL24-NjMfxeTJrlZJM2zilvwpIkqTE0Da0rnqUf_u_rkPzvm7OA7QU6hpSiGQ8SwHLFKVdUckUlM05JQK44s-_LM5-2818eeTzrXnD_AftIpN0 |
CitedBy_id | crossref_primary_10_3390_ijms24021294 crossref_primary_10_3390_cancers16244219 crossref_primary_10_1016_j_ajo_2024_10_012 crossref_primary_10_1038_s41591_023_02399_0 crossref_primary_10_1515_cclm_2023_1157 crossref_primary_10_1007_s12020_025_04194_y crossref_primary_10_1136_jitc_2024_010928 crossref_primary_10_3390_ijms26020861 crossref_primary_10_1016_j_drudis_2023_103540 crossref_primary_10_1080_14796694_2024_2376513 crossref_primary_10_1016_j_biopha_2023_115630 crossref_primary_10_3390_cancers16233919 crossref_primary_10_1016_j_acra_2024_03_019 crossref_primary_10_1515_medgen_2023_2049 crossref_primary_10_1007_s00384_024_04656_1 crossref_primary_10_1007_s00428_023_03558_x crossref_primary_10_3390_ijms24087577 crossref_primary_10_1007_s40291_024_00725_x crossref_primary_10_1007_s00432_024_06030_8 crossref_primary_10_1186_s12943_023_01844_5 crossref_primary_10_17650_1726_9784_2024_23_1_19_27 crossref_primary_10_3390_cancers16050964 crossref_primary_10_3390_bios12110989 crossref_primary_10_1111_1759_7714_15098 crossref_primary_10_3389_fimmu_2023_1229575 crossref_primary_10_1016_j_humgen_2024_201333 crossref_primary_10_1007_s10142_023_01181_2 crossref_primary_10_1007_s10544_025_00734_5 crossref_primary_10_1007_s10388_025_01116_9 crossref_primary_10_1002_cnr2_1782 crossref_primary_10_1002_cam4_70041 crossref_primary_10_1016_j_cej_2024_155345 crossref_primary_10_1186_s12885_023_11312_4 crossref_primary_10_1158_1078_0432_CCR_24_1883 crossref_primary_10_1038_s41435_024_00278_3 crossref_primary_10_1007_s10238_023_01052_x crossref_primary_10_1016_j_ejca_2024_113989 crossref_primary_10_1016_j_eururo_2023_06_007 crossref_primary_10_3390_cancers16162882 crossref_primary_10_3748_wjg_v30_i12_1680 crossref_primary_10_7759_cureus_43391 crossref_primary_10_1039_D3AY01615C crossref_primary_10_1158_1078_0432_CCR_23_0513 crossref_primary_10_1016_j_aca_2022_340421 crossref_primary_10_1016_j_annonc_2025_02_010 crossref_primary_10_1016_j_mcp_2024_101951 crossref_primary_10_3390_cancers14246115 crossref_primary_10_1016_j_jpi_2024_100408 crossref_primary_10_1016_j_urolonc_2024_08_003 crossref_primary_10_1136_jitc_2023_008028 crossref_primary_10_1158_0008_5472_CAN_22_1405 crossref_primary_10_1007_s12032_023_02228_x crossref_primary_10_3389_fonc_2024_1483454 crossref_primary_10_3390_cells13010019 crossref_primary_10_1093_oncolo_oyaf020 crossref_primary_10_3390_ijms23084164 crossref_primary_10_3390_ijms242316607 crossref_primary_10_1016_j_canlet_2024_217241 crossref_primary_10_1002_mco2_564 crossref_primary_10_1016_j_semcancer_2022_08_002 crossref_primary_10_1158_2326_6066_CIR_23_0708 crossref_primary_10_1200_EDBK_389650 crossref_primary_10_1016_j_tranon_2024_101883 crossref_primary_10_1136_jitc_2022_005344 crossref_primary_10_1186_s12943_024_02178_6 crossref_primary_10_1016_j_jmoldx_2023_06_014 crossref_primary_10_1016_j_snb_2024_135292 crossref_primary_10_1016_j_tranon_2023_101788 crossref_primary_10_1097_JS9_0000000000001372 crossref_primary_10_1016_j_intimp_2025_114052 crossref_primary_10_1016_j_critrevonc_2023_104120 crossref_primary_10_3389_fonc_2024_1398196 crossref_primary_10_1093_clinchem_hvad194 crossref_primary_10_1080_14737159_2023_2252739 crossref_primary_10_3390_cancers15153970 crossref_primary_10_3390_cancers14133275 crossref_primary_10_1016_j_cca_2023_117757 crossref_primary_10_2144_btn_2022_0029 crossref_primary_10_3390_cancers15051579 crossref_primary_10_1093_clinchem_hvad230 |
Cites_doi | 10.1016/j.molonc.2015.09.005 10.1158/0008-5472.CAN-19-2481 10.1136/jitc-2020-001297 10.15252/emmm.202012881 10.1093/annonc/mdx212 10.3390/cancers12071871 10.1158/1078-0432.CCR-19-3418 10.1158/1535-7163.MCT-18-0535 10.1136/jitc-2020-001504 10.1136/jitc-2020-000527 10.1056/NEJMoa1801005 10.1186/s12967-019-2051-8 10.1038/s41591-018-0136-1 10.1038/s41591-019-0561-9 10.1007/s40259-020-00425-y 10.1016/j.ejca.2017.10.029 10.1158/0008-5472.CAN-18-0074 10.1136/jitc-2020-001065 10.1016/j.molonc.2014.10.004 10.1158/1078-0432.CCR-19-3926 10.18632/oncotarget.26451 10.1158/1078-0432.CCR-15-1678 10.1158/2159-8290.CD-20-0047 10.1158/1078-0432.CCR-18-0143 10.1158/1078-0432.CCR-20-2251 10.1158/2159-8290.CD-17-0716 10.1038/s41571-018-0074-3 10.1002/advs.201903410 10.1158/1078-0432.CCR-19-1324 10.3390/jcm8071011 10.1200/JCO.19.03022 10.1016/j.ccell.2020.03.007 10.1016/j.ebiom.2016.06.032 10.1158/2159-8290.CD-20-0522 10.3233/KCA-170007 10.1038/s41588-020-00752-4 10.1038/nbt.3520 10.1016/S2213-2600(18)30284-4 10.21037/atm.2020.02.81 10.1038/s43018-019-0011-0 10.1038/s41467-018-05327-w 10.1158/0008-5472.CAN-18-1127 10.18632/oncotarget.25404 10.1158/1078-0432.CCR-17-1439 10.1038/nrc.2017.7 10.1056/NEJMoa1707447 10.1002/ijc.31878 10.3390/cancers11060835 10.1373/clinchem.2014.223677 10.1093/annonc/mdz075 10.1001/jamaoncol.2018.7098 10.1038/s41591-018-0101-z 10.1634/theoncologist.2018-0433 10.1002/cam4.2632 10.1186/s40425-019-0659-0 10.1038/nature22079 10.1038/s41586-021-03368-8 10.1007/s00259-017-3806-1 10.1038/s41586-018-0392-8 10.1186/s12885-018-4637-6 10.3390/jcm9123861 10.1038/s41591-018-0134-3 10.1038/ncomms9760 10.1038/s41588-018-0312-8 10.1111/1759-7714.12443 10.1016/j.esmoop.2021.100060 10.1016/j.molmed.2010.07.001 10.1093/annonc/mdx026 10.1158/2159-8290.CD-14-0863 10.1038/s41576-021-00329-9 10.1001/jamaoncol.2020.0237 10.1158/1078-0432.CCR-19-1372 10.1016/j.lungcan.2018.04.008 10.1200/PO.19.00174 10.18632/oncotarget.5788 10.1038/s41416-020-01047-5 10.2340/00015555-3080 10.1186/s13058-014-0421-y 10.1093/annonc/mdz048 10.1038/s41571-020-00457-x 10.1136/jitc-2020-001240 10.1158/1078-0432.CCR-17-2386 10.1158/1078-0432.CCR-18-0386 10.1126/sciadv.abc4308 10.1016/j.cell.2018.09.006 10.1038/nature22364 10.1136/jitc-2019-000147 10.1093/nar/gky251 10.1007/s00259-018-4211-0 10.1038/s41467-020-15047-9 10.1038/s41586-021-03642-9 10.1016/j.ebiom.2020.102731 10.1177/1758835919839928 10.1016/j.cell.2020.09.001 10.1080/20013078.2019.1710899 10.1016/j.lungcan.2018.04.001 10.1016/j.stem.2017.07.010 10.1038/s41467-021-21619-0 10.1093/annonc/mdx717 10.1016/j.critrevonc.2020.103112 10.1038/s41586-020-2095-1 10.1158/1078-0432.CCR-16-0613 10.1038/s41591-018-0157-9 10.1093/annonc/mdz116 10.1158/1078-0432.CCR-17-0231 10.1002/cncr.33118 10.1016/j.lungcan.2019.09.005 10.1158/1078-0432.CCR-20-3054 10.1080/2162402X.2018.1424675 10.1158/1078-0432.CCR-17-1553 10.1001/jamaoncol.2017.5332 10.1002/1878-0261.12546 10.3390/cancers12030738 10.3390/cancers12113486 10.1016/j.ejca.2017.09.004 10.1186/s12943-020-01274-7 10.1038/s43018-020-0096-5 10.1038/nm.3519 10.1016/j.jtho.2019.12.001 10.1126/scitranslmed.aaf6219 10.1056/NEJMoa1910836 10.1080/10428194.2018.1474463 10.1158/1078-0432.CCR-17-1341 |
ContentType | Journal Article |
Copyright | 2021 The Authors; Published by the American Association for Cancer Research. Distributed under a Creative Commons Attribution 4.0 International License 2021 The Authors; Published by the American Association for Cancer Research 2021 American Association for Cancer Research |
Copyright_xml | – notice: 2021 The Authors; Published by the American Association for Cancer Research. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 The Authors; Published by the American Association for Cancer Research 2021 American Association for Cancer Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
DOI | 10.1158/0008-5472.CAN-21-1718 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | ctDNA Analysis in Immuno-Oncology |
EISSN | 1538-7445 |
EndPage | 358 |
ExternalDocumentID | PMC9397642 oai_HAL_hal_04954580v1 34815256 10_1158_0008_5472_CAN_21_1718 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 834974 – fundername: ; grantid: 765492 – fundername: ; grantid: 031B0843D |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c511t-3ab771d2b97ede474a2411ef8e17cb0a788fe13d494b40cbf825e6b01b1ae2eb3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 18:38:11 EDT 2025 Fri May 09 12:17:26 EDT 2025 Tue Aug 05 10:18:29 EDT 2025 Thu Apr 03 06:57:22 EDT 2025 Tue Jul 01 01:24:19 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2021 The Authors; Published by the American Association for Cancer Research. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-3ab771d2b97ede474a2411ef8e17cb0a788fe13d494b40cbf825e6b01b1ae2eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 L. Keller and K. Pantel contributed as co-last authors of this article. J.-C. Stadler and Y. Belloum contributed as co-first authors of this article. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9397642 |
PMID | 34815256 |
PQID | 2601994637 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9397642 hal_primary_oai_HAL_hal_04954580v1 proquest_miscellaneous_2601994637 pubmed_primary_34815256 crossref_primary_10_1158_0008_5472_CAN_21_1718 crossref_citationtrail_10_1158_0008_5472_CAN_21_1718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2022 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Kim (2022082317101413200_bib89) 2018; 24 Fernandez-Cuesta (2022082317101413200_bib49) 2016; 10 Kalaora (2022082317101413200_bib120) 2021; 592 Rizvi (2022082317101413200_bib93) 2020; 6 Joseph (2022082317101413200_bib27) 2018; 24 Xi (2022082317101413200_bib67) 2016; 22 Guibert (2022082317101413200_bib114) 2018; 120 Tie (2022082317101413200_bib37) 2016; 8 Hojbjerg (2022082317101413200_bib45) 2019; 13 Cresswell (2022082317101413200_bib85) 2020; 11 Raja (2022082317101413200_bib123) 2018; 24 Hanna (2022082317101413200_bib3) 2020; 38 Newman (2022082317101413200_bib39) 2016; 34 Newman (2022082317101413200_bib38) 2014; 20 Valero (2022082317101413200_bib80) 2021; 53 Moding (2022082317101413200_bib40) 2020; 1 Duruisseaux (2022082317101413200_bib116) 2018; 6 Heidary (2022082317101413200_bib53) 2014; 16 Cabel (2022082317101413200_bib68) 2018; 15 Gandara (2022082317101413200_bib90) 2018; 24 Ladas (2022082317101413200_bib100) 2018; 46 Jia (2022082317101413200_bib42) 2020; 7 Sha (2022082317101413200_bib76) 2020; 10 Larkin (2022082317101413200_bib1) 2019; 381 Herbreteau (2022082317101413200_bib17) 2020; 12 Dudley (2022082317101413200_bib99) 2016; 22 Auslander (2022082317101413200_bib107) 2018; 24 Braune (2022082317101413200_bib22) 2020; 4 Frelaut (2022082317101413200_bib61) 2020; 34 Lee (2022082317101413200_bib12) 2017; 28 Nabet (2022082317101413200_bib32) 2020; 183 Tan (2022082317101413200_bib34) 2019; 30 Kang (2022082317101413200_bib66) 2017; 23 De Mattos-Arruda (2022082317101413200_bib9) 2021; 6 Wan (2022082317101413200_bib8) 2017; 17 Li (2022082317101413200_bib74) 2019; 8 Salipante (2022082317101413200_bib101) 2014; 60 Willis (2022082317101413200_bib102) 2019; 25 Maia (2022082317101413200_bib52) 2017; 1 Iijima (2022082317101413200_bib125) 2017; 86 Gray (2022082317101413200_bib16) 2015; 6 Gandhi (2022082317101413200_bib4) 2018; 378 Buchhalter (2022082317101413200_bib79) 2019; 144 Merino (2022082317101413200_bib82) 2020; 8 Khagi (2022082317101413200_bib92) 2017; 23 Parikh (2022082317101413200_bib86) 2019; 25 Cordonnier (2022082317101413200_bib110) 2020; 9 Passiglia (2022082317101413200_bib126) 2019; 11 Mouliere (2022082317101413200_bib63) 2021; 13 Georgiadis (2022082317101413200_bib98) 2019; 25 Poore (2022082317101413200_bib119) 2020; 579 Ignatiadis (2022082317101413200_bib7) 2021; 18 Chae (2022082317101413200_bib94) 2019; 24 Chen (2022082317101413200_bib111) 2018; 560 Chen (2022082317101413200_bib95) 2020; 8 Weiss (2022082317101413200_bib43) 2017; 23 Mair (2022082317101413200_bib118) 2019; 79 Zhang (2022082317101413200_bib29) 2020; 10 Du (2022082317101413200_bib50) 2018; 120 Lee (2022082317101413200_bib11) 2020; 26 Valpione (2022082317101413200_bib23) 2018; 88 Hu (2022082317101413200_bib87) 2018; 24 Jerby-Arnon (2022082317101413200_bib109) 2018; 175 Powles (2022082317101413200_bib41) 2021; 595 Jiang (2022082317101413200_bib108) 2018; 24 Jin (2022082317101413200_bib31) 2020; 19 Marusyk (2022082317101413200_bib84) 2020; 37 Chang (2022082317101413200_bib25) 2016; 10 Wong (2022082317101413200_bib24) 2017; 1 Janning (2022082317101413200_bib113) 2019; 11 Abbosh (2022082317101413200_bib19) 2017; 545 Cabel (2022082317101413200_bib69) 2017; 28 Ellis (2022082317101413200_bib5) 2021; 22 McEvoy (2022082317101413200_bib15) 2018; 18 Jensen (2022082317101413200_bib44) 2019; 18 Brinker (2022082317101413200_bib117) 2020; 80 Zhang (2022082317101413200_bib48) 2020; 126 Seremet (2022082317101413200_bib14) 2019; 17 Wang (2022082317101413200_bib46) 2017; 8 Marsavela (2022082317101413200_bib13) 2020; 26 Hossain (2022082317101413200_bib65) 2019; 60 Warburton (2022082317101413200_bib72) 2020; 12 Lee (2022082317101413200_bib33) 2019; 30 Avanzini (2022082317101413200_bib21) 2020; 6 Murtaza (2022082317101413200_bib83) 2015; 6 Hélias-Rodzewicz (2022082317101413200_bib75) 2020; 8 Vaddepally (2022082317101413200_bib2) 2020; 12 Samstein (2022082317101413200_bib81) 2019; 51 Hayes (2022082317101413200_bib10) 2015; 9 Wang (2022082317101413200_bib104) 2020; 8 Guibert (2022082317101413200_bib30) 2019; 137 Alama (2022082317101413200_bib124) 2019; 8 Connors (2022082317101413200_bib106) 2020; 156 Ricciuti (2022082317101413200_bib60) 2021; 9 Wang (2022082317101413200_bib96) 2020; 15 Anagnostou (2022082317101413200_bib55) 2019; 79 Wang (2022082317101413200_bib91) 2019; 5 Váraljai (2022082317101413200_bib58) 2020; 3 Chaudhuri (2022082317101413200_bib20) 2017; 7 Nong (2022082317101413200_bib51) 2018; 9 Kaira (2022082317101413200_bib54) 2018; 45 Yakirevich (2022082317101413200_bib78) 2020; 8 Coombs (2022082317101413200_bib88) 2017; 21 Pantel (2022082317101413200_bib6) 2010; 16 Goldberg (2022082317101413200_bib57) 2018; 24 Keller (2022082317101413200_bib115) 2021; 124 Strickler (2022082317101413200_bib77) 2021; 27 Forschner (2022082317101413200_bib18) 2019; 7 Herbreteau (2022082317101413200_bib56) 2020; 9 Herbreteau (2022082317101413200_bib121) 2018; 9 Leprieur (2022082317101413200_bib47) 2018; 7 Hellmann (2022082317101413200_bib71) 2020; 26 Lee (2022082317101413200_bib62) 2018; 4 Bratman (2022082317101413200_bib59) 2020; 1 Ito (2022082317101413200_bib26) 2019; 46 Keller (2022082317101413200_bib122) 2019; 99 Neelapu (2022082317101413200_bib64) 2017; 377 McEvoy (2022082317101413200_bib35) 2019; 10 Shi (2022082317101413200_bib73) 2020; 54 Luchini (2022082317101413200_bib105) 2019; 30 Yamauchi (2022082317101413200_bib112) 2021; 12 Huang (2022082317101413200_bib28) 2017; 545 Llosa (2022082317101413200_bib97) 2015; 5 Barata (2022082317101413200_bib103) 2020; 8 Lee (2022082317101413200_bib36) 2018; 29 Marsavela (2022082317101413200_bib70) 2021 |
References_xml | – volume: 10 start-page: 157 year: 2016 ident: 2022082317101413200_bib25 article-title: Sensitivity of plasma BRAFmutant and NRASmutant cell-free DNA assays to detect metastatic melanoma in patients with low RECIST scores and non-RECIST disease progression publication-title: Mol Oncol doi: 10.1016/j.molonc.2015.09.005 – volume: 80 start-page: 1118 year: 2020 ident: 2022082317101413200_bib117 article-title: Mitochondrial haplotype of the host stromal microenvironment alters metastasis in a non-cell autonomous manner publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-19-2481 – volume: 8 start-page: e001297 year: 2020 ident: 2022082317101413200_bib104 article-title: Plasma-based microsatellite instability detection strategy to guide immune checkpoint blockade treatment publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-001297 – volume: 13 start-page: e12881 year: 2021 ident: 2022082317101413200_bib63 article-title: Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients publication-title: EMBO Mol Med doi: 10.15252/emmm.202012881 – volume: 28 start-page: 1996 year: 2017 ident: 2022082317101413200_bib69 article-title: Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study publication-title: Ann Oncol doi: 10.1093/annonc/mdx212 – volume: 12 start-page: 1871 year: 2020 ident: 2022082317101413200_bib17 article-title: Circulating tumour DNA is an independent prognostic biomarker for survival in metastatic BRAF or NRAS-mutated melanoma patients publication-title: Cancers doi: 10.3390/cancers12071871 – volume: 26 start-page: 2849 year: 2020 ident: 2022082317101413200_bib71 article-title: Circulating tumor DNA analysis to assess risk of progression after long-term response to PD-(L)1 blockade in NSCLC publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-3418 – volume: 18 start-page: 448 year: 2019 ident: 2022082317101413200_bib44 article-title: Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in cancer patients publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-18-0535 – volume: 9 start-page: e001504 year: 2021 ident: 2022082317101413200_bib60 article-title: Early publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-001504 – volume: 8 start-page: e000527 year: 2020 ident: 2022082317101413200_bib75 article-title: Sequential ctDNA whole-exome sequencing in advanced lung adenocarcinoma with initial durable tumor response on immune checkpoint inhibitor and late progression publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-000527 – volume: 378 start-page: 2078 year: 2018 ident: 2022082317101413200_bib4 article-title: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1801005 – volume: 17 start-page: 303 year: 2019 ident: 2022082317101413200_bib14 article-title: Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy publication-title: J Transl Med doi: 10.1186/s12967-019-2051-8 – volume: 24 start-page: 1550 year: 2018 ident: 2022082317101413200_bib108 article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response publication-title: Nat Med doi: 10.1038/s41591-018-0136-1 – year: 2021 ident: 2022082317101413200_bib70 article-title: Detection of clinical progression through plasma ctDNA in metastatic melanoma patients: a comparison to radiological progression publication-title: Br J Cancer – volume: 25 start-page: 1415 year: 2019 ident: 2022082317101413200_bib86 article-title: Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers publication-title: Nat Med doi: 10.1038/s41591-019-0561-9 – volume: 34 start-page: 463 year: 2020 ident: 2022082317101413200_bib61 article-title: Pseudoprogression and hyperprogression as new forms of response to immunotherapy publication-title: BioDrugs doi: 10.1007/s40259-020-00425-y – volume: 88 start-page: 1 year: 2018 ident: 2022082317101413200_bib23 article-title: Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients publication-title: Eur J Cancer doi: 10.1016/j.ejca.2017.10.029 – volume: 79 start-page: 220 year: 2019 ident: 2022082317101413200_bib118 article-title: Measurement of plasma cell-free mitochondrial tumor dna improves detection of glioblastoma in patient-derived orthotopic xenograft models publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0074 – volume: 8 start-page: e001065 year: 2020 ident: 2022082317101413200_bib103 article-title: Clinical activity of pembrolizumab in metastatic prostate cancer with microsatellite instability high (MSI-H) detected by circulating tumor DNA publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-001065 – volume: 9 start-page: 960 year: 2015 ident: 2022082317101413200_bib10 article-title: Biomarker validation and testing publication-title: Mol Oncol doi: 10.1016/j.molonc.2014.10.004 – volume: 26 start-page: 4064 year: 2020 ident: 2022082317101413200_bib11 article-title: Longitudinal monitoring of ctDNA in patients with melanoma and brain metastases treated with immune checkpoint inhibitors publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-3926 – volume: 10 start-page: 113 year: 2019 ident: 2022082317101413200_bib35 article-title: Monitoring melanoma recurrence with circulating tumor DNA: a proof of concept from three case studies publication-title: Oncotarget doi: 10.18632/oncotarget.26451 – volume: 22 start-page: 813 year: 2016 ident: 2022082317101413200_bib99 article-title: Microsatellite instability as a biomarker for PD-1 blockade publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-1678 – volume: 10 start-page: 1842 year: 2020 ident: 2022082317101413200_bib29 article-title: Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-0047 – volume: 24 start-page: 4437 year: 2018 ident: 2022082317101413200_bib87 article-title: False-positive plasma genotyping due to clonal hematopoiesis publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-0143 – volume: 26 start-page: 5926 year: 2020 ident: 2022082317101413200_bib13 article-title: Circulating tumor DNA predicts outcome from first-, but not second-line treatment and identifies melanoma patients who may benefit from combination immunotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-2251 – volume: 7 start-page: 1394 year: 2017 ident: 2022082317101413200_bib20 article-title: Early Detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-0716 – volume: 15 start-page: 639 year: 2018 ident: 2022082317101413200_bib68 article-title: Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-018-0074-3 – volume: 7 start-page: 1903410 year: 2020 ident: 2022082317101413200_bib42 article-title: Tracking neoantigens by personalized circulating tumor DNA sequencing during checkpoint blockade immunotherapy in non-small cell lung cancer publication-title: Adva Sci doi: 10.1002/advs.201903410 – volume: 25 start-page: 7035 year: 2019 ident: 2022082317101413200_bib102 article-title: Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-1324 – volume: 8 start-page: 1011 year: 2019 ident: 2022082317101413200_bib124 article-title: Prognostic relevance of circulating tumor cells and circulating cell-free DNA association in metastatic non-small cell lung cancer treated with nivolumab publication-title: J Clin Med doi: 10.3390/jcm8071011 – volume: 38 start-page: 1608 year: 2020 ident: 2022082317101413200_bib3 article-title: Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update publication-title: J Clin Oncol doi: 10.1200/JCO.19.03022 – volume: 37 start-page: 471 year: 2020 ident: 2022082317101413200_bib84 article-title: Heterogeneity: The rosetta stone of therapy resistance publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.03.007 – volume: 10 start-page: 117 year: 2016 ident: 2022082317101413200_bib49 article-title: Identification of circulating tumor DNA for the early detection of small-cell lung cancer publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.06.032 – volume: 10 start-page: 1808 year: 2020 ident: 2022082317101413200_bib76 article-title: Tumor mutational burden as a predictive biomarker in solid tumors publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-0522 – volume: 1 start-page: 1 year: 2017 ident: 2022082317101413200_bib24 article-title: Circulating tumor DNA analysis and functional imaging provide complementary approaches for comprehensive disease monitoring in metastatic melanoma publication-title: JCO Prec Oncol – volume: 1 start-page: 65 year: 2017 ident: 2022082317101413200_bib52 article-title: Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden publication-title: Kidney Cancer doi: 10.3233/KCA-170007 – volume: 53 start-page: 11 year: 2021 ident: 2022082317101413200_bib80 article-title: The association between tumor mutational burden and prognosis is dependent on treatment context publication-title: Nat Genet doi: 10.1038/s41588-020-00752-4 – volume: 34 start-page: 547 year: 2016 ident: 2022082317101413200_bib39 article-title: Integrated digital error suppression for improved detection of circulating tumor DNA publication-title: Nat Biotechnol doi: 10.1038/nbt.3520 – volume: 6 start-page: 771 year: 2018 ident: 2022082317101413200_bib116 article-title: Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(18)30284-4 – volume: 8 start-page: 269 year: 2020 ident: 2022082317101413200_bib78 article-title: Tumor mutational burden and immune signatures interplay in renal cell carcinoma publication-title: Ann Transl Med doi: 10.21037/atm.2020.02.81 – volume: 1 start-page: 176 year: 2020 ident: 2022082317101413200_bib40 article-title: Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer publication-title: Nat Cancer doi: 10.1038/s43018-019-0011-0 – volume: 9 start-page: 3114 year: 2018 ident: 2022082317101413200_bib51 article-title: Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer publication-title: Nat Commun doi: 10.1038/s41467-018-05327-w – volume: 79 start-page: 1214 year: 2019 ident: 2022082317101413200_bib55 article-title: Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-1127 – volume: 9 start-page: 25265 year: 2018 ident: 2022082317101413200_bib121 article-title: Quantitative monitoring of circulating tumor DNA predicts response of cutaneous metastatic melanoma to anti-PD1 immunotherapy publication-title: Oncotarget doi: 10.18632/oncotarget.25404 – volume: 23 start-page: 5729 year: 2017 ident: 2022082317101413200_bib92 article-title: Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-1439 – volume: 17 start-page: 223 year: 2017 ident: 2022082317101413200_bib8 article-title: Liquid biopsies come of age: towards implementation of circulating tumour DNA publication-title: Nat Rev Cancer doi: 10.1038/nrc.2017.7 – volume: 377 start-page: 2531 year: 2017 ident: 2022082317101413200_bib64 article-title: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1707447 – volume: 144 start-page: 848 year: 2019 ident: 2022082317101413200_bib79 article-title: Size matters: dissecting key parameters for panel-based tumor mutational burden analysis publication-title: Int J Cancer doi: 10.1002/ijc.31878 – volume: 11 start-page: 835 year: 2019 ident: 2022082317101413200_bib113 article-title: Determination of PD-L1 expression in circulating tumor cells of NSCLC patients and correlation with response to PD-1/PD-L1 inhibitors publication-title: Cancers doi: 10.3390/cancers11060835 – volume: 60 start-page: 1192 year: 2014 ident: 2022082317101413200_bib101 article-title: Microsatellite instability detection by next generation sequencing publication-title: Clin Chem doi: 10.1373/clinchem.2014.223677 – volume: 30 start-page: 815 year: 2019 ident: 2022082317101413200_bib33 article-title: Pre-operative ctDNA predicts survival in high-risk stage III cutaneous melanoma patients publication-title: Ann Oncol doi: 10.1093/annonc/mdz075 – volume: 5 start-page: 696 year: 2019 ident: 2022082317101413200_bib91 article-title: Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small Cell lung cancer with use of a next-generation sequencing cancer gene panel publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2018.7098 – volume: 24 start-page: 1449 year: 2018 ident: 2022082317101413200_bib89 article-title: Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer publication-title: Nat Med doi: 10.1038/s41591-018-0101-z – volume: 24 start-page: 820 year: 2019 ident: 2022082317101413200_bib94 article-title: Clinical implications of circulating tumor DNA tumor mutational burden (ctDNA TMB) in non-small cell lung cancer publication-title: Oncologist doi: 10.1634/theoncologist.2018-0433 – volume: 8 start-page: 7669 year: 2019 ident: 2022082317101413200_bib74 article-title: Serial ultra-deep sequencing of circulating tumor DNA reveals the clonal evolution in non-small cell lung cancer patients treated with anti-PD1 immunotherapy publication-title: Cancer Med doi: 10.1002/cam4.2632 – volume: 7 start-page: 180 year: 2019 ident: 2022082317101413200_bib18 article-title: Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma: results of a prospective biomarker study publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0659-0 – volume: 545 start-page: 60 year: 2017 ident: 2022082317101413200_bib28 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature doi: 10.1038/nature22079 – volume: 592 start-page: 138 year: 2021 ident: 2022082317101413200_bib120 article-title: Identification of bacteria-derived HLA-bound peptides in melanoma publication-title: Nature doi: 10.1038/s41586-021-03368-8 – volume: 45 start-page: 56 year: 2018 ident: 2022082317101413200_bib54 article-title: Metabolic activity by (18)F-FDG-PET/CT is predictive of early response after nivolumab in previously treated NSCLC publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-017-3806-1 – volume: 560 start-page: 382 year: 2018 ident: 2022082317101413200_bib111 article-title: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response publication-title: Nature doi: 10.1038/s41586-018-0392-8 – volume: 18 start-page: 726 year: 2018 ident: 2022082317101413200_bib15 article-title: Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients publication-title: BMC Cancer doi: 10.1186/s12885-018-4637-6 – volume: 9 start-page: 3861 year: 2020 ident: 2022082317101413200_bib56 article-title: Circulating tumor DNA as a prognostic determinant in small cell lung cancer patients receiving atezolizumab publication-title: J Clin Med doi: 10.3390/jcm9123861 – volume: 24 start-page: 1441 year: 2018 ident: 2022082317101413200_bib90 article-title: Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab publication-title: Nat Med doi: 10.1038/s41591-018-0134-3 – volume: 6 start-page: 8760 year: 2015 ident: 2022082317101413200_bib83 article-title: Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer publication-title: Nat Commun doi: 10.1038/ncomms9760 – volume: 51 start-page: 202 year: 2019 ident: 2022082317101413200_bib81 article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types publication-title: Nat Genet doi: 10.1038/s41588-018-0312-8 – volume: 8 start-page: 312 year: 2017 ident: 2022082317101413200_bib46 article-title: Analyzing epidermal growth factor receptor mutation status changes in advanced non-small-cell lung cancer at different sampling time-points of blood within one day publication-title: Thoracic Cancer doi: 10.1111/1759-7714.12443 – volume: 6 start-page: 100060 year: 2021 ident: 2022082317101413200_bib9 article-title: How to use liquid biopsies to treat patients with cancer publication-title: ESMO Open doi: 10.1016/j.esmoop.2021.100060 – volume: 16 start-page: 398 year: 2010 ident: 2022082317101413200_bib6 article-title: Circulating tumour cells in cancer patients: challenges and perspectives publication-title: Trends Mol Med doi: 10.1016/j.molmed.2010.07.001 – volume: 28 start-page: 1130 year: 2017 ident: 2022082317101413200_bib12 article-title: Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma publication-title: Ann Oncol doi: 10.1093/annonc/mdx026 – volume: 5 start-page: 43 year: 2015 ident: 2022082317101413200_bib97 article-title: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-14-0863 – volume: 22 start-page: 427 year: 2021 ident: 2022082317101413200_bib5 article-title: Genetic engineering of T cells for immunotherapy publication-title: Nat Rev Genet doi: 10.1038/s41576-021-00329-9 – volume: 6 start-page: 661 year: 2020 ident: 2022082317101413200_bib93 article-title: Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2020.0237 – volume: 25 start-page: 7024 year: 2019 ident: 2022082317101413200_bib98 article-title: Noninvasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-1372 – volume: 120 start-page: 113 year: 2018 ident: 2022082317101413200_bib50 article-title: Genomic alterations of plasma cell-free DNAs in small cell lung cancer and their clinical relevance publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.04.008 – volume: 4 start-page: 20 year: 2020 ident: 2022082317101413200_bib22 article-title: Circulating tumor DNA allows early treatment monitoring in BRAF- and NRAS-mutant malignant melanoma publication-title: JCO Precis Oncol doi: 10.1200/PO.19.00174 – volume: 6 start-page: 42008 year: 2015 ident: 2022082317101413200_bib16 article-title: Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma publication-title: Oncotarget doi: 10.18632/oncotarget.5788 – volume: 3 start-page: 1 year: 2020 ident: 2022082317101413200_bib58 article-title: Application of circulating cell-free tumor DNA profiles for therapeutic monitoring and outcome prediction in genetically heterogeneous metastatic melanoma publication-title: JCO Precis Oncol – volume: 124 start-page: 345 year: 2021 ident: 2022082317101413200_bib115 article-title: Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond publication-title: Br J Cancer doi: 10.1038/s41416-020-01047-5 – volume: 99 start-page: 206 year: 2019 ident: 2022082317101413200_bib122 article-title: Early circulating tumour DNA variations predict tumour response in melanoma patients treated with immunotherapy publication-title: Acta Derm Venereol doi: 10.2340/00015555-3080 – volume: 16 start-page: 421 year: 2014 ident: 2022082317101413200_bib53 article-title: The dynamic range of circulating tumor DNA in metastatic breast cancer publication-title: Breast Cancer Res doi: 10.1186/s13058-014-0421-y – volume: 30 start-page: 804 year: 2019 ident: 2022082317101413200_bib34 article-title: Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA publication-title: Ann Oncol doi: 10.1093/annonc/mdz048 – volume: 18 start-page: 297 year: 2021 ident: 2022082317101413200_bib7 article-title: Liquid biopsy enters the clinic - implementation issues and future challenges publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-020-00457-x – volume: 8 start-page: e001240 year: 2020 ident: 2022082317101413200_bib95 article-title: Camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in patients with advanced biliary tract cancer: a single-arm, open-label, phase II trial publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-001240 – volume: 24 start-page: 4960 year: 2018 ident: 2022082317101413200_bib27 article-title: Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-2386 – volume: 24 start-page: 6212 year: 2018 ident: 2022082317101413200_bib123 article-title: Early reduction in ctDNA predicts survival in patients with lung and bladder cancer treated with durvalumab publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-0386 – volume: 6 start-page: eabc4308 year: 2020 ident: 2022082317101413200_bib21 article-title: A mathematical model of ctDNA shedding predicts tumor detection size publication-title: Sci Adv doi: 10.1126/sciadv.abc4308 – volume: 175 start-page: 984 year: 2018 ident: 2022082317101413200_bib109 article-title: A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2018.09.006 – volume: 545 start-page: 446 year: 2017 ident: 2022082317101413200_bib19 article-title: Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution publication-title: Nature doi: 10.1038/nature22364 – volume: 8 start-page: e000147 year: 2020 ident: 2022082317101413200_bib82 article-title: Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the friends of cancer research TMB harmonization project publication-title: J Immunother Cancer doi: 10.1136/jitc-2019-000147 – volume: 46 start-page: e74 year: 2018 ident: 2022082317101413200_bib100 article-title: Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies publication-title: Nucleic Acids Res doi: 10.1093/nar/gky251 – volume: 46 start-page: 930 year: 2019 ident: 2022082317101413200_bib26 article-title: Prognostic value of baseline metabolic tumor volume measured on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in melanoma patients treated with ipilimumab therapy publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-018-4211-0 – volume: 11 start-page: 1446 year: 2020 ident: 2022082317101413200_bib85 article-title: Mapping the breast cancer metastatic cascade onto ctDNA using genetic and epigenetic clonal tracking publication-title: Nat Commun doi: 10.1038/s41467-020-15047-9 – volume: 595 start-page: 432 year: 2021 ident: 2022082317101413200_bib41 article-title: ctDNA guiding adjuvant immunotherapy in urothelial carcinoma publication-title: Nature doi: 10.1038/s41586-021-03642-9 – volume: 54 start-page: 102731 year: 2020 ident: 2022082317101413200_bib73 article-title: Circulating tumor DNA predicts response in Chinese patients with relapsed or refractory classical Hodgkin lymphoma treated with sintilimab publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102731 – volume: 11 start-page: 1758835919839928 year: 2019 ident: 2022082317101413200_bib126 article-title: Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients publication-title: Ther Adv Med Oncol doi: 10.1177/1758835919839928 – volume: 183 start-page: 363 year: 2020 ident: 2022082317101413200_bib32 article-title: Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition publication-title: Cell doi: 10.1016/j.cell.2020.09.001 – volume: 9 start-page: 1710899 year: 2020 ident: 2022082317101413200_bib110 article-title: Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients publication-title: J Extracell Vesicles doi: 10.1080/20013078.2019.1710899 – volume: 120 start-page: 108 year: 2018 ident: 2022082317101413200_bib114 article-title: PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.04.001 – volume: 21 start-page: 374 year: 2017 ident: 2022082317101413200_bib88 article-title: Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.07.010 – volume: 12 start-page: 1402 year: 2021 ident: 2022082317101413200_bib112 article-title: T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors publication-title: Nat Commun doi: 10.1038/s41467-021-21619-0 – volume: 29 start-page: 490 year: 2018 ident: 2022082317101413200_bib36 article-title: Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma publication-title: Ann Oncol doi: 10.1093/annonc/mdx717 – volume: 156 start-page: 103112 year: 2020 ident: 2022082317101413200_bib106 article-title: International liquid biopsy standardization alliance white paper publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2020.103112 – volume: 579 start-page: 567 year: 2020 ident: 2022082317101413200_bib119 article-title: Microbiome analyses of blood and tissues suggest cancer diagnostic approach publication-title: Nature doi: 10.1038/s41586-020-2095-1 – volume: 22 start-page: 5480 year: 2016 ident: 2022082317101413200_bib67 article-title: Circulating tumor DNA as an early indicator of response to T-cell transfer immunotherapy in metastatic melanoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-0613 – volume: 24 start-page: 1545 year: 2018 ident: 2022082317101413200_bib107 article-title: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma publication-title: Nat Med doi: 10.1038/s41591-018-0157-9 – volume: 30 start-page: 1232 year: 2019 ident: 2022082317101413200_bib105 article-title: ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach publication-title: Ann Oncol doi: 10.1093/annonc/mdz116 – volume: 23 start-page: 5074 year: 2017 ident: 2022082317101413200_bib43 article-title: Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-0231 – volume: 126 start-page: 4473 year: 2020 ident: 2022082317101413200_bib48 article-title: Association between circulating tumor DNA burden and disease burden in patients with ALK-positive lung cancer publication-title: Cancer doi: 10.1002/cncr.33118 – volume: 137 start-page: 1 year: 2019 ident: 2022082317101413200_bib30 article-title: Targeted sequencing of plasma cell-free DNA to predict response to PD1 inhibitors in advanced non-small cell lung cancer publication-title: Lung Cancer doi: 10.1016/j.lungcan.2019.09.005 – volume: 27 start-page: 1236 year: 2021 ident: 2022082317101413200_bib77 article-title: Tumor mutational burden as a predictor of immunotherapy response: is more always better? publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-3054 – volume: 7 start-page: e1424675 year: 2018 ident: 2022082317101413200_bib47 article-title: Circulating tumor DNA evaluated by next-generation sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1424675 – volume: 23 start-page: 6856 year: 2017 ident: 2022082317101413200_bib66 article-title: Circulating Cell-free DNA for metastatic cervical cancer detection, genotyping, and monitoring publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-1553 – volume: 4 start-page: 717 year: 2018 ident: 2022082317101413200_bib62 article-title: Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2017.5332 – volume: 13 start-page: 2098 year: 2019 ident: 2022082317101413200_bib45 article-title: Intra-individual variation of circulating tumour DNA in lung cancer patients publication-title: Mol Oncol doi: 10.1002/1878-0261.12546 – volume: 12 start-page: 738 year: 2020 ident: 2022082317101413200_bib2 article-title: Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence publication-title: Cancers doi: 10.3390/cancers12030738 – volume: 12 start-page: 3486 year: 2020 ident: 2022082317101413200_bib72 article-title: Circulating tumour DNA in advanced melanoma patients ceasing PD1 inhibition in the absence of disease progression publication-title: Cancers doi: 10.3390/cancers12113486 – volume: 86 start-page: 349 year: 2017 ident: 2022082317101413200_bib125 article-title: Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer publication-title: Eur J Cancer doi: 10.1016/j.ejca.2017.09.004 – volume: 19 start-page: 154 year: 2020 ident: 2022082317101413200_bib31 article-title: The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors publication-title: Mol Cancer doi: 10.1186/s12943-020-01274-7 – volume: 1 start-page: 873 year: 2020 ident: 2022082317101413200_bib59 article-title: Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab publication-title: Nat Cancer doi: 10.1038/s43018-020-0096-5 – volume: 20 start-page: 548 year: 2014 ident: 2022082317101413200_bib38 article-title: An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage publication-title: Nat Med doi: 10.1038/nm.3519 – volume: 15 start-page: 556 year: 2020 ident: 2022082317101413200_bib96 article-title: Allele frequency-adjusted blood-based tumor mutational burden as a predictor of overall survival for patients with NSCLC treated with PD-(L)1 inhibitors publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2019.12.001 – volume: 8 start-page: 346ra92 year: 2016 ident: 2022082317101413200_bib37 article-title: Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf6219 – volume: 381 start-page: 1535 year: 2019 ident: 2022082317101413200_bib1 article-title: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1910836 – volume: 60 start-page: 503 year: 2019 ident: 2022082317101413200_bib65 article-title: Circulating tumor DNA assessment in patients with diffuse large B-cell lymphoma following CAR T-cell therapy publication-title: Leuk Lymphoma doi: 10.1080/10428194.2018.1474463 – volume: 24 start-page: 1872 year: 2018 ident: 2022082317101413200_bib57 article-title: Early assessment of lung cancer immunotherapy response via circulating tumor DNA publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-1341 |
SSID | ssj0005105 |
Score | 2.6431406 |
SecondaryResourceType | review_article |
Snippet | Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in... Abstract Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 349 |
SubjectTerms | Biomarkers, Tumor - genetics Circulating Tumor DNA - metabolism Humans Immunotherapy - methods Life Sciences Review |
Title | Current and Future Clinical Applications of ctDNA in Immuno-Oncology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34815256 https://www.proquest.com/docview/2601994637 https://hal.science/hal-04954580 https://pubmed.ncbi.nlm.nih.gov/PMC9397642 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IO6UmwLibXKJEye2H0vLVC4tIDZpPEWx66pFXTJt3R74d_wzjm9t0k0C9hJVaWynPl-Pzzk-5zNCb0AtUiVM3VauNaZTWmKucoVFGpfGvC5jSzw_nuSjI_rxODvudH43spYuVrKnfl1bV3ITqcI9kKupkv0Pya47hRvwGeQLV5AwXP9JxoFcyQS_Dyw5yP4gVDr2GzvTNnd8NZz0TXTjg6kIqfGXSm0i6huqAqXP9j0B0Nzu8LpUDatKlsteI3AAZurUlxGaIusSO54Cfxx3qP2p3TnKP8BGb-zgD7WpfLb6_52ufpYnizVGv9t45Xl92aok8nEJcGnjdo5H2HBqwMxmTvqfEhILW8qZ44y6k3x6eqOPGXWMk0Fh86QBzLShfVPHfuoX8tRxwl9dIzLukirdaL1Bf4ITggkjredB1KcnFjimVjlLsi3GbmsDfB0PhLHoKFgBtxPwVIyq_fRtQ1if-SzaMJovIoN3eHvtG-yh3TBcy1K6NTd5uledoO1c3oZxdHgX3fFeTdR3EL2HOrq6j3bHPm_jARp6pEaA1MghNQpIjZpIjepZZJEaLapoC6kP0dHB-8PBCPvzO7ACM36F01IyRqaJFExPNWW0BHOR6BnXhCkZl4zzmSbplAoqaazkjCeZzmVMJCl1omX6CO1UdaWfoIiJXAjJaKKIoAI6pjMJngxXTHMBK3QX0TBXhfLk9uaMlWVhndyMmyQLXpjZLmC2i4QUZra7qLdudurYXf7W4DUIYv2s4WYf9T8X5h642mYTOr4kXfQqyKkAZW124MpK1xfnheHvE4LmKeuix05u676C2LuItSTaGqz9TbWYW0J4D8GnN275DO1t_sLP0c7q7EK_AGN7JV9aOP8BoYLP-g |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+Future+Clinical+Applications+of+ctDNA+in+Immuno-Oncology&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Stadler%2C+Julia-Christina&rft.au=Belloum%2C+Yassine&rft.au=Deitert%2C+Benjamin&rft.au=Sementsov%2C+Mark&rft.date=2022-02-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=82&rft.issue=3&rft.spage=349&rft.epage=358&rft_id=info:doi/10.1158%2F0008-5472.CAN-21-1718&rft_id=info%3Apmid%2F34815256&rft.externalDocID=PMC9397642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |