Adaptation of restoration target with climate change: the case of a coastal peatland

As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions....

Full description

Saved in:
Bibliographic Details
Published inBotany Vol. 98; no. 8; pp. 439 - 448
Main Authors Guêné-Nanchen, Mélina, D’Amour, Noémie, Rochefort, Line
Format Journal Article
LanguageEnglish
Published 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 NRC Research Press 01.08.2020
Subjects
Online AccessGet full text
ISSN1916-2790
1916-2804
1916-2804
DOI10.1139/cjb-2020-0050

Cover

Loading…
Abstract As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH 4 + ). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities.
AbstractList As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and N[H.sup.+.sub.4]). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. Key words: peatland restoration, salt marsh, climate change, seawater contamination, spontaneous revegetation. Avec la montee du niveau des mers prevue avec les changements climatiques, les tourbieres extraites en zone cotiere sont vulnerables a l'intrusion d'eau salee. La contamination par l'eau salee peut nuire a la recolonisation par les plantes typiques des bogs (p. ex. : sphaignes, ericacees) generalement intolerantes aux conditions salines. La recolonisation vegetale spontanee a ete etudiee dans un bog ou les activites d'extraction de la tourbe ont cesse 27 ans auparavant et qui a ete contamine par l'eau de mer a travers le temps, au Nouveau-Brunswick (Est du Canada). Cette etude visait (i) a evaluer la regeneration vegetale sur des sols organiques sales, mais toujours acides; et (ii) a etablir un lien entre la recolonisation des plantes et les conditions environnementales, notamment les proprietes chimiques du sol. Des sept communautes de plantes retrouvees dans la tourbiere contaminee par l'eau de mer, aucune n'etait typique des bogs et les sphaignes y etaient peu presentes. Les communautes vegetales et les proprietes chimiques etaient plutot representatives d'un ecosysteme de marais sale (c.-a-d., Carex paleacea, Sporobolus michauxianus, Myrica gale; pH neutre et riche en elements nutritifs, notamment P, Mg et N[H.sup.+.sub.4]). Une faible recolonisation spontanee etait associee avec des conditions chimiques arides (c.-a-d., pH acide, conductivite electrique elevee, faible contenu en elements nutritifs). Considerant les facteurs aggravants qui persisteront avec les changements climatiques, la restauration des tourbieres cotieres contaminees par l'eau salee comme mesure de gestion adaptative devrait viser a retablir un marais sale, puisque la vegetalisation spontanee et les conditions chimiques ne permettent manifestement pas le retablissement de plantes typiques des tourbieres. Mots-cles: restauration de tourbieres, marais sale, changement climatique, contamination par l'eau de mer, vegetalisation spontanee.
As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH 4 + ). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities.
As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH₄⁺). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities.
As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and N[H.sup.+.sub.4]). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities.
As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH 4 + ). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities.
Abstract_FL Avec la montée du niveau des mers prévue avec les changements climatiques, les tourbières extraites en zone côtière sont vulnérables à l’intrusion d’eau salée. La contamination par l’eau salée peut nuire à la recolonisation par les plantes typiques des bogs (p. ex. : sphaignes, éricacées) généralement intolérantes aux conditions salines. La recolonisation végétale spontanée a été étudiée dans un bog où les activités d’extraction de la tourbe ont cessé 27 ans auparavant et qui a été contaminé par l’eau de mer à travers le temps, au Nouveau-Brunswick (Est du Canada). Cette étude visait (i) à évaluer la régénération végétale sur des sols organiques salés, mais toujours acides; et (ii) à établir un lien entre la recolonisation des plantes et les conditions environnementales, notamment les propriétés chimiques du sol. Des sept communautés de plantes retrouvées dans la tourbière contaminée par l’eau de mer, aucune n’était typique des bogs et les sphaignes y étaient peu présentes. Les communautés végétales et les propriétés chimiques étaient plutôt représentatives d’un écosystème de marais salé (c.-à-d., Carex paleacea, Sporobolus michauxianus, Myrica gale; pH neutre et riche en éléments nutritifs, notamment P, Mg et NH 4 + ). Une faible recolonisation spontanée était associée avec des conditions chimiques arides (c.-à-d., pH acide, conductivité électrique élevée, faible contenu en éléments nutritifs). Considérant les facteurs aggravants qui persisteront avec les changements climatiques, la restauration des tourbières côtières contaminées par l’eau salée comme mesure de gestion adaptative devrait viser à rétablir un marais salé, puisque la végétalisation spontanée et les conditions chimiques ne permettent manifestement pas le rétablissement de plantes typiques des tourbières.
Audience Academic
Author Guêné-Nanchen, Mélina
D’Amour, Noémie
Rochefort, Line
Author_xml – sequence: 1
  givenname: Mélina
  surname: Guêné-Nanchen
  fullname: Guêné-Nanchen, Mélina
  organization: Peatland Ecology Research Group, Centre for Northern Studies and Plant Sciences Department, 2480 boulevard Hochelaga, Université Laval, Quebec City, QC G1V 0A6, Canada
– sequence: 2
  givenname: Noémie
  surname: D’Amour
  fullname: D’Amour, Noémie
  organization: Peatland Ecology Research Group, Centre for Northern Studies and Plant Sciences Department, 2480 boulevard Hochelaga, Université Laval, Quebec City, QC G1V 0A6, Canada
– sequence: 3
  givenname: Line
  surname: Rochefort
  fullname: Rochefort, Line
  organization: Peatland Ecology Research Group, Centre for Northern Studies and Plant Sciences Department, 2480 boulevard Hochelaga, Université Laval, Quebec City, QC G1V 0A6, Canada
BookMark eNqVks1v1DAQxS1UJNrCkXvECQ5px3ayXnNbVXxUqkCCcramzjjrKhuntlfAf4-jAKXSIoR88Nj6vdHTzDthR2MYibHnHM44l_rc3t7UAgTUAC08Ysdc81Ut1tAc_aqVhifsJKVbgBUHJY_Z9abDKWP2YayCqyKlHOLyzBh7ytVXn7eVHfwOM1V2i2NPr6u8LTUmmjVY2YAp41BNhHnAsXvKHjscEj37eZ-yL2_fXF-8r68-vru82FzVtuU817IFoYC0lm5FjcQb1dkWyXWqIS3WAi0JAKdkR51qu0ZzpwFUK5VEDoLLU_Zy6TvFcLcv1s3OJ0tD8UBhn4xo9Fo0HJq2oPWC9jiQ8aMLOaLtaaSIQxmj8-V7s5J8LUDpmX9xgLeTvzN_QmcHoHI62nl7sOurB4LCZPqWe9ynZC4_f_oP9sNDVi6sjSGlSM5Yvyy1GPKD4WDmhJiSEDMnxMwJuZ_Jb9UUy5rj97_ysPBjtCUohNFu_yH5AVd1yqY
CitedBy_id crossref_primary_10_1002_hyp_14852
crossref_primary_10_1111_rec_14015
Cites_doi 10.2307/3564795
10.1007/s00244-001-0043-0
10.1111/j.1526-100X.2005.00017.x
10.1007/s10584-010-0003-7
10.1007/s11273-013-9322-6
10.1007/s004420100716
10.1007/BF02742463
10.1097/00010694-194501000-00006
10.1515/9782763712222-027
10.1016/S0925-8574(98)00046-9
10.1016/j.ecss.2016.08.018
10.1111/gcb.14449
10.1371/journal.pone.0027374
10.1111/j.1654-109X.2010.01118.x
10.1071/FP10166
10.1111/j.1526-100X.2008.00412.x
10.1007/s11258-004-0008-2
10.1515/9782763712222-007
10.1002/9781118354186
10.1016/0098-8472(84)90026-1
10.1016/j.ocecoaman.2013.09.007
10.19189/MaP.2015.OMB.209
10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2
10.1007/s13157-018-1051-4
10.1016/j.envexpbot.2013.01.004
10.1016/j.envexpbot.2007.10.004
10.1111/j.1600-0706.2010.18511.x
10.1139/b89-380
10.2136/sssaj1990.03615995005400040018x
10.2307/3237101
10.1038/s41467-019-12808-z
10.1016/0304-3770(88)90085-X
10.1146/annurev.pp.31.060180.001053
10.1139/b86-113
10.1139/b85-263
10.1046/j.1365-2745.1998.00281.x
10.1093/acprof:osobl/9780199602995.001.0001
10.1016/j.ecoleng.2014.03.051
10.1672/0277-5212(2007)27[355:SCOAHB]2.0.CO;2
10.1046/j.1365-2745.2000.00522.x
10.1002/ehs2.1258
10.1016/j.ecoleng.2013.02.003
10.1016/S0959-3780(99)00019-9
10.2134/agronmonogr9.2.2ed.c33
10.1515/9782763712222-006
10.1007/s11258-004-2487-6
10.1139/b05-025
10.19189/MaP.2017.OMB.305
ContentType Journal Article
Copyright COPYRIGHT 2020 NRC Research Press
Copyright_xml – notice: COPYRIGHT 2020 NRC Research Press
DBID AAYXX
CITATION
ISN
ISR
7S9
L.6
DOI 10.1139/cjb-2020-0050
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA




CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1916-2804
EndPage 448
ExternalDocumentID A631820795
10_1139_cjb_2020_0050
cjb-2020-0050
GeographicLocations New Brunswick
Canada
GeographicLocations_xml – name: Canada
– name: New Brunswick
GroupedDBID 0R
1AW
23N
2XV
3V.
4.4
5GY
5RP
7X2
88A
88I
8AF
8AO
8CJ
8FE
8FH
8FQ
8G5
A8Z
ABDBF
ABFLS
ABPTK
ABUFD
ABUWG
ACGFS
ACGOD
ACPRK
ADBBV
ADKFC
ADKZR
AENEX
AFKRA
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BBNVY
BCU
BEC
BENPR
BHPHI
BKSAR
BPHCQ
CAG
COF
CS3
D1J
D8U
DWQXO
DZ
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EJD
EMK
EPL
ESX
GNUQQ
GUQSH
HCIFZ
HZ
H~9
IAG
IAO
ICQ
IEP
IGS
IOF
ISN
ISR
ITC
LK8
M0K
M2O
M2P
M2Q
M3G
M7P
MBDVC
NEJ
NRXXU
O9-
PADUT
PCBAR
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PV9
QF4
QM4
QN7
QO4
RIG
RRP
RZL
S10
SJFOW
TUS
TWZ
UKR
UPT
WH7
XJT
ZCG
-DZ
00T
0R~
AAHBH
AAYXX
ACUHS
ADXHL
AEUYN
AIZAD
APEBS
CCPQU
CITATION
DATHI
HZ~
IPNFZ
PHGZM
PHGZT
PQGLB
ZCA
7S9
L.6
ID FETCH-LOGICAL-c511t-350270e993f6e43ab7dc5aefd74e9282ace200f73ded75d491f90075373a10213
ISSN 1916-2790
1916-2804
IngestDate Fri Jul 11 06:04:02 EDT 2025
Wed Feb 12 08:16:17 EST 2025
Tue Jun 10 15:32:11 EDT 2025
Wed Feb 12 06:55:35 EST 2025
Fri Feb 14 02:20:27 EST 2025
Fri Feb 14 03:39:45 EST 2025
Thu Apr 24 22:57:43 EDT 2025
Thu Jul 10 08:01:05 EDT 2025
Wed Nov 11 00:35:04 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-350270e993f6e43ab7dc5aefd74e9282ace200f73ded75d491f90075373a10213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2498241045
PQPubID 24069
PageCount 10
ParticipantIDs crossref_primary_10_1139_cjb_2020_0050
nrcresearch_primary_10_1139_cjb_2020_0050
gale_infotraccpiq_631820795
proquest_miscellaneous_2498241045
gale_incontextgauss_ISN_A631820795
gale_infotracacademiconefile_A631820795
gale_incontextgauss_ISR_A631820795
gale_infotracgeneralonefile_A631820795
crossref_citationtrail_10_1139_cjb_2020_0050
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
PublicationPlace_xml – name: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
PublicationTitle Botany
PublicationYear 2020
Publisher NRC Research Press
Publisher_xml – name: NRC Research Press
References refg47/ref47
refg40/ref40
refg18/ref18
refg22/ref22
refg36/ref36
refg51/ref51
refg11/ref11
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg26/ref26
refg14/ref14
refg5/ref5
refg54/ref54
refg68/ref68
refg37/ref37
refg19/ref19
refg21/ref21
refg4/ref4
refg48/ref48
refg10/ref10
refg1/ref1
refg32/ref32
refg35/ref35
refg59/ref59
refg61/ref61
refg53/ref53
refg42/ref42
refg50/ref50
refg64/ref64
refg67/ref67
refg13/ref13
refg27/ref27
refg56/ref56
refg20/ref20
refg38/ref38
refg45/ref45
refg31/ref31
refg34/ref34
Triisberg T. (refg65/ref65) 2011; 8
refg52/ref52
refg8/ref8
refg60/ref60
refg63/ref63
refg2/ref2
refg23/ref23
refg17/ref17
refg30/ref30
refg28/ref28
refg41/ref41
refg55/ref55
refg39/ref39
refg3/ref3
refg69/ref69
refg62/ref62
refg44/ref44
refg58/ref58
refg33/ref33
References_xml – ident: refg61/ref61
  doi: 10.2307/3564795
– ident: refg64/ref64
  doi: 10.1007/s00244-001-0043-0
– ident: refg18/ref18
  doi: 10.1111/j.1526-100X.2005.00017.x
– ident: refg20/ref20
  doi: 10.1007/s10584-010-0003-7
– ident: refg23/ref23
  doi: 10.1007/s11273-013-9322-6
– ident: refg37/ref37
  doi: 10.1007/s004420100716
– ident: refg10/ref10
  doi: 10.1007/BF02742463
– ident: refg3/ref3
  doi: 10.1097/00010694-194501000-00006
– ident: refg50/ref50
  doi: 10.1515/9782763712222-027
– ident: refg56/ref56
  doi: 10.1016/S0925-8574(98)00046-9
– ident: refg17/ref17
– ident: refg11/ref11
  doi: 10.1016/j.ecss.2016.08.018
– ident: refg48/ref48
  doi: 10.1111/gcb.14449
– ident: refg43/ref43
– ident: refg60/ref60
  doi: 10.1371/journal.pone.0027374
– ident: refg30/ref30
– ident: refg53/ref53
  doi: 10.1111/j.1654-109X.2010.01118.x
– ident: refg28/ref28
  doi: 10.1071/FP10166
– ident: refg55/ref55
  doi: 10.1111/j.1526-100X.2008.00412.x
– ident: refg13/ref13
  doi: 10.1007/s11258-004-0008-2
– ident: refg8/ref8
  doi: 10.1515/9782763712222-007
– ident: refg29/ref29
  doi: 10.1002/9781118354186
– ident: refg52/ref52
– ident: refg68/ref68
  doi: 10.1016/0098-8472(84)90026-1
– ident: refg63/ref63
  doi: 10.1016/j.ocecoaman.2013.09.007
– ident: refg15/ref15
  doi: 10.19189/MaP.2015.OMB.209
– ident: refg58/ref58
  doi: 10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2
– ident: refg32/ref32
  doi: 10.1007/s13157-018-1051-4
– ident: refg54/ref54
  doi: 10.1016/j.envexpbot.2013.01.004
– ident: refg35/ref35
– ident: refg44/ref44
  doi: 10.1016/j.envexpbot.2007.10.004
– ident: refg2/ref2
– ident: refg26/ref26
  doi: 10.1111/j.1600-0706.2010.18511.x
– ident: refg14/ref14
  doi: 10.1139/b89-380
– ident: refg38/ref38
– ident: refg1/ref1
  doi: 10.2136/sssaj1990.03615995005400040018x
– ident: refg39/ref39
  doi: 10.2307/3237101
– ident: refg36/ref36
  doi: 10.1038/s41467-019-12808-z
– ident: refg5/ref5
  doi: 10.1016/0304-3770(88)90085-X
– ident: refg27/ref27
  doi: 10.1146/annurev.pp.31.060180.001053
– volume: 8
  start-page: 1
  issue: 05
  year: 2011
  ident: refg65/ref65
  publication-title: Mires Peat
– ident: refg69/ref69
  doi: 10.1139/b86-113
– ident: refg33/ref33
  doi: 10.1139/b85-263
– ident: refg41/ref41
  doi: 10.1046/j.1365-2745.1998.00281.x
– ident: refg59/ref59
  doi: 10.1093/acprof:osobl/9780199602995.001.0001
– ident: refg42/ref42
– ident: refg21/ref21
  doi: 10.1016/j.ecoleng.2014.03.051
– ident: refg31/ref31
– ident: refg45/ref45
  doi: 10.1672/0277-5212(2007)27[355:SCOAHB]2.0.CO;2
– ident: refg62/ref62
  doi: 10.1046/j.1365-2745.2000.00522.x
– ident: refg67/ref67
  doi: 10.1002/ehs2.1258
– ident: refg40/ref40
  doi: 10.1016/j.ecoleng.2013.02.003
– ident: refg47/ref47
  doi: 10.1016/S0959-3780(99)00019-9
– ident: refg34/ref34
  doi: 10.2134/agronmonogr9.2.2ed.c33
– ident: refg19/ref19
  doi: 10.1515/9782763712222-006
– ident: refg6/ref6
  doi: 10.1007/s11258-004-2487-6
– ident: refg51/ref51
  doi: 10.1139/b05-025
– ident: refg4/ref4
– ident: refg22/ref22
  doi: 10.19189/MaP.2017.OMB.305
SSID ssj0061073
Score 2.2761095
Snippet As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 439
SubjectTerms bog plants
bogs
botany
Carex
changement climatique
Chemical properties
climate change
coasts
contamination par l’eau de mer
Ecosystems
Electric properties
Electrical conductivity
Empetrum nigrum
environmental factors
Global temperature changes
land restoration
marais salé
mosses and liverworts
Myrica gale
New Brunswick
Peat
Peat-bogs
peatland restoration
peatlands
plant communities
restauration de tourbières
Revegetation
salt marsh
salt marshes
Saltwater encroachment
saltwater intrusion
sea level
Sea-water
seawater
seawater contamination
shrubs
Sphagnum
spontaneous revegetation
Sporobolus
Tidal marshes
vegetation
végétalisation spontanée
Title Adaptation of restoration target with climate change: the case of a coastal peatland
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2020-0050
https://www.proquest.com/docview/2498241045
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLeg4wAHxKc2BsggNIRGRhI7Sc0tg1UDdUUardSb5TjO1qlLSpte-Ot5ju220TYxuESt_eomfj8_P-d9IfQujDMSCyk97QLlgcDLvIyEgRcUOU38jNK8CY8-GcTHI_p9HI3XCRWa6JI6O5C_r40r-R-uQhvwVUfJ_gNnV4NCA3wG_sIVOAzXW_E4zcWsXul886ZIjPlqHLytY_l0AmqpsjG-zpFDCvMWX-zLSix0SOQMxLIt6LG281a1kxbaSWfZ2NXT0pjXPS2abXTHiWma2mrcjW7sHClYeglPY6xEhuxyssLTqS7ZVdh69n1n5bfvIcK1F5wTnaBoemHXFBN2spV1NzDU3Z8dUG14Nrk1rcikJpmR3X1t31XBTnReVHmReea_fZOutp1Ae_CD90b9Ph8ejYd30VYIJwe_g7bSw6-HPbc9g7rYuB2sbtclXiXsU2v4lqJit-sH5VzaJEznVzbvRiMZPkIP7VECpwYXj9EdVT5B9wzHnqLhGhy4KvAGOLABB9bgwBYc2IDjMwZoYA0N_RuBLTSwg8YzNOodDb8ce7aEhidBk649Evlh4itQQotYUSKyJJeRUEWeUMXgtC2kggVVJCRXeRLllAUF01okSYjQRd_Jc9Qpq1JtIxzEWeJL0DaDUMEyjkTIBIlEngWCJSynO-ijmy8ubX55XeZkyptzJmEcppfr6eV6enfQ3op8ZhKr3ET4Vk8-18lKSu0NdSaWiwX_9nPA05jo-gMJi24kOm0RvbdERQV3JoWNQIHn00nQWpS7LUo5m_ziG717rd4zkyD-umE-bADmb4_5xsGJg4TXZjtRqmq54CFlXdCz4ez14hY0u-j-enW-RJ16vlSvQG-us9d2JfwBx-26-w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+restoration+target+with+climate+change%3A+the+case+of+a+coastal+peatland&rft.jtitle=Botany&rft.au=Gu%C3%AAn%C3%A9-Nanchen%2C+M%C3%A9lina&rft.au=D%E2%80%99Amour%2C+No%C3%A9mie&rft.au=Rochefort%2C+Line&rft.date=2020-08-01&rft.issn=1916-2804&rft.volume=98&rft.issue=8+p.439-448&rft.spage=439&rft.epage=448&rft_id=info:doi/10.1139%2Fcjb-2020-0050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1916-2790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1916-2790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1916-2790&client=summon