Adaptation of restoration target with climate change: the case of a coastal peatland
As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions....
Saved in:
Published in | Botany Vol. 98; no. 8; pp. 439 - 448 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
NRC Research Press
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1916-2790 1916-2804 1916-2804 |
DOI | 10.1139/cjb-2020-0050 |
Cover
Loading…
Abstract | As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH
4
+
). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. |
---|---|
AbstractList | As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and N[H.sup.+.sub.4]). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. Key words: peatland restoration, salt marsh, climate change, seawater contamination, spontaneous revegetation. Avec la montee du niveau des mers prevue avec les changements climatiques, les tourbieres extraites en zone cotiere sont vulnerables a l'intrusion d'eau salee. La contamination par l'eau salee peut nuire a la recolonisation par les plantes typiques des bogs (p. ex. : sphaignes, ericacees) generalement intolerantes aux conditions salines. La recolonisation vegetale spontanee a ete etudiee dans un bog ou les activites d'extraction de la tourbe ont cesse 27 ans auparavant et qui a ete contamine par l'eau de mer a travers le temps, au Nouveau-Brunswick (Est du Canada). Cette etude visait (i) a evaluer la regeneration vegetale sur des sols organiques sales, mais toujours acides; et (ii) a etablir un lien entre la recolonisation des plantes et les conditions environnementales, notamment les proprietes chimiques du sol. Des sept communautes de plantes retrouvees dans la tourbiere contaminee par l'eau de mer, aucune n'etait typique des bogs et les sphaignes y etaient peu presentes. Les communautes vegetales et les proprietes chimiques etaient plutot representatives d'un ecosysteme de marais sale (c.-a-d., Carex paleacea, Sporobolus michauxianus, Myrica gale; pH neutre et riche en elements nutritifs, notamment P, Mg et N[H.sup.+.sub.4]). Une faible recolonisation spontanee etait associee avec des conditions chimiques arides (c.-a-d., pH acide, conductivite electrique elevee, faible contenu en elements nutritifs). Considerant les facteurs aggravants qui persisteront avec les changements climatiques, la restauration des tourbieres cotieres contaminees par l'eau salee comme mesure de gestion adaptative devrait viser a retablir un marais sale, puisque la vegetalisation spontanee et les conditions chimiques ne permettent manifestement pas le retablissement de plantes typiques des tourbieres. Mots-cles: restauration de tourbieres, marais sale, changement climatique, contamination par l'eau de mer, vegetalisation spontanee. As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH 4 + ). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH₄⁺). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and N[H.sup.+.sub.4]). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater contamination may prevent revegetation of typical bog species (e.g., Sphagnum, ericaceous shrubs) generally intolerant to saline conditions. Spontaneous revegetation was studied in a 27-year post-extracted bog that has been contaminated with seawater in New Brunswick (Eastern Canada). This study aimed (i) to evaluate spontaneous plant regeneration on saline but still acidic, organic soil; and (ii) to relate the recolonized vegetation patterns to the main environmental conditions. Of the seven plant communities found in the sea-contaminated bog, none were typical of bogs, and Sphagnum mosses were poorly represented. Plants communities and chemical properties were rather representative of salt marsh ecosystems (i.e., Carex paleacea, Sporobolus michauxianus, Empetrum nigrum, Myrica gale; neutral pH and nutrient-rich, namely P, Mg, and NH 4 + ). Areas with low levels of spontaneous revegetation were associated with harsh chemical conditions (i.e., acid pH, high electrical conductivity, and nutrient-poor). Considering the aggravating factors that will persist with climate change, restoration of coastal bogs contaminated with seawater should aim to re-establish salt marsh ecosystems, given that spontaneous revegetation patterns and chemical conditions clearly do not allow the establishment of bog plant communities. |
Abstract_FL | Avec la montée du niveau des mers prévue avec les changements climatiques, les tourbières extraites en zone côtière sont vulnérables à l’intrusion d’eau salée. La contamination par l’eau salée peut nuire à la recolonisation par les plantes typiques des bogs (p. ex. : sphaignes, éricacées) généralement intolérantes aux conditions salines. La recolonisation végétale spontanée a été étudiée dans un bog où les activités d’extraction de la tourbe ont cessé 27 ans auparavant et qui a été contaminé par l’eau de mer à travers le temps, au Nouveau-Brunswick (Est du Canada). Cette étude visait (i) à évaluer la régénération végétale sur des sols organiques salés, mais toujours acides; et (ii) à établir un lien entre la recolonisation des plantes et les conditions environnementales, notamment les propriétés chimiques du sol. Des sept communautés de plantes retrouvées dans la tourbière contaminée par l’eau de mer, aucune n’était typique des bogs et les sphaignes y étaient peu présentes. Les communautés végétales et les propriétés chimiques étaient plutôt représentatives d’un écosystème de marais salé (c.-à-d., Carex paleacea, Sporobolus michauxianus, Myrica gale; pH neutre et riche en éléments nutritifs, notamment P, Mg et NH
4
+
). Une faible recolonisation spontanée était associée avec des conditions chimiques arides (c.-à-d., pH acide, conductivité électrique élevée, faible contenu en éléments nutritifs). Considérant les facteurs aggravants qui persisteront avec les changements climatiques, la restauration des tourbières côtières contaminées par l’eau salée comme mesure de gestion adaptative devrait viser à rétablir un marais salé, puisque la végétalisation spontanée et les conditions chimiques ne permettent manifestement pas le rétablissement de plantes typiques des tourbières. |
Audience | Academic |
Author | Guêné-Nanchen, Mélina D’Amour, Noémie Rochefort, Line |
Author_xml | – sequence: 1 givenname: Mélina surname: Guêné-Nanchen fullname: Guêné-Nanchen, Mélina organization: Peatland Ecology Research Group, Centre for Northern Studies and Plant Sciences Department, 2480 boulevard Hochelaga, Université Laval, Quebec City, QC G1V 0A6, Canada – sequence: 2 givenname: Noémie surname: D’Amour fullname: D’Amour, Noémie organization: Peatland Ecology Research Group, Centre for Northern Studies and Plant Sciences Department, 2480 boulevard Hochelaga, Université Laval, Quebec City, QC G1V 0A6, Canada – sequence: 3 givenname: Line surname: Rochefort fullname: Rochefort, Line organization: Peatland Ecology Research Group, Centre for Northern Studies and Plant Sciences Department, 2480 boulevard Hochelaga, Université Laval, Quebec City, QC G1V 0A6, Canada |
BookMark | eNqVks1v1DAQxS1UJNrCkXvECQ5px3ayXnNbVXxUqkCCcramzjjrKhuntlfAf4-jAKXSIoR88Nj6vdHTzDthR2MYibHnHM44l_rc3t7UAgTUAC08Ysdc81Ut1tAc_aqVhifsJKVbgBUHJY_Z9abDKWP2YayCqyKlHOLyzBh7ytVXn7eVHfwOM1V2i2NPr6u8LTUmmjVY2YAp41BNhHnAsXvKHjscEj37eZ-yL2_fXF-8r68-vru82FzVtuU817IFoYC0lm5FjcQb1dkWyXWqIS3WAi0JAKdkR51qu0ZzpwFUK5VEDoLLU_Zy6TvFcLcv1s3OJ0tD8UBhn4xo9Fo0HJq2oPWC9jiQ8aMLOaLtaaSIQxmj8-V7s5J8LUDpmX9xgLeTvzN_QmcHoHI62nl7sOurB4LCZPqWe9ynZC4_f_oP9sNDVi6sjSGlSM5Yvyy1GPKD4WDmhJiSEDMnxMwJuZ_Jb9UUy5rj97_ysPBjtCUohNFu_yH5AVd1yqY |
CitedBy_id | crossref_primary_10_1002_hyp_14852 crossref_primary_10_1111_rec_14015 |
Cites_doi | 10.2307/3564795 10.1007/s00244-001-0043-0 10.1111/j.1526-100X.2005.00017.x 10.1007/s10584-010-0003-7 10.1007/s11273-013-9322-6 10.1007/s004420100716 10.1007/BF02742463 10.1097/00010694-194501000-00006 10.1515/9782763712222-027 10.1016/S0925-8574(98)00046-9 10.1016/j.ecss.2016.08.018 10.1111/gcb.14449 10.1371/journal.pone.0027374 10.1111/j.1654-109X.2010.01118.x 10.1071/FP10166 10.1111/j.1526-100X.2008.00412.x 10.1007/s11258-004-0008-2 10.1515/9782763712222-007 10.1002/9781118354186 10.1016/0098-8472(84)90026-1 10.1016/j.ocecoaman.2013.09.007 10.19189/MaP.2015.OMB.209 10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2 10.1007/s13157-018-1051-4 10.1016/j.envexpbot.2013.01.004 10.1016/j.envexpbot.2007.10.004 10.1111/j.1600-0706.2010.18511.x 10.1139/b89-380 10.2136/sssaj1990.03615995005400040018x 10.2307/3237101 10.1038/s41467-019-12808-z 10.1016/0304-3770(88)90085-X 10.1146/annurev.pp.31.060180.001053 10.1139/b86-113 10.1139/b85-263 10.1046/j.1365-2745.1998.00281.x 10.1093/acprof:osobl/9780199602995.001.0001 10.1016/j.ecoleng.2014.03.051 10.1672/0277-5212(2007)27[355:SCOAHB]2.0.CO;2 10.1046/j.1365-2745.2000.00522.x 10.1002/ehs2.1258 10.1016/j.ecoleng.2013.02.003 10.1016/S0959-3780(99)00019-9 10.2134/agronmonogr9.2.2ed.c33 10.1515/9782763712222-006 10.1007/s11258-004-2487-6 10.1139/b05-025 10.19189/MaP.2017.OMB.305 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2020 NRC Research Press |
DBID | AAYXX CITATION ISN ISR 7S9 L.6 |
DOI | 10.1139/cjb-2020-0050 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1916-2804 |
EndPage | 448 |
ExternalDocumentID | A631820795 10_1139_cjb_2020_0050 cjb-2020-0050 |
GeographicLocations | New Brunswick Canada |
GeographicLocations_xml | – name: Canada – name: New Brunswick |
GroupedDBID | 0R 1AW 23N 2XV 3V. 4.4 5GY 5RP 7X2 88A 88I 8AF 8AO 8CJ 8FE 8FH 8FQ 8G5 A8Z ABDBF ABFLS ABPTK ABUFD ABUWG ACGFS ACGOD ACPRK ADBBV ADKFC ADKZR AENEX AFKRA AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BBNVY BCU BEC BENPR BHPHI BKSAR BPHCQ CAG COF CS3 D1J D8U DWQXO DZ EAD EAP EAS EBC EBD EBS ECC EDH EJD EMK EPL ESX GNUQQ GUQSH HCIFZ HZ H~9 IAG IAO ICQ IEP IGS IOF ISN ISR ITC LK8 M0K M2O M2P M2Q M3G M7P MBDVC NEJ NRXXU O9- PADUT PCBAR PQEST PQQKQ PQUKI PRINS PROAC PV9 QF4 QM4 QN7 QO4 RIG RRP RZL S10 SJFOW TUS TWZ UKR UPT WH7 XJT ZCG -DZ 00T 0R~ AAHBH AAYXX ACUHS ADXHL AEUYN AIZAD APEBS CCPQU CITATION DATHI HZ~ IPNFZ PHGZM PHGZT PQGLB ZCA 7S9 L.6 |
ID | FETCH-LOGICAL-c511t-350270e993f6e43ab7dc5aefd74e9282ace200f73ded75d491f90075373a10213 |
ISSN | 1916-2790 1916-2804 |
IngestDate | Fri Jul 11 06:04:02 EDT 2025 Wed Feb 12 08:16:17 EST 2025 Tue Jun 10 15:32:11 EDT 2025 Wed Feb 12 06:55:35 EST 2025 Fri Feb 14 02:20:27 EST 2025 Fri Feb 14 03:39:45 EST 2025 Thu Apr 24 22:57:43 EDT 2025 Thu Jul 10 08:01:05 EDT 2025 Wed Nov 11 00:35:04 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-350270e993f6e43ab7dc5aefd74e9282ace200f73ded75d491f90075373a10213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2498241045 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1139_cjb_2020_0050 nrcresearch_primary_10_1139_cjb_2020_0050 gale_infotraccpiq_631820795 proquest_miscellaneous_2498241045 gale_incontextgauss_ISN_A631820795 gale_infotracacademiconefile_A631820795 gale_incontextgauss_ISR_A631820795 gale_infotracgeneralonefile_A631820795 crossref_citationtrail_10_1139_cjb_2020_0050 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 |
PublicationPlace_xml | – name: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 |
PublicationTitle | Botany |
PublicationYear | 2020 |
Publisher | NRC Research Press |
Publisher_xml | – name: NRC Research Press |
References | refg47/ref47 refg40/ref40 refg18/ref18 refg22/ref22 refg36/ref36 refg51/ref51 refg11/ref11 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg26/ref26 refg14/ref14 refg5/ref5 refg54/ref54 refg68/ref68 refg37/ref37 refg19/ref19 refg21/ref21 refg4/ref4 refg48/ref48 refg10/ref10 refg1/ref1 refg32/ref32 refg35/ref35 refg59/ref59 refg61/ref61 refg53/ref53 refg42/ref42 refg50/ref50 refg64/ref64 refg67/ref67 refg13/ref13 refg27/ref27 refg56/ref56 refg20/ref20 refg38/ref38 refg45/ref45 refg31/ref31 refg34/ref34 Triisberg T. (refg65/ref65) 2011; 8 refg52/ref52 refg8/ref8 refg60/ref60 refg63/ref63 refg2/ref2 refg23/ref23 refg17/ref17 refg30/ref30 refg28/ref28 refg41/ref41 refg55/ref55 refg39/ref39 refg3/ref3 refg69/ref69 refg62/ref62 refg44/ref44 refg58/ref58 refg33/ref33 |
References_xml | – ident: refg61/ref61 doi: 10.2307/3564795 – ident: refg64/ref64 doi: 10.1007/s00244-001-0043-0 – ident: refg18/ref18 doi: 10.1111/j.1526-100X.2005.00017.x – ident: refg20/ref20 doi: 10.1007/s10584-010-0003-7 – ident: refg23/ref23 doi: 10.1007/s11273-013-9322-6 – ident: refg37/ref37 doi: 10.1007/s004420100716 – ident: refg10/ref10 doi: 10.1007/BF02742463 – ident: refg3/ref3 doi: 10.1097/00010694-194501000-00006 – ident: refg50/ref50 doi: 10.1515/9782763712222-027 – ident: refg56/ref56 doi: 10.1016/S0925-8574(98)00046-9 – ident: refg17/ref17 – ident: refg11/ref11 doi: 10.1016/j.ecss.2016.08.018 – ident: refg48/ref48 doi: 10.1111/gcb.14449 – ident: refg43/ref43 – ident: refg60/ref60 doi: 10.1371/journal.pone.0027374 – ident: refg30/ref30 – ident: refg53/ref53 doi: 10.1111/j.1654-109X.2010.01118.x – ident: refg28/ref28 doi: 10.1071/FP10166 – ident: refg55/ref55 doi: 10.1111/j.1526-100X.2008.00412.x – ident: refg13/ref13 doi: 10.1007/s11258-004-0008-2 – ident: refg8/ref8 doi: 10.1515/9782763712222-007 – ident: refg29/ref29 doi: 10.1002/9781118354186 – ident: refg52/ref52 – ident: refg68/ref68 doi: 10.1016/0098-8472(84)90026-1 – ident: refg63/ref63 doi: 10.1016/j.ocecoaman.2013.09.007 – ident: refg15/ref15 doi: 10.19189/MaP.2015.OMB.209 – ident: refg58/ref58 doi: 10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2 – ident: refg32/ref32 doi: 10.1007/s13157-018-1051-4 – ident: refg54/ref54 doi: 10.1016/j.envexpbot.2013.01.004 – ident: refg35/ref35 – ident: refg44/ref44 doi: 10.1016/j.envexpbot.2007.10.004 – ident: refg2/ref2 – ident: refg26/ref26 doi: 10.1111/j.1600-0706.2010.18511.x – ident: refg14/ref14 doi: 10.1139/b89-380 – ident: refg38/ref38 – ident: refg1/ref1 doi: 10.2136/sssaj1990.03615995005400040018x – ident: refg39/ref39 doi: 10.2307/3237101 – ident: refg36/ref36 doi: 10.1038/s41467-019-12808-z – ident: refg5/ref5 doi: 10.1016/0304-3770(88)90085-X – ident: refg27/ref27 doi: 10.1146/annurev.pp.31.060180.001053 – volume: 8 start-page: 1 issue: 05 year: 2011 ident: refg65/ref65 publication-title: Mires Peat – ident: refg69/ref69 doi: 10.1139/b86-113 – ident: refg33/ref33 doi: 10.1139/b85-263 – ident: refg41/ref41 doi: 10.1046/j.1365-2745.1998.00281.x – ident: refg59/ref59 doi: 10.1093/acprof:osobl/9780199602995.001.0001 – ident: refg42/ref42 – ident: refg21/ref21 doi: 10.1016/j.ecoleng.2014.03.051 – ident: refg31/ref31 – ident: refg45/ref45 doi: 10.1672/0277-5212(2007)27[355:SCOAHB]2.0.CO;2 – ident: refg62/ref62 doi: 10.1046/j.1365-2745.2000.00522.x – ident: refg67/ref67 doi: 10.1002/ehs2.1258 – ident: refg40/ref40 doi: 10.1016/j.ecoleng.2013.02.003 – ident: refg47/ref47 doi: 10.1016/S0959-3780(99)00019-9 – ident: refg34/ref34 doi: 10.2134/agronmonogr9.2.2ed.c33 – ident: refg19/ref19 doi: 10.1515/9782763712222-006 – ident: refg6/ref6 doi: 10.1007/s11258-004-2487-6 – ident: refg51/ref51 doi: 10.1139/b05-025 – ident: refg4/ref4 – ident: refg22/ref22 doi: 10.19189/MaP.2017.OMB.305 |
SSID | ssj0061073 |
Score | 2.2761095 |
Snippet | As a rise in sea level is expected with climate change, peat-extracted peatlands located in coastal zones are more vulnerable to saltwater intrusion. Seawater... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 439 |
SubjectTerms | bog plants bogs botany Carex changement climatique Chemical properties climate change coasts contamination par l’eau de mer Ecosystems Electric properties Electrical conductivity Empetrum nigrum environmental factors Global temperature changes land restoration marais salé mosses and liverworts Myrica gale New Brunswick Peat Peat-bogs peatland restoration peatlands plant communities restauration de tourbières Revegetation salt marsh salt marshes Saltwater encroachment saltwater intrusion sea level Sea-water seawater seawater contamination shrubs Sphagnum spontaneous revegetation Sporobolus Tidal marshes vegetation végétalisation spontanée |
Title | Adaptation of restoration target with climate change: the case of a coastal peatland |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2020-0050 https://www.proquest.com/docview/2498241045 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLeg4wAHxKc2BsggNIRGRhI7Sc0tg1UDdUUardSb5TjO1qlLSpte-Ot5ju220TYxuESt_eomfj8_P-d9IfQujDMSCyk97QLlgcDLvIyEgRcUOU38jNK8CY8-GcTHI_p9HI3XCRWa6JI6O5C_r40r-R-uQhvwVUfJ_gNnV4NCA3wG_sIVOAzXW_E4zcWsXul886ZIjPlqHLytY_l0AmqpsjG-zpFDCvMWX-zLSix0SOQMxLIt6LG281a1kxbaSWfZ2NXT0pjXPS2abXTHiWma2mrcjW7sHClYeglPY6xEhuxyssLTqS7ZVdh69n1n5bfvIcK1F5wTnaBoemHXFBN2spV1NzDU3Z8dUG14Nrk1rcikJpmR3X1t31XBTnReVHmReea_fZOutp1Ae_CD90b9Ph8ejYd30VYIJwe_g7bSw6-HPbc9g7rYuB2sbtclXiXsU2v4lqJit-sH5VzaJEznVzbvRiMZPkIP7VECpwYXj9EdVT5B9wzHnqLhGhy4KvAGOLABB9bgwBYc2IDjMwZoYA0N_RuBLTSwg8YzNOodDb8ce7aEhidBk649Evlh4itQQotYUSKyJJeRUEWeUMXgtC2kggVVJCRXeRLllAUF01okSYjQRd_Jc9Qpq1JtIxzEWeJL0DaDUMEyjkTIBIlEngWCJSynO-ijmy8ubX55XeZkyptzJmEcppfr6eV6enfQ3op8ZhKr3ET4Vk8-18lKSu0NdSaWiwX_9nPA05jo-gMJi24kOm0RvbdERQV3JoWNQIHn00nQWpS7LUo5m_ziG717rd4zkyD-umE-bADmb4_5xsGJg4TXZjtRqmq54CFlXdCz4ez14hY0u-j-enW-RJ16vlSvQG-us9d2JfwBx-26-w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+restoration+target+with+climate+change%3A+the+case+of+a+coastal+peatland&rft.jtitle=Botany&rft.au=Gu%C3%AAn%C3%A9-Nanchen%2C+M%C3%A9lina&rft.au=D%E2%80%99Amour%2C+No%C3%A9mie&rft.au=Rochefort%2C+Line&rft.date=2020-08-01&rft.issn=1916-2804&rft.volume=98&rft.issue=8+p.439-448&rft.spage=439&rft.epage=448&rft_id=info:doi/10.1139%2Fcjb-2020-0050&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1916-2790&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1916-2790&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1916-2790&client=summon |